Coverage Report

Created: 2024-08-27 12:18

/src/libjpeg-turbo.main/jidctfst.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jidctfst.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1998, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015, 2022, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains a fast, not so accurate integer implementation of the
12
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
13
 * must also perform dequantization of the input coefficients.
14
 *
15
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
16
 * on each row (or vice versa, but it's more convenient to emit a row at
17
 * a time).  Direct algorithms are also available, but they are much more
18
 * complex and seem not to be any faster when reduced to code.
19
 *
20
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
21
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
22
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
23
 * JPEG textbook (see REFERENCES section in file README.ijg).  The following
24
 * code is based directly on figure 4-8 in P&M.
25
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
26
 * possible to arrange the computation so that many of the multiplies are
27
 * simple scalings of the final outputs.  These multiplies can then be
28
 * folded into the multiplications or divisions by the JPEG quantization
29
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
30
 * to be done in the DCT itself.
31
 * The primary disadvantage of this method is that with fixed-point math,
32
 * accuracy is lost due to imprecise representation of the scaled
33
 * quantization values.  The smaller the quantization table entry, the less
34
 * precise the scaled value, so this implementation does worse with high-
35
 * quality-setting files than with low-quality ones.
36
 */
37
38
#define JPEG_INTERNALS
39
#include "jinclude.h"
40
#include "jpeglib.h"
41
#include "jdct.h"               /* Private declarations for DCT subsystem */
42
43
#ifdef DCT_IFAST_SUPPORTED
44
45
46
/*
47
 * This module is specialized to the case DCTSIZE = 8.
48
 */
49
50
#if DCTSIZE != 8
51
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
52
#endif
53
54
55
/* Scaling decisions are generally the same as in the LL&M algorithm;
56
 * see jidctint.c for more details.  However, we choose to descale
57
 * (right shift) multiplication products as soon as they are formed,
58
 * rather than carrying additional fractional bits into subsequent additions.
59
 * This compromises accuracy slightly, but it lets us save a few shifts.
60
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
61
 * everywhere except in the multiplications proper; this saves a good deal
62
 * of work on 16-bit-int machines.
63
 *
64
 * The dequantized coefficients are not integers because the AA&N scaling
65
 * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
66
 * so that the first and second IDCT rounds have the same input scaling.
67
 * For 8-bit samples, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
68
 * avoid a descaling shift; this compromises accuracy rather drastically
69
 * for small quantization table entries, but it saves a lot of shifts.
70
 * For 12-bit samples, there's no hope of using 16x16 multiplies anyway,
71
 * so we use a much larger scaling factor to preserve accuracy.
72
 *
73
 * A final compromise is to represent the multiplicative constants to only
74
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
75
 * machines, and may also reduce the cost of multiplication (since there
76
 * are fewer one-bits in the constants).
77
 */
78
79
#if BITS_IN_JSAMPLE == 8
80
#define CONST_BITS  8
81
#define PASS1_BITS  2
82
#else
83
#define CONST_BITS  8
84
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
85
#endif
86
87
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
88
 * causing a lot of useless floating-point operations at run time.
89
 * To get around this we use the following pre-calculated constants.
90
 * If you change CONST_BITS you may want to add appropriate values.
91
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
92
 */
93
94
#if CONST_BITS == 8
95
#define FIX_1_082392200  ((JLONG)277)           /* FIX(1.082392200) */
96
#define FIX_1_414213562  ((JLONG)362)           /* FIX(1.414213562) */
97
#define FIX_1_847759065  ((JLONG)473)           /* FIX(1.847759065) */
98
#define FIX_2_613125930  ((JLONG)669)           /* FIX(2.613125930) */
99
#else
100
#define FIX_1_082392200  FIX(1.082392200)
101
#define FIX_1_414213562  FIX(1.414213562)
102
#define FIX_1_847759065  FIX(1.847759065)
103
#define FIX_2_613125930  FIX(2.613125930)
104
#endif
105
106
107
/* We can gain a little more speed, with a further compromise in accuracy,
108
 * by omitting the addition in a descaling shift.  This yields an incorrectly
109
 * rounded result half the time...
110
 */
111
112
#ifndef USE_ACCURATE_ROUNDING
113
#undef DESCALE
114
502M
#define DESCALE(x, n)  RIGHT_SHIFT(x, n)
115
#endif
116
117
118
/* Multiply a DCTELEM variable by an JLONG constant, and immediately
119
 * descale to yield a DCTELEM result.
120
 */
121
122
268M
#define MULTIPLY(var, const)  ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
123
124
125
/* Dequantize a coefficient by multiplying it by the multiplier-table
126
 * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
127
 * multiplication will do.  For 12-bit data, the multiplier table is
128
 * declared JLONG, so a 32-bit multiply will be used.
129
 */
130
131
#if BITS_IN_JSAMPLE == 8
132
0
#define DEQUANTIZE(coef, quantval)  (((IFAST_MULT_TYPE)(coef)) * (quantval))
133
#else
134
#define DEQUANTIZE(coef, quantval) \
135
234M
  DESCALE((coef) * (quantval), IFAST_SCALE_BITS - PASS1_BITS)
136
#endif
137
138
139
/* Like DESCALE, but applies to a DCTELEM and produces an int.
140
 * We assume that int right shift is unsigned if JLONG right shift is.
141
 */
142
143
#ifdef RIGHT_SHIFT_IS_UNSIGNED
144
#define ISHIFT_TEMPS    DCTELEM ishift_temp;
145
#if BITS_IN_JSAMPLE == 8
146
#define DCTELEMBITS  16         /* DCTELEM may be 16 or 32 bits */
147
#else
148
#define DCTELEMBITS  32         /* DCTELEM must be 32 bits */
149
#endif
150
#define IRIGHT_SHIFT(x, shft) \
151
  ((ishift_temp = (x)) < 0 ? \
152
   (ishift_temp >> (shft)) | ((~((DCTELEM)0)) << (DCTELEMBITS - (shft))) : \
153
   (ishift_temp >> (shft)))
154
#else
155
#define ISHIFT_TEMPS
156
403M
#define IRIGHT_SHIFT(x, shft)   ((x) >> (shft))
157
#endif
158
159
#ifdef USE_ACCURATE_ROUNDING
160
#define IDESCALE(x, n)  ((int)IRIGHT_SHIFT((x) + (1 << ((n) - 1)), n))
161
#else
162
403M
#define IDESCALE(x, n)  ((int)IRIGHT_SHIFT(x, n))
163
#endif
164
165
166
/*
167
 * Perform dequantization and inverse DCT on one block of coefficients.
168
 */
169
170
GLOBAL(void)
171
_jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr,
172
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
173
                 JDIMENSION output_col)
174
16.3M
{
175
16.3M
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
176
16.3M
  DCTELEM tmp10, tmp11, tmp12, tmp13;
177
16.3M
  DCTELEM z5, z10, z11, z12, z13;
178
16.3M
  JCOEFPTR inptr;
179
16.3M
  IFAST_MULT_TYPE *quantptr;
180
16.3M
  int *wsptr;
181
16.3M
  _JSAMPROW outptr;
182
16.3M
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
183
16.3M
  int ctr;
184
16.3M
  int workspace[DCTSIZE2];      /* buffers data between passes */
185
  SHIFT_TEMPS                   /* for DESCALE */
186
  ISHIFT_TEMPS                  /* for IDESCALE */
187
188
  /* Pass 1: process columns from input, store into work array. */
189
190
16.3M
  inptr = coef_block;
191
16.3M
  quantptr = (IFAST_MULT_TYPE *)compptr->dct_table;
192
16.3M
  wsptr = workspace;
193
147M
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
194
    /* Due to quantization, we will usually find that many of the input
195
     * coefficients are zero, especially the AC terms.  We can exploit this
196
     * by short-circuiting the IDCT calculation for any column in which all
197
     * the AC terms are zero.  In that case each output is equal to the
198
     * DC coefficient (with scale factor as needed).
199
     * With typical images and quantization tables, half or more of the
200
     * column DCT calculations can be simplified this way.
201
     */
202
203
131M
    if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
204
131M
        inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
205
131M
        inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
206
131M
        inptr[DCTSIZE * 7] == 0) {
207
      /* AC terms all zero */
208
116M
      int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
209
210
116M
      wsptr[DCTSIZE * 0] = dcval;
211
116M
      wsptr[DCTSIZE * 1] = dcval;
212
116M
      wsptr[DCTSIZE * 2] = dcval;
213
116M
      wsptr[DCTSIZE * 3] = dcval;
214
116M
      wsptr[DCTSIZE * 4] = dcval;
215
116M
      wsptr[DCTSIZE * 5] = dcval;
216
116M
      wsptr[DCTSIZE * 6] = dcval;
217
116M
      wsptr[DCTSIZE * 7] = dcval;
218
219
116M
      inptr++;                  /* advance pointers to next column */
220
116M
      quantptr++;
221
116M
      wsptr++;
222
116M
      continue;
223
116M
    }
224
225
    /* Even part */
226
227
14.7M
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
228
14.7M
    tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
229
14.7M
    tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
230
14.7M
    tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
231
232
14.7M
    tmp10 = tmp0 + tmp2;        /* phase 3 */
233
14.7M
    tmp11 = tmp0 - tmp2;
234
235
14.7M
    tmp13 = tmp1 + tmp3;        /* phases 5-3 */
236
14.7M
    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
237
238
14.7M
    tmp0 = tmp10 + tmp13;       /* phase 2 */
239
14.7M
    tmp3 = tmp10 - tmp13;
240
14.7M
    tmp1 = tmp11 + tmp12;
241
14.7M
    tmp2 = tmp11 - tmp12;
242
243
    /* Odd part */
244
245
14.7M
    tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
246
14.7M
    tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
247
14.7M
    tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
248
14.7M
    tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
249
250
14.7M
    z13 = tmp6 + tmp5;          /* phase 6 */
251
14.7M
    z10 = tmp6 - tmp5;
252
14.7M
    z11 = tmp4 + tmp7;
253
14.7M
    z12 = tmp4 - tmp7;
254
255
14.7M
    tmp7 = z11 + z13;           /* phase 5 */
256
14.7M
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
257
258
14.7M
    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
259
14.7M
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
260
14.7M
    tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
261
262
14.7M
    tmp6 = tmp12 - tmp7;        /* phase 2 */
263
14.7M
    tmp5 = tmp11 - tmp6;
264
14.7M
    tmp4 = tmp10 + tmp5;
265
266
14.7M
    wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7);
267
14.7M
    wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7);
268
14.7M
    wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6);
269
14.7M
    wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6);
270
14.7M
    wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5);
271
14.7M
    wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5);
272
14.7M
    wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4);
273
14.7M
    wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4);
274
275
14.7M
    inptr++;                    /* advance pointers to next column */
276
14.7M
    quantptr++;
277
14.7M
    wsptr++;
278
14.7M
  }
279
280
  /* Pass 2: process rows from work array, store into output array. */
281
  /* Note that we must descale the results by a factor of 8 == 2**3, */
282
  /* and also undo the PASS1_BITS scaling. */
283
284
16.3M
  wsptr = workspace;
285
147M
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
286
131M
    outptr = output_buf[ctr] + output_col;
287
    /* Rows of zeroes can be exploited in the same way as we did with columns.
288
     * However, the column calculation has created many nonzero AC terms, so
289
     * the simplification applies less often (typically 5% to 10% of the time).
290
     * On machines with very fast multiplication, it's possible that the
291
     * test takes more time than it's worth.  In that case this section
292
     * may be commented out.
293
     */
294
295
131M
#ifndef NO_ZERO_ROW_TEST
296
131M
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
297
131M
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
298
      /* AC terms all zero */
299
92.1M
      _JSAMPLE dcval =
300
92.1M
        range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK];
301
302
92.1M
      outptr[0] = dcval;
303
92.1M
      outptr[1] = dcval;
304
92.1M
      outptr[2] = dcval;
305
92.1M
      outptr[3] = dcval;
306
92.1M
      outptr[4] = dcval;
307
92.1M
      outptr[5] = dcval;
308
92.1M
      outptr[6] = dcval;
309
92.1M
      outptr[7] = dcval;
310
311
92.1M
      wsptr += DCTSIZE;         /* advance pointer to next row */
312
92.1M
      continue;
313
92.1M
    }
314
38.9M
#endif
315
316
    /* Even part */
317
318
38.9M
    tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]);
319
38.9M
    tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]);
320
321
38.9M
    tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]);
322
38.9M
    tmp12 =
323
38.9M
      MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13;
324
325
38.9M
    tmp0 = tmp10 + tmp13;
326
38.9M
    tmp3 = tmp10 - tmp13;
327
38.9M
    tmp1 = tmp11 + tmp12;
328
38.9M
    tmp2 = tmp11 - tmp12;
329
330
    /* Odd part */
331
332
38.9M
    z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3];
333
38.9M
    z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3];
334
38.9M
    z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7];
335
38.9M
    z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7];
336
337
38.9M
    tmp7 = z11 + z13;           /* phase 5 */
338
38.9M
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
339
340
38.9M
    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
341
38.9M
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
342
38.9M
    tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
343
344
38.9M
    tmp6 = tmp12 - tmp7;        /* phase 2 */
345
38.9M
    tmp5 = tmp11 - tmp6;
346
38.9M
    tmp4 = tmp10 + tmp5;
347
348
    /* Final output stage: scale down by a factor of 8 and range-limit */
349
350
38.9M
    outptr[0] =
351
38.9M
      range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK];
352
38.9M
    outptr[7] =
353
38.9M
      range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK];
354
38.9M
    outptr[1] =
355
38.9M
      range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK];
356
38.9M
    outptr[6] =
357
38.9M
      range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK];
358
38.9M
    outptr[2] =
359
38.9M
      range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK];
360
38.9M
    outptr[5] =
361
38.9M
      range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK];
362
38.9M
    outptr[4] =
363
38.9M
      range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK];
364
38.9M
    outptr[3] =
365
38.9M
      range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK];
366
367
38.9M
    wsptr += DCTSIZE;           /* advance pointer to next row */
368
38.9M
  }
369
16.3M
}
jpeg12_idct_ifast
Line
Count
Source
174
16.3M
{
175
16.3M
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
176
16.3M
  DCTELEM tmp10, tmp11, tmp12, tmp13;
177
16.3M
  DCTELEM z5, z10, z11, z12, z13;
178
16.3M
  JCOEFPTR inptr;
179
16.3M
  IFAST_MULT_TYPE *quantptr;
180
16.3M
  int *wsptr;
181
16.3M
  _JSAMPROW outptr;
182
16.3M
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
183
16.3M
  int ctr;
184
16.3M
  int workspace[DCTSIZE2];      /* buffers data between passes */
185
  SHIFT_TEMPS                   /* for DESCALE */
186
  ISHIFT_TEMPS                  /* for IDESCALE */
187
188
  /* Pass 1: process columns from input, store into work array. */
189
190
16.3M
  inptr = coef_block;
191
16.3M
  quantptr = (IFAST_MULT_TYPE *)compptr->dct_table;
192
16.3M
  wsptr = workspace;
193
147M
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
194
    /* Due to quantization, we will usually find that many of the input
195
     * coefficients are zero, especially the AC terms.  We can exploit this
196
     * by short-circuiting the IDCT calculation for any column in which all
197
     * the AC terms are zero.  In that case each output is equal to the
198
     * DC coefficient (with scale factor as needed).
199
     * With typical images and quantization tables, half or more of the
200
     * column DCT calculations can be simplified this way.
201
     */
202
203
131M
    if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
204
131M
        inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
205
131M
        inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
206
131M
        inptr[DCTSIZE * 7] == 0) {
207
      /* AC terms all zero */
208
116M
      int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
209
210
116M
      wsptr[DCTSIZE * 0] = dcval;
211
116M
      wsptr[DCTSIZE * 1] = dcval;
212
116M
      wsptr[DCTSIZE * 2] = dcval;
213
116M
      wsptr[DCTSIZE * 3] = dcval;
214
116M
      wsptr[DCTSIZE * 4] = dcval;
215
116M
      wsptr[DCTSIZE * 5] = dcval;
216
116M
      wsptr[DCTSIZE * 6] = dcval;
217
116M
      wsptr[DCTSIZE * 7] = dcval;
218
219
116M
      inptr++;                  /* advance pointers to next column */
220
116M
      quantptr++;
221
116M
      wsptr++;
222
116M
      continue;
223
116M
    }
224
225
    /* Even part */
226
227
14.7M
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
228
14.7M
    tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
229
14.7M
    tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
230
14.7M
    tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
231
232
14.7M
    tmp10 = tmp0 + tmp2;        /* phase 3 */
233
14.7M
    tmp11 = tmp0 - tmp2;
234
235
14.7M
    tmp13 = tmp1 + tmp3;        /* phases 5-3 */
236
14.7M
    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
237
238
14.7M
    tmp0 = tmp10 + tmp13;       /* phase 2 */
239
14.7M
    tmp3 = tmp10 - tmp13;
240
14.7M
    tmp1 = tmp11 + tmp12;
241
14.7M
    tmp2 = tmp11 - tmp12;
242
243
    /* Odd part */
244
245
14.7M
    tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
246
14.7M
    tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
247
14.7M
    tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
248
14.7M
    tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
249
250
14.7M
    z13 = tmp6 + tmp5;          /* phase 6 */
251
14.7M
    z10 = tmp6 - tmp5;
252
14.7M
    z11 = tmp4 + tmp7;
253
14.7M
    z12 = tmp4 - tmp7;
254
255
14.7M
    tmp7 = z11 + z13;           /* phase 5 */
256
14.7M
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
257
258
14.7M
    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
259
14.7M
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
260
14.7M
    tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
261
262
14.7M
    tmp6 = tmp12 - tmp7;        /* phase 2 */
263
14.7M
    tmp5 = tmp11 - tmp6;
264
14.7M
    tmp4 = tmp10 + tmp5;
265
266
14.7M
    wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7);
267
14.7M
    wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7);
268
14.7M
    wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6);
269
14.7M
    wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6);
270
14.7M
    wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5);
271
14.7M
    wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5);
272
14.7M
    wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4);
273
14.7M
    wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4);
274
275
14.7M
    inptr++;                    /* advance pointers to next column */
276
14.7M
    quantptr++;
277
14.7M
    wsptr++;
278
14.7M
  }
279
280
  /* Pass 2: process rows from work array, store into output array. */
281
  /* Note that we must descale the results by a factor of 8 == 2**3, */
282
  /* and also undo the PASS1_BITS scaling. */
283
284
16.3M
  wsptr = workspace;
285
147M
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
286
131M
    outptr = output_buf[ctr] + output_col;
287
    /* Rows of zeroes can be exploited in the same way as we did with columns.
288
     * However, the column calculation has created many nonzero AC terms, so
289
     * the simplification applies less often (typically 5% to 10% of the time).
290
     * On machines with very fast multiplication, it's possible that the
291
     * test takes more time than it's worth.  In that case this section
292
     * may be commented out.
293
     */
294
295
131M
#ifndef NO_ZERO_ROW_TEST
296
131M
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
297
131M
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
298
      /* AC terms all zero */
299
92.1M
      _JSAMPLE dcval =
300
92.1M
        range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK];
301
302
92.1M
      outptr[0] = dcval;
303
92.1M
      outptr[1] = dcval;
304
92.1M
      outptr[2] = dcval;
305
92.1M
      outptr[3] = dcval;
306
92.1M
      outptr[4] = dcval;
307
92.1M
      outptr[5] = dcval;
308
92.1M
      outptr[6] = dcval;
309
92.1M
      outptr[7] = dcval;
310
311
92.1M
      wsptr += DCTSIZE;         /* advance pointer to next row */
312
92.1M
      continue;
313
92.1M
    }
314
38.9M
#endif
315
316
    /* Even part */
317
318
38.9M
    tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]);
319
38.9M
    tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]);
320
321
38.9M
    tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]);
322
38.9M
    tmp12 =
323
38.9M
      MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13;
324
325
38.9M
    tmp0 = tmp10 + tmp13;
326
38.9M
    tmp3 = tmp10 - tmp13;
327
38.9M
    tmp1 = tmp11 + tmp12;
328
38.9M
    tmp2 = tmp11 - tmp12;
329
330
    /* Odd part */
331
332
38.9M
    z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3];
333
38.9M
    z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3];
334
38.9M
    z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7];
335
38.9M
    z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7];
336
337
38.9M
    tmp7 = z11 + z13;           /* phase 5 */
338
38.9M
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
339
340
38.9M
    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
341
38.9M
    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
342
38.9M
    tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
343
344
38.9M
    tmp6 = tmp12 - tmp7;        /* phase 2 */
345
38.9M
    tmp5 = tmp11 - tmp6;
346
38.9M
    tmp4 = tmp10 + tmp5;
347
348
    /* Final output stage: scale down by a factor of 8 and range-limit */
349
350
38.9M
    outptr[0] =
351
38.9M
      range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK];
352
38.9M
    outptr[7] =
353
38.9M
      range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK];
354
38.9M
    outptr[1] =
355
38.9M
      range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK];
356
38.9M
    outptr[6] =
357
38.9M
      range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK];
358
38.9M
    outptr[2] =
359
38.9M
      range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK];
360
38.9M
    outptr[5] =
361
38.9M
      range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK];
362
38.9M
    outptr[4] =
363
38.9M
      range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK];
364
38.9M
    outptr[3] =
365
38.9M
      range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK];
366
367
38.9M
    wsptr += DCTSIZE;           /* advance pointer to next row */
368
38.9M
  }
369
16.3M
}
Unexecuted instantiation: jpeg_idct_ifast
370
371
#endif /* DCT_IFAST_SUPPORTED */