Coverage Report

Created: 2024-08-27 12:18

/src/libjpeg-turbo.main/jmemmgr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jmemmgr.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2016, 2021-2022, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains the JPEG system-independent memory management
12
 * routines.  This code is usable across a wide variety of machines; most
13
 * of the system dependencies have been isolated in a separate file.
14
 * The major functions provided here are:
15
 *   * pool-based allocation and freeing of memory;
16
 *   * policy decisions about how to divide available memory among the
17
 *     virtual arrays;
18
 *   * control logic for swapping virtual arrays between main memory and
19
 *     backing storage.
20
 * The separate system-dependent file provides the actual backing-storage
21
 * access code, and it contains the policy decision about how much total
22
 * main memory to use.
23
 * This file is system-dependent in the sense that some of its functions
24
 * are unnecessary in some systems.  For example, if there is enough virtual
25
 * memory so that backing storage will never be used, much of the virtual
26
 * array control logic could be removed.  (Of course, if you have that much
27
 * memory then you shouldn't care about a little bit of unused code...)
28
 */
29
30
#define JPEG_INTERNALS
31
#define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
32
#include "jinclude.h"
33
#include "jpeglib.h"
34
#include "jmemsys.h"            /* import the system-dependent declarations */
35
#if !defined(_MSC_VER) || _MSC_VER > 1600
36
#include <stdint.h>
37
#endif
38
#include <limits.h>
39
40
41
LOCAL(size_t)
42
round_up_pow2(size_t a, size_t b)
43
/* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
44
/* Assumes a >= 0, b > 0, and b is a power of 2 */
45
5.24M
{
46
5.24M
  return ((a + b - 1) & (~(b - 1)));
47
5.24M
}
48
49
50
/*
51
 * Some important notes:
52
 *   The allocation routines provided here must never return NULL.
53
 *   They should exit to error_exit if unsuccessful.
54
 *
55
 *   It's not a good idea to try to merge the sarray and barray routines,
56
 *   even though they are textually almost the same, because samples are
57
 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
58
 *   in machines where byte pointers have a different representation from
59
 *   word pointers, the resulting machine code could not be the same.
60
 */
61
62
63
/*
64
 * Many machines require storage alignment: longs must start on 4-byte
65
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
66
 * always returns pointers that are multiples of the worst-case alignment
67
 * requirement, and we had better do so too.
68
 * There isn't any really portable way to determine the worst-case alignment
69
 * requirement.  This module assumes that the alignment requirement is
70
 * multiples of ALIGN_SIZE.
71
 * By default, we define ALIGN_SIZE as the maximum of sizeof(double) and
72
 * sizeof(void *).  This is necessary on some workstations (where doubles
73
 * really do need 8-byte alignment) and will work fine on nearly everything.
74
 * We use the maximum of sizeof(double) and sizeof(void *) since sizeof(double)
75
 * may be insufficient, for example, on CHERI-enabled platforms with 16-byte
76
 * pointers and a 16-byte alignment requirement.  If your machine has lesser
77
 * alignment needs, you can save a few bytes by making ALIGN_SIZE smaller.
78
 * The only place I know of where this will NOT work is certain Macintosh
79
 * 680x0 compilers that define double as a 10-byte IEEE extended float.
80
 * Doing 10-byte alignment is counterproductive because longwords won't be
81
 * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
82
 * such a compiler.
83
 */
84
85
#ifndef ALIGN_SIZE              /* so can override from jconfig.h */
86
#ifndef WITH_SIMD
87
#define ALIGN_SIZE  MAX(sizeof(void *), sizeof(double))
88
#else
89
28.7M
#define ALIGN_SIZE  32 /* Most of the SIMD instructions we support require
90
                          16-byte (128-bit) alignment, but AVX2 requires
91
                          32-byte alignment. */
92
#endif
93
#endif
94
95
/*
96
 * We allocate objects from "pools", where each pool is gotten with a single
97
 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
98
 * overhead within a pool, except for alignment padding.  Each pool has a
99
 * header with a link to the next pool of the same class.
100
 * Small and large pool headers are identical.
101
 */
102
103
typedef struct small_pool_struct *small_pool_ptr;
104
105
typedef struct small_pool_struct {
106
  small_pool_ptr next;          /* next in list of pools */
107
  size_t bytes_used;            /* how many bytes already used within pool */
108
  size_t bytes_left;            /* bytes still available in this pool */
109
} small_pool_hdr;
110
111
typedef struct large_pool_struct *large_pool_ptr;
112
113
typedef struct large_pool_struct {
114
  large_pool_ptr next;          /* next in list of pools */
115
  size_t bytes_used;            /* how many bytes already used within pool */
116
  size_t bytes_left;            /* bytes still available in this pool */
117
} large_pool_hdr;
118
119
/*
120
 * Here is the full definition of a memory manager object.
121
 */
122
123
typedef struct {
124
  struct jpeg_memory_mgr pub;   /* public fields */
125
126
  /* Each pool identifier (lifetime class) names a linked list of pools. */
127
  small_pool_ptr small_list[JPOOL_NUMPOOLS];
128
  large_pool_ptr large_list[JPOOL_NUMPOOLS];
129
130
  /* Since we only have one lifetime class of virtual arrays, only one
131
   * linked list is necessary (for each datatype).  Note that the virtual
132
   * array control blocks being linked together are actually stored somewhere
133
   * in the small-pool list.
134
   */
135
  jvirt_sarray_ptr virt_sarray_list;
136
  jvirt_barray_ptr virt_barray_list;
137
138
  /* This counts total space obtained from jpeg_get_small/large */
139
  size_t total_space_allocated;
140
141
  /* alloc_sarray and alloc_barray set this value for use by virtual
142
   * array routines.
143
   */
144
  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
145
} my_memory_mgr;
146
147
typedef my_memory_mgr *my_mem_ptr;
148
149
150
/*
151
 * The control blocks for virtual arrays.
152
 * Note that these blocks are allocated in the "small" pool area.
153
 * System-dependent info for the associated backing store (if any) is hidden
154
 * inside the backing_store_info struct.
155
 */
156
157
struct jvirt_sarray_control {
158
  JSAMPARRAY mem_buffer;        /* => the in-memory buffer (if
159
                                   cinfo->data_precision is 12, then this is
160
                                   actually a J12SAMPARRAY) */
161
  JDIMENSION rows_in_array;     /* total virtual array height */
162
  JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
163
  JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
164
  JDIMENSION rows_in_mem;       /* height of memory buffer */
165
  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
166
  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
167
  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
168
  boolean pre_zero;             /* pre-zero mode requested? */
169
  boolean dirty;                /* do current buffer contents need written? */
170
  boolean b_s_open;             /* is backing-store data valid? */
171
  jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
172
  backing_store_info b_s_info;  /* System-dependent control info */
173
};
174
175
struct jvirt_barray_control {
176
  JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
177
  JDIMENSION rows_in_array;     /* total virtual array height */
178
  JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
179
  JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
180
  JDIMENSION rows_in_mem;       /* height of memory buffer */
181
  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
182
  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
183
  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
184
  boolean pre_zero;             /* pre-zero mode requested? */
185
  boolean dirty;                /* do current buffer contents need written? */
186
  boolean b_s_open;             /* is backing-store data valid? */
187
  jvirt_barray_ptr next;        /* link to next virtual barray control block */
188
  backing_store_info b_s_info;  /* System-dependent control info */
189
};
190
191
192
#ifdef MEM_STATS                /* optional extra stuff for statistics */
193
194
LOCAL(void)
195
print_mem_stats(j_common_ptr cinfo, int pool_id)
196
{
197
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
198
  small_pool_ptr shdr_ptr;
199
  large_pool_ptr lhdr_ptr;
200
201
  /* Since this is only a debugging stub, we can cheat a little by using
202
   * fprintf directly rather than going through the trace message code.
203
   * This is helpful because message parm array can't handle longs.
204
   */
205
  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
206
          pool_id, mem->total_space_allocated);
207
208
  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
209
       lhdr_ptr = lhdr_ptr->next) {
210
    fprintf(stderr, "  Large chunk used %ld\n", (long)lhdr_ptr->bytes_used);
211
  }
212
213
  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
214
       shdr_ptr = shdr_ptr->next) {
215
    fprintf(stderr, "  Small chunk used %ld free %ld\n",
216
            (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left);
217
  }
218
}
219
220
#endif /* MEM_STATS */
221
222
223
LOCAL(void)
224
out_of_memory(j_common_ptr cinfo, int which)
225
/* Report an out-of-memory error and stop execution */
226
/* If we compiled MEM_STATS support, report alloc requests before dying */
227
0
{
228
#ifdef MEM_STATS
229
  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
230
#endif
231
0
  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
232
0
}
233
234
235
/*
236
 * Allocation of "small" objects.
237
 *
238
 * For these, we use pooled storage.  When a new pool must be created,
239
 * we try to get enough space for the current request plus a "slop" factor,
240
 * where the slop will be the amount of leftover space in the new pool.
241
 * The speed vs. space tradeoff is largely determined by the slop values.
242
 * A different slop value is provided for each pool class (lifetime),
243
 * and we also distinguish the first pool of a class from later ones.
244
 * NOTE: the values given work fairly well on both 16- and 32-bit-int
245
 * machines, but may be too small if longs are 64 bits or more.
246
 *
247
 * Since we do not know what alignment malloc() gives us, we have to
248
 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
249
 * adjustment.
250
 */
251
252
static const size_t first_pool_slop[JPOOL_NUMPOOLS] = {
253
  1600,                         /* first PERMANENT pool */
254
  16000                         /* first IMAGE pool */
255
};
256
257
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = {
258
  0,                            /* additional PERMANENT pools */
259
  5000                          /* additional IMAGE pools */
260
};
261
262
0
#define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
263
264
265
METHODDEF(void *)
266
alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
267
/* Allocate a "small" object */
268
3.92M
{
269
3.92M
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
270
3.92M
  small_pool_ptr hdr_ptr, prev_hdr_ptr;
271
3.92M
  char *data_ptr;
272
3.92M
  size_t min_request, slop;
273
274
  /*
275
   * Round up the requested size to a multiple of ALIGN_SIZE in order
276
   * to assure alignment for the next object allocated in the same pool
277
   * and so that algorithms can straddle outside the proper area up
278
   * to the next alignment.
279
   */
280
3.92M
  if (sizeofobject > MAX_ALLOC_CHUNK) {
281
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
282
       is close to SIZE_MAX. */
283
0
    out_of_memory(cinfo, 7);
284
0
  }
285
3.92M
  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
286
287
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
288
3.92M
  if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
289
3.92M
      MAX_ALLOC_CHUNK)
290
0
    out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
291
292
  /* See if space is available in any existing pool */
293
3.92M
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
294
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
295
3.92M
  prev_hdr_ptr = NULL;
296
3.92M
  hdr_ptr = mem->small_list[pool_id];
297
4.22M
  while (hdr_ptr != NULL) {
298
3.59M
    if (hdr_ptr->bytes_left >= sizeofobject)
299
3.29M
      break;                    /* found pool with enough space */
300
300k
    prev_hdr_ptr = hdr_ptr;
301
300k
    hdr_ptr = hdr_ptr->next;
302
300k
  }
303
304
  /* Time to make a new pool? */
305
3.92M
  if (hdr_ptr == NULL) {
306
    /* min_request is what we need now, slop is what will be leftover */
307
628k
    min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
308
628k
    if (prev_hdr_ptr == NULL)   /* first pool in class? */
309
488k
      slop = first_pool_slop[pool_id];
310
139k
    else
311
139k
      slop = extra_pool_slop[pool_id];
312
    /* Don't ask for more than MAX_ALLOC_CHUNK */
313
628k
    if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request))
314
0
      slop = (size_t)(MAX_ALLOC_CHUNK - min_request);
315
    /* Try to get space, if fail reduce slop and try again */
316
628k
    for (;;) {
317
628k
      hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop);
318
628k
      if (hdr_ptr != NULL)
319
628k
        break;
320
0
      slop /= 2;
321
0
      if (slop < MIN_SLOP)      /* give up when it gets real small */
322
0
        out_of_memory(cinfo, 2); /* jpeg_get_small failed */
323
0
    }
324
628k
    mem->total_space_allocated += min_request + slop;
325
    /* Success, initialize the new pool header and add to end of list */
326
628k
    hdr_ptr->next = NULL;
327
628k
    hdr_ptr->bytes_used = 0;
328
628k
    hdr_ptr->bytes_left = sizeofobject + slop;
329
628k
    if (prev_hdr_ptr == NULL)   /* first pool in class? */
330
488k
      mem->small_list[pool_id] = hdr_ptr;
331
139k
    else
332
139k
      prev_hdr_ptr->next = hdr_ptr;
333
628k
  }
334
335
  /* OK, allocate the object from the current pool */
336
3.92M
  data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
337
3.92M
  data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
338
3.92M
  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
339
3.92M
    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
340
3.92M
  data_ptr += hdr_ptr->bytes_used; /* point to place for object */
341
3.92M
  hdr_ptr->bytes_used += sizeofobject;
342
3.92M
  hdr_ptr->bytes_left -= sizeofobject;
343
344
3.92M
  return (void *)data_ptr;
345
3.92M
}
346
347
348
/*
349
 * Allocation of "large" objects.
350
 *
351
 * The external semantics of these are the same as "small" objects.  However,
352
 * the pool management heuristics are quite different.  We assume that each
353
 * request is large enough that it may as well be passed directly to
354
 * jpeg_get_large; the pool management just links everything together
355
 * so that we can free it all on demand.
356
 * Note: the major use of "large" objects is in
357
 * JSAMPARRAY/J12SAMPARRAY/J16SAMPARRAY and JBLOCKARRAY structures.  The
358
 * routines that create these structures (see below) deliberately bunch rows
359
 * together to ensure a large request size.
360
 */
361
362
METHODDEF(void *)
363
alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
364
/* Allocate a "large" object */
365
732k
{
366
732k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
367
732k
  large_pool_ptr hdr_ptr;
368
732k
  char *data_ptr;
369
370
  /*
371
   * Round up the requested size to a multiple of ALIGN_SIZE so that
372
   * algorithms can straddle outside the proper area up to the next
373
   * alignment.
374
   */
375
732k
  if (sizeofobject > MAX_ALLOC_CHUNK) {
376
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
377
       is close to SIZE_MAX. */
378
0
    out_of_memory(cinfo, 8);
379
0
  }
380
732k
  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
381
382
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
383
732k
  if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
384
732k
      MAX_ALLOC_CHUNK)
385
0
    out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
386
387
  /* Always make a new pool */
388
732k
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
389
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
390
391
732k
  hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject +
392
732k
                                           sizeof(large_pool_hdr) +
393
732k
                                           ALIGN_SIZE - 1);
394
732k
  if (hdr_ptr == NULL)
395
0
    out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
396
732k
  mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
397
732k
                                ALIGN_SIZE - 1;
398
399
  /* Success, initialize the new pool header and add to list */
400
732k
  hdr_ptr->next = mem->large_list[pool_id];
401
  /* We maintain space counts in each pool header for statistical purposes,
402
   * even though they are not needed for allocation.
403
   */
404
732k
  hdr_ptr->bytes_used = sizeofobject;
405
732k
  hdr_ptr->bytes_left = 0;
406
732k
  mem->large_list[pool_id] = hdr_ptr;
407
408
732k
  data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
409
732k
  data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
410
732k
  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
411
732k
    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
412
413
732k
  return (void *)data_ptr;
414
732k
}
415
416
417
/*
418
 * Creation of 2-D sample arrays.
419
 *
420
 * To minimize allocation overhead and to allow I/O of large contiguous
421
 * blocks, we allocate the sample rows in groups of as many rows as possible
422
 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
423
 * NB: the virtual array control routines, later in this file, know about
424
 * this chunking of rows.  The rowsperchunk value is left in the mem manager
425
 * object so that it can be saved away if this sarray is the workspace for
426
 * a virtual array.
427
 *
428
 * Since we are often upsampling with a factor 2, we align the size (not
429
 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
430
 * to be as careful about size.
431
 */
432
433
METHODDEF(JSAMPARRAY)
434
alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow,
435
             JDIMENSION numrows)
436
/* Allocate a 2-D sample array */
437
586k
{
438
586k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
439
586k
  JSAMPARRAY result;
440
586k
  JSAMPROW workspace;
441
586k
  JDIMENSION rowsperchunk, currow, i;
442
586k
  long ltemp;
443
586k
  J12SAMPARRAY result12;
444
586k
  J12SAMPROW workspace12;
445
586k
#if defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED)
446
586k
  J16SAMPARRAY result16;
447
586k
  J16SAMPROW workspace16;
448
586k
#endif
449
586k
  int data_precision = cinfo->is_decompressor ?
450
586k
                        ((j_decompress_ptr)cinfo)->data_precision :
451
586k
                        ((j_compress_ptr)cinfo)->data_precision;
452
586k
  size_t sample_size = data_precision == 16 ?
453
468k
                       sizeof(J16SAMPLE) : (data_precision == 12 ?
454
214k
                                            sizeof(J12SAMPLE) :
455
468k
                                            sizeof(JSAMPLE));
456
457
  /* Make sure each row is properly aligned */
458
586k
  if ((ALIGN_SIZE % sample_size) != 0)
459
0
    out_of_memory(cinfo, 5);    /* safety check */
460
461
586k
  if (samplesperrow > MAX_ALLOC_CHUNK) {
462
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
463
       is close to SIZE_MAX. */
464
0
    out_of_memory(cinfo, 9);
465
0
  }
466
586k
  samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
467
586k
                                                           sample_size);
468
469
  /* Calculate max # of rows allowed in one allocation chunk */
470
586k
  ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
471
586k
          ((long)samplesperrow * (long)sample_size);
472
586k
  if (ltemp <= 0)
473
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
474
586k
  if (ltemp < (long)numrows)
475
0
    rowsperchunk = (JDIMENSION)ltemp;
476
586k
  else
477
586k
    rowsperchunk = numrows;
478
586k
  mem->last_rowsperchunk = rowsperchunk;
479
480
586k
  if (data_precision == 16) {
481
118k
#if defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED)
482
    /* Get space for row pointers (small object) */
483
118k
    result16 = (J16SAMPARRAY)alloc_small(cinfo, pool_id,
484
118k
                                         (size_t)(numrows *
485
118k
                                                  sizeof(J16SAMPROW)));
486
487
    /* Get the rows themselves (large objects) */
488
118k
    currow = 0;
489
236k
    while (currow < numrows) {
490
118k
      rowsperchunk = MIN(rowsperchunk, numrows - currow);
491
118k
      workspace16 = (J16SAMPROW)alloc_large(cinfo, pool_id,
492
118k
        (size_t)((size_t)rowsperchunk * (size_t)samplesperrow * sample_size));
493
7.27M
      for (i = rowsperchunk; i > 0; i--) {
494
7.15M
        result16[currow++] = workspace16;
495
7.15M
        workspace16 += samplesperrow;
496
7.15M
      }
497
118k
    }
498
499
118k
    return (JSAMPARRAY)result16;
500
#else
501
    ERREXIT1(cinfo, JERR_BAD_PRECISION, data_precision);
502
    return NULL;
503
#endif
504
468k
  } else if (data_precision == 12) {
505
    /* Get space for row pointers (small object) */
506
214k
    result12 = (J12SAMPARRAY)alloc_small(cinfo, pool_id,
507
214k
                                         (size_t)(numrows *
508
214k
                                                  sizeof(J12SAMPROW)));
509
510
    /* Get the rows themselves (large objects) */
511
214k
    currow = 0;
512
429k
    while (currow < numrows) {
513
214k
      rowsperchunk = MIN(rowsperchunk, numrows - currow);
514
214k
      workspace12 = (J12SAMPROW)alloc_large(cinfo, pool_id,
515
214k
        (size_t)((size_t)rowsperchunk * (size_t)samplesperrow * sample_size));
516
7.47M
      for (i = rowsperchunk; i > 0; i--) {
517
7.26M
        result12[currow++] = workspace12;
518
7.26M
        workspace12 += samplesperrow;
519
7.26M
      }
520
214k
    }
521
522
214k
    return (JSAMPARRAY)result12;
523
253k
  } else {
524
    /* Get space for row pointers (small object) */
525
253k
    result = (JSAMPARRAY)alloc_small(cinfo, pool_id,
526
253k
                                     (size_t)(numrows * sizeof(JSAMPROW)));
527
528
    /* Get the rows themselves (large objects) */
529
253k
    currow = 0;
530
507k
    while (currow < numrows) {
531
253k
      rowsperchunk = MIN(rowsperchunk, numrows - currow);
532
253k
      workspace = (JSAMPROW)alloc_large(cinfo, pool_id,
533
253k
        (size_t)((size_t)rowsperchunk * (size_t)samplesperrow * sample_size));
534
7.14M
      for (i = rowsperchunk; i > 0; i--) {
535
6.89M
        result[currow++] = workspace;
536
6.89M
        workspace += samplesperrow;
537
6.89M
      }
538
253k
    }
539
540
253k
    return result;
541
253k
  }
542
586k
}
543
544
545
/*
546
 * Creation of 2-D coefficient-block arrays.
547
 * This is essentially the same as the code for sample arrays, above.
548
 */
549
550
METHODDEF(JBLOCKARRAY)
551
alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow,
552
             JDIMENSION numrows)
553
/* Allocate a 2-D coefficient-block array */
554
112k
{
555
112k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
556
112k
  JBLOCKARRAY result;
557
112k
  JBLOCKROW workspace;
558
112k
  JDIMENSION rowsperchunk, currow, i;
559
112k
  long ltemp;
560
561
  /* Make sure each row is properly aligned */
562
112k
  if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
563
0
    out_of_memory(cinfo, 6);    /* safety check */
564
565
  /* Calculate max # of rows allowed in one allocation chunk */
566
112k
  ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
567
112k
          ((long)blocksperrow * sizeof(JBLOCK));
568
112k
  if (ltemp <= 0)
569
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
570
112k
  if (ltemp < (long)numrows)
571
0
    rowsperchunk = (JDIMENSION)ltemp;
572
112k
  else
573
112k
    rowsperchunk = numrows;
574
112k
  mem->last_rowsperchunk = rowsperchunk;
575
576
  /* Get space for row pointers (small object) */
577
112k
  result = (JBLOCKARRAY)alloc_small(cinfo, pool_id,
578
112k
                                    (size_t)(numrows * sizeof(JBLOCKROW)));
579
580
  /* Get the rows themselves (large objects) */
581
112k
  currow = 0;
582
225k
  while (currow < numrows) {
583
112k
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
584
112k
    workspace = (JBLOCKROW)alloc_large(cinfo, pool_id,
585
112k
        (size_t)((size_t)rowsperchunk * (size_t)blocksperrow *
586
112k
                  sizeof(JBLOCK)));
587
10.2M
    for (i = rowsperchunk; i > 0; i--) {
588
10.0M
      result[currow++] = workspace;
589
10.0M
      workspace += blocksperrow;
590
10.0M
    }
591
112k
  }
592
593
112k
  return result;
594
112k
}
595
596
597
/*
598
 * About virtual array management:
599
 *
600
 * The above "normal" array routines are only used to allocate strip buffers
601
 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
602
 * are handled as "virtual" arrays.  The array is still accessed a strip at a
603
 * time, but the memory manager must save the whole array for repeated
604
 * accesses.  The intended implementation is that there is a strip buffer in
605
 * memory (as high as is possible given the desired memory limit), plus a
606
 * backing file that holds the rest of the array.
607
 *
608
 * The request_virt_array routines are told the total size of the image and
609
 * the maximum number of rows that will be accessed at once.  The in-memory
610
 * buffer must be at least as large as the maxaccess value.
611
 *
612
 * The request routines create control blocks but not the in-memory buffers.
613
 * That is postponed until realize_virt_arrays is called.  At that time the
614
 * total amount of space needed is known (approximately, anyway), so free
615
 * memory can be divided up fairly.
616
 *
617
 * The access_virt_array routines are responsible for making a specific strip
618
 * area accessible (after reading or writing the backing file, if necessary).
619
 * Note that the access routines are told whether the caller intends to modify
620
 * the accessed strip; during a read-only pass this saves having to rewrite
621
 * data to disk.  The access routines are also responsible for pre-zeroing
622
 * any newly accessed rows, if pre-zeroing was requested.
623
 *
624
 * In current usage, the access requests are usually for nonoverlapping
625
 * strips; that is, successive access start_row numbers differ by exactly
626
 * num_rows = maxaccess.  This means we can get good performance with simple
627
 * buffer dump/reload logic, by making the in-memory buffer be a multiple
628
 * of the access height; then there will never be accesses across bufferload
629
 * boundaries.  The code will still work with overlapping access requests,
630
 * but it doesn't handle bufferload overlaps very efficiently.
631
 */
632
633
634
METHODDEF(jvirt_sarray_ptr)
635
request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
636
                    JDIMENSION samplesperrow, JDIMENSION numrows,
637
                    JDIMENSION maxaccess)
638
/* Request a virtual 2-D sample array */
639
12.1k
{
640
12.1k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
641
12.1k
  jvirt_sarray_ptr result;
642
643
  /* Only IMAGE-lifetime virtual arrays are currently supported */
644
12.1k
  if (pool_id != JPOOL_IMAGE)
645
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
646
647
  /* get control block */
648
12.1k
  result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id,
649
12.1k
                                         sizeof(struct jvirt_sarray_control));
650
651
12.1k
  result->mem_buffer = NULL;    /* marks array not yet realized */
652
12.1k
  result->rows_in_array = numrows;
653
12.1k
  result->samplesperrow = samplesperrow;
654
12.1k
  result->maxaccess = maxaccess;
655
12.1k
  result->pre_zero = pre_zero;
656
12.1k
  result->b_s_open = FALSE;     /* no associated backing-store object */
657
12.1k
  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
658
12.1k
  mem->virt_sarray_list = result;
659
660
12.1k
  return result;
661
12.1k
}
662
663
664
METHODDEF(jvirt_barray_ptr)
665
request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
666
                    JDIMENSION blocksperrow, JDIMENSION numrows,
667
                    JDIMENSION maxaccess)
668
/* Request a virtual 2-D coefficient-block array */
669
112k
{
670
112k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
671
112k
  jvirt_barray_ptr result;
672
673
  /* Only IMAGE-lifetime virtual arrays are currently supported */
674
112k
  if (pool_id != JPOOL_IMAGE)
675
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
676
677
  /* get control block */
678
112k
  result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id,
679
112k
                                         sizeof(struct jvirt_barray_control));
680
681
112k
  result->mem_buffer = NULL;    /* marks array not yet realized */
682
112k
  result->rows_in_array = numrows;
683
112k
  result->blocksperrow = blocksperrow;
684
112k
  result->maxaccess = maxaccess;
685
112k
  result->pre_zero = pre_zero;
686
112k
  result->b_s_open = FALSE;     /* no associated backing-store object */
687
112k
  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
688
112k
  mem->virt_barray_list = result;
689
690
112k
  return result;
691
112k
}
692
693
694
METHODDEF(void)
695
realize_virt_arrays(j_common_ptr cinfo)
696
/* Allocate the in-memory buffers for any unrealized virtual arrays */
697
92.7k
{
698
92.7k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
699
92.7k
  size_t space_per_minheight, maximum_space, avail_mem;
700
92.7k
  size_t minheights, max_minheights;
701
92.7k
  jvirt_sarray_ptr sptr;
702
92.7k
  jvirt_barray_ptr bptr;
703
92.7k
  int data_precision = cinfo->is_decompressor ?
704
92.7k
                        ((j_decompress_ptr)cinfo)->data_precision :
705
92.7k
                        ((j_compress_ptr)cinfo)->data_precision;
706
92.7k
  size_t sample_size = data_precision == 16 ?
707
82.2k
                       sizeof(J16SAMPLE) : (data_precision == 12 ?
708
38.8k
                                            sizeof(J12SAMPLE) :
709
82.2k
                                            sizeof(JSAMPLE));
710
711
  /* Compute the minimum space needed (maxaccess rows in each buffer)
712
   * and the maximum space needed (full image height in each buffer).
713
   * These may be of use to the system-dependent jpeg_mem_available routine.
714
   */
715
92.7k
  space_per_minheight = 0;
716
92.7k
  maximum_space = 0;
717
104k
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
718
12.1k
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
719
12.1k
      size_t new_space = (long)sptr->rows_in_array *
720
12.1k
                         (long)sptr->samplesperrow * sample_size;
721
722
12.1k
      space_per_minheight += (long)sptr->maxaccess *
723
12.1k
                             (long)sptr->samplesperrow * sample_size;
724
12.1k
      if (SIZE_MAX - maximum_space < new_space)
725
0
        out_of_memory(cinfo, 10);
726
12.1k
      maximum_space += new_space;
727
12.1k
    }
728
12.1k
  }
729
205k
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
730
112k
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
731
112k
      size_t new_space = (long)bptr->rows_in_array *
732
112k
                         (long)bptr->blocksperrow * sizeof(JBLOCK);
733
734
112k
      space_per_minheight += (long)bptr->maxaccess *
735
112k
                             (long)bptr->blocksperrow * sizeof(JBLOCK);
736
112k
      if (SIZE_MAX - maximum_space < new_space)
737
0
        out_of_memory(cinfo, 11);
738
112k
      maximum_space += new_space;
739
112k
    }
740
112k
  }
741
742
92.7k
  if (space_per_minheight <= 0)
743
47.9k
    return;                     /* no unrealized arrays, no work */
744
745
  /* Determine amount of memory to actually use; this is system-dependent. */
746
44.8k
  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
747
44.8k
                                 mem->total_space_allocated);
748
749
  /* If the maximum space needed is available, make all the buffers full
750
   * height; otherwise parcel it out with the same number of minheights
751
   * in each buffer.
752
   */
753
44.8k
  if (avail_mem >= maximum_space)
754
44.8k
    max_minheights = 1000000000L;
755
0
  else {
756
0
    max_minheights = avail_mem / space_per_minheight;
757
    /* If there doesn't seem to be enough space, try to get the minimum
758
     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
759
     */
760
0
    if (max_minheights <= 0)
761
0
      max_minheights = 1;
762
0
  }
763
764
  /* Allocate the in-memory buffers and initialize backing store as needed. */
765
766
56.9k
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
767
12.1k
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
768
12.1k
      minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
769
12.1k
      if (minheights <= max_minheights) {
770
        /* This buffer fits in memory */
771
12.1k
        sptr->rows_in_mem = sptr->rows_in_array;
772
12.1k
      } else {
773
        /* It doesn't fit in memory, create backing store. */
774
0
        sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess);
775
0
        jpeg_open_backing_store(cinfo, &sptr->b_s_info,
776
0
                                (long)sptr->rows_in_array *
777
0
                                (long)sptr->samplesperrow *
778
0
                                (long)sample_size);
779
0
        sptr->b_s_open = TRUE;
780
0
      }
781
12.1k
      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
782
12.1k
                                      sptr->samplesperrow, sptr->rows_in_mem);
783
12.1k
      sptr->rowsperchunk = mem->last_rowsperchunk;
784
12.1k
      sptr->cur_start_row = 0;
785
12.1k
      sptr->first_undef_row = 0;
786
12.1k
      sptr->dirty = FALSE;
787
12.1k
    }
788
12.1k
  }
789
790
157k
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
791
112k
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
792
112k
      minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
793
112k
      if (minheights <= max_minheights) {
794
        /* This buffer fits in memory */
795
112k
        bptr->rows_in_mem = bptr->rows_in_array;
796
112k
      } else {
797
        /* It doesn't fit in memory, create backing store. */
798
0
        bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess);
799
0
        jpeg_open_backing_store(cinfo, &bptr->b_s_info,
800
0
                                (long)bptr->rows_in_array *
801
0
                                (long)bptr->blocksperrow *
802
0
                                (long)sizeof(JBLOCK));
803
0
        bptr->b_s_open = TRUE;
804
0
      }
805
112k
      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
806
112k
                                      bptr->blocksperrow, bptr->rows_in_mem);
807
112k
      bptr->rowsperchunk = mem->last_rowsperchunk;
808
112k
      bptr->cur_start_row = 0;
809
112k
      bptr->first_undef_row = 0;
810
112k
      bptr->dirty = FALSE;
811
112k
    }
812
112k
  }
813
44.8k
}
814
815
816
LOCAL(void)
817
do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
818
/* Do backing store read or write of a virtual sample array */
819
0
{
820
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
821
0
  int data_precision = cinfo->is_decompressor ?
822
0
                        ((j_decompress_ptr)cinfo)->data_precision :
823
0
                        ((j_compress_ptr)cinfo)->data_precision;
824
0
  size_t sample_size = data_precision == 16 ?
825
0
                       sizeof(J16SAMPLE) : (data_precision == 12 ?
826
0
                                            sizeof(J12SAMPLE) :
827
0
                                            sizeof(JSAMPLE));
828
829
0
  bytesperrow = (long)ptr->samplesperrow * (long)sample_size;
830
0
  file_offset = ptr->cur_start_row * bytesperrow;
831
  /* Loop to read or write each allocation chunk in mem_buffer */
832
0
  for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
833
    /* One chunk, but check for short chunk at end of buffer */
834
0
    rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
835
    /* Transfer no more than is currently defined */
836
0
    thisrow = (long)ptr->cur_start_row + i;
837
0
    rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
838
    /* Transfer no more than fits in file */
839
0
    rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
840
0
    if (rows <= 0)              /* this chunk might be past end of file! */
841
0
      break;
842
0
    byte_count = rows * bytesperrow;
843
0
    if (data_precision == 16) {
844
0
#if defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED)
845
0
      J16SAMPARRAY mem_buffer16 = (J16SAMPARRAY)ptr->mem_buffer;
846
847
0
      if (writing)
848
0
        (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
849
0
                                              (void *)mem_buffer16[i],
850
0
                                              file_offset, byte_count);
851
0
      else
852
0
        (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
853
0
                                             (void *)mem_buffer16[i],
854
0
                                             file_offset, byte_count);
855
#else
856
      ERREXIT1(cinfo, JERR_BAD_PRECISION, data_precision);
857
#endif
858
0
    } else if (data_precision == 12) {
859
0
      J12SAMPARRAY mem_buffer12 = (J12SAMPARRAY)ptr->mem_buffer;
860
861
0
      if (writing)
862
0
        (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
863
0
                                              (void *)mem_buffer12[i],
864
0
                                              file_offset, byte_count);
865
0
      else
866
0
        (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
867
0
                                             (void *)mem_buffer12[i],
868
0
                                             file_offset, byte_count);
869
0
    } else {
870
0
      if (writing)
871
0
        (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
872
0
                                              (void *)ptr->mem_buffer[i],
873
0
                                              file_offset, byte_count);
874
0
      else
875
0
        (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
876
0
                                             (void *)ptr->mem_buffer[i],
877
0
                                             file_offset, byte_count);
878
0
    }
879
0
    file_offset += byte_count;
880
0
  }
881
0
}
882
883
884
LOCAL(void)
885
do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
886
/* Do backing store read or write of a virtual coefficient-block array */
887
0
{
888
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
889
890
0
  bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK);
891
0
  file_offset = ptr->cur_start_row * bytesperrow;
892
  /* Loop to read or write each allocation chunk in mem_buffer */
893
0
  for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
894
    /* One chunk, but check for short chunk at end of buffer */
895
0
    rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
896
    /* Transfer no more than is currently defined */
897
0
    thisrow = (long)ptr->cur_start_row + i;
898
0
    rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
899
    /* Transfer no more than fits in file */
900
0
    rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
901
0
    if (rows <= 0)              /* this chunk might be past end of file! */
902
0
      break;
903
0
    byte_count = rows * bytesperrow;
904
0
    if (writing)
905
0
      (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
906
0
                                            (void *)ptr->mem_buffer[i],
907
0
                                            file_offset, byte_count);
908
0
    else
909
0
      (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
910
0
                                           (void *)ptr->mem_buffer[i],
911
0
                                           file_offset, byte_count);
912
0
    file_offset += byte_count;
913
0
  }
914
0
}
915
916
917
METHODDEF(JSAMPARRAY)
918
access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr,
919
                   JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
920
/* Access the part of a virtual sample array starting at start_row */
921
/* and extending for num_rows rows.  writable is true if  */
922
/* caller intends to modify the accessed area. */
923
14.9M
{
924
14.9M
  JDIMENSION end_row = start_row + num_rows;
925
14.9M
  JDIMENSION undef_row;
926
14.9M
  int data_precision = cinfo->is_decompressor ?
927
14.9M
                        ((j_decompress_ptr)cinfo)->data_precision :
928
14.9M
                        ((j_compress_ptr)cinfo)->data_precision;
929
14.9M
  size_t sample_size = data_precision == 16 ?
930
9.15M
                       sizeof(J16SAMPLE) : (data_precision == 12 ?
931
4.47M
                                            sizeof(J12SAMPLE) :
932
9.15M
                                            sizeof(JSAMPLE));
933
934
  /* debugging check */
935
14.9M
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
936
14.9M
      ptr->mem_buffer == NULL)
937
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
938
939
  /* Make the desired part of the virtual array accessible */
940
14.9M
  if (start_row < ptr->cur_start_row ||
941
14.9M
      end_row > ptr->cur_start_row + ptr->rows_in_mem) {
942
0
    if (!ptr->b_s_open)
943
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
944
    /* Flush old buffer contents if necessary */
945
0
    if (ptr->dirty) {
946
0
      do_sarray_io(cinfo, ptr, TRUE);
947
0
      ptr->dirty = FALSE;
948
0
    }
949
    /* Decide what part of virtual array to access.
950
     * Algorithm: if target address > current window, assume forward scan,
951
     * load starting at target address.  If target address < current window,
952
     * assume backward scan, load so that target area is top of window.
953
     * Note that when switching from forward write to forward read, will have
954
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
955
     */
956
0
    if (start_row > ptr->cur_start_row) {
957
0
      ptr->cur_start_row = start_row;
958
0
    } else {
959
      /* use long arithmetic here to avoid overflow & unsigned problems */
960
0
      long ltemp;
961
962
0
      ltemp = (long)end_row - (long)ptr->rows_in_mem;
963
0
      if (ltemp < 0)
964
0
        ltemp = 0;              /* don't fall off front end of file */
965
0
      ptr->cur_start_row = (JDIMENSION)ltemp;
966
0
    }
967
    /* Read in the selected part of the array.
968
     * During the initial write pass, we will do no actual read
969
     * because the selected part is all undefined.
970
     */
971
0
    do_sarray_io(cinfo, ptr, FALSE);
972
0
  }
973
  /* Ensure the accessed part of the array is defined; prezero if needed.
974
   * To improve locality of access, we only prezero the part of the array
975
   * that the caller is about to access, not the entire in-memory array.
976
   */
977
14.9M
  if (ptr->first_undef_row < end_row) {
978
7.27M
    if (ptr->first_undef_row < start_row) {
979
0
      if (writable)             /* writer skipped over a section of array */
980
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
981
0
      undef_row = start_row;    /* but reader is allowed to read ahead */
982
7.27M
    } else {
983
7.27M
      undef_row = ptr->first_undef_row;
984
7.27M
    }
985
7.27M
    if (writable)
986
7.27M
      ptr->first_undef_row = end_row;
987
7.27M
    if (ptr->pre_zero) {
988
0
      size_t bytesperrow = (size_t)ptr->samplesperrow * sample_size;
989
0
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
990
0
      end_row -= ptr->cur_start_row;
991
0
      while (undef_row < end_row) {
992
0
        jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
993
0
        undef_row++;
994
0
      }
995
7.27M
    } else {
996
7.27M
      if (!writable)            /* reader looking at undefined data */
997
649
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
998
7.27M
    }
999
7.27M
  }
1000
  /* Flag the buffer dirty if caller will write in it */
1001
14.9M
  if (writable)
1002
10.3M
    ptr->dirty = TRUE;
1003
  /* Return address of proper part of the buffer */
1004
14.9M
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
1005
14.9M
}
1006
1007
1008
METHODDEF(JBLOCKARRAY)
1009
access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr,
1010
                   JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
1011
/* Access the part of a virtual block array starting at start_row */
1012
/* and extending for num_rows rows.  writable is true if  */
1013
/* caller intends to modify the accessed area. */
1014
15.1M
{
1015
15.1M
  JDIMENSION end_row = start_row + num_rows;
1016
15.1M
  JDIMENSION undef_row;
1017
1018
  /* debugging check */
1019
15.1M
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
1020
15.1M
      ptr->mem_buffer == NULL)
1021
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
1022
1023
  /* Make the desired part of the virtual array accessible */
1024
15.1M
  if (start_row < ptr->cur_start_row ||
1025
15.1M
      end_row > ptr->cur_start_row + ptr->rows_in_mem) {
1026
0
    if (!ptr->b_s_open)
1027
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
1028
    /* Flush old buffer contents if necessary */
1029
0
    if (ptr->dirty) {
1030
0
      do_barray_io(cinfo, ptr, TRUE);
1031
0
      ptr->dirty = FALSE;
1032
0
    }
1033
    /* Decide what part of virtual array to access.
1034
     * Algorithm: if target address > current window, assume forward scan,
1035
     * load starting at target address.  If target address < current window,
1036
     * assume backward scan, load so that target area is top of window.
1037
     * Note that when switching from forward write to forward read, will have
1038
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
1039
     */
1040
0
    if (start_row > ptr->cur_start_row) {
1041
0
      ptr->cur_start_row = start_row;
1042
0
    } else {
1043
      /* use long arithmetic here to avoid overflow & unsigned problems */
1044
0
      long ltemp;
1045
1046
0
      ltemp = (long)end_row - (long)ptr->rows_in_mem;
1047
0
      if (ltemp < 0)
1048
0
        ltemp = 0;              /* don't fall off front end of file */
1049
0
      ptr->cur_start_row = (JDIMENSION)ltemp;
1050
0
    }
1051
    /* Read in the selected part of the array.
1052
     * During the initial write pass, we will do no actual read
1053
     * because the selected part is all undefined.
1054
     */
1055
0
    do_barray_io(cinfo, ptr, FALSE);
1056
0
  }
1057
  /* Ensure the accessed part of the array is defined; prezero if needed.
1058
   * To improve locality of access, we only prezero the part of the array
1059
   * that the caller is about to access, not the entire in-memory array.
1060
   */
1061
15.1M
  if (ptr->first_undef_row < end_row) {
1062
4.83M
    if (ptr->first_undef_row < start_row) {
1063
357k
      if (writable)             /* writer skipped over a section of array */
1064
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
1065
357k
      undef_row = start_row;    /* but reader is allowed to read ahead */
1066
4.47M
    } else {
1067
4.47M
      undef_row = ptr->first_undef_row;
1068
4.47M
    }
1069
4.83M
    if (writable)
1070
4.46M
      ptr->first_undef_row = end_row;
1071
4.83M
    if (ptr->pre_zero) {
1072
4.83M
      size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK);
1073
4.83M
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
1074
4.83M
      end_row -= ptr->cur_start_row;
1075
13.7M
      while (undef_row < end_row) {
1076
8.94M
        jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
1077
8.94M
        undef_row++;
1078
8.94M
      }
1079
4.83M
    } else {
1080
0
      if (!writable)            /* reader looking at undefined data */
1081
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
1082
0
    }
1083
4.83M
  }
1084
  /* Flag the buffer dirty if caller will write in it */
1085
15.1M
  if (writable)
1086
11.2M
    ptr->dirty = TRUE;
1087
  /* Return address of proper part of the buffer */
1088
15.1M
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
1089
15.1M
}
1090
1091
1092
/*
1093
 * Release all objects belonging to a specified pool.
1094
 */
1095
1096
METHODDEF(void)
1097
free_pool(j_common_ptr cinfo, int pool_id)
1098
739k
{
1099
739k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
1100
739k
  small_pool_ptr shdr_ptr;
1101
739k
  large_pool_ptr lhdr_ptr;
1102
739k
  size_t space_freed;
1103
1104
739k
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
1105
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
1106
1107
#ifdef MEM_STATS
1108
  if (cinfo->err->trace_level > 1)
1109
    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
1110
#endif
1111
1112
  /* If freeing IMAGE pool, close any virtual arrays first */
1113
739k
  if (pool_id == JPOOL_IMAGE) {
1114
484k
    jvirt_sarray_ptr sptr;
1115
484k
    jvirt_barray_ptr bptr;
1116
1117
496k
    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1118
12.1k
      if (sptr->b_s_open) {     /* there may be no backing store */
1119
0
        sptr->b_s_open = FALSE; /* prevent recursive close if error */
1120
0
        (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info);
1121
0
      }
1122
12.1k
    }
1123
484k
    mem->virt_sarray_list = NULL;
1124
596k
    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1125
112k
      if (bptr->b_s_open) {     /* there may be no backing store */
1126
0
        bptr->b_s_open = FALSE; /* prevent recursive close if error */
1127
0
        (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info);
1128
0
      }
1129
112k
    }
1130
484k
    mem->virt_barray_list = NULL;
1131
484k
  }
1132
1133
  /* Release large objects */
1134
739k
  lhdr_ptr = mem->large_list[pool_id];
1135
739k
  mem->large_list[pool_id] = NULL;
1136
1137
1.47M
  while (lhdr_ptr != NULL) {
1138
732k
    large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1139
732k
    space_freed = lhdr_ptr->bytes_used +
1140
732k
                  lhdr_ptr->bytes_left +
1141
732k
                  sizeof(large_pool_hdr) + ALIGN_SIZE - 1;
1142
732k
    jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed);
1143
732k
    mem->total_space_allocated -= space_freed;
1144
732k
    lhdr_ptr = next_lhdr_ptr;
1145
732k
  }
1146
1147
  /* Release small objects */
1148
739k
  shdr_ptr = mem->small_list[pool_id];
1149
739k
  mem->small_list[pool_id] = NULL;
1150
1151
1.36M
  while (shdr_ptr != NULL) {
1152
628k
    small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1153
628k
    space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left +
1154
628k
                  sizeof(small_pool_hdr) + ALIGN_SIZE - 1;
1155
628k
    jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed);
1156
628k
    mem->total_space_allocated -= space_freed;
1157
628k
    shdr_ptr = next_shdr_ptr;
1158
628k
  }
1159
739k
}
1160
1161
1162
/*
1163
 * Close up shop entirely.
1164
 * Note that this cannot be called unless cinfo->mem is non-NULL.
1165
 */
1166
1167
METHODDEF(void)
1168
self_destruct(j_common_ptr cinfo)
1169
255k
{
1170
255k
  int pool;
1171
1172
  /* Close all backing store, release all memory.
1173
   * Releasing pools in reverse order might help avoid fragmentation
1174
   * with some (brain-damaged) malloc libraries.
1175
   */
1176
765k
  for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1177
510k
    free_pool(cinfo, pool);
1178
510k
  }
1179
1180
  /* Release the memory manager control block too. */
1181
255k
  jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr));
1182
255k
  cinfo->mem = NULL;            /* ensures I will be called only once */
1183
1184
255k
  jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1185
255k
}
1186
1187
1188
/*
1189
 * Memory manager initialization.
1190
 * When this is called, only the error manager pointer is valid in cinfo!
1191
 */
1192
1193
GLOBAL(void)
1194
jinit_memory_mgr(j_common_ptr cinfo)
1195
255k
{
1196
255k
  my_mem_ptr mem;
1197
255k
  long max_to_use;
1198
255k
  int pool;
1199
255k
  size_t test_mac;
1200
1201
255k
  cinfo->mem = NULL;            /* for safety if init fails */
1202
1203
  /* Check for configuration errors.
1204
   * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1205
   * doesn't reflect any real hardware alignment requirement.
1206
   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1207
   * in common if and only if X is a power of 2, ie has only one one-bit.
1208
   * Some compilers may give an "unreachable code" warning here; ignore it.
1209
   */
1210
255k
  if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0)
1211
0
    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1212
  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1213
   * a multiple of ALIGN_SIZE.
1214
   * Again, an "unreachable code" warning may be ignored here.
1215
   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1216
   */
1217
255k
  test_mac = (size_t)MAX_ALLOC_CHUNK;
1218
255k
  if ((long)test_mac != MAX_ALLOC_CHUNK ||
1219
255k
      (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1220
0
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1221
1222
255k
  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1223
1224
  /* Attempt to allocate memory manager's control block */
1225
255k
  mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1226
1227
255k
  if (mem == NULL) {
1228
0
    jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1229
0
    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1230
0
  }
1231
1232
  /* OK, fill in the method pointers */
1233
255k
  mem->pub.alloc_small = alloc_small;
1234
255k
  mem->pub.alloc_large = alloc_large;
1235
255k
  mem->pub.alloc_sarray = alloc_sarray;
1236
255k
  mem->pub.alloc_barray = alloc_barray;
1237
255k
  mem->pub.request_virt_sarray = request_virt_sarray;
1238
255k
  mem->pub.request_virt_barray = request_virt_barray;
1239
255k
  mem->pub.realize_virt_arrays = realize_virt_arrays;
1240
255k
  mem->pub.access_virt_sarray = access_virt_sarray;
1241
255k
  mem->pub.access_virt_barray = access_virt_barray;
1242
255k
  mem->pub.free_pool = free_pool;
1243
255k
  mem->pub.self_destruct = self_destruct;
1244
1245
  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1246
255k
  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1247
1248
  /* Initialize working state */
1249
255k
  mem->pub.max_memory_to_use = max_to_use;
1250
1251
765k
  for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1252
510k
    mem->small_list[pool] = NULL;
1253
510k
    mem->large_list[pool] = NULL;
1254
510k
  }
1255
255k
  mem->virt_sarray_list = NULL;
1256
255k
  mem->virt_barray_list = NULL;
1257
1258
255k
  mem->total_space_allocated = sizeof(my_memory_mgr);
1259
1260
  /* Declare ourselves open for business */
1261
255k
  cinfo->mem = &mem->pub;
1262
1263
  /* Check for an environment variable JPEGMEM; if found, override the
1264
   * default max_memory setting from jpeg_mem_init.  Note that the
1265
   * surrounding application may again override this value.
1266
   * If your system doesn't support getenv(), define NO_GETENV to disable
1267
   * this feature.
1268
   */
1269
255k
#ifndef NO_GETENV
1270
255k
  {
1271
255k
    char memenv[30] = { 0 };
1272
1273
255k
    if (!GETENV_S(memenv, 30, "JPEGMEM") && strlen(memenv) > 0) {
1274
0
      char ch = 'x';
1275
1276
#ifdef _MSC_VER
1277
      if (sscanf_s(memenv, "%ld%c", &max_to_use, &ch, 1) > 0) {
1278
#else
1279
0
      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1280
0
#endif
1281
0
        if (ch == 'm' || ch == 'M')
1282
0
          max_to_use *= 1000L;
1283
0
        mem->pub.max_memory_to_use = max_to_use * 1000L;
1284
0
      }
1285
0
    }
1286
255k
  }
1287
255k
#endif
1288
1289
255k
}