/src/libjpeg-turbo.main/jidctfst.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jidctfst.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1994-1998, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 2015, 2022, D. R. Commander. |
8 | | * For conditions of distribution and use, see the accompanying README.ijg |
9 | | * file. |
10 | | * |
11 | | * This file contains a fast, not so accurate integer implementation of the |
12 | | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
13 | | * must also perform dequantization of the input coefficients. |
14 | | * |
15 | | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
16 | | * on each row (or vice versa, but it's more convenient to emit a row at |
17 | | * a time). Direct algorithms are also available, but they are much more |
18 | | * complex and seem not to be any faster when reduced to code. |
19 | | * |
20 | | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
21 | | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
22 | | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
23 | | * JPEG textbook (see REFERENCES section in file README.ijg). The following |
24 | | * code is based directly on figure 4-8 in P&M. |
25 | | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
26 | | * possible to arrange the computation so that many of the multiplies are |
27 | | * simple scalings of the final outputs. These multiplies can then be |
28 | | * folded into the multiplications or divisions by the JPEG quantization |
29 | | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
30 | | * to be done in the DCT itself. |
31 | | * The primary disadvantage of this method is that with fixed-point math, |
32 | | * accuracy is lost due to imprecise representation of the scaled |
33 | | * quantization values. The smaller the quantization table entry, the less |
34 | | * precise the scaled value, so this implementation does worse with high- |
35 | | * quality-setting files than with low-quality ones. |
36 | | */ |
37 | | |
38 | | #define JPEG_INTERNALS |
39 | | #include "jinclude.h" |
40 | | #include "jpeglib.h" |
41 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
42 | | |
43 | | #ifdef DCT_IFAST_SUPPORTED |
44 | | |
45 | | |
46 | | /* |
47 | | * This module is specialized to the case DCTSIZE = 8. |
48 | | */ |
49 | | |
50 | | #if DCTSIZE != 8 |
51 | | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
52 | | #endif |
53 | | |
54 | | |
55 | | /* Scaling decisions are generally the same as in the LL&M algorithm; |
56 | | * see jidctint.c for more details. However, we choose to descale |
57 | | * (right shift) multiplication products as soon as they are formed, |
58 | | * rather than carrying additional fractional bits into subsequent additions. |
59 | | * This compromises accuracy slightly, but it lets us save a few shifts. |
60 | | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
61 | | * everywhere except in the multiplications proper; this saves a good deal |
62 | | * of work on 16-bit-int machines. |
63 | | * |
64 | | * The dequantized coefficients are not integers because the AA&N scaling |
65 | | * factors have been incorporated. We represent them scaled up by PASS1_BITS, |
66 | | * so that the first and second IDCT rounds have the same input scaling. |
67 | | * For 8-bit samples, we choose IFAST_SCALE_BITS = PASS1_BITS so as to |
68 | | * avoid a descaling shift; this compromises accuracy rather drastically |
69 | | * for small quantization table entries, but it saves a lot of shifts. |
70 | | * For 12-bit samples, there's no hope of using 16x16 multiplies anyway, |
71 | | * so we use a much larger scaling factor to preserve accuracy. |
72 | | * |
73 | | * A final compromise is to represent the multiplicative constants to only |
74 | | * 8 fractional bits, rather than 13. This saves some shifting work on some |
75 | | * machines, and may also reduce the cost of multiplication (since there |
76 | | * are fewer one-bits in the constants). |
77 | | */ |
78 | | |
79 | | #if BITS_IN_JSAMPLE == 8 |
80 | | #define CONST_BITS 8 |
81 | | #define PASS1_BITS 2 |
82 | | #else |
83 | | #define CONST_BITS 8 |
84 | | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
85 | | #endif |
86 | | |
87 | | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
88 | | * causing a lot of useless floating-point operations at run time. |
89 | | * To get around this we use the following pre-calculated constants. |
90 | | * If you change CONST_BITS you may want to add appropriate values. |
91 | | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
92 | | */ |
93 | | |
94 | | #if CONST_BITS == 8 |
95 | | #define FIX_1_082392200 ((JLONG)277) /* FIX(1.082392200) */ |
96 | | #define FIX_1_414213562 ((JLONG)362) /* FIX(1.414213562) */ |
97 | | #define FIX_1_847759065 ((JLONG)473) /* FIX(1.847759065) */ |
98 | | #define FIX_2_613125930 ((JLONG)669) /* FIX(2.613125930) */ |
99 | | #else |
100 | | #define FIX_1_082392200 FIX(1.082392200) |
101 | | #define FIX_1_414213562 FIX(1.414213562) |
102 | | #define FIX_1_847759065 FIX(1.847759065) |
103 | | #define FIX_2_613125930 FIX(2.613125930) |
104 | | #endif |
105 | | |
106 | | |
107 | | /* We can gain a little more speed, with a further compromise in accuracy, |
108 | | * by omitting the addition in a descaling shift. This yields an incorrectly |
109 | | * rounded result half the time... |
110 | | */ |
111 | | |
112 | | #ifndef USE_ACCURATE_ROUNDING |
113 | | #undef DESCALE |
114 | 502M | #define DESCALE(x, n) RIGHT_SHIFT(x, n) |
115 | | #endif |
116 | | |
117 | | |
118 | | /* Multiply a DCTELEM variable by an JLONG constant, and immediately |
119 | | * descale to yield a DCTELEM result. |
120 | | */ |
121 | | |
122 | 268M | #define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS)) |
123 | | |
124 | | |
125 | | /* Dequantize a coefficient by multiplying it by the multiplier-table |
126 | | * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 |
127 | | * multiplication will do. For 12-bit data, the multiplier table is |
128 | | * declared JLONG, so a 32-bit multiply will be used. |
129 | | */ |
130 | | |
131 | | #if BITS_IN_JSAMPLE == 8 |
132 | 0 | #define DEQUANTIZE(coef, quantval) (((IFAST_MULT_TYPE)(coef)) * (quantval)) |
133 | | #else |
134 | | #define DEQUANTIZE(coef, quantval) \ |
135 | 234M | DESCALE((coef) * (quantval), IFAST_SCALE_BITS - PASS1_BITS) |
136 | | #endif |
137 | | |
138 | | |
139 | | /* Like DESCALE, but applies to a DCTELEM and produces an int. |
140 | | * We assume that int right shift is unsigned if JLONG right shift is. |
141 | | */ |
142 | | |
143 | | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
144 | | #define ISHIFT_TEMPS DCTELEM ishift_temp; |
145 | | #if BITS_IN_JSAMPLE == 8 |
146 | | #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ |
147 | | #else |
148 | | #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ |
149 | | #endif |
150 | | #define IRIGHT_SHIFT(x, shft) \ |
151 | | ((ishift_temp = (x)) < 0 ? \ |
152 | | (ishift_temp >> (shft)) | ((~((DCTELEM)0)) << (DCTELEMBITS - (shft))) : \ |
153 | | (ishift_temp >> (shft))) |
154 | | #else |
155 | | #define ISHIFT_TEMPS |
156 | 403M | #define IRIGHT_SHIFT(x, shft) ((x) >> (shft)) |
157 | | #endif |
158 | | |
159 | | #ifdef USE_ACCURATE_ROUNDING |
160 | | #define IDESCALE(x, n) ((int)IRIGHT_SHIFT((x) + (1 << ((n) - 1)), n)) |
161 | | #else |
162 | 403M | #define IDESCALE(x, n) ((int)IRIGHT_SHIFT(x, n)) |
163 | | #endif |
164 | | |
165 | | |
166 | | /* |
167 | | * Perform dequantization and inverse DCT on one block of coefficients. |
168 | | */ |
169 | | |
170 | | GLOBAL(void) |
171 | | _jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
172 | | JCOEFPTR coef_block, _JSAMPARRAY output_buf, |
173 | | JDIMENSION output_col) |
174 | 16.3M | { |
175 | 16.3M | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
176 | 16.3M | DCTELEM tmp10, tmp11, tmp12, tmp13; |
177 | 16.3M | DCTELEM z5, z10, z11, z12, z13; |
178 | 16.3M | JCOEFPTR inptr; |
179 | 16.3M | IFAST_MULT_TYPE *quantptr; |
180 | 16.3M | int *wsptr; |
181 | 16.3M | _JSAMPROW outptr; |
182 | 16.3M | _JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
183 | 16.3M | int ctr; |
184 | 16.3M | int workspace[DCTSIZE2]; /* buffers data between passes */ |
185 | | SHIFT_TEMPS /* for DESCALE */ |
186 | | ISHIFT_TEMPS /* for IDESCALE */ |
187 | | |
188 | | /* Pass 1: process columns from input, store into work array. */ |
189 | | |
190 | 16.3M | inptr = coef_block; |
191 | 16.3M | quantptr = (IFAST_MULT_TYPE *)compptr->dct_table; |
192 | 16.3M | wsptr = workspace; |
193 | 147M | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
194 | | /* Due to quantization, we will usually find that many of the input |
195 | | * coefficients are zero, especially the AC terms. We can exploit this |
196 | | * by short-circuiting the IDCT calculation for any column in which all |
197 | | * the AC terms are zero. In that case each output is equal to the |
198 | | * DC coefficient (with scale factor as needed). |
199 | | * With typical images and quantization tables, half or more of the |
200 | | * column DCT calculations can be simplified this way. |
201 | | */ |
202 | | |
203 | 131M | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && |
204 | 131M | inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && |
205 | 131M | inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && |
206 | 131M | inptr[DCTSIZE * 7] == 0) { |
207 | | /* AC terms all zero */ |
208 | 116M | int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); |
209 | | |
210 | 116M | wsptr[DCTSIZE * 0] = dcval; |
211 | 116M | wsptr[DCTSIZE * 1] = dcval; |
212 | 116M | wsptr[DCTSIZE * 2] = dcval; |
213 | 116M | wsptr[DCTSIZE * 3] = dcval; |
214 | 116M | wsptr[DCTSIZE * 4] = dcval; |
215 | 116M | wsptr[DCTSIZE * 5] = dcval; |
216 | 116M | wsptr[DCTSIZE * 6] = dcval; |
217 | 116M | wsptr[DCTSIZE * 7] = dcval; |
218 | | |
219 | 116M | inptr++; /* advance pointers to next column */ |
220 | 116M | quantptr++; |
221 | 116M | wsptr++; |
222 | 116M | continue; |
223 | 116M | } |
224 | | |
225 | | /* Even part */ |
226 | | |
227 | 14.7M | tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); |
228 | 14.7M | tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); |
229 | 14.7M | tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); |
230 | 14.7M | tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); |
231 | | |
232 | 14.7M | tmp10 = tmp0 + tmp2; /* phase 3 */ |
233 | 14.7M | tmp11 = tmp0 - tmp2; |
234 | | |
235 | 14.7M | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
236 | 14.7M | tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
237 | | |
238 | 14.7M | tmp0 = tmp10 + tmp13; /* phase 2 */ |
239 | 14.7M | tmp3 = tmp10 - tmp13; |
240 | 14.7M | tmp1 = tmp11 + tmp12; |
241 | 14.7M | tmp2 = tmp11 - tmp12; |
242 | | |
243 | | /* Odd part */ |
244 | | |
245 | 14.7M | tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); |
246 | 14.7M | tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); |
247 | 14.7M | tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); |
248 | 14.7M | tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); |
249 | | |
250 | 14.7M | z13 = tmp6 + tmp5; /* phase 6 */ |
251 | 14.7M | z10 = tmp6 - tmp5; |
252 | 14.7M | z11 = tmp4 + tmp7; |
253 | 14.7M | z12 = tmp4 - tmp7; |
254 | | |
255 | 14.7M | tmp7 = z11 + z13; /* phase 5 */ |
256 | 14.7M | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
257 | | |
258 | 14.7M | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
259 | 14.7M | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
260 | 14.7M | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
261 | | |
262 | 14.7M | tmp6 = tmp12 - tmp7; /* phase 2 */ |
263 | 14.7M | tmp5 = tmp11 - tmp6; |
264 | 14.7M | tmp4 = tmp10 + tmp5; |
265 | | |
266 | 14.7M | wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7); |
267 | 14.7M | wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7); |
268 | 14.7M | wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6); |
269 | 14.7M | wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6); |
270 | 14.7M | wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5); |
271 | 14.7M | wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5); |
272 | 14.7M | wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4); |
273 | 14.7M | wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4); |
274 | | |
275 | 14.7M | inptr++; /* advance pointers to next column */ |
276 | 14.7M | quantptr++; |
277 | 14.7M | wsptr++; |
278 | 14.7M | } |
279 | | |
280 | | /* Pass 2: process rows from work array, store into output array. */ |
281 | | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
282 | | /* and also undo the PASS1_BITS scaling. */ |
283 | | |
284 | 16.3M | wsptr = workspace; |
285 | 147M | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
286 | 131M | outptr = output_buf[ctr] + output_col; |
287 | | /* Rows of zeroes can be exploited in the same way as we did with columns. |
288 | | * However, the column calculation has created many nonzero AC terms, so |
289 | | * the simplification applies less often (typically 5% to 10% of the time). |
290 | | * On machines with very fast multiplication, it's possible that the |
291 | | * test takes more time than it's worth. In that case this section |
292 | | * may be commented out. |
293 | | */ |
294 | | |
295 | 131M | #ifndef NO_ZERO_ROW_TEST |
296 | 131M | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
297 | 131M | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
298 | | /* AC terms all zero */ |
299 | 92.1M | _JSAMPLE dcval = |
300 | 92.1M | range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK]; |
301 | | |
302 | 92.1M | outptr[0] = dcval; |
303 | 92.1M | outptr[1] = dcval; |
304 | 92.1M | outptr[2] = dcval; |
305 | 92.1M | outptr[3] = dcval; |
306 | 92.1M | outptr[4] = dcval; |
307 | 92.1M | outptr[5] = dcval; |
308 | 92.1M | outptr[6] = dcval; |
309 | 92.1M | outptr[7] = dcval; |
310 | | |
311 | 92.1M | wsptr += DCTSIZE; /* advance pointer to next row */ |
312 | 92.1M | continue; |
313 | 92.1M | } |
314 | 38.9M | #endif |
315 | | |
316 | | /* Even part */ |
317 | | |
318 | 38.9M | tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]); |
319 | 38.9M | tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]); |
320 | | |
321 | 38.9M | tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]); |
322 | 38.9M | tmp12 = |
323 | 38.9M | MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13; |
324 | | |
325 | 38.9M | tmp0 = tmp10 + tmp13; |
326 | 38.9M | tmp3 = tmp10 - tmp13; |
327 | 38.9M | tmp1 = tmp11 + tmp12; |
328 | 38.9M | tmp2 = tmp11 - tmp12; |
329 | | |
330 | | /* Odd part */ |
331 | | |
332 | 38.9M | z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3]; |
333 | 38.9M | z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3]; |
334 | 38.9M | z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7]; |
335 | 38.9M | z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7]; |
336 | | |
337 | 38.9M | tmp7 = z11 + z13; /* phase 5 */ |
338 | 38.9M | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
339 | | |
340 | 38.9M | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
341 | 38.9M | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ |
342 | 38.9M | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ |
343 | | |
344 | 38.9M | tmp6 = tmp12 - tmp7; /* phase 2 */ |
345 | 38.9M | tmp5 = tmp11 - tmp6; |
346 | 38.9M | tmp4 = tmp10 + tmp5; |
347 | | |
348 | | /* Final output stage: scale down by a factor of 8 and range-limit */ |
349 | | |
350 | 38.9M | outptr[0] = |
351 | 38.9M | range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK]; |
352 | 38.9M | outptr[7] = |
353 | 38.9M | range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK]; |
354 | 38.9M | outptr[1] = |
355 | 38.9M | range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK]; |
356 | 38.9M | outptr[6] = |
357 | 38.9M | range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK]; |
358 | 38.9M | outptr[2] = |
359 | 38.9M | range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK]; |
360 | 38.9M | outptr[5] = |
361 | 38.9M | range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK]; |
362 | 38.9M | outptr[4] = |
363 | 38.9M | range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK]; |
364 | 38.9M | outptr[3] = |
365 | 38.9M | range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK]; |
366 | | |
367 | 38.9M | wsptr += DCTSIZE; /* advance pointer to next row */ |
368 | 38.9M | } |
369 | 16.3M | } Line | Count | Source | 174 | 16.3M | { | 175 | 16.3M | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | 176 | 16.3M | DCTELEM tmp10, tmp11, tmp12, tmp13; | 177 | 16.3M | DCTELEM z5, z10, z11, z12, z13; | 178 | 16.3M | JCOEFPTR inptr; | 179 | 16.3M | IFAST_MULT_TYPE *quantptr; | 180 | 16.3M | int *wsptr; | 181 | 16.3M | _JSAMPROW outptr; | 182 | 16.3M | _JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 183 | 16.3M | int ctr; | 184 | 16.3M | int workspace[DCTSIZE2]; /* buffers data between passes */ | 185 | | SHIFT_TEMPS /* for DESCALE */ | 186 | | ISHIFT_TEMPS /* for IDESCALE */ | 187 | | | 188 | | /* Pass 1: process columns from input, store into work array. */ | 189 | | | 190 | 16.3M | inptr = coef_block; | 191 | 16.3M | quantptr = (IFAST_MULT_TYPE *)compptr->dct_table; | 192 | 16.3M | wsptr = workspace; | 193 | 147M | for (ctr = DCTSIZE; ctr > 0; ctr--) { | 194 | | /* Due to quantization, we will usually find that many of the input | 195 | | * coefficients are zero, especially the AC terms. We can exploit this | 196 | | * by short-circuiting the IDCT calculation for any column in which all | 197 | | * the AC terms are zero. In that case each output is equal to the | 198 | | * DC coefficient (with scale factor as needed). | 199 | | * With typical images and quantization tables, half or more of the | 200 | | * column DCT calculations can be simplified this way. | 201 | | */ | 202 | | | 203 | 131M | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && | 204 | 131M | inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && | 205 | 131M | inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && | 206 | 131M | inptr[DCTSIZE * 7] == 0) { | 207 | | /* AC terms all zero */ | 208 | 116M | int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); | 209 | | | 210 | 116M | wsptr[DCTSIZE * 0] = dcval; | 211 | 116M | wsptr[DCTSIZE * 1] = dcval; | 212 | 116M | wsptr[DCTSIZE * 2] = dcval; | 213 | 116M | wsptr[DCTSIZE * 3] = dcval; | 214 | 116M | wsptr[DCTSIZE * 4] = dcval; | 215 | 116M | wsptr[DCTSIZE * 5] = dcval; | 216 | 116M | wsptr[DCTSIZE * 6] = dcval; | 217 | 116M | wsptr[DCTSIZE * 7] = dcval; | 218 | | | 219 | 116M | inptr++; /* advance pointers to next column */ | 220 | 116M | quantptr++; | 221 | 116M | wsptr++; | 222 | 116M | continue; | 223 | 116M | } | 224 | | | 225 | | /* Even part */ | 226 | | | 227 | 14.7M | tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); | 228 | 14.7M | tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); | 229 | 14.7M | tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); | 230 | 14.7M | tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); | 231 | | | 232 | 14.7M | tmp10 = tmp0 + tmp2; /* phase 3 */ | 233 | 14.7M | tmp11 = tmp0 - tmp2; | 234 | | | 235 | 14.7M | tmp13 = tmp1 + tmp3; /* phases 5-3 */ | 236 | 14.7M | tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ | 237 | | | 238 | 14.7M | tmp0 = tmp10 + tmp13; /* phase 2 */ | 239 | 14.7M | tmp3 = tmp10 - tmp13; | 240 | 14.7M | tmp1 = tmp11 + tmp12; | 241 | 14.7M | tmp2 = tmp11 - tmp12; | 242 | | | 243 | | /* Odd part */ | 244 | | | 245 | 14.7M | tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); | 246 | 14.7M | tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); | 247 | 14.7M | tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); | 248 | 14.7M | tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); | 249 | | | 250 | 14.7M | z13 = tmp6 + tmp5; /* phase 6 */ | 251 | 14.7M | z10 = tmp6 - tmp5; | 252 | 14.7M | z11 = tmp4 + tmp7; | 253 | 14.7M | z12 = tmp4 - tmp7; | 254 | | | 255 | 14.7M | tmp7 = z11 + z13; /* phase 5 */ | 256 | 14.7M | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | 257 | | | 258 | 14.7M | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | 259 | 14.7M | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ | 260 | 14.7M | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ | 261 | | | 262 | 14.7M | tmp6 = tmp12 - tmp7; /* phase 2 */ | 263 | 14.7M | tmp5 = tmp11 - tmp6; | 264 | 14.7M | tmp4 = tmp10 + tmp5; | 265 | | | 266 | 14.7M | wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7); | 267 | 14.7M | wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7); | 268 | 14.7M | wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6); | 269 | 14.7M | wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6); | 270 | 14.7M | wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5); | 271 | 14.7M | wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5); | 272 | 14.7M | wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4); | 273 | 14.7M | wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4); | 274 | | | 275 | 14.7M | inptr++; /* advance pointers to next column */ | 276 | 14.7M | quantptr++; | 277 | 14.7M | wsptr++; | 278 | 14.7M | } | 279 | | | 280 | | /* Pass 2: process rows from work array, store into output array. */ | 281 | | /* Note that we must descale the results by a factor of 8 == 2**3, */ | 282 | | /* and also undo the PASS1_BITS scaling. */ | 283 | | | 284 | 16.3M | wsptr = workspace; | 285 | 147M | for (ctr = 0; ctr < DCTSIZE; ctr++) { | 286 | 131M | outptr = output_buf[ctr] + output_col; | 287 | | /* Rows of zeroes can be exploited in the same way as we did with columns. | 288 | | * However, the column calculation has created many nonzero AC terms, so | 289 | | * the simplification applies less often (typically 5% to 10% of the time). | 290 | | * On machines with very fast multiplication, it's possible that the | 291 | | * test takes more time than it's worth. In that case this section | 292 | | * may be commented out. | 293 | | */ | 294 | | | 295 | 131M | #ifndef NO_ZERO_ROW_TEST | 296 | 131M | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && | 297 | 131M | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 298 | | /* AC terms all zero */ | 299 | 92.1M | _JSAMPLE dcval = | 300 | 92.1M | range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK]; | 301 | | | 302 | 92.1M | outptr[0] = dcval; | 303 | 92.1M | outptr[1] = dcval; | 304 | 92.1M | outptr[2] = dcval; | 305 | 92.1M | outptr[3] = dcval; | 306 | 92.1M | outptr[4] = dcval; | 307 | 92.1M | outptr[5] = dcval; | 308 | 92.1M | outptr[6] = dcval; | 309 | 92.1M | outptr[7] = dcval; | 310 | | | 311 | 92.1M | wsptr += DCTSIZE; /* advance pointer to next row */ | 312 | 92.1M | continue; | 313 | 92.1M | } | 314 | 38.9M | #endif | 315 | | | 316 | | /* Even part */ | 317 | | | 318 | 38.9M | tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]); | 319 | 38.9M | tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]); | 320 | | | 321 | 38.9M | tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]); | 322 | 38.9M | tmp12 = | 323 | 38.9M | MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13; | 324 | | | 325 | 38.9M | tmp0 = tmp10 + tmp13; | 326 | 38.9M | tmp3 = tmp10 - tmp13; | 327 | 38.9M | tmp1 = tmp11 + tmp12; | 328 | 38.9M | tmp2 = tmp11 - tmp12; | 329 | | | 330 | | /* Odd part */ | 331 | | | 332 | 38.9M | z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3]; | 333 | 38.9M | z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3]; | 334 | 38.9M | z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7]; | 335 | 38.9M | z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7]; | 336 | | | 337 | 38.9M | tmp7 = z11 + z13; /* phase 5 */ | 338 | 38.9M | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | 339 | | | 340 | 38.9M | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | 341 | 38.9M | tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ | 342 | 38.9M | tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ | 343 | | | 344 | 38.9M | tmp6 = tmp12 - tmp7; /* phase 2 */ | 345 | 38.9M | tmp5 = tmp11 - tmp6; | 346 | 38.9M | tmp4 = tmp10 + tmp5; | 347 | | | 348 | | /* Final output stage: scale down by a factor of 8 and range-limit */ | 349 | | | 350 | 38.9M | outptr[0] = | 351 | 38.9M | range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK]; | 352 | 38.9M | outptr[7] = | 353 | 38.9M | range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK]; | 354 | 38.9M | outptr[1] = | 355 | 38.9M | range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK]; | 356 | 38.9M | outptr[6] = | 357 | 38.9M | range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK]; | 358 | 38.9M | outptr[2] = | 359 | 38.9M | range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK]; | 360 | 38.9M | outptr[5] = | 361 | 38.9M | range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK]; | 362 | 38.9M | outptr[4] = | 363 | 38.9M | range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK]; | 364 | 38.9M | outptr[3] = | 365 | 38.9M | range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK]; | 366 | | | 367 | 38.9M | wsptr += DCTSIZE; /* advance pointer to next row */ | 368 | 38.9M | } | 369 | 16.3M | } |
Unexecuted instantiation: jpeg_idct_ifast |
370 | | |
371 | | #endif /* DCT_IFAST_SUPPORTED */ |