Coverage Report

Created: 2024-08-27 12:18

/src/libjpeg-turbo.main/jidctint.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jidctint.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1998, Thomas G. Lane.
6
 * Modification developed 2002-2018 by Guido Vollbeding.
7
 * libjpeg-turbo Modifications:
8
 * Copyright (C) 2015, 2020, 2022, D. R. Commander.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains a slower but more accurate integer implementation of the
13
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
14
 * must also perform dequantization of the input coefficients.
15
 *
16
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
17
 * on each row (or vice versa, but it's more convenient to emit a row at
18
 * a time).  Direct algorithms are also available, but they are much more
19
 * complex and seem not to be any faster when reduced to code.
20
 *
21
 * This implementation is based on an algorithm described in
22
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
23
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
24
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
25
 * The primary algorithm described there uses 11 multiplies and 29 adds.
26
 * We use their alternate method with 12 multiplies and 32 adds.
27
 * The advantage of this method is that no data path contains more than one
28
 * multiplication; this allows a very simple and accurate implementation in
29
 * scaled fixed-point arithmetic, with a minimal number of shifts.
30
 *
31
 * We also provide IDCT routines with various output sample block sizes for
32
 * direct resolution reduction or enlargement without additional resampling:
33
 * NxN (N=1...16) pixels for one 8x8 input DCT block.
34
 *
35
 * For N<8 we simply take the corresponding low-frequency coefficients of
36
 * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block
37
 * to yield the downscaled outputs.
38
 * This can be seen as direct low-pass downsampling from the DCT domain
39
 * point of view rather than the usual spatial domain point of view,
40
 * yielding significant computational savings and results at least
41
 * as good as common bilinear (averaging) spatial downsampling.
42
 *
43
 * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as
44
 * lower frequencies and higher frequencies assumed to be zero.
45
 * It turns out that the computational effort is similar to the 8x8 IDCT
46
 * regarding the output size.
47
 * Furthermore, the scaling and descaling is the same for all IDCT sizes.
48
 *
49
 * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
50
 * since there would be too many additional constants to pre-calculate.
51
 */
52
53
#define JPEG_INTERNALS
54
#include "jinclude.h"
55
#include "jpeglib.h"
56
#include "jdct.h"               /* Private declarations for DCT subsystem */
57
58
#ifdef DCT_ISLOW_SUPPORTED
59
60
61
/*
62
 * This module is specialized to the case DCTSIZE = 8.
63
 */
64
65
#if DCTSIZE != 8
66
  Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
67
#endif
68
69
70
/*
71
 * The poop on this scaling stuff is as follows:
72
 *
73
 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
74
 * larger than the true IDCT outputs.  The final outputs are therefore
75
 * a factor of N larger than desired; since N=8 this can be cured by
76
 * a simple right shift at the end of the algorithm.  The advantage of
77
 * this arrangement is that we save two multiplications per 1-D IDCT,
78
 * because the y0 and y4 inputs need not be divided by sqrt(N).
79
 *
80
 * We have to do addition and subtraction of the integer inputs, which
81
 * is no problem, and multiplication by fractional constants, which is
82
 * a problem to do in integer arithmetic.  We multiply all the constants
83
 * by CONST_SCALE and convert them to integer constants (thus retaining
84
 * CONST_BITS bits of precision in the constants).  After doing a
85
 * multiplication we have to divide the product by CONST_SCALE, with proper
86
 * rounding, to produce the correct output.  This division can be done
87
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
88
 * as long as possible so that partial sums can be added together with
89
 * full fractional precision.
90
 *
91
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
92
 * they are represented to better-than-integral precision.  These outputs
93
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
94
 * with the recommended scaling.  (To scale up 12-bit sample data further, an
95
 * intermediate JLONG array would be needed.)
96
 *
97
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
98
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
99
 * shows that the values given below are the most effective.
100
 */
101
102
#if BITS_IN_JSAMPLE == 8
103
0
#define CONST_BITS  13
104
0
#define PASS1_BITS  2
105
#else
106
0
#define CONST_BITS  13
107
0
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
108
#endif
109
110
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
111
 * causing a lot of useless floating-point operations at run time.
112
 * To get around this we use the following pre-calculated constants.
113
 * If you change CONST_BITS you may want to add appropriate values.
114
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
115
 */
116
117
#if CONST_BITS == 13
118
#define FIX_0_298631336  ((JLONG)2446)          /* FIX(0.298631336) */
119
#define FIX_0_390180644  ((JLONG)3196)          /* FIX(0.390180644) */
120
#define FIX_0_541196100  ((JLONG)4433)          /* FIX(0.541196100) */
121
#define FIX_0_765366865  ((JLONG)6270)          /* FIX(0.765366865) */
122
#define FIX_0_899976223  ((JLONG)7373)          /* FIX(0.899976223) */
123
#define FIX_1_175875602  ((JLONG)9633)          /* FIX(1.175875602) */
124
#define FIX_1_501321110  ((JLONG)12299)         /* FIX(1.501321110) */
125
#define FIX_1_847759065  ((JLONG)15137)         /* FIX(1.847759065) */
126
#define FIX_1_961570560  ((JLONG)16069)         /* FIX(1.961570560) */
127
#define FIX_2_053119869  ((JLONG)16819)         /* FIX(2.053119869) */
128
#define FIX_2_562915447  ((JLONG)20995)         /* FIX(2.562915447) */
129
#define FIX_3_072711026  ((JLONG)25172)         /* FIX(3.072711026) */
130
#else
131
#define FIX_0_298631336  FIX(0.298631336)
132
#define FIX_0_390180644  FIX(0.390180644)
133
#define FIX_0_541196100  FIX(0.541196100)
134
#define FIX_0_765366865  FIX(0.765366865)
135
#define FIX_0_899976223  FIX(0.899976223)
136
#define FIX_1_175875602  FIX(1.175875602)
137
#define FIX_1_501321110  FIX(1.501321110)
138
#define FIX_1_847759065  FIX(1.847759065)
139
#define FIX_1_961570560  FIX(1.961570560)
140
#define FIX_2_053119869  FIX(2.053119869)
141
#define FIX_2_562915447  FIX(2.562915447)
142
#define FIX_3_072711026  FIX(3.072711026)
143
#endif
144
145
146
/* Multiply an JLONG variable by an JLONG constant to yield an JLONG result.
147
 * For 8-bit samples with the recommended scaling, all the variable
148
 * and constant values involved are no more than 16 bits wide, so a
149
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
150
 * For 12-bit samples, a full 32-bit multiplication will be needed.
151
 */
152
153
#if BITS_IN_JSAMPLE == 8
154
0
#define MULTIPLY(var, const)  MULTIPLY16C16(var, const)
155
#else
156
185M
#define MULTIPLY(var, const)  ((var) * (const))
157
#endif
158
159
160
/* Dequantize a coefficient by multiplying it by the multiplier-table
161
 * entry; produce an int result.  In this module, both inputs and result
162
 * are 16 bits or less, so either int or short multiply will work.
163
 */
164
165
46.4M
#define DEQUANTIZE(coef, quantval)  (((ISLOW_MULT_TYPE)(coef)) * (quantval))
166
167
168
/*
169
 * Perform dequantization and inverse DCT on one block of coefficients.
170
 */
171
172
GLOBAL(void)
173
_jpeg_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr,
174
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
175
                 JDIMENSION output_col)
176
2.24M
{
177
2.24M
  JLONG tmp0, tmp1, tmp2, tmp3;
178
2.24M
  JLONG tmp10, tmp11, tmp12, tmp13;
179
2.24M
  JLONG z1, z2, z3, z4, z5;
180
2.24M
  JCOEFPTR inptr;
181
2.24M
  ISLOW_MULT_TYPE *quantptr;
182
2.24M
  int *wsptr;
183
2.24M
  _JSAMPROW outptr;
184
2.24M
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
185
2.24M
  int ctr;
186
2.24M
  int workspace[DCTSIZE2];      /* buffers data between passes */
187
  SHIFT_TEMPS
188
189
  /* Pass 1: process columns from input, store into work array. */
190
  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
191
  /* furthermore, we scale the results by 2**PASS1_BITS. */
192
193
2.24M
  inptr = coef_block;
194
2.24M
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
195
2.24M
  wsptr = workspace;
196
20.2M
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
197
    /* Due to quantization, we will usually find that many of the input
198
     * coefficients are zero, especially the AC terms.  We can exploit this
199
     * by short-circuiting the IDCT calculation for any column in which all
200
     * the AC terms are zero.  In that case each output is equal to the
201
     * DC coefficient (with scale factor as needed).
202
     * With typical images and quantization tables, half or more of the
203
     * column DCT calculations can be simplified this way.
204
     */
205
206
17.9M
    if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
207
17.9M
        inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
208
17.9M
        inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
209
17.9M
        inptr[DCTSIZE * 7] == 0) {
210
      /* AC terms all zero */
211
12.1M
      int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
212
12.1M
                             quantptr[DCTSIZE * 0]), PASS1_BITS);
213
214
12.1M
      wsptr[DCTSIZE * 0] = dcval;
215
12.1M
      wsptr[DCTSIZE * 1] = dcval;
216
12.1M
      wsptr[DCTSIZE * 2] = dcval;
217
12.1M
      wsptr[DCTSIZE * 3] = dcval;
218
12.1M
      wsptr[DCTSIZE * 4] = dcval;
219
12.1M
      wsptr[DCTSIZE * 5] = dcval;
220
12.1M
      wsptr[DCTSIZE * 6] = dcval;
221
12.1M
      wsptr[DCTSIZE * 7] = dcval;
222
223
12.1M
      inptr++;                  /* advance pointers to next column */
224
12.1M
      quantptr++;
225
12.1M
      wsptr++;
226
12.1M
      continue;
227
12.1M
    }
228
229
    /* Even part: reverse the even part of the forward DCT. */
230
    /* The rotator is sqrt(2)*c(-6). */
231
232
5.80M
    z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
233
5.80M
    z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
234
235
5.80M
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
236
5.80M
    tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065);
237
5.80M
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
238
239
5.80M
    z2 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
240
5.80M
    z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
241
242
5.80M
    tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS);
243
5.80M
    tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS);
244
245
5.80M
    tmp10 = tmp0 + tmp3;
246
5.80M
    tmp13 = tmp0 - tmp3;
247
5.80M
    tmp11 = tmp1 + tmp2;
248
5.80M
    tmp12 = tmp1 - tmp2;
249
250
    /* Odd part per figure 8; the matrix is unitary and hence its
251
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
252
     */
253
254
5.80M
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
255
5.80M
    tmp1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
256
5.80M
    tmp2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
257
5.80M
    tmp3 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
258
259
5.80M
    z1 = tmp0 + tmp3;
260
5.80M
    z2 = tmp1 + tmp2;
261
5.80M
    z3 = tmp0 + tmp2;
262
5.80M
    z4 = tmp1 + tmp3;
263
5.80M
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
264
265
5.80M
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
266
5.80M
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
267
5.80M
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
268
5.80M
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
269
5.80M
    z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */
270
5.80M
    z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
271
5.80M
    z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
272
5.80M
    z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */
273
274
5.80M
    z3 += z5;
275
5.80M
    z4 += z5;
276
277
5.80M
    tmp0 += z1 + z3;
278
5.80M
    tmp1 += z2 + z4;
279
5.80M
    tmp2 += z2 + z3;
280
5.80M
    tmp3 += z1 + z4;
281
282
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
283
284
5.80M
    wsptr[DCTSIZE * 0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS - PASS1_BITS);
285
5.80M
    wsptr[DCTSIZE * 7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS - PASS1_BITS);
286
5.80M
    wsptr[DCTSIZE * 1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS - PASS1_BITS);
287
5.80M
    wsptr[DCTSIZE * 6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS - PASS1_BITS);
288
5.80M
    wsptr[DCTSIZE * 2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS - PASS1_BITS);
289
5.80M
    wsptr[DCTSIZE * 5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS - PASS1_BITS);
290
5.80M
    wsptr[DCTSIZE * 3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS - PASS1_BITS);
291
5.80M
    wsptr[DCTSIZE * 4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS - PASS1_BITS);
292
293
5.80M
    inptr++;                    /* advance pointers to next column */
294
5.80M
    quantptr++;
295
5.80M
    wsptr++;
296
5.80M
  }
297
298
  /* Pass 2: process rows from work array, store into output array. */
299
  /* Note that we must descale the results by a factor of 8 == 2**3, */
300
  /* and also undo the PASS1_BITS scaling. */
301
302
2.24M
  wsptr = workspace;
303
20.2M
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
304
17.9M
    outptr = output_buf[ctr] + output_col;
305
    /* Rows of zeroes can be exploited in the same way as we did with columns.
306
     * However, the column calculation has created many nonzero AC terms, so
307
     * the simplification applies less often (typically 5% to 10% of the time).
308
     * On machines with very fast multiplication, it's possible that the
309
     * test takes more time than it's worth.  In that case this section
310
     * may be commented out.
311
     */
312
313
17.9M
#ifndef NO_ZERO_ROW_TEST
314
17.9M
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
315
17.9M
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
316
      /* AC terms all zero */
317
8.28M
      _JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
318
8.28M
                                                PASS1_BITS + 3) & RANGE_MASK];
319
320
8.28M
      outptr[0] = dcval;
321
8.28M
      outptr[1] = dcval;
322
8.28M
      outptr[2] = dcval;
323
8.28M
      outptr[3] = dcval;
324
8.28M
      outptr[4] = dcval;
325
8.28M
      outptr[5] = dcval;
326
8.28M
      outptr[6] = dcval;
327
8.28M
      outptr[7] = dcval;
328
329
8.28M
      wsptr += DCTSIZE;         /* advance pointer to next row */
330
8.28M
      continue;
331
8.28M
    }
332
9.67M
#endif
333
334
    /* Even part: reverse the even part of the forward DCT. */
335
    /* The rotator is sqrt(2)*c(-6). */
336
337
9.67M
    z2 = (JLONG)wsptr[2];
338
9.67M
    z3 = (JLONG)wsptr[6];
339
340
9.67M
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
341
9.67M
    tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065);
342
9.67M
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
343
344
9.67M
    tmp0 = LEFT_SHIFT((JLONG)wsptr[0] + (JLONG)wsptr[4], CONST_BITS);
345
9.67M
    tmp1 = LEFT_SHIFT((JLONG)wsptr[0] - (JLONG)wsptr[4], CONST_BITS);
346
347
9.67M
    tmp10 = tmp0 + tmp3;
348
9.67M
    tmp13 = tmp0 - tmp3;
349
9.67M
    tmp11 = tmp1 + tmp2;
350
9.67M
    tmp12 = tmp1 - tmp2;
351
352
    /* Odd part per figure 8; the matrix is unitary and hence its
353
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
354
     */
355
356
9.67M
    tmp0 = (JLONG)wsptr[7];
357
9.67M
    tmp1 = (JLONG)wsptr[5];
358
9.67M
    tmp2 = (JLONG)wsptr[3];
359
9.67M
    tmp3 = (JLONG)wsptr[1];
360
361
9.67M
    z1 = tmp0 + tmp3;
362
9.67M
    z2 = tmp1 + tmp2;
363
9.67M
    z3 = tmp0 + tmp2;
364
9.67M
    z4 = tmp1 + tmp3;
365
9.67M
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
366
367
9.67M
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
368
9.67M
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
369
9.67M
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
370
9.67M
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
371
9.67M
    z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */
372
9.67M
    z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
373
9.67M
    z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
374
9.67M
    z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */
375
376
9.67M
    z3 += z5;
377
9.67M
    z4 += z5;
378
379
9.67M
    tmp0 += z1 + z3;
380
9.67M
    tmp1 += z2 + z4;
381
9.67M
    tmp2 += z2 + z3;
382
9.67M
    tmp3 += z1 + z4;
383
384
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
385
386
9.67M
    outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp3,
387
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
388
9.67M
                            RANGE_MASK];
389
9.67M
    outptr[7] = range_limit[(int)DESCALE(tmp10 - tmp3,
390
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
391
9.67M
                            RANGE_MASK];
392
9.67M
    outptr[1] = range_limit[(int)DESCALE(tmp11 + tmp2,
393
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
394
9.67M
                            RANGE_MASK];
395
9.67M
    outptr[6] = range_limit[(int)DESCALE(tmp11 - tmp2,
396
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
397
9.67M
                            RANGE_MASK];
398
9.67M
    outptr[2] = range_limit[(int)DESCALE(tmp12 + tmp1,
399
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
400
9.67M
                            RANGE_MASK];
401
9.67M
    outptr[5] = range_limit[(int)DESCALE(tmp12 - tmp1,
402
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
403
9.67M
                            RANGE_MASK];
404
9.67M
    outptr[3] = range_limit[(int)DESCALE(tmp13 + tmp0,
405
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
406
9.67M
                            RANGE_MASK];
407
9.67M
    outptr[4] = range_limit[(int)DESCALE(tmp13 - tmp0,
408
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
409
9.67M
                            RANGE_MASK];
410
411
9.67M
    wsptr += DCTSIZE;           /* advance pointer to next row */
412
9.67M
  }
413
2.24M
}
jpeg12_idct_islow
Line
Count
Source
176
2.24M
{
177
2.24M
  JLONG tmp0, tmp1, tmp2, tmp3;
178
2.24M
  JLONG tmp10, tmp11, tmp12, tmp13;
179
2.24M
  JLONG z1, z2, z3, z4, z5;
180
2.24M
  JCOEFPTR inptr;
181
2.24M
  ISLOW_MULT_TYPE *quantptr;
182
2.24M
  int *wsptr;
183
2.24M
  _JSAMPROW outptr;
184
2.24M
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
185
2.24M
  int ctr;
186
2.24M
  int workspace[DCTSIZE2];      /* buffers data between passes */
187
  SHIFT_TEMPS
188
189
  /* Pass 1: process columns from input, store into work array. */
190
  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
191
  /* furthermore, we scale the results by 2**PASS1_BITS. */
192
193
2.24M
  inptr = coef_block;
194
2.24M
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
195
2.24M
  wsptr = workspace;
196
20.2M
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
197
    /* Due to quantization, we will usually find that many of the input
198
     * coefficients are zero, especially the AC terms.  We can exploit this
199
     * by short-circuiting the IDCT calculation for any column in which all
200
     * the AC terms are zero.  In that case each output is equal to the
201
     * DC coefficient (with scale factor as needed).
202
     * With typical images and quantization tables, half or more of the
203
     * column DCT calculations can be simplified this way.
204
     */
205
206
17.9M
    if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
207
17.9M
        inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
208
17.9M
        inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
209
17.9M
        inptr[DCTSIZE * 7] == 0) {
210
      /* AC terms all zero */
211
12.1M
      int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
212
12.1M
                             quantptr[DCTSIZE * 0]), PASS1_BITS);
213
214
12.1M
      wsptr[DCTSIZE * 0] = dcval;
215
12.1M
      wsptr[DCTSIZE * 1] = dcval;
216
12.1M
      wsptr[DCTSIZE * 2] = dcval;
217
12.1M
      wsptr[DCTSIZE * 3] = dcval;
218
12.1M
      wsptr[DCTSIZE * 4] = dcval;
219
12.1M
      wsptr[DCTSIZE * 5] = dcval;
220
12.1M
      wsptr[DCTSIZE * 6] = dcval;
221
12.1M
      wsptr[DCTSIZE * 7] = dcval;
222
223
12.1M
      inptr++;                  /* advance pointers to next column */
224
12.1M
      quantptr++;
225
12.1M
      wsptr++;
226
12.1M
      continue;
227
12.1M
    }
228
229
    /* Even part: reverse the even part of the forward DCT. */
230
    /* The rotator is sqrt(2)*c(-6). */
231
232
5.80M
    z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
233
5.80M
    z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
234
235
5.80M
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
236
5.80M
    tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065);
237
5.80M
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
238
239
5.80M
    z2 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
240
5.80M
    z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
241
242
5.80M
    tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS);
243
5.80M
    tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS);
244
245
5.80M
    tmp10 = tmp0 + tmp3;
246
5.80M
    tmp13 = tmp0 - tmp3;
247
5.80M
    tmp11 = tmp1 + tmp2;
248
5.80M
    tmp12 = tmp1 - tmp2;
249
250
    /* Odd part per figure 8; the matrix is unitary and hence its
251
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
252
     */
253
254
5.80M
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
255
5.80M
    tmp1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
256
5.80M
    tmp2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
257
5.80M
    tmp3 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
258
259
5.80M
    z1 = tmp0 + tmp3;
260
5.80M
    z2 = tmp1 + tmp2;
261
5.80M
    z3 = tmp0 + tmp2;
262
5.80M
    z4 = tmp1 + tmp3;
263
5.80M
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
264
265
5.80M
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
266
5.80M
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
267
5.80M
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
268
5.80M
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
269
5.80M
    z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */
270
5.80M
    z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
271
5.80M
    z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
272
5.80M
    z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */
273
274
5.80M
    z3 += z5;
275
5.80M
    z4 += z5;
276
277
5.80M
    tmp0 += z1 + z3;
278
5.80M
    tmp1 += z2 + z4;
279
5.80M
    tmp2 += z2 + z3;
280
5.80M
    tmp3 += z1 + z4;
281
282
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
283
284
5.80M
    wsptr[DCTSIZE * 0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS - PASS1_BITS);
285
5.80M
    wsptr[DCTSIZE * 7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS - PASS1_BITS);
286
5.80M
    wsptr[DCTSIZE * 1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS - PASS1_BITS);
287
5.80M
    wsptr[DCTSIZE * 6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS - PASS1_BITS);
288
5.80M
    wsptr[DCTSIZE * 2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS - PASS1_BITS);
289
5.80M
    wsptr[DCTSIZE * 5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS - PASS1_BITS);
290
5.80M
    wsptr[DCTSIZE * 3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS - PASS1_BITS);
291
5.80M
    wsptr[DCTSIZE * 4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS - PASS1_BITS);
292
293
5.80M
    inptr++;                    /* advance pointers to next column */
294
5.80M
    quantptr++;
295
5.80M
    wsptr++;
296
5.80M
  }
297
298
  /* Pass 2: process rows from work array, store into output array. */
299
  /* Note that we must descale the results by a factor of 8 == 2**3, */
300
  /* and also undo the PASS1_BITS scaling. */
301
302
2.24M
  wsptr = workspace;
303
20.2M
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
304
17.9M
    outptr = output_buf[ctr] + output_col;
305
    /* Rows of zeroes can be exploited in the same way as we did with columns.
306
     * However, the column calculation has created many nonzero AC terms, so
307
     * the simplification applies less often (typically 5% to 10% of the time).
308
     * On machines with very fast multiplication, it's possible that the
309
     * test takes more time than it's worth.  In that case this section
310
     * may be commented out.
311
     */
312
313
17.9M
#ifndef NO_ZERO_ROW_TEST
314
17.9M
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
315
17.9M
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
316
      /* AC terms all zero */
317
8.28M
      _JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
318
8.28M
                                                PASS1_BITS + 3) & RANGE_MASK];
319
320
8.28M
      outptr[0] = dcval;
321
8.28M
      outptr[1] = dcval;
322
8.28M
      outptr[2] = dcval;
323
8.28M
      outptr[3] = dcval;
324
8.28M
      outptr[4] = dcval;
325
8.28M
      outptr[5] = dcval;
326
8.28M
      outptr[6] = dcval;
327
8.28M
      outptr[7] = dcval;
328
329
8.28M
      wsptr += DCTSIZE;         /* advance pointer to next row */
330
8.28M
      continue;
331
8.28M
    }
332
9.67M
#endif
333
334
    /* Even part: reverse the even part of the forward DCT. */
335
    /* The rotator is sqrt(2)*c(-6). */
336
337
9.67M
    z2 = (JLONG)wsptr[2];
338
9.67M
    z3 = (JLONG)wsptr[6];
339
340
9.67M
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
341
9.67M
    tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065);
342
9.67M
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
343
344
9.67M
    tmp0 = LEFT_SHIFT((JLONG)wsptr[0] + (JLONG)wsptr[4], CONST_BITS);
345
9.67M
    tmp1 = LEFT_SHIFT((JLONG)wsptr[0] - (JLONG)wsptr[4], CONST_BITS);
346
347
9.67M
    tmp10 = tmp0 + tmp3;
348
9.67M
    tmp13 = tmp0 - tmp3;
349
9.67M
    tmp11 = tmp1 + tmp2;
350
9.67M
    tmp12 = tmp1 - tmp2;
351
352
    /* Odd part per figure 8; the matrix is unitary and hence its
353
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
354
     */
355
356
9.67M
    tmp0 = (JLONG)wsptr[7];
357
9.67M
    tmp1 = (JLONG)wsptr[5];
358
9.67M
    tmp2 = (JLONG)wsptr[3];
359
9.67M
    tmp3 = (JLONG)wsptr[1];
360
361
9.67M
    z1 = tmp0 + tmp3;
362
9.67M
    z2 = tmp1 + tmp2;
363
9.67M
    z3 = tmp0 + tmp2;
364
9.67M
    z4 = tmp1 + tmp3;
365
9.67M
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
366
367
9.67M
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
368
9.67M
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
369
9.67M
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
370
9.67M
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
371
9.67M
    z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */
372
9.67M
    z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
373
9.67M
    z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
374
9.67M
    z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */
375
376
9.67M
    z3 += z5;
377
9.67M
    z4 += z5;
378
379
9.67M
    tmp0 += z1 + z3;
380
9.67M
    tmp1 += z2 + z4;
381
9.67M
    tmp2 += z2 + z3;
382
9.67M
    tmp3 += z1 + z4;
383
384
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
385
386
9.67M
    outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp3,
387
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
388
9.67M
                            RANGE_MASK];
389
9.67M
    outptr[7] = range_limit[(int)DESCALE(tmp10 - tmp3,
390
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
391
9.67M
                            RANGE_MASK];
392
9.67M
    outptr[1] = range_limit[(int)DESCALE(tmp11 + tmp2,
393
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
394
9.67M
                            RANGE_MASK];
395
9.67M
    outptr[6] = range_limit[(int)DESCALE(tmp11 - tmp2,
396
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
397
9.67M
                            RANGE_MASK];
398
9.67M
    outptr[2] = range_limit[(int)DESCALE(tmp12 + tmp1,
399
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
400
9.67M
                            RANGE_MASK];
401
9.67M
    outptr[5] = range_limit[(int)DESCALE(tmp12 - tmp1,
402
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
403
9.67M
                            RANGE_MASK];
404
9.67M
    outptr[3] = range_limit[(int)DESCALE(tmp13 + tmp0,
405
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
406
9.67M
                            RANGE_MASK];
407
9.67M
    outptr[4] = range_limit[(int)DESCALE(tmp13 - tmp0,
408
9.67M
                                         CONST_BITS + PASS1_BITS + 3) &
409
9.67M
                            RANGE_MASK];
410
411
9.67M
    wsptr += DCTSIZE;           /* advance pointer to next row */
412
9.67M
  }
413
2.24M
}
Unexecuted instantiation: jpeg_idct_islow
414
415
#ifdef IDCT_SCALING_SUPPORTED
416
417
418
/*
419
 * Perform dequantization and inverse DCT on one block of coefficients,
420
 * producing a reduced-size 7x7 output block.
421
 *
422
 * Optimized algorithm with 12 multiplications in the 1-D kernel.
423
 * cK represents sqrt(2) * cos(K*pi/14).
424
 */
425
426
GLOBAL(void)
427
_jpeg_idct_7x7(j_decompress_ptr cinfo, jpeg_component_info *compptr,
428
               JCOEFPTR coef_block, _JSAMPARRAY output_buf,
429
               JDIMENSION output_col)
430
0
{
431
0
  JLONG tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13;
432
0
  JLONG z1, z2, z3;
433
0
  JCOEFPTR inptr;
434
0
  ISLOW_MULT_TYPE *quantptr;
435
0
  int *wsptr;
436
0
  _JSAMPROW outptr;
437
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
438
0
  int ctr;
439
0
  int workspace[7 * 7];         /* buffers data between passes */
440
  SHIFT_TEMPS
441
442
  /* Pass 1: process columns from input, store into work array. */
443
444
0
  inptr = coef_block;
445
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
446
0
  wsptr = workspace;
447
0
  for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
448
    /* Even part */
449
450
0
    tmp13 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
451
0
    tmp13 = LEFT_SHIFT(tmp13, CONST_BITS);
452
    /* Add fudge factor here for final descale. */
453
0
    tmp13 += ONE << (CONST_BITS - PASS1_BITS - 1);
454
455
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
456
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
457
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
458
459
0
    tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734));     /* c4 */
460
0
    tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123));     /* c6 */
461
0
    tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
462
0
    tmp0 = z1 + z3;
463
0
    z2 -= tmp0;
464
0
    tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
465
0
    tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536));  /* c2-c4-c6 */
466
0
    tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249));  /* c2+c4+c6 */
467
0
    tmp13 += MULTIPLY(z2, FIX(1.414213562));         /* c0 */
468
469
    /* Odd part */
470
471
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
472
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
473
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
474
475
0
    tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347));      /* (c3+c1-c5)/2 */
476
0
    tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339));      /* (c3+c5-c1)/2 */
477
0
    tmp0 = tmp1 - tmp2;
478
0
    tmp1 += tmp2;
479
0
    tmp2 = MULTIPLY(z2 + z3, -FIX(1.378756276));     /* -c1 */
480
0
    tmp1 += tmp2;
481
0
    z2 = MULTIPLY(z1 + z3, FIX(0.613604268));        /* c5 */
482
0
    tmp0 += z2;
483
0
    tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693));     /* c3+c1-c5 */
484
485
    /* Final output stage */
486
487
0
    wsptr[7 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS);
488
0
    wsptr[7 * 6] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS);
489
0
    wsptr[7 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS);
490
0
    wsptr[7 * 5] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS);
491
0
    wsptr[7 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS);
492
0
    wsptr[7 * 4] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS);
493
0
    wsptr[7 * 3] = (int)RIGHT_SHIFT(tmp13, CONST_BITS - PASS1_BITS);
494
0
  }
495
496
  /* Pass 2: process 7 rows from work array, store into output array. */
497
498
0
  wsptr = workspace;
499
0
  for (ctr = 0; ctr < 7; ctr++) {
500
0
    outptr = output_buf[ctr] + output_col;
501
502
    /* Even part */
503
504
    /* Add fudge factor here for final descale. */
505
0
    tmp13 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
506
0
    tmp13 = LEFT_SHIFT(tmp13, CONST_BITS);
507
508
0
    z1 = (JLONG)wsptr[2];
509
0
    z2 = (JLONG)wsptr[4];
510
0
    z3 = (JLONG)wsptr[6];
511
512
0
    tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734));     /* c4 */
513
0
    tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123));     /* c6 */
514
0
    tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
515
0
    tmp0 = z1 + z3;
516
0
    z2 -= tmp0;
517
0
    tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
518
0
    tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536));  /* c2-c4-c6 */
519
0
    tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249));  /* c2+c4+c6 */
520
0
    tmp13 += MULTIPLY(z2, FIX(1.414213562));         /* c0 */
521
522
    /* Odd part */
523
524
0
    z1 = (JLONG)wsptr[1];
525
0
    z2 = (JLONG)wsptr[3];
526
0
    z3 = (JLONG)wsptr[5];
527
528
0
    tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347));      /* (c3+c1-c5)/2 */
529
0
    tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339));      /* (c3+c5-c1)/2 */
530
0
    tmp0 = tmp1 - tmp2;
531
0
    tmp1 += tmp2;
532
0
    tmp2 = MULTIPLY(z2 + z3, -FIX(1.378756276));     /* -c1 */
533
0
    tmp1 += tmp2;
534
0
    z2 = MULTIPLY(z1 + z3, FIX(0.613604268));        /* c5 */
535
0
    tmp0 += z2;
536
0
    tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693));     /* c3+c1-c5 */
537
538
    /* Final output stage */
539
540
0
    outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0,
541
0
                                             CONST_BITS + PASS1_BITS + 3) &
542
0
                            RANGE_MASK];
543
0
    outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0,
544
0
                                             CONST_BITS + PASS1_BITS + 3) &
545
0
                            RANGE_MASK];
546
0
    outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1,
547
0
                                             CONST_BITS + PASS1_BITS + 3) &
548
0
                            RANGE_MASK];
549
0
    outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1,
550
0
                                             CONST_BITS + PASS1_BITS + 3) &
551
0
                            RANGE_MASK];
552
0
    outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2,
553
0
                                             CONST_BITS + PASS1_BITS + 3) &
554
0
                            RANGE_MASK];
555
0
    outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2,
556
0
                                             CONST_BITS + PASS1_BITS + 3) &
557
0
                            RANGE_MASK];
558
0
    outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp13,
559
0
                                             CONST_BITS + PASS1_BITS + 3) &
560
0
                            RANGE_MASK];
561
562
0
    wsptr += 7;         /* advance pointer to next row */
563
0
  }
564
0
}
Unexecuted instantiation: jpeg12_idct_7x7
Unexecuted instantiation: jpeg_idct_7x7
565
566
567
/*
568
 * Perform dequantization and inverse DCT on one block of coefficients,
569
 * producing a reduced-size 6x6 output block.
570
 *
571
 * Optimized algorithm with 3 multiplications in the 1-D kernel.
572
 * cK represents sqrt(2) * cos(K*pi/12).
573
 */
574
575
GLOBAL(void)
576
_jpeg_idct_6x6(j_decompress_ptr cinfo, jpeg_component_info *compptr,
577
               JCOEFPTR coef_block, _JSAMPARRAY output_buf,
578
               JDIMENSION output_col)
579
0
{
580
0
  JLONG tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
581
0
  JLONG z1, z2, z3;
582
0
  JCOEFPTR inptr;
583
0
  ISLOW_MULT_TYPE *quantptr;
584
0
  int *wsptr;
585
0
  _JSAMPROW outptr;
586
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
587
0
  int ctr;
588
0
  int workspace[6 * 6];         /* buffers data between passes */
589
  SHIFT_TEMPS
590
591
  /* Pass 1: process columns from input, store into work array. */
592
593
0
  inptr = coef_block;
594
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
595
0
  wsptr = workspace;
596
0
  for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
597
    /* Even part */
598
599
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
600
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS);
601
    /* Add fudge factor here for final descale. */
602
0
    tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1);
603
0
    tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
604
0
    tmp10 = MULTIPLY(tmp2, FIX(0.707106781));   /* c4 */
605
0
    tmp1 = tmp0 + tmp10;
606
0
    tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS - PASS1_BITS);
607
0
    tmp10 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
608
0
    tmp0 = MULTIPLY(tmp10, FIX(1.224744871));   /* c2 */
609
0
    tmp10 = tmp1 + tmp0;
610
0
    tmp12 = tmp1 - tmp0;
611
612
    /* Odd part */
613
614
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
615
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
616
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
617
0
    tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
618
0
    tmp0 = tmp1 + LEFT_SHIFT(z1 + z2, CONST_BITS);
619
0
    tmp2 = tmp1 + LEFT_SHIFT(z3 - z2, CONST_BITS);
620
0
    tmp1 = LEFT_SHIFT(z1 - z2 - z3, PASS1_BITS);
621
622
    /* Final output stage */
623
624
0
    wsptr[6 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS);
625
0
    wsptr[6 * 5] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS);
626
0
    wsptr[6 * 1] = (int)(tmp11 + tmp1);
627
0
    wsptr[6 * 4] = (int)(tmp11 - tmp1);
628
0
    wsptr[6 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS);
629
0
    wsptr[6 * 3] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS);
630
0
  }
631
632
  /* Pass 2: process 6 rows from work array, store into output array. */
633
634
0
  wsptr = workspace;
635
0
  for (ctr = 0; ctr < 6; ctr++) {
636
0
    outptr = output_buf[ctr] + output_col;
637
638
    /* Even part */
639
640
    /* Add fudge factor here for final descale. */
641
0
    tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
642
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS);
643
0
    tmp2 = (JLONG)wsptr[4];
644
0
    tmp10 = MULTIPLY(tmp2, FIX(0.707106781));   /* c4 */
645
0
    tmp1 = tmp0 + tmp10;
646
0
    tmp11 = tmp0 - tmp10 - tmp10;
647
0
    tmp10 = (JLONG)wsptr[2];
648
0
    tmp0 = MULTIPLY(tmp10, FIX(1.224744871));   /* c2 */
649
0
    tmp10 = tmp1 + tmp0;
650
0
    tmp12 = tmp1 - tmp0;
651
652
    /* Odd part */
653
654
0
    z1 = (JLONG)wsptr[1];
655
0
    z2 = (JLONG)wsptr[3];
656
0
    z3 = (JLONG)wsptr[5];
657
0
    tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
658
0
    tmp0 = tmp1 + LEFT_SHIFT(z1 + z2, CONST_BITS);
659
0
    tmp2 = tmp1 + LEFT_SHIFT(z3 - z2, CONST_BITS);
660
0
    tmp1 = LEFT_SHIFT(z1 - z2 - z3, CONST_BITS);
661
662
    /* Final output stage */
663
664
0
    outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0,
665
0
                                             CONST_BITS + PASS1_BITS + 3) &
666
0
                            RANGE_MASK];
667
0
    outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0,
668
0
                                             CONST_BITS + PASS1_BITS + 3) &
669
0
                            RANGE_MASK];
670
0
    outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1,
671
0
                                             CONST_BITS + PASS1_BITS + 3) &
672
0
                            RANGE_MASK];
673
0
    outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1,
674
0
                                             CONST_BITS + PASS1_BITS + 3) &
675
0
                            RANGE_MASK];
676
0
    outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2,
677
0
                                             CONST_BITS + PASS1_BITS + 3) &
678
0
                            RANGE_MASK];
679
0
    outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2,
680
0
                                             CONST_BITS + PASS1_BITS + 3) &
681
0
                            RANGE_MASK];
682
683
0
    wsptr += 6;         /* advance pointer to next row */
684
0
  }
685
0
}
Unexecuted instantiation: jpeg12_idct_6x6
Unexecuted instantiation: jpeg_idct_6x6
686
687
688
/*
689
 * Perform dequantization and inverse DCT on one block of coefficients,
690
 * producing a reduced-size 5x5 output block.
691
 *
692
 * Optimized algorithm with 5 multiplications in the 1-D kernel.
693
 * cK represents sqrt(2) * cos(K*pi/10).
694
 */
695
696
GLOBAL(void)
697
_jpeg_idct_5x5(j_decompress_ptr cinfo, jpeg_component_info *compptr,
698
               JCOEFPTR coef_block, _JSAMPARRAY output_buf,
699
               JDIMENSION output_col)
700
0
{
701
0
  JLONG tmp0, tmp1, tmp10, tmp11, tmp12;
702
0
  JLONG z1, z2, z3;
703
0
  JCOEFPTR inptr;
704
0
  ISLOW_MULT_TYPE *quantptr;
705
0
  int *wsptr;
706
0
  _JSAMPROW outptr;
707
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
708
0
  int ctr;
709
0
  int workspace[5 * 5];         /* buffers data between passes */
710
  SHIFT_TEMPS
711
712
  /* Pass 1: process columns from input, store into work array. */
713
714
0
  inptr = coef_block;
715
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
716
0
  wsptr = workspace;
717
0
  for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
718
    /* Even part */
719
720
0
    tmp12 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
721
0
    tmp12 = LEFT_SHIFT(tmp12, CONST_BITS);
722
    /* Add fudge factor here for final descale. */
723
0
    tmp12 += ONE << (CONST_BITS - PASS1_BITS - 1);
724
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
725
0
    tmp1 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
726
0
    z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
727
0
    z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
728
0
    z3 = tmp12 + z2;
729
0
    tmp10 = z3 + z1;
730
0
    tmp11 = z3 - z1;
731
0
    tmp12 -= LEFT_SHIFT(z2, 2);
732
733
    /* Odd part */
734
735
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
736
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
737
738
0
    z1 = MULTIPLY(z2 + z3, FIX(0.831253876));     /* c3 */
739
0
    tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148));   /* c1-c3 */
740
0
    tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899));   /* c1+c3 */
741
742
    /* Final output stage */
743
744
0
    wsptr[5 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS);
745
0
    wsptr[5 * 4] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS);
746
0
    wsptr[5 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS);
747
0
    wsptr[5 * 3] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS);
748
0
    wsptr[5 * 2] = (int)RIGHT_SHIFT(tmp12, CONST_BITS - PASS1_BITS);
749
0
  }
750
751
  /* Pass 2: process 5 rows from work array, store into output array. */
752
753
0
  wsptr = workspace;
754
0
  for (ctr = 0; ctr < 5; ctr++) {
755
0
    outptr = output_buf[ctr] + output_col;
756
757
    /* Even part */
758
759
    /* Add fudge factor here for final descale. */
760
0
    tmp12 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
761
0
    tmp12 = LEFT_SHIFT(tmp12, CONST_BITS);
762
0
    tmp0 = (JLONG)wsptr[2];
763
0
    tmp1 = (JLONG)wsptr[4];
764
0
    z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
765
0
    z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
766
0
    z3 = tmp12 + z2;
767
0
    tmp10 = z3 + z1;
768
0
    tmp11 = z3 - z1;
769
0
    tmp12 -= LEFT_SHIFT(z2, 2);
770
771
    /* Odd part */
772
773
0
    z2 = (JLONG)wsptr[1];
774
0
    z3 = (JLONG)wsptr[3];
775
776
0
    z1 = MULTIPLY(z2 + z3, FIX(0.831253876));     /* c3 */
777
0
    tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148));   /* c1-c3 */
778
0
    tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899));   /* c1+c3 */
779
780
    /* Final output stage */
781
782
0
    outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0,
783
0
                                             CONST_BITS + PASS1_BITS + 3) &
784
0
                            RANGE_MASK];
785
0
    outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0,
786
0
                                             CONST_BITS + PASS1_BITS + 3) &
787
0
                            RANGE_MASK];
788
0
    outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1,
789
0
                                             CONST_BITS + PASS1_BITS + 3) &
790
0
                            RANGE_MASK];
791
0
    outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1,
792
0
                                             CONST_BITS + PASS1_BITS + 3) &
793
0
                            RANGE_MASK];
794
0
    outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12,
795
0
                                             CONST_BITS + PASS1_BITS + 3) &
796
0
                            RANGE_MASK];
797
798
0
    wsptr += 5;         /* advance pointer to next row */
799
0
  }
800
0
}
Unexecuted instantiation: jpeg12_idct_5x5
Unexecuted instantiation: jpeg_idct_5x5
801
802
803
/*
804
 * Perform dequantization and inverse DCT on one block of coefficients,
805
 * producing a reduced-size 3x3 output block.
806
 *
807
 * Optimized algorithm with 2 multiplications in the 1-D kernel.
808
 * cK represents sqrt(2) * cos(K*pi/6).
809
 */
810
811
GLOBAL(void)
812
_jpeg_idct_3x3(j_decompress_ptr cinfo, jpeg_component_info *compptr,
813
               JCOEFPTR coef_block, _JSAMPARRAY output_buf,
814
               JDIMENSION output_col)
815
0
{
816
0
  JLONG tmp0, tmp2, tmp10, tmp12;
817
0
  JCOEFPTR inptr;
818
0
  ISLOW_MULT_TYPE *quantptr;
819
0
  int *wsptr;
820
0
  _JSAMPROW outptr;
821
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
822
0
  int ctr;
823
0
  int workspace[3 * 3];         /* buffers data between passes */
824
  SHIFT_TEMPS
825
826
  /* Pass 1: process columns from input, store into work array. */
827
828
0
  inptr = coef_block;
829
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
830
0
  wsptr = workspace;
831
0
  for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
832
    /* Even part */
833
834
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
835
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS);
836
    /* Add fudge factor here for final descale. */
837
0
    tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1);
838
0
    tmp2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
839
0
    tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
840
0
    tmp10 = tmp0 + tmp12;
841
0
    tmp2 = tmp0 - tmp12 - tmp12;
842
843
    /* Odd part */
844
845
0
    tmp12 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
846
0
    tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
847
848
    /* Final output stage */
849
850
0
    wsptr[3 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS);
851
0
    wsptr[3 * 2] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS);
852
0
    wsptr[3 * 1] = (int)RIGHT_SHIFT(tmp2, CONST_BITS - PASS1_BITS);
853
0
  }
854
855
  /* Pass 2: process 3 rows from work array, store into output array. */
856
857
0
  wsptr = workspace;
858
0
  for (ctr = 0; ctr < 3; ctr++) {
859
0
    outptr = output_buf[ctr] + output_col;
860
861
    /* Even part */
862
863
    /* Add fudge factor here for final descale. */
864
0
    tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
865
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS);
866
0
    tmp2 = (JLONG)wsptr[2];
867
0
    tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
868
0
    tmp10 = tmp0 + tmp12;
869
0
    tmp2 = tmp0 - tmp12 - tmp12;
870
871
    /* Odd part */
872
873
0
    tmp12 = (JLONG)wsptr[1];
874
0
    tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
875
876
    /* Final output stage */
877
878
0
    outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0,
879
0
                                             CONST_BITS + PASS1_BITS + 3) &
880
0
                            RANGE_MASK];
881
0
    outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0,
882
0
                                             CONST_BITS + PASS1_BITS + 3) &
883
0
                            RANGE_MASK];
884
0
    outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp2,
885
0
                                             CONST_BITS + PASS1_BITS + 3) &
886
0
                            RANGE_MASK];
887
888
0
    wsptr += 3;         /* advance pointer to next row */
889
0
  }
890
0
}
Unexecuted instantiation: jpeg12_idct_3x3
Unexecuted instantiation: jpeg_idct_3x3
891
892
893
/*
894
 * Perform dequantization and inverse DCT on one block of coefficients,
895
 * producing a 9x9 output block.
896
 *
897
 * Optimized algorithm with 10 multiplications in the 1-D kernel.
898
 * cK represents sqrt(2) * cos(K*pi/18).
899
 */
900
901
GLOBAL(void)
902
_jpeg_idct_9x9(j_decompress_ptr cinfo, jpeg_component_info *compptr,
903
               JCOEFPTR coef_block, _JSAMPARRAY output_buf,
904
               JDIMENSION output_col)
905
0
{
906
0
  JLONG tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14;
907
0
  JLONG z1, z2, z3, z4;
908
0
  JCOEFPTR inptr;
909
0
  ISLOW_MULT_TYPE *quantptr;
910
0
  int *wsptr;
911
0
  _JSAMPROW outptr;
912
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
913
0
  int ctr;
914
0
  int workspace[8 * 9];         /* buffers data between passes */
915
  SHIFT_TEMPS
916
917
  /* Pass 1: process columns from input, store into work array. */
918
919
0
  inptr = coef_block;
920
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
921
0
  wsptr = workspace;
922
0
  for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
923
    /* Even part */
924
925
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
926
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS);
927
    /* Add fudge factor here for final descale. */
928
0
    tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1);
929
930
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
931
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
932
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
933
934
0
    tmp3 = MULTIPLY(z3, FIX(0.707106781));      /* c6 */
935
0
    tmp1 = tmp0 + tmp3;
936
0
    tmp2 = tmp0 - tmp3 - tmp3;
937
938
0
    tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
939
0
    tmp11 = tmp2 + tmp0;
940
0
    tmp14 = tmp2 - tmp0 - tmp0;
941
942
0
    tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
943
0
    tmp2 = MULTIPLY(z1, FIX(1.083350441));      /* c4 */
944
0
    tmp3 = MULTIPLY(z2, FIX(0.245575608));      /* c8 */
945
946
0
    tmp10 = tmp1 + tmp0 - tmp3;
947
0
    tmp12 = tmp1 - tmp0 + tmp2;
948
0
    tmp13 = tmp1 - tmp2 + tmp3;
949
950
    /* Odd part */
951
952
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
953
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
954
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
955
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
956
957
0
    z2 = MULTIPLY(z2, -FIX(1.224744871));            /* -c3 */
958
959
0
    tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955));      /* c5 */
960
0
    tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525));      /* c7 */
961
0
    tmp0 = tmp2 + tmp3 - z2;
962
0
    tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481));      /* c1 */
963
0
    tmp2 += z2 - tmp1;
964
0
    tmp3 += z2 + tmp1;
965
0
    tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
966
967
    /* Final output stage */
968
969
0
    wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS);
970
0
    wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS);
971
0
    wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS);
972
0
    wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS);
973
0
    wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS);
974
0
    wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS);
975
0
    wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS - PASS1_BITS);
976
0
    wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS - PASS1_BITS);
977
0
    wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp14, CONST_BITS - PASS1_BITS);
978
0
  }
979
980
  /* Pass 2: process 9 rows from work array, store into output array. */
981
982
0
  wsptr = workspace;
983
0
  for (ctr = 0; ctr < 9; ctr++) {
984
0
    outptr = output_buf[ctr] + output_col;
985
986
    /* Even part */
987
988
    /* Add fudge factor here for final descale. */
989
0
    tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
990
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS);
991
992
0
    z1 = (JLONG)wsptr[2];
993
0
    z2 = (JLONG)wsptr[4];
994
0
    z3 = (JLONG)wsptr[6];
995
996
0
    tmp3 = MULTIPLY(z3, FIX(0.707106781));      /* c6 */
997
0
    tmp1 = tmp0 + tmp3;
998
0
    tmp2 = tmp0 - tmp3 - tmp3;
999
1000
0
    tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
1001
0
    tmp11 = tmp2 + tmp0;
1002
0
    tmp14 = tmp2 - tmp0 - tmp0;
1003
1004
0
    tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
1005
0
    tmp2 = MULTIPLY(z1, FIX(1.083350441));      /* c4 */
1006
0
    tmp3 = MULTIPLY(z2, FIX(0.245575608));      /* c8 */
1007
1008
0
    tmp10 = tmp1 + tmp0 - tmp3;
1009
0
    tmp12 = tmp1 - tmp0 + tmp2;
1010
0
    tmp13 = tmp1 - tmp2 + tmp3;
1011
1012
    /* Odd part */
1013
1014
0
    z1 = (JLONG)wsptr[1];
1015
0
    z2 = (JLONG)wsptr[3];
1016
0
    z3 = (JLONG)wsptr[5];
1017
0
    z4 = (JLONG)wsptr[7];
1018
1019
0
    z2 = MULTIPLY(z2, -FIX(1.224744871));            /* -c3 */
1020
1021
0
    tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955));      /* c5 */
1022
0
    tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525));      /* c7 */
1023
0
    tmp0 = tmp2 + tmp3 - z2;
1024
0
    tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481));      /* c1 */
1025
0
    tmp2 += z2 - tmp1;
1026
0
    tmp3 += z2 + tmp1;
1027
0
    tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
1028
1029
    /* Final output stage */
1030
1031
0
    outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0,
1032
0
                                             CONST_BITS + PASS1_BITS + 3) &
1033
0
                            RANGE_MASK];
1034
0
    outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0,
1035
0
                                             CONST_BITS + PASS1_BITS + 3) &
1036
0
                            RANGE_MASK];
1037
0
    outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1,
1038
0
                                             CONST_BITS + PASS1_BITS + 3) &
1039
0
                            RANGE_MASK];
1040
0
    outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1,
1041
0
                                             CONST_BITS + PASS1_BITS + 3) &
1042
0
                            RANGE_MASK];
1043
0
    outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2,
1044
0
                                             CONST_BITS + PASS1_BITS + 3) &
1045
0
                            RANGE_MASK];
1046
0
    outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2,
1047
0
                                             CONST_BITS + PASS1_BITS + 3) &
1048
0
                            RANGE_MASK];
1049
0
    outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp13 + tmp3,
1050
0
                                             CONST_BITS + PASS1_BITS + 3) &
1051
0
                            RANGE_MASK];
1052
0
    outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp13 - tmp3,
1053
0
                                             CONST_BITS + PASS1_BITS + 3) &
1054
0
                            RANGE_MASK];
1055
0
    outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp14,
1056
0
                                             CONST_BITS + PASS1_BITS + 3) &
1057
0
                            RANGE_MASK];
1058
1059
0
    wsptr += 8;         /* advance pointer to next row */
1060
0
  }
1061
0
}
Unexecuted instantiation: jpeg12_idct_9x9
Unexecuted instantiation: jpeg_idct_9x9
1062
1063
1064
/*
1065
 * Perform dequantization and inverse DCT on one block of coefficients,
1066
 * producing a 10x10 output block.
1067
 *
1068
 * Optimized algorithm with 12 multiplications in the 1-D kernel.
1069
 * cK represents sqrt(2) * cos(K*pi/20).
1070
 */
1071
1072
GLOBAL(void)
1073
_jpeg_idct_10x10(j_decompress_ptr cinfo, jpeg_component_info *compptr,
1074
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
1075
                 JDIMENSION output_col)
1076
0
{
1077
0
  JLONG tmp10, tmp11, tmp12, tmp13, tmp14;
1078
0
  JLONG tmp20, tmp21, tmp22, tmp23, tmp24;
1079
0
  JLONG z1, z2, z3, z4, z5;
1080
0
  JCOEFPTR inptr;
1081
0
  ISLOW_MULT_TYPE *quantptr;
1082
0
  int *wsptr;
1083
0
  _JSAMPROW outptr;
1084
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1085
0
  int ctr;
1086
0
  int workspace[8 * 10];        /* buffers data between passes */
1087
  SHIFT_TEMPS
1088
1089
  /* Pass 1: process columns from input, store into work array. */
1090
1091
0
  inptr = coef_block;
1092
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
1093
0
  wsptr = workspace;
1094
0
  for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1095
    /* Even part */
1096
1097
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
1098
0
    z3 = LEFT_SHIFT(z3, CONST_BITS);
1099
    /* Add fudge factor here for final descale. */
1100
0
    z3 += ONE << (CONST_BITS - PASS1_BITS - 1);
1101
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
1102
0
    z1 = MULTIPLY(z4, FIX(1.144122806));         /* c4 */
1103
0
    z2 = MULTIPLY(z4, FIX(0.437016024));         /* c8 */
1104
0
    tmp10 = z3 + z1;
1105
0
    tmp11 = z3 - z2;
1106
1107
0
    tmp22 = RIGHT_SHIFT(z3 - LEFT_SHIFT(z1 - z2, 1),
1108
0
                        CONST_BITS - PASS1_BITS); /* c0 = (c4-c8)*2 */
1109
1110
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
1111
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
1112
1113
0
    z1 = MULTIPLY(z2 + z3, FIX(0.831253876));    /* c6 */
1114
0
    tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
1115
0
    tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
1116
1117
0
    tmp20 = tmp10 + tmp12;
1118
0
    tmp24 = tmp10 - tmp12;
1119
0
    tmp21 = tmp11 + tmp13;
1120
0
    tmp23 = tmp11 - tmp13;
1121
1122
    /* Odd part */
1123
1124
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
1125
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
1126
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
1127
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
1128
1129
0
    tmp11 = z2 + z4;
1130
0
    tmp13 = z2 - z4;
1131
1132
0
    tmp12 = MULTIPLY(tmp13, FIX(0.309016994));        /* (c3-c7)/2 */
1133
0
    z5 = LEFT_SHIFT(z3, CONST_BITS);
1134
1135
0
    z2 = MULTIPLY(tmp11, FIX(0.951056516));           /* (c3+c7)/2 */
1136
0
    z4 = z5 + tmp12;
1137
1138
0
    tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
1139
0
    tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
1140
1141
0
    z2 = MULTIPLY(tmp11, FIX(0.587785252));           /* (c1-c9)/2 */
1142
0
    z4 = z5 - tmp12 - LEFT_SHIFT(tmp13, CONST_BITS - 1);
1143
1144
0
    tmp12 = LEFT_SHIFT(z1 - tmp13 - z3, PASS1_BITS);
1145
1146
0
    tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
1147
0
    tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
1148
1149
    /* Final output stage */
1150
1151
0
    wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS);
1152
0
    wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS);
1153
0
    wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS);
1154
0
    wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS);
1155
0
    wsptr[8 * 2] = (int)(tmp22 + tmp12);
1156
0
    wsptr[8 * 7] = (int)(tmp22 - tmp12);
1157
0
    wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS);
1158
0
    wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS);
1159
0
    wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS);
1160
0
    wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS);
1161
0
  }
1162
1163
  /* Pass 2: process 10 rows from work array, store into output array. */
1164
1165
0
  wsptr = workspace;
1166
0
  for (ctr = 0; ctr < 10; ctr++) {
1167
0
    outptr = output_buf[ctr] + output_col;
1168
1169
    /* Even part */
1170
1171
    /* Add fudge factor here for final descale. */
1172
0
    z3 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
1173
0
    z3 = LEFT_SHIFT(z3, CONST_BITS);
1174
0
    z4 = (JLONG)wsptr[4];
1175
0
    z1 = MULTIPLY(z4, FIX(1.144122806));         /* c4 */
1176
0
    z2 = MULTIPLY(z4, FIX(0.437016024));         /* c8 */
1177
0
    tmp10 = z3 + z1;
1178
0
    tmp11 = z3 - z2;
1179
1180
0
    tmp22 = z3 - LEFT_SHIFT(z1 - z2, 1);         /* c0 = (c4-c8)*2 */
1181
1182
0
    z2 = (JLONG)wsptr[2];
1183
0
    z3 = (JLONG)wsptr[6];
1184
1185
0
    z1 = MULTIPLY(z2 + z3, FIX(0.831253876));    /* c6 */
1186
0
    tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
1187
0
    tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
1188
1189
0
    tmp20 = tmp10 + tmp12;
1190
0
    tmp24 = tmp10 - tmp12;
1191
0
    tmp21 = tmp11 + tmp13;
1192
0
    tmp23 = tmp11 - tmp13;
1193
1194
    /* Odd part */
1195
1196
0
    z1 = (JLONG)wsptr[1];
1197
0
    z2 = (JLONG)wsptr[3];
1198
0
    z3 = (JLONG)wsptr[5];
1199
0
    z3 = LEFT_SHIFT(z3, CONST_BITS);
1200
0
    z4 = (JLONG)wsptr[7];
1201
1202
0
    tmp11 = z2 + z4;
1203
0
    tmp13 = z2 - z4;
1204
1205
0
    tmp12 = MULTIPLY(tmp13, FIX(0.309016994));        /* (c3-c7)/2 */
1206
1207
0
    z2 = MULTIPLY(tmp11, FIX(0.951056516));           /* (c3+c7)/2 */
1208
0
    z4 = z3 + tmp12;
1209
1210
0
    tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
1211
0
    tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
1212
1213
0
    z2 = MULTIPLY(tmp11, FIX(0.587785252));           /* (c1-c9)/2 */
1214
0
    z4 = z3 - tmp12 - LEFT_SHIFT(tmp13, CONST_BITS - 1);
1215
1216
0
    tmp12 = LEFT_SHIFT(z1 - tmp13, CONST_BITS) - z3;
1217
1218
0
    tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
1219
0
    tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
1220
1221
    /* Final output stage */
1222
1223
0
    outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10,
1224
0
                                             CONST_BITS + PASS1_BITS + 3) &
1225
0
                            RANGE_MASK];
1226
0
    outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10,
1227
0
                                             CONST_BITS + PASS1_BITS + 3) &
1228
0
                            RANGE_MASK];
1229
0
    outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11,
1230
0
                                             CONST_BITS + PASS1_BITS + 3) &
1231
0
                            RANGE_MASK];
1232
0
    outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11,
1233
0
                                             CONST_BITS + PASS1_BITS + 3) &
1234
0
                            RANGE_MASK];
1235
0
    outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12,
1236
0
                                             CONST_BITS + PASS1_BITS + 3) &
1237
0
                            RANGE_MASK];
1238
0
    outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12,
1239
0
                                             CONST_BITS + PASS1_BITS + 3) &
1240
0
                            RANGE_MASK];
1241
0
    outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13,
1242
0
                                             CONST_BITS + PASS1_BITS + 3) &
1243
0
                            RANGE_MASK];
1244
0
    outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13,
1245
0
                                             CONST_BITS + PASS1_BITS + 3) &
1246
0
                            RANGE_MASK];
1247
0
    outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14,
1248
0
                                             CONST_BITS + PASS1_BITS + 3) &
1249
0
                            RANGE_MASK];
1250
0
    outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14,
1251
0
                                             CONST_BITS + PASS1_BITS + 3) &
1252
0
                            RANGE_MASK];
1253
1254
0
    wsptr += 8;         /* advance pointer to next row */
1255
0
  }
1256
0
}
Unexecuted instantiation: jpeg12_idct_10x10
Unexecuted instantiation: jpeg_idct_10x10
1257
1258
1259
/*
1260
 * Perform dequantization and inverse DCT on one block of coefficients,
1261
 * producing an 11x11 output block.
1262
 *
1263
 * Optimized algorithm with 24 multiplications in the 1-D kernel.
1264
 * cK represents sqrt(2) * cos(K*pi/22).
1265
 */
1266
1267
GLOBAL(void)
1268
_jpeg_idct_11x11(j_decompress_ptr cinfo, jpeg_component_info *compptr,
1269
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
1270
                 JDIMENSION output_col)
1271
0
{
1272
0
  JLONG tmp10, tmp11, tmp12, tmp13, tmp14;
1273
0
  JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
1274
0
  JLONG z1, z2, z3, z4;
1275
0
  JCOEFPTR inptr;
1276
0
  ISLOW_MULT_TYPE *quantptr;
1277
0
  int *wsptr;
1278
0
  _JSAMPROW outptr;
1279
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1280
0
  int ctr;
1281
0
  int workspace[8 * 11];        /* buffers data between passes */
1282
  SHIFT_TEMPS
1283
1284
  /* Pass 1: process columns from input, store into work array. */
1285
1286
0
  inptr = coef_block;
1287
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
1288
0
  wsptr = workspace;
1289
0
  for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1290
    /* Even part */
1291
1292
0
    tmp10 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
1293
0
    tmp10 = LEFT_SHIFT(tmp10, CONST_BITS);
1294
    /* Add fudge factor here for final descale. */
1295
0
    tmp10 += ONE << (CONST_BITS - PASS1_BITS - 1);
1296
1297
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
1298
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
1299
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
1300
1301
0
    tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132));     /* c2+c4 */
1302
0
    tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045));     /* c2-c6 */
1303
0
    z4 = z1 + z3;
1304
0
    tmp24 = MULTIPLY(z4, -FIX(1.155664402));         /* -(c2-c10) */
1305
0
    z4 -= z2;
1306
0
    tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976));  /* c2 */
1307
0
    tmp21 = tmp20 + tmp23 + tmp25 -
1308
0
            MULTIPLY(z2, FIX(1.821790775));          /* c2+c4+c10-c6 */
1309
0
    tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
1310
0
    tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
1311
0
    tmp24 += tmp25;
1312
0
    tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120));  /* c8+c10 */
1313
0
    tmp24 += MULTIPLY(z2, FIX(1.944413522)) -        /* c2+c8 */
1314
0
             MULTIPLY(z1, FIX(1.390975730));         /* c4+c10 */
1315
0
    tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562));  /* c0 */
1316
1317
    /* Odd part */
1318
1319
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
1320
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
1321
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
1322
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
1323
1324
0
    tmp11 = z1 + z2;
1325
0
    tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
1326
0
    tmp11 = MULTIPLY(tmp11, FIX(0.887983902));           /* c3-c9 */
1327
0
    tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295));         /* c5-c9 */
1328
0
    tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
1329
0
    tmp10 = tmp11 + tmp12 + tmp13 -
1330
0
            MULTIPLY(z1, FIX(0.923107866));              /* c7+c5+c3-c1-2*c9 */
1331
0
    z1    = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
1332
0
    tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588));        /* c1+c7+3*c9-c3 */
1333
0
    tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623));        /* c3+c5-c7-c9 */
1334
0
    z1    = MULTIPLY(z2 + z4, -FIX(1.798248910));        /* -(c1+c9) */
1335
0
    tmp11 += z1;
1336
0
    tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632));        /* c1+c5+c9-c7 */
1337
0
    tmp14 += MULTIPLY(z2, -FIX(1.467221301)) +           /* -(c5+c9) */
1338
0
             MULTIPLY(z3, FIX(1.001388905)) -            /* c1-c9 */
1339
0
             MULTIPLY(z4, FIX(1.684843907));             /* c3+c9 */
1340
1341
    /* Final output stage */
1342
1343
0
    wsptr[8 * 0]  = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS);
1344
0
    wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS);
1345
0
    wsptr[8 * 1]  = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS);
1346
0
    wsptr[8 * 9]  = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS);
1347
0
    wsptr[8 * 2]  = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS);
1348
0
    wsptr[8 * 8]  = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS);
1349
0
    wsptr[8 * 3]  = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS);
1350
0
    wsptr[8 * 7]  = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS);
1351
0
    wsptr[8 * 4]  = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS);
1352
0
    wsptr[8 * 6]  = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS);
1353
0
    wsptr[8 * 5]  = (int)RIGHT_SHIFT(tmp25, CONST_BITS - PASS1_BITS);
1354
0
  }
1355
1356
  /* Pass 2: process 11 rows from work array, store into output array. */
1357
1358
0
  wsptr = workspace;
1359
0
  for (ctr = 0; ctr < 11; ctr++) {
1360
0
    outptr = output_buf[ctr] + output_col;
1361
1362
    /* Even part */
1363
1364
    /* Add fudge factor here for final descale. */
1365
0
    tmp10 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
1366
0
    tmp10 = LEFT_SHIFT(tmp10, CONST_BITS);
1367
1368
0
    z1 = (JLONG)wsptr[2];
1369
0
    z2 = (JLONG)wsptr[4];
1370
0
    z3 = (JLONG)wsptr[6];
1371
1372
0
    tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132));     /* c2+c4 */
1373
0
    tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045));     /* c2-c6 */
1374
0
    z4 = z1 + z3;
1375
0
    tmp24 = MULTIPLY(z4, -FIX(1.155664402));         /* -(c2-c10) */
1376
0
    z4 -= z2;
1377
0
    tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976));  /* c2 */
1378
0
    tmp21 = tmp20 + tmp23 + tmp25 -
1379
0
            MULTIPLY(z2, FIX(1.821790775));          /* c2+c4+c10-c6 */
1380
0
    tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
1381
0
    tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
1382
0
    tmp24 += tmp25;
1383
0
    tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120));  /* c8+c10 */
1384
0
    tmp24 += MULTIPLY(z2, FIX(1.944413522)) -        /* c2+c8 */
1385
0
             MULTIPLY(z1, FIX(1.390975730));         /* c4+c10 */
1386
0
    tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562));  /* c0 */
1387
1388
    /* Odd part */
1389
1390
0
    z1 = (JLONG)wsptr[1];
1391
0
    z2 = (JLONG)wsptr[3];
1392
0
    z3 = (JLONG)wsptr[5];
1393
0
    z4 = (JLONG)wsptr[7];
1394
1395
0
    tmp11 = z1 + z2;
1396
0
    tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
1397
0
    tmp11 = MULTIPLY(tmp11, FIX(0.887983902));           /* c3-c9 */
1398
0
    tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295));         /* c5-c9 */
1399
0
    tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
1400
0
    tmp10 = tmp11 + tmp12 + tmp13 -
1401
0
            MULTIPLY(z1, FIX(0.923107866));              /* c7+c5+c3-c1-2*c9 */
1402
0
    z1    = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
1403
0
    tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588));        /* c1+c7+3*c9-c3 */
1404
0
    tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623));        /* c3+c5-c7-c9 */
1405
0
    z1    = MULTIPLY(z2 + z4, -FIX(1.798248910));        /* -(c1+c9) */
1406
0
    tmp11 += z1;
1407
0
    tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632));        /* c1+c5+c9-c7 */
1408
0
    tmp14 += MULTIPLY(z2, -FIX(1.467221301)) +           /* -(c5+c9) */
1409
0
             MULTIPLY(z3, FIX(1.001388905)) -            /* c1-c9 */
1410
0
             MULTIPLY(z4, FIX(1.684843907));             /* c3+c9 */
1411
1412
    /* Final output stage */
1413
1414
0
    outptr[0]  = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10,
1415
0
                                              CONST_BITS + PASS1_BITS + 3) &
1416
0
                             RANGE_MASK];
1417
0
    outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10,
1418
0
                                              CONST_BITS + PASS1_BITS + 3) &
1419
0
                             RANGE_MASK];
1420
0
    outptr[1]  = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11,
1421
0
                                              CONST_BITS + PASS1_BITS + 3) &
1422
0
                             RANGE_MASK];
1423
0
    outptr[9]  = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11,
1424
0
                                              CONST_BITS + PASS1_BITS + 3) &
1425
0
                             RANGE_MASK];
1426
0
    outptr[2]  = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12,
1427
0
                                              CONST_BITS + PASS1_BITS + 3) &
1428
0
                             RANGE_MASK];
1429
0
    outptr[8]  = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12,
1430
0
                                              CONST_BITS + PASS1_BITS + 3) &
1431
0
                             RANGE_MASK];
1432
0
    outptr[3]  = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13,
1433
0
                                              CONST_BITS + PASS1_BITS + 3) &
1434
0
                             RANGE_MASK];
1435
0
    outptr[7]  = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13,
1436
0
                                              CONST_BITS + PASS1_BITS + 3) &
1437
0
                             RANGE_MASK];
1438
0
    outptr[4]  = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14,
1439
0
                                              CONST_BITS + PASS1_BITS + 3) &
1440
0
                             RANGE_MASK];
1441
0
    outptr[6]  = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14,
1442
0
                                              CONST_BITS + PASS1_BITS + 3) &
1443
0
                             RANGE_MASK];
1444
0
    outptr[5]  = range_limit[(int)RIGHT_SHIFT(tmp25,
1445
0
                                              CONST_BITS + PASS1_BITS + 3) &
1446
0
                             RANGE_MASK];
1447
1448
0
    wsptr += 8;         /* advance pointer to next row */
1449
0
  }
1450
0
}
Unexecuted instantiation: jpeg12_idct_11x11
Unexecuted instantiation: jpeg_idct_11x11
1451
1452
1453
/*
1454
 * Perform dequantization and inverse DCT on one block of coefficients,
1455
 * producing a 12x12 output block.
1456
 *
1457
 * Optimized algorithm with 15 multiplications in the 1-D kernel.
1458
 * cK represents sqrt(2) * cos(K*pi/24).
1459
 */
1460
1461
GLOBAL(void)
1462
_jpeg_idct_12x12(j_decompress_ptr cinfo, jpeg_component_info *compptr,
1463
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
1464
                 JDIMENSION output_col)
1465
0
{
1466
0
  JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
1467
0
  JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
1468
0
  JLONG z1, z2, z3, z4;
1469
0
  JCOEFPTR inptr;
1470
0
  ISLOW_MULT_TYPE *quantptr;
1471
0
  int *wsptr;
1472
0
  _JSAMPROW outptr;
1473
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1474
0
  int ctr;
1475
0
  int workspace[8 * 12];        /* buffers data between passes */
1476
  SHIFT_TEMPS
1477
1478
  /* Pass 1: process columns from input, store into work array. */
1479
1480
0
  inptr = coef_block;
1481
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
1482
0
  wsptr = workspace;
1483
0
  for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1484
    /* Even part */
1485
1486
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
1487
0
    z3 = LEFT_SHIFT(z3, CONST_BITS);
1488
    /* Add fudge factor here for final descale. */
1489
0
    z3 += ONE << (CONST_BITS - PASS1_BITS - 1);
1490
1491
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
1492
0
    z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
1493
1494
0
    tmp10 = z3 + z4;
1495
0
    tmp11 = z3 - z4;
1496
1497
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
1498
0
    z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
1499
0
    z1 = LEFT_SHIFT(z1, CONST_BITS);
1500
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
1501
0
    z2 = LEFT_SHIFT(z2, CONST_BITS);
1502
1503
0
    tmp12 = z1 - z2;
1504
1505
0
    tmp21 = z3 + tmp12;
1506
0
    tmp24 = z3 - tmp12;
1507
1508
0
    tmp12 = z4 + z2;
1509
1510
0
    tmp20 = tmp10 + tmp12;
1511
0
    tmp25 = tmp10 - tmp12;
1512
1513
0
    tmp12 = z4 - z1 - z2;
1514
1515
0
    tmp22 = tmp11 + tmp12;
1516
0
    tmp23 = tmp11 - tmp12;
1517
1518
    /* Odd part */
1519
1520
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
1521
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
1522
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
1523
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
1524
1525
0
    tmp11 = MULTIPLY(z2, FIX(1.306562965));                  /* c3 */
1526
0
    tmp14 = MULTIPLY(z2, -FIX_0_541196100);                  /* -c9 */
1527
1528
0
    tmp10 = z1 + z3;
1529
0
    tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669));          /* c7 */
1530
0
    tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384));       /* c5-c7 */
1531
0
    tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716));  /* c1-c5 */
1532
0
    tmp13 = MULTIPLY(z3 + z4, -FIX(1.045510580));            /* -(c7+c11) */
1533
0
    tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
1534
0
    tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
1535
0
    tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) -        /* c7-c11 */
1536
0
             MULTIPLY(z4, FIX(1.982889723));                 /* c5+c7 */
1537
1538
0
    z1 -= z4;
1539
0
    z2 -= z3;
1540
0
    z3 = MULTIPLY(z1 + z2, FIX_0_541196100);                 /* c9 */
1541
0
    tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865);              /* c3-c9 */
1542
0
    tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065);              /* c3+c9 */
1543
1544
    /* Final output stage */
1545
1546
0
    wsptr[8 * 0]  = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS);
1547
0
    wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS);
1548
0
    wsptr[8 * 1]  = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS);
1549
0
    wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS);
1550
0
    wsptr[8 * 2]  = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS);
1551
0
    wsptr[8 * 9]  = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS);
1552
0
    wsptr[8 * 3]  = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS);
1553
0
    wsptr[8 * 8]  = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS);
1554
0
    wsptr[8 * 4]  = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS);
1555
0
    wsptr[8 * 7]  = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS);
1556
0
    wsptr[8 * 5]  = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS);
1557
0
    wsptr[8 * 6]  = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS);
1558
0
  }
1559
1560
  /* Pass 2: process 12 rows from work array, store into output array. */
1561
1562
0
  wsptr = workspace;
1563
0
  for (ctr = 0; ctr < 12; ctr++) {
1564
0
    outptr = output_buf[ctr] + output_col;
1565
1566
    /* Even part */
1567
1568
    /* Add fudge factor here for final descale. */
1569
0
    z3 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
1570
0
    z3 = LEFT_SHIFT(z3, CONST_BITS);
1571
1572
0
    z4 = (JLONG)wsptr[4];
1573
0
    z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
1574
1575
0
    tmp10 = z3 + z4;
1576
0
    tmp11 = z3 - z4;
1577
1578
0
    z1 = (JLONG)wsptr[2];
1579
0
    z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
1580
0
    z1 = LEFT_SHIFT(z1, CONST_BITS);
1581
0
    z2 = (JLONG)wsptr[6];
1582
0
    z2 = LEFT_SHIFT(z2, CONST_BITS);
1583
1584
0
    tmp12 = z1 - z2;
1585
1586
0
    tmp21 = z3 + tmp12;
1587
0
    tmp24 = z3 - tmp12;
1588
1589
0
    tmp12 = z4 + z2;
1590
1591
0
    tmp20 = tmp10 + tmp12;
1592
0
    tmp25 = tmp10 - tmp12;
1593
1594
0
    tmp12 = z4 - z1 - z2;
1595
1596
0
    tmp22 = tmp11 + tmp12;
1597
0
    tmp23 = tmp11 - tmp12;
1598
1599
    /* Odd part */
1600
1601
0
    z1 = (JLONG)wsptr[1];
1602
0
    z2 = (JLONG)wsptr[3];
1603
0
    z3 = (JLONG)wsptr[5];
1604
0
    z4 = (JLONG)wsptr[7];
1605
1606
0
    tmp11 = MULTIPLY(z2, FIX(1.306562965));                  /* c3 */
1607
0
    tmp14 = MULTIPLY(z2, -FIX_0_541196100);                  /* -c9 */
1608
1609
0
    tmp10 = z1 + z3;
1610
0
    tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669));          /* c7 */
1611
0
    tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384));       /* c5-c7 */
1612
0
    tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716));  /* c1-c5 */
1613
0
    tmp13 = MULTIPLY(z3 + z4, -FIX(1.045510580));            /* -(c7+c11) */
1614
0
    tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
1615
0
    tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
1616
0
    tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) -        /* c7-c11 */
1617
0
             MULTIPLY(z4, FIX(1.982889723));                 /* c5+c7 */
1618
1619
0
    z1 -= z4;
1620
0
    z2 -= z3;
1621
0
    z3 = MULTIPLY(z1 + z2, FIX_0_541196100);                 /* c9 */
1622
0
    tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865);              /* c3-c9 */
1623
0
    tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065);              /* c3+c9 */
1624
1625
    /* Final output stage */
1626
1627
0
    outptr[0]  = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10,
1628
0
                                              CONST_BITS + PASS1_BITS + 3) &
1629
0
                             RANGE_MASK];
1630
0
    outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10,
1631
0
                                              CONST_BITS + PASS1_BITS + 3) &
1632
0
                             RANGE_MASK];
1633
0
    outptr[1]  = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11,
1634
0
                                              CONST_BITS + PASS1_BITS + 3) &
1635
0
                             RANGE_MASK];
1636
0
    outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11,
1637
0
                                              CONST_BITS + PASS1_BITS + 3) &
1638
0
                             RANGE_MASK];
1639
0
    outptr[2]  = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12,
1640
0
                                              CONST_BITS + PASS1_BITS + 3) &
1641
0
                             RANGE_MASK];
1642
0
    outptr[9]  = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12,
1643
0
                                              CONST_BITS + PASS1_BITS + 3) &
1644
0
                             RANGE_MASK];
1645
0
    outptr[3]  = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13,
1646
0
                                              CONST_BITS + PASS1_BITS + 3) &
1647
0
                             RANGE_MASK];
1648
0
    outptr[8]  = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13,
1649
0
                                              CONST_BITS + PASS1_BITS + 3) &
1650
0
                             RANGE_MASK];
1651
0
    outptr[4]  = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14,
1652
0
                                              CONST_BITS + PASS1_BITS + 3) &
1653
0
                             RANGE_MASK];
1654
0
    outptr[7]  = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14,
1655
0
                                              CONST_BITS + PASS1_BITS + 3) &
1656
0
                             RANGE_MASK];
1657
0
    outptr[5]  = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15,
1658
0
                                              CONST_BITS + PASS1_BITS + 3) &
1659
0
                             RANGE_MASK];
1660
0
    outptr[6]  = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15,
1661
0
                                              CONST_BITS + PASS1_BITS + 3) &
1662
0
                             RANGE_MASK];
1663
1664
0
    wsptr += 8;         /* advance pointer to next row */
1665
0
  }
1666
0
}
Unexecuted instantiation: jpeg12_idct_12x12
Unexecuted instantiation: jpeg_idct_12x12
1667
1668
1669
/*
1670
 * Perform dequantization and inverse DCT on one block of coefficients,
1671
 * producing a 13x13 output block.
1672
 *
1673
 * Optimized algorithm with 29 multiplications in the 1-D kernel.
1674
 * cK represents sqrt(2) * cos(K*pi/26).
1675
 */
1676
1677
GLOBAL(void)
1678
_jpeg_idct_13x13(j_decompress_ptr cinfo, jpeg_component_info *compptr,
1679
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
1680
                 JDIMENSION output_col)
1681
0
{
1682
0
  JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
1683
0
  JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
1684
0
  JLONG z1, z2, z3, z4;
1685
0
  JCOEFPTR inptr;
1686
0
  ISLOW_MULT_TYPE *quantptr;
1687
0
  int *wsptr;
1688
0
  _JSAMPROW outptr;
1689
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1690
0
  int ctr;
1691
0
  int workspace[8 * 13];        /* buffers data between passes */
1692
  SHIFT_TEMPS
1693
1694
  /* Pass 1: process columns from input, store into work array. */
1695
1696
0
  inptr = coef_block;
1697
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
1698
0
  wsptr = workspace;
1699
0
  for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1700
    /* Even part */
1701
1702
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
1703
0
    z1 = LEFT_SHIFT(z1, CONST_BITS);
1704
    /* Add fudge factor here for final descale. */
1705
0
    z1 += ONE << (CONST_BITS - PASS1_BITS - 1);
1706
1707
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
1708
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
1709
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
1710
1711
0
    tmp10 = z3 + z4;
1712
0
    tmp11 = z3 - z4;
1713
1714
0
    tmp12 = MULTIPLY(tmp10, FIX(1.155388986));                /* (c4+c6)/2 */
1715
0
    tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1;           /* (c4-c6)/2 */
1716
1717
0
    tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13;   /* c2 */
1718
0
    tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13;   /* c10 */
1719
1720
0
    tmp12 = MULTIPLY(tmp10, FIX(0.316450131));                /* (c8-c12)/2 */
1721
0
    tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1;           /* (c8+c12)/2 */
1722
1723
0
    tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13;   /* c6 */
1724
0
    tmp25 = MULTIPLY(z2, -FIX(1.252223920)) + tmp12 + tmp13;  /* c4 */
1725
1726
0
    tmp12 = MULTIPLY(tmp10, FIX(0.435816023));                /* (c2-c10)/2 */
1727
0
    tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1;           /* (c2+c10)/2 */
1728
1729
0
    tmp23 = MULTIPLY(z2, -FIX(0.170464608)) - tmp12 - tmp13;  /* c12 */
1730
0
    tmp24 = MULTIPLY(z2, -FIX(0.803364869)) + tmp12 - tmp13;  /* c8 */
1731
1732
0
    tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1;      /* c0 */
1733
1734
    /* Odd part */
1735
1736
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
1737
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
1738
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
1739
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
1740
1741
0
    tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651));     /* c3 */
1742
0
    tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945));     /* c5 */
1743
0
    tmp15 = z1 + z4;
1744
0
    tmp13 = MULTIPLY(tmp15, FIX(0.937797057));       /* c7 */
1745
0
    tmp10 = tmp11 + tmp12 + tmp13 -
1746
0
            MULTIPLY(z1, FIX(2.020082300));          /* c7+c5+c3-c1 */
1747
0
    tmp14 = MULTIPLY(z2 + z3, -FIX(0.338443458));    /* -c11 */
1748
0
    tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
1749
0
    tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
1750
0
    tmp14 = MULTIPLY(z2 + z4, -FIX(1.163874945));    /* -c5 */
1751
0
    tmp11 += tmp14;
1752
0
    tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
1753
0
    tmp14 = MULTIPLY(z3 + z4, -FIX(0.657217813));    /* -c9 */
1754
0
    tmp12 += tmp14;
1755
0
    tmp13 += tmp14;
1756
0
    tmp15 = MULTIPLY(tmp15, FIX(0.338443458));       /* c11 */
1757
0
    tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
1758
0
            MULTIPLY(z2, FIX(0.466105296));          /* c1-c7 */
1759
0
    z1    = MULTIPLY(z3 - z2, FIX(0.937797057));     /* c7 */
1760
0
    tmp14 += z1;
1761
0
    tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) -   /* c3-c7 */
1762
0
             MULTIPLY(z4, FIX(1.742345811));         /* c1+c11 */
1763
1764
    /* Final output stage */
1765
1766
0
    wsptr[8 * 0]  = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS);
1767
0
    wsptr[8 * 12] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS);
1768
0
    wsptr[8 * 1]  = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS);
1769
0
    wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS);
1770
0
    wsptr[8 * 2]  = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS);
1771
0
    wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS);
1772
0
    wsptr[8 * 3]  = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS);
1773
0
    wsptr[8 * 9]  = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS);
1774
0
    wsptr[8 * 4]  = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS);
1775
0
    wsptr[8 * 8]  = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS);
1776
0
    wsptr[8 * 5]  = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS);
1777
0
    wsptr[8 * 7]  = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS);
1778
0
    wsptr[8 * 6]  = (int)RIGHT_SHIFT(tmp26, CONST_BITS - PASS1_BITS);
1779
0
  }
1780
1781
  /* Pass 2: process 13 rows from work array, store into output array. */
1782
1783
0
  wsptr = workspace;
1784
0
  for (ctr = 0; ctr < 13; ctr++) {
1785
0
    outptr = output_buf[ctr] + output_col;
1786
1787
    /* Even part */
1788
1789
    /* Add fudge factor here for final descale. */
1790
0
    z1 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
1791
0
    z1 = LEFT_SHIFT(z1, CONST_BITS);
1792
1793
0
    z2 = (JLONG)wsptr[2];
1794
0
    z3 = (JLONG)wsptr[4];
1795
0
    z4 = (JLONG)wsptr[6];
1796
1797
0
    tmp10 = z3 + z4;
1798
0
    tmp11 = z3 - z4;
1799
1800
0
    tmp12 = MULTIPLY(tmp10, FIX(1.155388986));                /* (c4+c6)/2 */
1801
0
    tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1;           /* (c4-c6)/2 */
1802
1803
0
    tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13;   /* c2 */
1804
0
    tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13;   /* c10 */
1805
1806
0
    tmp12 = MULTIPLY(tmp10, FIX(0.316450131));                /* (c8-c12)/2 */
1807
0
    tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1;           /* (c8+c12)/2 */
1808
1809
0
    tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13;   /* c6 */
1810
0
    tmp25 = MULTIPLY(z2, -FIX(1.252223920)) + tmp12 + tmp13;  /* c4 */
1811
1812
0
    tmp12 = MULTIPLY(tmp10, FIX(0.435816023));                /* (c2-c10)/2 */
1813
0
    tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1;           /* (c2+c10)/2 */
1814
1815
0
    tmp23 = MULTIPLY(z2, -FIX(0.170464608)) - tmp12 - tmp13;  /* c12 */
1816
0
    tmp24 = MULTIPLY(z2, -FIX(0.803364869)) + tmp12 - tmp13;  /* c8 */
1817
1818
0
    tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1;      /* c0 */
1819
1820
    /* Odd part */
1821
1822
0
    z1 = (JLONG)wsptr[1];
1823
0
    z2 = (JLONG)wsptr[3];
1824
0
    z3 = (JLONG)wsptr[5];
1825
0
    z4 = (JLONG)wsptr[7];
1826
1827
0
    tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651));     /* c3 */
1828
0
    tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945));     /* c5 */
1829
0
    tmp15 = z1 + z4;
1830
0
    tmp13 = MULTIPLY(tmp15, FIX(0.937797057));       /* c7 */
1831
0
    tmp10 = tmp11 + tmp12 + tmp13 -
1832
0
            MULTIPLY(z1, FIX(2.020082300));          /* c7+c5+c3-c1 */
1833
0
    tmp14 = MULTIPLY(z2 + z3, -FIX(0.338443458));    /* -c11 */
1834
0
    tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
1835
0
    tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
1836
0
    tmp14 = MULTIPLY(z2 + z4, -FIX(1.163874945));    /* -c5 */
1837
0
    tmp11 += tmp14;
1838
0
    tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
1839
0
    tmp14 = MULTIPLY(z3 + z4, -FIX(0.657217813));    /* -c9 */
1840
0
    tmp12 += tmp14;
1841
0
    tmp13 += tmp14;
1842
0
    tmp15 = MULTIPLY(tmp15, FIX(0.338443458));       /* c11 */
1843
0
    tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
1844
0
            MULTIPLY(z2, FIX(0.466105296));          /* c1-c7 */
1845
0
    z1    = MULTIPLY(z3 - z2, FIX(0.937797057));     /* c7 */
1846
0
    tmp14 += z1;
1847
0
    tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) -   /* c3-c7 */
1848
0
             MULTIPLY(z4, FIX(1.742345811));         /* c1+c11 */
1849
1850
    /* Final output stage */
1851
1852
0
    outptr[0]  = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10,
1853
0
                                              CONST_BITS + PASS1_BITS + 3) &
1854
0
                             RANGE_MASK];
1855
0
    outptr[12] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10,
1856
0
                                              CONST_BITS + PASS1_BITS + 3) &
1857
0
                             RANGE_MASK];
1858
0
    outptr[1]  = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11,
1859
0
                                              CONST_BITS + PASS1_BITS + 3) &
1860
0
                             RANGE_MASK];
1861
0
    outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11,
1862
0
                                              CONST_BITS + PASS1_BITS + 3) &
1863
0
                             RANGE_MASK];
1864
0
    outptr[2]  = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12,
1865
0
                                              CONST_BITS + PASS1_BITS + 3) &
1866
0
                             RANGE_MASK];
1867
0
    outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12,
1868
0
                                              CONST_BITS + PASS1_BITS + 3) &
1869
0
                             RANGE_MASK];
1870
0
    outptr[3]  = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13,
1871
0
                                              CONST_BITS + PASS1_BITS + 3) &
1872
0
                             RANGE_MASK];
1873
0
    outptr[9]  = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13,
1874
0
                                              CONST_BITS + PASS1_BITS + 3) &
1875
0
                             RANGE_MASK];
1876
0
    outptr[4]  = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14,
1877
0
                                              CONST_BITS + PASS1_BITS + 3) &
1878
0
                             RANGE_MASK];
1879
0
    outptr[8]  = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14,
1880
0
                                              CONST_BITS + PASS1_BITS + 3) &
1881
0
                             RANGE_MASK];
1882
0
    outptr[5]  = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15,
1883
0
                                              CONST_BITS + PASS1_BITS + 3) &
1884
0
                             RANGE_MASK];
1885
0
    outptr[7]  = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15,
1886
0
                                              CONST_BITS + PASS1_BITS + 3) &
1887
0
                             RANGE_MASK];
1888
0
    outptr[6]  = range_limit[(int)RIGHT_SHIFT(tmp26,
1889
0
                                              CONST_BITS + PASS1_BITS + 3) &
1890
0
                             RANGE_MASK];
1891
1892
0
    wsptr += 8;         /* advance pointer to next row */
1893
0
  }
1894
0
}
Unexecuted instantiation: jpeg12_idct_13x13
Unexecuted instantiation: jpeg_idct_13x13
1895
1896
1897
/*
1898
 * Perform dequantization and inverse DCT on one block of coefficients,
1899
 * producing a 14x14 output block.
1900
 *
1901
 * Optimized algorithm with 20 multiplications in the 1-D kernel.
1902
 * cK represents sqrt(2) * cos(K*pi/28).
1903
 */
1904
1905
GLOBAL(void)
1906
_jpeg_idct_14x14(j_decompress_ptr cinfo, jpeg_component_info *compptr,
1907
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
1908
                 JDIMENSION output_col)
1909
0
{
1910
0
  JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
1911
0
  JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
1912
0
  JLONG z1, z2, z3, z4;
1913
0
  JCOEFPTR inptr;
1914
0
  ISLOW_MULT_TYPE *quantptr;
1915
0
  int *wsptr;
1916
0
  _JSAMPROW outptr;
1917
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1918
0
  int ctr;
1919
0
  int workspace[8 * 14];        /* buffers data between passes */
1920
  SHIFT_TEMPS
1921
1922
  /* Pass 1: process columns from input, store into work array. */
1923
1924
0
  inptr = coef_block;
1925
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
1926
0
  wsptr = workspace;
1927
0
  for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
1928
    /* Even part */
1929
1930
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
1931
0
    z1 = LEFT_SHIFT(z1, CONST_BITS);
1932
    /* Add fudge factor here for final descale. */
1933
0
    z1 += ONE << (CONST_BITS - PASS1_BITS - 1);
1934
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
1935
0
    z2 = MULTIPLY(z4, FIX(1.274162392));         /* c4 */
1936
0
    z3 = MULTIPLY(z4, FIX(0.314692123));         /* c12 */
1937
0
    z4 = MULTIPLY(z4, FIX(0.881747734));         /* c8 */
1938
1939
0
    tmp10 = z1 + z2;
1940
0
    tmp11 = z1 + z3;
1941
0
    tmp12 = z1 - z4;
1942
1943
0
    tmp23 = RIGHT_SHIFT(z1 - LEFT_SHIFT(z2 + z3 - z4, 1),
1944
0
                        CONST_BITS - PASS1_BITS); /* c0 = (c4+c12-c8)*2 */
1945
1946
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
1947
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
1948
1949
0
    z3 = MULTIPLY(z1 + z2, FIX(1.105676686));    /* c6 */
1950
1951
0
    tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
1952
0
    tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
1953
0
    tmp15 = MULTIPLY(z1, FIX(0.613604268)) -     /* c10 */
1954
0
            MULTIPLY(z2, FIX(1.378756276));      /* c2 */
1955
1956
0
    tmp20 = tmp10 + tmp13;
1957
0
    tmp26 = tmp10 - tmp13;
1958
0
    tmp21 = tmp11 + tmp14;
1959
0
    tmp25 = tmp11 - tmp14;
1960
0
    tmp22 = tmp12 + tmp15;
1961
0
    tmp24 = tmp12 - tmp15;
1962
1963
    /* Odd part */
1964
1965
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
1966
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
1967
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
1968
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
1969
0
    tmp13 = LEFT_SHIFT(z4, CONST_BITS);
1970
1971
0
    tmp14 = z1 + z3;
1972
0
    tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607));           /* c3 */
1973
0
    tmp12 = MULTIPLY(tmp14, FIX(1.197448846));             /* c5 */
1974
0
    tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
1975
0
    tmp14 = MULTIPLY(tmp14, FIX(0.752406978));             /* c9 */
1976
0
    tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426));        /* c9+c11-c13 */
1977
0
    z1    -= z2;
1978
0
    tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13;        /* c11 */
1979
0
    tmp16 += tmp15;
1980
0
    z1    += z4;
1981
0
    z4    = MULTIPLY(z2 + z3, -FIX(0.158341681)) - tmp13;  /* -c13 */
1982
0
    tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948));          /* c3-c9-c13 */
1983
0
    tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773));          /* c3+c5-c13 */
1984
0
    z4    = MULTIPLY(z3 - z2, FIX(1.405321284));           /* c1 */
1985
0
    tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
1986
0
    tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567));          /* c1+c11-c5 */
1987
1988
0
    tmp13 = LEFT_SHIFT(z1 - z3, PASS1_BITS);
1989
1990
    /* Final output stage */
1991
1992
0
    wsptr[8 * 0]  = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS);
1993
0
    wsptr[8 * 13] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS);
1994
0
    wsptr[8 * 1]  = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS);
1995
0
    wsptr[8 * 12] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS);
1996
0
    wsptr[8 * 2]  = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS);
1997
0
    wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS);
1998
0
    wsptr[8 * 3]  = (int)(tmp23 + tmp13);
1999
0
    wsptr[8 * 10] = (int)(tmp23 - tmp13);
2000
0
    wsptr[8 * 4]  = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS);
2001
0
    wsptr[8 * 9]  = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS);
2002
0
    wsptr[8 * 5]  = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS);
2003
0
    wsptr[8 * 8]  = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS);
2004
0
    wsptr[8 * 6]  = (int)RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS - PASS1_BITS);
2005
0
    wsptr[8 * 7]  = (int)RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS - PASS1_BITS);
2006
0
  }
2007
2008
  /* Pass 2: process 14 rows from work array, store into output array. */
2009
2010
0
  wsptr = workspace;
2011
0
  for (ctr = 0; ctr < 14; ctr++) {
2012
0
    outptr = output_buf[ctr] + output_col;
2013
2014
    /* Even part */
2015
2016
    /* Add fudge factor here for final descale. */
2017
0
    z1 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
2018
0
    z1 = LEFT_SHIFT(z1, CONST_BITS);
2019
0
    z4 = (JLONG)wsptr[4];
2020
0
    z2 = MULTIPLY(z4, FIX(1.274162392));         /* c4 */
2021
0
    z3 = MULTIPLY(z4, FIX(0.314692123));         /* c12 */
2022
0
    z4 = MULTIPLY(z4, FIX(0.881747734));         /* c8 */
2023
2024
0
    tmp10 = z1 + z2;
2025
0
    tmp11 = z1 + z3;
2026
0
    tmp12 = z1 - z4;
2027
2028
0
    tmp23 = z1 - LEFT_SHIFT(z2 + z3 - z4, 1);    /* c0 = (c4+c12-c8)*2 */
2029
2030
0
    z1 = (JLONG)wsptr[2];
2031
0
    z2 = (JLONG)wsptr[6];
2032
2033
0
    z3 = MULTIPLY(z1 + z2, FIX(1.105676686));    /* c6 */
2034
2035
0
    tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
2036
0
    tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
2037
0
    tmp15 = MULTIPLY(z1, FIX(0.613604268)) -     /* c10 */
2038
0
            MULTIPLY(z2, FIX(1.378756276));      /* c2 */
2039
2040
0
    tmp20 = tmp10 + tmp13;
2041
0
    tmp26 = tmp10 - tmp13;
2042
0
    tmp21 = tmp11 + tmp14;
2043
0
    tmp25 = tmp11 - tmp14;
2044
0
    tmp22 = tmp12 + tmp15;
2045
0
    tmp24 = tmp12 - tmp15;
2046
2047
    /* Odd part */
2048
2049
0
    z1 = (JLONG)wsptr[1];
2050
0
    z2 = (JLONG)wsptr[3];
2051
0
    z3 = (JLONG)wsptr[5];
2052
0
    z4 = (JLONG)wsptr[7];
2053
0
    z4 = LEFT_SHIFT(z4, CONST_BITS);
2054
2055
0
    tmp14 = z1 + z3;
2056
0
    tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607));           /* c3 */
2057
0
    tmp12 = MULTIPLY(tmp14, FIX(1.197448846));             /* c5 */
2058
0
    tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
2059
0
    tmp14 = MULTIPLY(tmp14, FIX(0.752406978));             /* c9 */
2060
0
    tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426));        /* c9+c11-c13 */
2061
0
    z1    -= z2;
2062
0
    tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4;           /* c11 */
2063
0
    tmp16 += tmp15;
2064
0
    tmp13 = MULTIPLY(z2 + z3, -FIX(0.158341681)) - z4;     /* -c13 */
2065
0
    tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948));       /* c3-c9-c13 */
2066
0
    tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773));       /* c3+c5-c13 */
2067
0
    tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284));           /* c1 */
2068
0
    tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
2069
0
    tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567));       /* c1+c11-c5 */
2070
2071
0
    tmp13 = LEFT_SHIFT(z1 - z3, CONST_BITS) + z4;
2072
2073
    /* Final output stage */
2074
2075
0
    outptr[0]  = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10,
2076
0
                                              CONST_BITS + PASS1_BITS + 3) &
2077
0
                             RANGE_MASK];
2078
0
    outptr[13] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10,
2079
0
                                              CONST_BITS + PASS1_BITS + 3) &
2080
0
                             RANGE_MASK];
2081
0
    outptr[1]  = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11,
2082
0
                                              CONST_BITS + PASS1_BITS + 3) &
2083
0
                             RANGE_MASK];
2084
0
    outptr[12] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11,
2085
0
                                              CONST_BITS + PASS1_BITS + 3) &
2086
0
                             RANGE_MASK];
2087
0
    outptr[2]  = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12,
2088
0
                                              CONST_BITS + PASS1_BITS + 3) &
2089
0
                             RANGE_MASK];
2090
0
    outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12,
2091
0
                                              CONST_BITS + PASS1_BITS + 3) &
2092
0
                             RANGE_MASK];
2093
0
    outptr[3]  = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13,
2094
0
                                              CONST_BITS + PASS1_BITS + 3) &
2095
0
                             RANGE_MASK];
2096
0
    outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13,
2097
0
                                              CONST_BITS + PASS1_BITS + 3) &
2098
0
                             RANGE_MASK];
2099
0
    outptr[4]  = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14,
2100
0
                                              CONST_BITS + PASS1_BITS + 3) &
2101
0
                             RANGE_MASK];
2102
0
    outptr[9]  = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14,
2103
0
                                              CONST_BITS + PASS1_BITS + 3) &
2104
0
                             RANGE_MASK];
2105
0
    outptr[5]  = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15,
2106
0
                                              CONST_BITS + PASS1_BITS + 3) &
2107
0
                             RANGE_MASK];
2108
0
    outptr[8]  = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15,
2109
0
                                              CONST_BITS + PASS1_BITS + 3) &
2110
0
                             RANGE_MASK];
2111
0
    outptr[6]  = range_limit[(int)RIGHT_SHIFT(tmp26 + tmp16,
2112
0
                                              CONST_BITS + PASS1_BITS + 3) &
2113
0
                             RANGE_MASK];
2114
0
    outptr[7]  = range_limit[(int)RIGHT_SHIFT(tmp26 - tmp16,
2115
0
                                              CONST_BITS + PASS1_BITS + 3) &
2116
0
                             RANGE_MASK];
2117
2118
0
    wsptr += 8;         /* advance pointer to next row */
2119
0
  }
2120
0
}
Unexecuted instantiation: jpeg12_idct_14x14
Unexecuted instantiation: jpeg_idct_14x14
2121
2122
2123
/*
2124
 * Perform dequantization and inverse DCT on one block of coefficients,
2125
 * producing a 15x15 output block.
2126
 *
2127
 * Optimized algorithm with 22 multiplications in the 1-D kernel.
2128
 * cK represents sqrt(2) * cos(K*pi/30).
2129
 */
2130
2131
GLOBAL(void)
2132
_jpeg_idct_15x15(j_decompress_ptr cinfo, jpeg_component_info *compptr,
2133
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
2134
                 JDIMENSION output_col)
2135
0
{
2136
0
  JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
2137
0
  JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
2138
0
  JLONG z1, z2, z3, z4;
2139
0
  JCOEFPTR inptr;
2140
0
  ISLOW_MULT_TYPE *quantptr;
2141
0
  int *wsptr;
2142
0
  _JSAMPROW outptr;
2143
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
2144
0
  int ctr;
2145
0
  int workspace[8 * 15];        /* buffers data between passes */
2146
  SHIFT_TEMPS
2147
2148
  /* Pass 1: process columns from input, store into work array. */
2149
2150
0
  inptr = coef_block;
2151
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
2152
0
  wsptr = workspace;
2153
0
  for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
2154
    /* Even part */
2155
2156
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
2157
0
    z1 = LEFT_SHIFT(z1, CONST_BITS);
2158
    /* Add fudge factor here for final descale. */
2159
0
    z1 += ONE << (CONST_BITS - PASS1_BITS - 1);
2160
2161
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
2162
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
2163
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
2164
2165
0
    tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
2166
0
    tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
2167
2168
0
    tmp12 = z1 - tmp10;
2169
0
    tmp13 = z1 + tmp11;
2170
0
    z1 -= LEFT_SHIFT(tmp11 - tmp10, 1);     /* c0 = (c6-c12)*2 */
2171
2172
0
    z4 = z2 - z3;
2173
0
    z3 += z2;
2174
0
    tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
2175
0
    tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
2176
0
    z2 = MULTIPLY(z2, FIX(1.439773946));    /* c4+c14 */
2177
2178
0
    tmp20 = tmp13 + tmp10 + tmp11;
2179
0
    tmp23 = tmp12 - tmp10 + tmp11 + z2;
2180
2181
0
    tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
2182
0
    tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
2183
2184
0
    tmp25 = tmp13 - tmp10 - tmp11;
2185
0
    tmp26 = tmp12 + tmp10 - tmp11 - z2;
2186
2187
0
    tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
2188
0
    tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
2189
2190
0
    tmp21 = tmp12 + tmp10 + tmp11;
2191
0
    tmp24 = tmp13 - tmp10 + tmp11;
2192
0
    tmp11 += tmp11;
2193
0
    tmp22 = z1 + tmp11;                     /* c10 = c6-c12 */
2194
0
    tmp27 = z1 - tmp11 - tmp11;             /* c0 = (c6-c12)*2 */
2195
2196
    /* Odd part */
2197
2198
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
2199
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
2200
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
2201
0
    z3 = MULTIPLY(z4, FIX(1.224744871));                    /* c5 */
2202
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
2203
2204
0
    tmp13 = z2 - z4;
2205
0
    tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876));         /* c9 */
2206
0
    tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148));         /* c3-c9 */
2207
0
    tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899));      /* c3+c9 */
2208
2209
0
    tmp13 = MULTIPLY(z2, -FIX(0.831253876));                /* -c9 */
2210
0
    tmp15 = MULTIPLY(z2, -FIX(1.344997024));                /* -c3 */
2211
0
    z2 = z1 - z4;
2212
0
    tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353));            /* c1 */
2213
2214
0
    tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
2215
0
    tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
2216
0
    tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3;            /* c5 */
2217
0
    z2 = MULTIPLY(z1 + z4, FIX(0.575212477));               /* c11 */
2218
0
    tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3;      /* c7-c11 */
2219
0
    tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3;      /* c11+c13 */
2220
2221
    /* Final output stage */
2222
2223
0
    wsptr[8 * 0]  = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS);
2224
0
    wsptr[8 * 14] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS);
2225
0
    wsptr[8 * 1]  = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS);
2226
0
    wsptr[8 * 13] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS);
2227
0
    wsptr[8 * 2]  = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS);
2228
0
    wsptr[8 * 12] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS);
2229
0
    wsptr[8 * 3]  = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS);
2230
0
    wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS);
2231
0
    wsptr[8 * 4]  = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS);
2232
0
    wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS);
2233
0
    wsptr[8 * 5]  = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS);
2234
0
    wsptr[8 * 9]  = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS);
2235
0
    wsptr[8 * 6]  = (int)RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS - PASS1_BITS);
2236
0
    wsptr[8 * 8]  = (int)RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS - PASS1_BITS);
2237
0
    wsptr[8 * 7]  = (int)RIGHT_SHIFT(tmp27, CONST_BITS - PASS1_BITS);
2238
0
  }
2239
2240
  /* Pass 2: process 15 rows from work array, store into output array. */
2241
2242
0
  wsptr = workspace;
2243
0
  for (ctr = 0; ctr < 15; ctr++) {
2244
0
    outptr = output_buf[ctr] + output_col;
2245
2246
    /* Even part */
2247
2248
    /* Add fudge factor here for final descale. */
2249
0
    z1 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
2250
0
    z1 = LEFT_SHIFT(z1, CONST_BITS);
2251
2252
0
    z2 = (JLONG)wsptr[2];
2253
0
    z3 = (JLONG)wsptr[4];
2254
0
    z4 = (JLONG)wsptr[6];
2255
2256
0
    tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
2257
0
    tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
2258
2259
0
    tmp12 = z1 - tmp10;
2260
0
    tmp13 = z1 + tmp11;
2261
0
    z1 -= LEFT_SHIFT(tmp11 - tmp10, 1);     /* c0 = (c6-c12)*2 */
2262
2263
0
    z4 = z2 - z3;
2264
0
    z3 += z2;
2265
0
    tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
2266
0
    tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
2267
0
    z2 = MULTIPLY(z2, FIX(1.439773946));    /* c4+c14 */
2268
2269
0
    tmp20 = tmp13 + tmp10 + tmp11;
2270
0
    tmp23 = tmp12 - tmp10 + tmp11 + z2;
2271
2272
0
    tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
2273
0
    tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
2274
2275
0
    tmp25 = tmp13 - tmp10 - tmp11;
2276
0
    tmp26 = tmp12 + tmp10 - tmp11 - z2;
2277
2278
0
    tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
2279
0
    tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
2280
2281
0
    tmp21 = tmp12 + tmp10 + tmp11;
2282
0
    tmp24 = tmp13 - tmp10 + tmp11;
2283
0
    tmp11 += tmp11;
2284
0
    tmp22 = z1 + tmp11;                     /* c10 = c6-c12 */
2285
0
    tmp27 = z1 - tmp11 - tmp11;             /* c0 = (c6-c12)*2 */
2286
2287
    /* Odd part */
2288
2289
0
    z1 = (JLONG)wsptr[1];
2290
0
    z2 = (JLONG)wsptr[3];
2291
0
    z4 = (JLONG)wsptr[5];
2292
0
    z3 = MULTIPLY(z4, FIX(1.224744871));                    /* c5 */
2293
0
    z4 = (JLONG)wsptr[7];
2294
2295
0
    tmp13 = z2 - z4;
2296
0
    tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876));         /* c9 */
2297
0
    tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148));         /* c3-c9 */
2298
0
    tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899));      /* c3+c9 */
2299
2300
0
    tmp13 = MULTIPLY(z2, -FIX(0.831253876));                /* -c9 */
2301
0
    tmp15 = MULTIPLY(z2, -FIX(1.344997024));                /* -c3 */
2302
0
    z2 = z1 - z4;
2303
0
    tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353));            /* c1 */
2304
2305
0
    tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
2306
0
    tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
2307
0
    tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3;            /* c5 */
2308
0
    z2 = MULTIPLY(z1 + z4, FIX(0.575212477));               /* c11 */
2309
0
    tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3;      /* c7-c11 */
2310
0
    tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3;      /* c11+c13 */
2311
2312
    /* Final output stage */
2313
2314
0
    outptr[0]  = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10,
2315
0
                                              CONST_BITS + PASS1_BITS + 3) &
2316
0
                             RANGE_MASK];
2317
0
    outptr[14] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10,
2318
0
                                              CONST_BITS + PASS1_BITS + 3) &
2319
0
                             RANGE_MASK];
2320
0
    outptr[1]  = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11,
2321
0
                                              CONST_BITS + PASS1_BITS + 3) &
2322
0
                             RANGE_MASK];
2323
0
    outptr[13] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11,
2324
0
                                              CONST_BITS + PASS1_BITS + 3) &
2325
0
                             RANGE_MASK];
2326
0
    outptr[2]  = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12,
2327
0
                                              CONST_BITS + PASS1_BITS + 3) &
2328
0
                             RANGE_MASK];
2329
0
    outptr[12] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12,
2330
0
                                              CONST_BITS + PASS1_BITS + 3) &
2331
0
                             RANGE_MASK];
2332
0
    outptr[3]  = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13,
2333
0
                                              CONST_BITS + PASS1_BITS + 3) &
2334
0
                             RANGE_MASK];
2335
0
    outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13,
2336
0
                                              CONST_BITS + PASS1_BITS + 3) &
2337
0
                             RANGE_MASK];
2338
0
    outptr[4]  = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14,
2339
0
                                              CONST_BITS + PASS1_BITS + 3) &
2340
0
                             RANGE_MASK];
2341
0
    outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14,
2342
0
                                              CONST_BITS + PASS1_BITS + 3) &
2343
0
                             RANGE_MASK];
2344
0
    outptr[5]  = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15,
2345
0
                                              CONST_BITS + PASS1_BITS + 3) &
2346
0
                             RANGE_MASK];
2347
0
    outptr[9]  = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15,
2348
0
                                              CONST_BITS + PASS1_BITS + 3) &
2349
0
                             RANGE_MASK];
2350
0
    outptr[6]  = range_limit[(int)RIGHT_SHIFT(tmp26 + tmp16,
2351
0
                                              CONST_BITS + PASS1_BITS + 3) &
2352
0
                             RANGE_MASK];
2353
0
    outptr[8]  = range_limit[(int)RIGHT_SHIFT(tmp26 - tmp16,
2354
0
                                              CONST_BITS + PASS1_BITS + 3) &
2355
0
                             RANGE_MASK];
2356
0
    outptr[7]  = range_limit[(int)RIGHT_SHIFT(tmp27,
2357
0
                                              CONST_BITS + PASS1_BITS + 3) &
2358
0
                             RANGE_MASK];
2359
2360
0
    wsptr += 8;         /* advance pointer to next row */
2361
0
  }
2362
0
}
Unexecuted instantiation: jpeg12_idct_15x15
Unexecuted instantiation: jpeg_idct_15x15
2363
2364
2365
/*
2366
 * Perform dequantization and inverse DCT on one block of coefficients,
2367
 * producing a 16x16 output block.
2368
 *
2369
 * Optimized algorithm with 28 multiplications in the 1-D kernel.
2370
 * cK represents sqrt(2) * cos(K*pi/32).
2371
 */
2372
2373
GLOBAL(void)
2374
_jpeg_idct_16x16(j_decompress_ptr cinfo, jpeg_component_info *compptr,
2375
                 JCOEFPTR coef_block, _JSAMPARRAY output_buf,
2376
                 JDIMENSION output_col)
2377
0
{
2378
0
  JLONG tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
2379
0
  JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
2380
0
  JLONG z1, z2, z3, z4;
2381
0
  JCOEFPTR inptr;
2382
0
  ISLOW_MULT_TYPE *quantptr;
2383
0
  int *wsptr;
2384
0
  _JSAMPROW outptr;
2385
0
  _JSAMPLE *range_limit = IDCT_range_limit(cinfo);
2386
0
  int ctr;
2387
0
  int workspace[8 * 16];        /* buffers data between passes */
2388
  SHIFT_TEMPS
2389
2390
  /* Pass 1: process columns from input, store into work array. */
2391
2392
0
  inptr = coef_block;
2393
0
  quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
2394
0
  wsptr = workspace;
2395
0
  for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
2396
    /* Even part */
2397
2398
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
2399
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS);
2400
    /* Add fudge factor here for final descale. */
2401
0
    tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1);
2402
2403
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
2404
0
    tmp1 = MULTIPLY(z1, FIX(1.306562965));      /* c4[16] = c2[8] */
2405
0
    tmp2 = MULTIPLY(z1, FIX_0_541196100);       /* c12[16] = c6[8] */
2406
2407
0
    tmp10 = tmp0 + tmp1;
2408
0
    tmp11 = tmp0 - tmp1;
2409
0
    tmp12 = tmp0 + tmp2;
2410
0
    tmp13 = tmp0 - tmp2;
2411
2412
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
2413
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
2414
0
    z3 = z1 - z2;
2415
0
    z4 = MULTIPLY(z3, FIX(0.275899379));        /* c14[16] = c7[8] */
2416
0
    z3 = MULTIPLY(z3, FIX(1.387039845));        /* c2[16] = c1[8] */
2417
2418
0
    tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447);  /* (c6+c2)[16] = (c3+c1)[8] */
2419
0
    tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223);  /* (c6-c14)[16] = (c3-c7)[8] */
2420
0
    tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
2421
0
    tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
2422
2423
0
    tmp20 = tmp10 + tmp0;
2424
0
    tmp27 = tmp10 - tmp0;
2425
0
    tmp21 = tmp12 + tmp1;
2426
0
    tmp26 = tmp12 - tmp1;
2427
0
    tmp22 = tmp13 + tmp2;
2428
0
    tmp25 = tmp13 - tmp2;
2429
0
    tmp23 = tmp11 + tmp3;
2430
0
    tmp24 = tmp11 - tmp3;
2431
2432
    /* Odd part */
2433
2434
0
    z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
2435
0
    z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
2436
0
    z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
2437
0
    z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
2438
2439
0
    tmp11 = z1 + z3;
2440
2441
0
    tmp1  = MULTIPLY(z1 + z2, FIX(1.353318001));   /* c3 */
2442
0
    tmp2  = MULTIPLY(tmp11,   FIX(1.247225013));   /* c5 */
2443
0
    tmp3  = MULTIPLY(z1 + z4, FIX(1.093201867));   /* c7 */
2444
0
    tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586));   /* c9 */
2445
0
    tmp11 = MULTIPLY(tmp11,   FIX(0.666655658));   /* c11 */
2446
0
    tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528));   /* c13 */
2447
0
    tmp0  = tmp1 + tmp2 + tmp3 -
2448
0
            MULTIPLY(z1, FIX(2.286341144));        /* c7+c5+c3-c1 */
2449
0
    tmp13 = tmp10 + tmp11 + tmp12 -
2450
0
            MULTIPLY(z1, FIX(1.835730603));        /* c9+c11+c13-c15 */
2451
0
    z1    = MULTIPLY(z2 + z3, FIX(0.138617169));   /* c15 */
2452
0
    tmp1  += z1 + MULTIPLY(z2, FIX(0.071888074));  /* c9+c11-c3-c15 */
2453
0
    tmp2  += z1 - MULTIPLY(z3, FIX(1.125726048));  /* c5+c7+c15-c3 */
2454
0
    z1    = MULTIPLY(z3 - z2, FIX(1.407403738));   /* c1 */
2455
0
    tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282));  /* c1+c11-c9-c13 */
2456
0
    tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411));  /* c1+c5+c13-c7 */
2457
0
    z2    += z4;
2458
0
    z1    = MULTIPLY(z2, -FIX(0.666655658));       /* -c11 */
2459
0
    tmp1  += z1;
2460
0
    tmp3  += z1 + MULTIPLY(z4, FIX(1.065388962));  /* c3+c11+c15-c7 */
2461
0
    z2    = MULTIPLY(z2, -FIX(1.247225013));       /* -c5 */
2462
0
    tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809));  /* c1+c5+c9-c13 */
2463
0
    tmp12 += z2;
2464
0
    z2    = MULTIPLY(z3 + z4, -FIX(1.353318001));  /* -c3 */
2465
0
    tmp2  += z2;
2466
0
    tmp3  += z2;
2467
0
    z2    = MULTIPLY(z4 - z3, FIX(0.410524528));   /* c13 */
2468
0
    tmp10 += z2;
2469
0
    tmp11 += z2;
2470
2471
    /* Final output stage */
2472
2473
0
    wsptr[8 * 0]  = (int)RIGHT_SHIFT(tmp20 + tmp0,  CONST_BITS - PASS1_BITS);
2474
0
    wsptr[8 * 15] = (int)RIGHT_SHIFT(tmp20 - tmp0,  CONST_BITS - PASS1_BITS);
2475
0
    wsptr[8 * 1]  = (int)RIGHT_SHIFT(tmp21 + tmp1,  CONST_BITS - PASS1_BITS);
2476
0
    wsptr[8 * 14] = (int)RIGHT_SHIFT(tmp21 - tmp1,  CONST_BITS - PASS1_BITS);
2477
0
    wsptr[8 * 2]  = (int)RIGHT_SHIFT(tmp22 + tmp2,  CONST_BITS - PASS1_BITS);
2478
0
    wsptr[8 * 13] = (int)RIGHT_SHIFT(tmp22 - tmp2,  CONST_BITS - PASS1_BITS);
2479
0
    wsptr[8 * 3]  = (int)RIGHT_SHIFT(tmp23 + tmp3,  CONST_BITS - PASS1_BITS);
2480
0
    wsptr[8 * 12] = (int)RIGHT_SHIFT(tmp23 - tmp3,  CONST_BITS - PASS1_BITS);
2481
0
    wsptr[8 * 4]  = (int)RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS - PASS1_BITS);
2482
0
    wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS - PASS1_BITS);
2483
0
    wsptr[8 * 5]  = (int)RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS - PASS1_BITS);
2484
0
    wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS - PASS1_BITS);
2485
0
    wsptr[8 * 6]  = (int)RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS - PASS1_BITS);
2486
0
    wsptr[8 * 9]  = (int)RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS - PASS1_BITS);
2487
0
    wsptr[8 * 7]  = (int)RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS - PASS1_BITS);
2488
0
    wsptr[8 * 8]  = (int)RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS - PASS1_BITS);
2489
0
  }
2490
2491
  /* Pass 2: process 16 rows from work array, store into output array. */
2492
2493
0
  wsptr = workspace;
2494
0
  for (ctr = 0; ctr < 16; ctr++) {
2495
0
    outptr = output_buf[ctr] + output_col;
2496
2497
    /* Even part */
2498
2499
    /* Add fudge factor here for final descale. */
2500
0
    tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2));
2501
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS);
2502
2503
0
    z1 = (JLONG)wsptr[4];
2504
0
    tmp1 = MULTIPLY(z1, FIX(1.306562965));      /* c4[16] = c2[8] */
2505
0
    tmp2 = MULTIPLY(z1, FIX_0_541196100);       /* c12[16] = c6[8] */
2506
2507
0
    tmp10 = tmp0 + tmp1;
2508
0
    tmp11 = tmp0 - tmp1;
2509
0
    tmp12 = tmp0 + tmp2;
2510
0
    tmp13 = tmp0 - tmp2;
2511
2512
0
    z1 = (JLONG)wsptr[2];
2513
0
    z2 = (JLONG)wsptr[6];
2514
0
    z3 = z1 - z2;
2515
0
    z4 = MULTIPLY(z3, FIX(0.275899379));        /* c14[16] = c7[8] */
2516
0
    z3 = MULTIPLY(z3, FIX(1.387039845));        /* c2[16] = c1[8] */
2517
2518
0
    tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447);  /* (c6+c2)[16] = (c3+c1)[8] */
2519
0
    tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223);  /* (c6-c14)[16] = (c3-c7)[8] */
2520
0
    tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
2521
0
    tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
2522
2523
0
    tmp20 = tmp10 + tmp0;
2524
0
    tmp27 = tmp10 - tmp0;
2525
0
    tmp21 = tmp12 + tmp1;
2526
0
    tmp26 = tmp12 - tmp1;
2527
0
    tmp22 = tmp13 + tmp2;
2528
0
    tmp25 = tmp13 - tmp2;
2529
0
    tmp23 = tmp11 + tmp3;
2530
0
    tmp24 = tmp11 - tmp3;
2531
2532
    /* Odd part */
2533
2534
0
    z1 = (JLONG)wsptr[1];
2535
0
    z2 = (JLONG)wsptr[3];
2536
0
    z3 = (JLONG)wsptr[5];
2537
0
    z4 = (JLONG)wsptr[7];
2538
2539
0
    tmp11 = z1 + z3;
2540
2541
0
    tmp1  = MULTIPLY(z1 + z2, FIX(1.353318001));   /* c3 */
2542
0
    tmp2  = MULTIPLY(tmp11,   FIX(1.247225013));   /* c5 */
2543
0
    tmp3  = MULTIPLY(z1 + z4, FIX(1.093201867));   /* c7 */
2544
0
    tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586));   /* c9 */
2545
0
    tmp11 = MULTIPLY(tmp11,   FIX(0.666655658));   /* c11 */
2546
0
    tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528));   /* c13 */
2547
0
    tmp0  = tmp1 + tmp2 + tmp3 -
2548
0
            MULTIPLY(z1, FIX(2.286341144));        /* c7+c5+c3-c1 */
2549
0
    tmp13 = tmp10 + tmp11 + tmp12 -
2550
0
            MULTIPLY(z1, FIX(1.835730603));        /* c9+c11+c13-c15 */
2551
0
    z1    = MULTIPLY(z2 + z3, FIX(0.138617169));   /* c15 */
2552
0
    tmp1  += z1 + MULTIPLY(z2, FIX(0.071888074));  /* c9+c11-c3-c15 */
2553
0
    tmp2  += z1 - MULTIPLY(z3, FIX(1.125726048));  /* c5+c7+c15-c3 */
2554
0
    z1    = MULTIPLY(z3 - z2, FIX(1.407403738));   /* c1 */
2555
0
    tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282));  /* c1+c11-c9-c13 */
2556
0
    tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411));  /* c1+c5+c13-c7 */
2557
0
    z2    += z4;
2558
0
    z1    = MULTIPLY(z2, -FIX(0.666655658));       /* -c11 */
2559
0
    tmp1  += z1;
2560
0
    tmp3  += z1 + MULTIPLY(z4, FIX(1.065388962));  /* c3+c11+c15-c7 */
2561
0
    z2    = MULTIPLY(z2, -FIX(1.247225013));       /* -c5 */
2562
0
    tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809));  /* c1+c5+c9-c13 */
2563
0
    tmp12 += z2;
2564
0
    z2    = MULTIPLY(z3 + z4, -FIX(1.353318001));  /* -c3 */
2565
0
    tmp2  += z2;
2566
0
    tmp3  += z2;
2567
0
    z2    = MULTIPLY(z4 - z3, FIX(0.410524528));   /* c13 */
2568
0
    tmp10 += z2;
2569
0
    tmp11 += z2;
2570
2571
    /* Final output stage */
2572
2573
0
    outptr[0]  = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp0,
2574
0
                                              CONST_BITS + PASS1_BITS + 3) &
2575
0
                             RANGE_MASK];
2576
0
    outptr[15] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp0,
2577
0
                                              CONST_BITS + PASS1_BITS + 3) &
2578
0
                             RANGE_MASK];
2579
0
    outptr[1]  = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp1,
2580
0
                                              CONST_BITS + PASS1_BITS + 3) &
2581
0
                             RANGE_MASK];
2582
0
    outptr[14] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp1,
2583
0
                                              CONST_BITS + PASS1_BITS + 3) &
2584
0
                             RANGE_MASK];
2585
0
    outptr[2]  = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp2,
2586
0
                                              CONST_BITS + PASS1_BITS + 3) &
2587
0
                             RANGE_MASK];
2588
0
    outptr[13] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp2,
2589
0
                                              CONST_BITS + PASS1_BITS + 3) &
2590
0
                             RANGE_MASK];
2591
0
    outptr[3]  = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp3,
2592
0
                                              CONST_BITS + PASS1_BITS + 3) &
2593
0
                             RANGE_MASK];
2594
0
    outptr[12] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp3,
2595
0
                                              CONST_BITS + PASS1_BITS + 3) &
2596
0
                             RANGE_MASK];
2597
0
    outptr[4]  = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp10,
2598
0
                                              CONST_BITS + PASS1_BITS + 3) &
2599
0
                             RANGE_MASK];
2600
0
    outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp10,
2601
0
                                              CONST_BITS + PASS1_BITS + 3) &
2602
0
                             RANGE_MASK];
2603
0
    outptr[5]  = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp11,
2604
0
                                              CONST_BITS + PASS1_BITS + 3) &
2605
0
                             RANGE_MASK];
2606
0
    outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp11,
2607
0
                                              CONST_BITS + PASS1_BITS + 3) &
2608
0
                             RANGE_MASK];
2609
0
    outptr[6]  = range_limit[(int)RIGHT_SHIFT(tmp26 + tmp12,
2610
0
                                              CONST_BITS + PASS1_BITS + 3) &
2611
0
                             RANGE_MASK];
2612
0
    outptr[9]  = range_limit[(int)RIGHT_SHIFT(tmp26 - tmp12,
2613
0
                                              CONST_BITS + PASS1_BITS + 3) &
2614
0
                             RANGE_MASK];
2615
0
    outptr[7]  = range_limit[(int)RIGHT_SHIFT(tmp27 + tmp13,
2616
0
                                              CONST_BITS + PASS1_BITS + 3) &
2617
0
                             RANGE_MASK];
2618
0
    outptr[8]  = range_limit[(int)RIGHT_SHIFT(tmp27 - tmp13,
2619
0
                                              CONST_BITS + PASS1_BITS + 3) &
2620
0
                             RANGE_MASK];
2621
2622
0
    wsptr += 8;         /* advance pointer to next row */
2623
0
  }
2624
0
}
Unexecuted instantiation: jpeg12_idct_16x16
Unexecuted instantiation: jpeg_idct_16x16
2625
2626
#endif /* IDCT_SCALING_SUPPORTED */
2627
#endif /* DCT_ISLOW_SUPPORTED */