Coverage Report

Created: 2024-08-27 12:18

/src/libjpeg-turbo.main/jquant1.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jquant1.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009, 2015, 2022-2023, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains 1-pass color quantization (color mapping) routines.
12
 * These routines provide mapping to a fixed color map using equally spaced
13
 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
14
 */
15
16
#define JPEG_INTERNALS
17
#include "jinclude.h"
18
#include "jpeglib.h"
19
#include "jsamplecomp.h"
20
21
#if defined(QUANT_1PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16
22
23
24
/*
25
 * The main purpose of 1-pass quantization is to provide a fast, if not very
26
 * high quality, colormapped output capability.  A 2-pass quantizer usually
27
 * gives better visual quality; however, for quantized grayscale output this
28
 * quantizer is perfectly adequate.  Dithering is highly recommended with this
29
 * quantizer, though you can turn it off if you really want to.
30
 *
31
 * In 1-pass quantization the colormap must be chosen in advance of seeing the
32
 * image.  We use a map consisting of all combinations of Ncolors[i] color
33
 * values for the i'th component.  The Ncolors[] values are chosen so that
34
 * their product, the total number of colors, is no more than that requested.
35
 * (In most cases, the product will be somewhat less.)
36
 *
37
 * Since the colormap is orthogonal, the representative value for each color
38
 * component can be determined without considering the other components;
39
 * then these indexes can be combined into a colormap index by a standard
40
 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
41
 * can be precalculated and stored in the lookup table colorindex[].
42
 * colorindex[i][j] maps pixel value j in component i to the nearest
43
 * representative value (grid plane) for that component; this index is
44
 * multiplied by the array stride for component i, so that the
45
 * index of the colormap entry closest to a given pixel value is just
46
 *    sum( colorindex[component-number][pixel-component-value] )
47
 * Aside from being fast, this scheme allows for variable spacing between
48
 * representative values with no additional lookup cost.
49
 *
50
 * If gamma correction has been applied in color conversion, it might be wise
51
 * to adjust the color grid spacing so that the representative colors are
52
 * equidistant in linear space.  At this writing, gamma correction is not
53
 * implemented by jdcolor, so nothing is done here.
54
 */
55
56
57
/* Declarations for ordered dithering.
58
 *
59
 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
60
 * dithering is described in many references, for instance Dale Schumacher's
61
 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
62
 * In place of Schumacher's comparisons against a "threshold" value, we add a
63
 * "dither" value to the input pixel and then round the result to the nearest
64
 * output value.  The dither value is equivalent to (0.5 - threshold) times
65
 * the distance between output values.  For ordered dithering, we assume that
66
 * the output colors are equally spaced; if not, results will probably be
67
 * worse, since the dither may be too much or too little at a given point.
68
 *
69
 * The normal calculation would be to form pixel value + dither, range-limit
70
 * this to 0.._MAXJSAMPLE, and then index into the colorindex table as usual.
71
 * We can skip the separate range-limiting step by extending the colorindex
72
 * table in both directions.
73
 */
74
75
0
#define ODITHER_SIZE  16        /* dimension of dither matrix */
76
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
77
0
#define ODITHER_CELLS  (ODITHER_SIZE * ODITHER_SIZE) /* # cells in matrix */
78
0
#define ODITHER_MASK  (ODITHER_SIZE - 1) /* mask for wrapping around
79
                                            counters */
80
81
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
82
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
83
84
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
85
  /* Bayer's order-4 dither array.  Generated by the code given in
86
   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
87
   * The values in this array must range from 0 to ODITHER_CELLS-1.
88
   */
89
  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
90
  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
91
  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
92
  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
93
  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
94
  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
95
  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
96
  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
97
  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
98
  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
99
  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
100
  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
101
  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
102
  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
103
  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
104
  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
105
};
106
107
108
/* Declarations for Floyd-Steinberg dithering.
109
 *
110
 * Errors are accumulated into the array fserrors[], at a resolution of
111
 * 1/16th of a pixel count.  The error at a given pixel is propagated
112
 * to its not-yet-processed neighbors using the standard F-S fractions,
113
 *              ...     (here)  7/16
114
 *              3/16    5/16    1/16
115
 * We work left-to-right on even rows, right-to-left on odd rows.
116
 *
117
 * We can get away with a single array (holding one row's worth of errors)
118
 * by using it to store the current row's errors at pixel columns not yet
119
 * processed, but the next row's errors at columns already processed.  We
120
 * need only a few extra variables to hold the errors immediately around the
121
 * current column.  (If we are lucky, those variables are in registers, but
122
 * even if not, they're probably cheaper to access than array elements are.)
123
 *
124
 * The fserrors[] array is indexed [component#][position].
125
 * We provide (#columns + 2) entries per component; the extra entry at each
126
 * end saves us from special-casing the first and last pixels.
127
 */
128
129
#if BITS_IN_JSAMPLE == 8
130
typedef INT16 FSERROR;          /* 16 bits should be enough */
131
typedef int LOCFSERROR;         /* use 'int' for calculation temps */
132
#else
133
typedef JLONG FSERROR;          /* may need more than 16 bits */
134
typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
135
#endif
136
137
typedef FSERROR *FSERRPTR;      /* pointer to error array */
138
139
140
/* Private subobject */
141
142
0
#define MAX_Q_COMPS  4          /* max components I can handle */
143
144
typedef struct {
145
  struct jpeg_color_quantizer pub; /* public fields */
146
147
  /* Initially allocated colormap is saved here */
148
  _JSAMPARRAY sv_colormap;      /* The color map as a 2-D pixel array */
149
  int sv_actual;                /* number of entries in use */
150
151
  _JSAMPARRAY colorindex;       /* Precomputed mapping for speed */
152
  /* colorindex[i][j] = index of color closest to pixel value j in component i,
153
   * premultiplied as described above.  Since colormap indexes must fit into
154
   * _JSAMPLEs, the entries of this array will too.
155
   */
156
  boolean is_padded;            /* is the colorindex padded for odither? */
157
158
  int Ncolors[MAX_Q_COMPS];     /* # of values allocated to each component */
159
160
  /* Variables for ordered dithering */
161
  int row_index;                /* cur row's vertical index in dither matrix */
162
  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
163
164
  /* Variables for Floyd-Steinberg dithering */
165
  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
166
  boolean on_odd_row;           /* flag to remember which row we are on */
167
} my_cquantizer;
168
169
typedef my_cquantizer *my_cquantize_ptr;
170
171
172
/*
173
 * Policy-making subroutines for create_colormap and create_colorindex.
174
 * These routines determine the colormap to be used.  The rest of the module
175
 * only assumes that the colormap is orthogonal.
176
 *
177
 *  * select_ncolors decides how to divvy up the available colors
178
 *    among the components.
179
 *  * output_value defines the set of representative values for a component.
180
 *  * largest_input_value defines the mapping from input values to
181
 *    representative values for a component.
182
 * Note that the latter two routines may impose different policies for
183
 * different components, though this is not currently done.
184
 */
185
186
187
LOCAL(int)
188
select_ncolors(j_decompress_ptr cinfo, int Ncolors[])
189
/* Determine allocation of desired colors to components, */
190
/* and fill in Ncolors[] array to indicate choice. */
191
/* Return value is total number of colors (product of Ncolors[] values). */
192
0
{
193
0
  int nc = cinfo->out_color_components; /* number of color components */
194
0
  int max_colors = cinfo->desired_number_of_colors;
195
0
  int total_colors, iroot, i, j;
196
0
  boolean changed;
197
0
  long temp;
198
0
  int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
199
0
  RGB_order[0] = rgb_green[cinfo->out_color_space];
200
0
  RGB_order[1] = rgb_red[cinfo->out_color_space];
201
0
  RGB_order[2] = rgb_blue[cinfo->out_color_space];
202
203
  /* We can allocate at least the nc'th root of max_colors per component. */
204
  /* Compute floor(nc'th root of max_colors). */
205
0
  iroot = 1;
206
0
  do {
207
0
    iroot++;
208
0
    temp = iroot;               /* set temp = iroot ** nc */
209
0
    for (i = 1; i < nc; i++)
210
0
      temp *= iroot;
211
0
  } while (temp <= (long)max_colors); /* repeat till iroot exceeds root */
212
0
  iroot--;                      /* now iroot = floor(root) */
213
214
  /* Must have at least 2 color values per component */
215
0
  if (iroot < 2)
216
0
    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int)temp);
217
218
  /* Initialize to iroot color values for each component */
219
0
  total_colors = 1;
220
0
  for (i = 0; i < nc; i++) {
221
0
    Ncolors[i] = iroot;
222
0
    total_colors *= iroot;
223
0
  }
224
  /* We may be able to increment the count for one or more components without
225
   * exceeding max_colors, though we know not all can be incremented.
226
   * Sometimes, the first component can be incremented more than once!
227
   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
228
   * In RGB colorspace, try to increment G first, then R, then B.
229
   */
230
0
  do {
231
0
    changed = FALSE;
232
0
    for (i = 0; i < nc; i++) {
233
0
      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
234
      /* calculate new total_colors if Ncolors[j] is incremented */
235
0
      temp = total_colors / Ncolors[j];
236
0
      temp *= Ncolors[j] + 1;   /* done in long arith to avoid oflo */
237
0
      if (temp > (long)max_colors)
238
0
        break;                  /* won't fit, done with this pass */
239
0
      Ncolors[j]++;             /* OK, apply the increment */
240
0
      total_colors = (int)temp;
241
0
      changed = TRUE;
242
0
    }
243
0
  } while (changed);
244
245
0
  return total_colors;
246
0
}
247
248
249
LOCAL(int)
250
output_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
251
/* Return j'th output value, where j will range from 0 to maxj */
252
/* The output values must fall in 0.._MAXJSAMPLE in increasing order */
253
0
{
254
  /* We always provide values 0 and _MAXJSAMPLE for each component;
255
   * any additional values are equally spaced between these limits.
256
   * (Forcing the upper and lower values to the limits ensures that
257
   * dithering can't produce a color outside the selected gamut.)
258
   */
259
0
  return (int)(((JLONG)j * _MAXJSAMPLE + maxj / 2) / maxj);
260
0
}
261
262
263
LOCAL(int)
264
largest_input_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
265
/* Return largest input value that should map to j'th output value */
266
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= _MAXJSAMPLE */
267
0
{
268
  /* Breakpoints are halfway between values returned by output_value */
269
0
  return (int)(((JLONG)(2 * j + 1) * _MAXJSAMPLE + maxj) / (2 * maxj));
270
0
}
271
272
273
/*
274
 * Create the colormap.
275
 */
276
277
LOCAL(void)
278
create_colormap(j_decompress_ptr cinfo)
279
0
{
280
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
281
0
  _JSAMPARRAY colormap;         /* Created colormap */
282
0
  int total_colors;             /* Number of distinct output colors */
283
0
  int i, j, k, nci, blksize, blkdist, ptr, val;
284
285
  /* Select number of colors for each component */
286
0
  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
287
288
  /* Report selected color counts */
289
0
  if (cinfo->out_color_components == 3)
290
0
    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors,
291
0
             cquantize->Ncolors[0], cquantize->Ncolors[1],
292
0
             cquantize->Ncolors[2]);
293
0
  else
294
0
    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
295
296
  /* Allocate and fill in the colormap. */
297
  /* The colors are ordered in the map in standard row-major order, */
298
  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
299
300
0
  colormap = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
301
0
    ((j_common_ptr)cinfo, JPOOL_IMAGE,
302
0
     (JDIMENSION)total_colors, (JDIMENSION)cinfo->out_color_components);
303
304
  /* blksize is number of adjacent repeated entries for a component */
305
  /* blkdist is distance between groups of identical entries for a component */
306
0
  blkdist = total_colors;
307
308
0
  for (i = 0; i < cinfo->out_color_components; i++) {
309
    /* fill in colormap entries for i'th color component */
310
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
311
0
    blksize = blkdist / nci;
312
0
    for (j = 0; j < nci; j++) {
313
      /* Compute j'th output value (out of nci) for component */
314
0
      val = output_value(cinfo, i, j, nci - 1);
315
      /* Fill in all colormap entries that have this value of this component */
316
0
      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
317
        /* fill in blksize entries beginning at ptr */
318
0
        for (k = 0; k < blksize; k++)
319
0
          colormap[i][ptr + k] = (_JSAMPLE)val;
320
0
      }
321
0
    }
322
0
    blkdist = blksize;          /* blksize of this color is blkdist of next */
323
0
  }
324
325
  /* Save the colormap in private storage,
326
   * where it will survive color quantization mode changes.
327
   */
328
0
  cquantize->sv_colormap = colormap;
329
0
  cquantize->sv_actual = total_colors;
330
0
}
331
332
333
/*
334
 * Create the color index table.
335
 */
336
337
LOCAL(void)
338
create_colorindex(j_decompress_ptr cinfo)
339
0
{
340
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
341
0
  _JSAMPROW indexptr;
342
0
  int i, j, k, nci, blksize, val, pad;
343
344
  /* For ordered dither, we pad the color index tables by _MAXJSAMPLE in
345
   * each direction (input index values can be -_MAXJSAMPLE .. 2*_MAXJSAMPLE).
346
   * This is not necessary in the other dithering modes.  However, we
347
   * flag whether it was done in case user changes dithering mode.
348
   */
349
0
  if (cinfo->dither_mode == JDITHER_ORDERED) {
350
0
    pad = _MAXJSAMPLE * 2;
351
0
    cquantize->is_padded = TRUE;
352
0
  } else {
353
0
    pad = 0;
354
0
    cquantize->is_padded = FALSE;
355
0
  }
356
357
0
  cquantize->colorindex = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
358
0
    ((j_common_ptr)cinfo, JPOOL_IMAGE,
359
0
     (JDIMENSION)(_MAXJSAMPLE + 1 + pad),
360
0
     (JDIMENSION)cinfo->out_color_components);
361
362
  /* blksize is number of adjacent repeated entries for a component */
363
0
  blksize = cquantize->sv_actual;
364
365
0
  for (i = 0; i < cinfo->out_color_components; i++) {
366
    /* fill in colorindex entries for i'th color component */
367
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
368
0
    blksize = blksize / nci;
369
370
    /* adjust colorindex pointers to provide padding at negative indexes. */
371
0
    if (pad)
372
0
      cquantize->colorindex[i] += _MAXJSAMPLE;
373
374
    /* in loop, val = index of current output value, */
375
    /* and k = largest j that maps to current val */
376
0
    indexptr = cquantize->colorindex[i];
377
0
    val = 0;
378
0
    k = largest_input_value(cinfo, i, 0, nci - 1);
379
0
    for (j = 0; j <= _MAXJSAMPLE; j++) {
380
0
      while (j > k)             /* advance val if past boundary */
381
0
        k = largest_input_value(cinfo, i, ++val, nci - 1);
382
      /* premultiply so that no multiplication needed in main processing */
383
0
      indexptr[j] = (_JSAMPLE)(val * blksize);
384
0
    }
385
    /* Pad at both ends if necessary */
386
0
    if (pad)
387
0
      for (j = 1; j <= _MAXJSAMPLE; j++) {
388
0
        indexptr[-j] = indexptr[0];
389
0
        indexptr[_MAXJSAMPLE + j] = indexptr[_MAXJSAMPLE];
390
0
      }
391
0
  }
392
0
}
393
394
395
/*
396
 * Create an ordered-dither array for a component having ncolors
397
 * distinct output values.
398
 */
399
400
LOCAL(ODITHER_MATRIX_PTR)
401
make_odither_array(j_decompress_ptr cinfo, int ncolors)
402
0
{
403
0
  ODITHER_MATRIX_PTR odither;
404
0
  int j, k;
405
0
  JLONG num, den;
406
407
0
  odither = (ODITHER_MATRIX_PTR)
408
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
409
0
                                sizeof(ODITHER_MATRIX));
410
  /* The inter-value distance for this color is _MAXJSAMPLE/(ncolors-1).
411
   * Hence the dither value for the matrix cell with fill order f
412
   * (f=0..N-1) should be (N-1-2*f)/(2*N) * _MAXJSAMPLE/(ncolors-1).
413
   * On 16-bit-int machine, be careful to avoid overflow.
414
   */
415
0
  den = 2 * ODITHER_CELLS * ((JLONG)(ncolors - 1));
416
0
  for (j = 0; j < ODITHER_SIZE; j++) {
417
0
    for (k = 0; k < ODITHER_SIZE; k++) {
418
0
      num = ((JLONG)(ODITHER_CELLS - 1 -
419
0
                     2 * ((int)base_dither_matrix[j][k]))) * _MAXJSAMPLE;
420
      /* Ensure round towards zero despite C's lack of consistency
421
       * about rounding negative values in integer division...
422
       */
423
0
      odither[j][k] = (int)(num < 0 ? -((-num) / den) : num / den);
424
0
    }
425
0
  }
426
0
  return odither;
427
0
}
428
429
430
/*
431
 * Create the ordered-dither tables.
432
 * Components having the same number of representative colors may
433
 * share a dither table.
434
 */
435
436
LOCAL(void)
437
create_odither_tables(j_decompress_ptr cinfo)
438
0
{
439
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
440
0
  ODITHER_MATRIX_PTR odither;
441
0
  int i, j, nci;
442
443
0
  for (i = 0; i < cinfo->out_color_components; i++) {
444
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
445
0
    odither = NULL;             /* search for matching prior component */
446
0
    for (j = 0; j < i; j++) {
447
0
      if (nci == cquantize->Ncolors[j]) {
448
0
        odither = cquantize->odither[j];
449
0
        break;
450
0
      }
451
0
    }
452
0
    if (odither == NULL)        /* need a new table? */
453
0
      odither = make_odither_array(cinfo, nci);
454
0
    cquantize->odither[i] = odither;
455
0
  }
456
0
}
457
458
459
/*
460
 * Map some rows of pixels to the output colormapped representation.
461
 */
462
463
METHODDEF(void)
464
color_quantize(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
465
               _JSAMPARRAY output_buf, int num_rows)
466
/* General case, no dithering */
467
0
{
468
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
469
0
  _JSAMPARRAY colorindex = cquantize->colorindex;
470
0
  register int pixcode, ci;
471
0
  register _JSAMPROW ptrin, ptrout;
472
0
  int row;
473
0
  JDIMENSION col;
474
0
  JDIMENSION width = cinfo->output_width;
475
0
  register int nc = cinfo->out_color_components;
476
477
0
  for (row = 0; row < num_rows; row++) {
478
0
    ptrin = input_buf[row];
479
0
    ptrout = output_buf[row];
480
0
    for (col = width; col > 0; col--) {
481
0
      pixcode = 0;
482
0
      for (ci = 0; ci < nc; ci++) {
483
0
        pixcode += colorindex[ci][*ptrin++];
484
0
      }
485
0
      *ptrout++ = (_JSAMPLE)pixcode;
486
0
    }
487
0
  }
488
0
}
489
490
491
METHODDEF(void)
492
color_quantize3(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
493
                _JSAMPARRAY output_buf, int num_rows)
494
/* Fast path for out_color_components==3, no dithering */
495
0
{
496
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
497
0
  register int pixcode;
498
0
  register _JSAMPROW ptrin, ptrout;
499
0
  _JSAMPROW colorindex0 = cquantize->colorindex[0];
500
0
  _JSAMPROW colorindex1 = cquantize->colorindex[1];
501
0
  _JSAMPROW colorindex2 = cquantize->colorindex[2];
502
0
  int row;
503
0
  JDIMENSION col;
504
0
  JDIMENSION width = cinfo->output_width;
505
506
0
  for (row = 0; row < num_rows; row++) {
507
0
    ptrin = input_buf[row];
508
0
    ptrout = output_buf[row];
509
0
    for (col = width; col > 0; col--) {
510
0
      pixcode  = colorindex0[*ptrin++];
511
0
      pixcode += colorindex1[*ptrin++];
512
0
      pixcode += colorindex2[*ptrin++];
513
0
      *ptrout++ = (_JSAMPLE)pixcode;
514
0
    }
515
0
  }
516
0
}
517
518
519
METHODDEF(void)
520
quantize_ord_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
521
                    _JSAMPARRAY output_buf, int num_rows)
522
/* General case, with ordered dithering */
523
0
{
524
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
525
0
  register _JSAMPROW input_ptr;
526
0
  register _JSAMPROW output_ptr;
527
0
  _JSAMPROW colorindex_ci;
528
0
  int *dither;                  /* points to active row of dither matrix */
529
0
  int row_index, col_index;     /* current indexes into dither matrix */
530
0
  int nc = cinfo->out_color_components;
531
0
  int ci;
532
0
  int row;
533
0
  JDIMENSION col;
534
0
  JDIMENSION width = cinfo->output_width;
535
536
0
  for (row = 0; row < num_rows; row++) {
537
    /* Initialize output values to 0 so can process components separately */
538
0
    jzero_far((void *)output_buf[row], (size_t)(width * sizeof(_JSAMPLE)));
539
0
    row_index = cquantize->row_index;
540
0
    for (ci = 0; ci < nc; ci++) {
541
0
      input_ptr = input_buf[row] + ci;
542
0
      output_ptr = output_buf[row];
543
0
      colorindex_ci = cquantize->colorindex[ci];
544
0
      dither = cquantize->odither[ci][row_index];
545
0
      col_index = 0;
546
547
0
      for (col = width; col > 0; col--) {
548
        /* Form pixel value + dither, range-limit to 0.._MAXJSAMPLE,
549
         * select output value, accumulate into output code for this pixel.
550
         * Range-limiting need not be done explicitly, as we have extended
551
         * the colorindex table to produce the right answers for out-of-range
552
         * inputs.  The maximum dither is +- _MAXJSAMPLE; this sets the
553
         * required amount of padding.
554
         */
555
0
        *output_ptr +=
556
0
          colorindex_ci[*input_ptr + dither[col_index]];
557
0
        input_ptr += nc;
558
0
        output_ptr++;
559
0
        col_index = (col_index + 1) & ODITHER_MASK;
560
0
      }
561
0
    }
562
    /* Advance row index for next row */
563
0
    row_index = (row_index + 1) & ODITHER_MASK;
564
0
    cquantize->row_index = row_index;
565
0
  }
566
0
}
567
568
569
METHODDEF(void)
570
quantize3_ord_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
571
                     _JSAMPARRAY output_buf, int num_rows)
572
/* Fast path for out_color_components==3, with ordered dithering */
573
0
{
574
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
575
0
  register int pixcode;
576
0
  register _JSAMPROW input_ptr;
577
0
  register _JSAMPROW output_ptr;
578
0
  _JSAMPROW colorindex0 = cquantize->colorindex[0];
579
0
  _JSAMPROW colorindex1 = cquantize->colorindex[1];
580
0
  _JSAMPROW colorindex2 = cquantize->colorindex[2];
581
0
  int *dither0;                 /* points to active row of dither matrix */
582
0
  int *dither1;
583
0
  int *dither2;
584
0
  int row_index, col_index;     /* current indexes into dither matrix */
585
0
  int row;
586
0
  JDIMENSION col;
587
0
  JDIMENSION width = cinfo->output_width;
588
589
0
  for (row = 0; row < num_rows; row++) {
590
0
    row_index = cquantize->row_index;
591
0
    input_ptr = input_buf[row];
592
0
    output_ptr = output_buf[row];
593
0
    dither0 = cquantize->odither[0][row_index];
594
0
    dither1 = cquantize->odither[1][row_index];
595
0
    dither2 = cquantize->odither[2][row_index];
596
0
    col_index = 0;
597
598
0
    for (col = width; col > 0; col--) {
599
0
      pixcode  = colorindex0[(*input_ptr++) + dither0[col_index]];
600
0
      pixcode += colorindex1[(*input_ptr++) + dither1[col_index]];
601
0
      pixcode += colorindex2[(*input_ptr++) + dither2[col_index]];
602
0
      *output_ptr++ = (_JSAMPLE)pixcode;
603
0
      col_index = (col_index + 1) & ODITHER_MASK;
604
0
    }
605
0
    row_index = (row_index + 1) & ODITHER_MASK;
606
0
    cquantize->row_index = row_index;
607
0
  }
608
0
}
609
610
611
METHODDEF(void)
612
quantize_fs_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
613
                   _JSAMPARRAY output_buf, int num_rows)
614
/* General case, with Floyd-Steinberg dithering */
615
0
{
616
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
617
0
  register LOCFSERROR cur;      /* current error or pixel value */
618
0
  LOCFSERROR belowerr;          /* error for pixel below cur */
619
0
  LOCFSERROR bpreverr;          /* error for below/prev col */
620
0
  LOCFSERROR bnexterr;          /* error for below/next col */
621
0
  LOCFSERROR delta;
622
0
  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
623
0
  register _JSAMPROW input_ptr;
624
0
  register _JSAMPROW output_ptr;
625
0
  _JSAMPROW colorindex_ci;
626
0
  _JSAMPROW colormap_ci;
627
0
  int pixcode;
628
0
  int nc = cinfo->out_color_components;
629
0
  int dir;                      /* 1 for left-to-right, -1 for right-to-left */
630
0
  int dirnc;                    /* dir * nc */
631
0
  int ci;
632
0
  int row;
633
0
  JDIMENSION col;
634
0
  JDIMENSION width = cinfo->output_width;
635
0
  _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
636
0
  SHIFT_TEMPS
637
638
0
  for (row = 0; row < num_rows; row++) {
639
    /* Initialize output values to 0 so can process components separately */
640
0
    jzero_far((void *)output_buf[row], (size_t)(width * sizeof(_JSAMPLE)));
641
0
    for (ci = 0; ci < nc; ci++) {
642
0
      input_ptr = input_buf[row] + ci;
643
0
      output_ptr = output_buf[row];
644
0
      if (cquantize->on_odd_row) {
645
        /* work right to left in this row */
646
0
        input_ptr += (width - 1) * nc; /* so point to rightmost pixel */
647
0
        output_ptr += width - 1;
648
0
        dir = -1;
649
0
        dirnc = -nc;
650
0
        errorptr = cquantize->fserrors[ci] + (width + 1); /* => entry after last column */
651
0
      } else {
652
        /* work left to right in this row */
653
0
        dir = 1;
654
0
        dirnc = nc;
655
0
        errorptr = cquantize->fserrors[ci]; /* => entry before first column */
656
0
      }
657
0
      colorindex_ci = cquantize->colorindex[ci];
658
0
      colormap_ci = cquantize->sv_colormap[ci];
659
      /* Preset error values: no error propagated to first pixel from left */
660
0
      cur = 0;
661
      /* and no error propagated to row below yet */
662
0
      belowerr = bpreverr = 0;
663
664
0
      for (col = width; col > 0; col--) {
665
        /* cur holds the error propagated from the previous pixel on the
666
         * current line.  Add the error propagated from the previous line
667
         * to form the complete error correction term for this pixel, and
668
         * round the error term (which is expressed * 16) to an integer.
669
         * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
670
         * for either sign of the error value.
671
         * Note: errorptr points to *previous* column's array entry.
672
         */
673
0
        cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
674
        /* Form pixel value + error, and range-limit to 0.._MAXJSAMPLE.
675
         * The maximum error is +- _MAXJSAMPLE; this sets the required size
676
         * of the range_limit array.
677
         */
678
0
        cur += *input_ptr;
679
0
        cur = range_limit[cur];
680
        /* Select output value, accumulate into output code for this pixel */
681
0
        pixcode = colorindex_ci[cur];
682
0
        *output_ptr += (_JSAMPLE)pixcode;
683
        /* Compute actual representation error at this pixel */
684
        /* Note: we can do this even though we don't have the final */
685
        /* pixel code, because the colormap is orthogonal. */
686
0
        cur -= colormap_ci[pixcode];
687
        /* Compute error fractions to be propagated to adjacent pixels.
688
         * Add these into the running sums, and simultaneously shift the
689
         * next-line error sums left by 1 column.
690
         */
691
0
        bnexterr = cur;
692
0
        delta = cur * 2;
693
0
        cur += delta;           /* form error * 3 */
694
0
        errorptr[0] = (FSERROR)(bpreverr + cur);
695
0
        cur += delta;           /* form error * 5 */
696
0
        bpreverr = belowerr + cur;
697
0
        belowerr = bnexterr;
698
0
        cur += delta;           /* form error * 7 */
699
        /* At this point cur contains the 7/16 error value to be propagated
700
         * to the next pixel on the current line, and all the errors for the
701
         * next line have been shifted over. We are therefore ready to move on.
702
         */
703
0
        input_ptr += dirnc;     /* advance input ptr to next column */
704
0
        output_ptr += dir;      /* advance output ptr to next column */
705
0
        errorptr += dir;        /* advance errorptr to current column */
706
0
      }
707
      /* Post-loop cleanup: we must unload the final error value into the
708
       * final fserrors[] entry.  Note we need not unload belowerr because
709
       * it is for the dummy column before or after the actual array.
710
       */
711
0
      errorptr[0] = (FSERROR)bpreverr; /* unload prev err into array */
712
0
    }
713
0
    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
714
0
  }
715
0
}
716
717
718
/*
719
 * Allocate workspace for Floyd-Steinberg errors.
720
 */
721
722
LOCAL(void)
723
alloc_fs_workspace(j_decompress_ptr cinfo)
724
0
{
725
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
726
0
  size_t arraysize;
727
0
  int i;
728
729
0
  arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
730
0
  for (i = 0; i < cinfo->out_color_components; i++) {
731
0
    cquantize->fserrors[i] = (FSERRPTR)
732
0
      (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
733
0
  }
734
0
}
735
736
737
/*
738
 * Initialize for one-pass color quantization.
739
 */
740
741
METHODDEF(void)
742
start_pass_1_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
743
0
{
744
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
745
0
  size_t arraysize;
746
0
  int i;
747
748
  /* Install my colormap. */
749
0
  cinfo->colormap = (JSAMPARRAY)cquantize->sv_colormap;
750
0
  cinfo->actual_number_of_colors = cquantize->sv_actual;
751
752
  /* Initialize for desired dithering mode. */
753
0
  switch (cinfo->dither_mode) {
754
0
  case JDITHER_NONE:
755
0
    if (cinfo->out_color_components == 3)
756
0
      cquantize->pub._color_quantize = color_quantize3;
757
0
    else
758
0
      cquantize->pub._color_quantize = color_quantize;
759
0
    break;
760
0
  case JDITHER_ORDERED:
761
0
    if (cinfo->out_color_components == 3)
762
0
      cquantize->pub._color_quantize = quantize3_ord_dither;
763
0
    else
764
0
      cquantize->pub._color_quantize = quantize_ord_dither;
765
0
    cquantize->row_index = 0;   /* initialize state for ordered dither */
766
    /* If user changed to ordered dither from another mode,
767
     * we must recreate the color index table with padding.
768
     * This will cost extra space, but probably isn't very likely.
769
     */
770
0
    if (!cquantize->is_padded)
771
0
      create_colorindex(cinfo);
772
    /* Create ordered-dither tables if we didn't already. */
773
0
    if (cquantize->odither[0] == NULL)
774
0
      create_odither_tables(cinfo);
775
0
    break;
776
0
  case JDITHER_FS:
777
0
    cquantize->pub._color_quantize = quantize_fs_dither;
778
0
    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
779
    /* Allocate Floyd-Steinberg workspace if didn't already. */
780
0
    if (cquantize->fserrors[0] == NULL)
781
0
      alloc_fs_workspace(cinfo);
782
    /* Initialize the propagated errors to zero. */
783
0
    arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
784
0
    for (i = 0; i < cinfo->out_color_components; i++)
785
0
      jzero_far((void *)cquantize->fserrors[i], arraysize);
786
0
    break;
787
0
  default:
788
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
789
0
    break;
790
0
  }
791
0
}
792
793
794
/*
795
 * Finish up at the end of the pass.
796
 */
797
798
METHODDEF(void)
799
finish_pass_1_quant(j_decompress_ptr cinfo)
800
0
{
801
  /* no work in 1-pass case */
802
0
}
803
804
805
/*
806
 * Switch to a new external colormap between output passes.
807
 * Shouldn't get to this module!
808
 */
809
810
METHODDEF(void)
811
new_color_map_1_quant(j_decompress_ptr cinfo)
812
0
{
813
0
  ERREXIT(cinfo, JERR_MODE_CHANGE);
814
0
}
815
816
817
/*
818
 * Module initialization routine for 1-pass color quantization.
819
 */
820
821
GLOBAL(void)
822
_jinit_1pass_quantizer(j_decompress_ptr cinfo)
823
0
{
824
0
  my_cquantize_ptr cquantize;
825
826
0
  if (cinfo->data_precision != BITS_IN_JSAMPLE)
827
0
    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
828
829
  /* Color quantization is not supported with lossless JPEG images */
830
0
  if (cinfo->master->lossless)
831
0
    ERREXIT(cinfo, JERR_NOTIMPL);
832
833
0
  cquantize = (my_cquantize_ptr)
834
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
835
0
                                sizeof(my_cquantizer));
836
0
  cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
837
0
  cquantize->pub.start_pass = start_pass_1_quant;
838
0
  cquantize->pub.finish_pass = finish_pass_1_quant;
839
0
  cquantize->pub.new_color_map = new_color_map_1_quant;
840
0
  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
841
0
  cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
842
843
  /* Make sure my internal arrays won't overflow */
844
0
  if (cinfo->out_color_components > MAX_Q_COMPS)
845
0
    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
846
  /* Make sure colormap indexes can be represented by _JSAMPLEs */
847
0
  if (cinfo->desired_number_of_colors > (_MAXJSAMPLE + 1))
848
0
    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, _MAXJSAMPLE + 1);
849
850
  /* Create the colormap and color index table. */
851
0
  create_colormap(cinfo);
852
0
  create_colorindex(cinfo);
853
854
  /* Allocate Floyd-Steinberg workspace now if requested.
855
   * We do this now since it may affect the memory manager's space
856
   * calculations.  If the user changes to FS dither mode in a later pass, we
857
   * will allocate the space then, and will possibly overrun the
858
   * max_memory_to_use setting.
859
   */
860
0
  if (cinfo->dither_mode == JDITHER_FS)
861
0
    alloc_fs_workspace(cinfo);
862
0
}
Unexecuted instantiation: j12init_1pass_quantizer
Unexecuted instantiation: jinit_1pass_quantizer
863
864
#endif /* defined(QUANT_1PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16 */