Coverage Report

Created: 2024-08-27 12:18

/src/libjpeg-turbo.main/jquant2.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jquant2.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009, 2014-2015, 2020, 2022-2023, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains 2-pass color quantization (color mapping) routines.
12
 * These routines provide selection of a custom color map for an image,
13
 * followed by mapping of the image to that color map, with optional
14
 * Floyd-Steinberg dithering.
15
 * It is also possible to use just the second pass to map to an arbitrary
16
 * externally-given color map.
17
 *
18
 * Note: ordered dithering is not supported, since there isn't any fast
19
 * way to compute intercolor distances; it's unclear that ordered dither's
20
 * fundamental assumptions even hold with an irregularly spaced color map.
21
 */
22
23
#define JPEG_INTERNALS
24
#include "jinclude.h"
25
#include "jpeglib.h"
26
#include "jsamplecomp.h"
27
28
#if defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16
29
30
31
/*
32
 * This module implements the well-known Heckbert paradigm for color
33
 * quantization.  Most of the ideas used here can be traced back to
34
 * Heckbert's seminal paper
35
 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
36
 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
37
 *
38
 * In the first pass over the image, we accumulate a histogram showing the
39
 * usage count of each possible color.  To keep the histogram to a reasonable
40
 * size, we reduce the precision of the input; typical practice is to retain
41
 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
42
 * in the same histogram cell.
43
 *
44
 * Next, the color-selection step begins with a box representing the whole
45
 * color space, and repeatedly splits the "largest" remaining box until we
46
 * have as many boxes as desired colors.  Then the mean color in each
47
 * remaining box becomes one of the possible output colors.
48
 *
49
 * The second pass over the image maps each input pixel to the closest output
50
 * color (optionally after applying a Floyd-Steinberg dithering correction).
51
 * This mapping is logically trivial, but making it go fast enough requires
52
 * considerable care.
53
 *
54
 * Heckbert-style quantizers vary a good deal in their policies for choosing
55
 * the "largest" box and deciding where to cut it.  The particular policies
56
 * used here have proved out well in experimental comparisons, but better ones
57
 * may yet be found.
58
 *
59
 * In earlier versions of the IJG code, this module quantized in YCbCr color
60
 * space, processing the raw upsampled data without a color conversion step.
61
 * This allowed the color conversion math to be done only once per colormap
62
 * entry, not once per pixel.  However, that optimization precluded other
63
 * useful optimizations (such as merging color conversion with upsampling)
64
 * and it also interfered with desired capabilities such as quantizing to an
65
 * externally-supplied colormap.  We have therefore abandoned that approach.
66
 * The present code works in the post-conversion color space, typically RGB.
67
 *
68
 * To improve the visual quality of the results, we actually work in scaled
69
 * RGB space, giving G distances more weight than R, and R in turn more than
70
 * B.  To do everything in integer math, we must use integer scale factors.
71
 * The 2/3/1 scale factors used here correspond loosely to the relative
72
 * weights of the colors in the NTSC grayscale equation.
73
 * If you want to use this code to quantize a non-RGB color space, you'll
74
 * probably need to change these scale factors.
75
 */
76
77
#define R_SCALE  2              /* scale R distances by this much */
78
#define G_SCALE  3              /* scale G distances by this much */
79
#define B_SCALE  1              /* and B by this much */
80
81
static const int c_scales[3] = { R_SCALE, G_SCALE, B_SCALE };
82
0
#define C0_SCALE  c_scales[rgb_red[cinfo->out_color_space]]
83
0
#define C1_SCALE  c_scales[rgb_green[cinfo->out_color_space]]
84
0
#define C2_SCALE  c_scales[rgb_blue[cinfo->out_color_space]]
85
86
/*
87
 * First we have the histogram data structure and routines for creating it.
88
 *
89
 * The number of bits of precision can be adjusted by changing these symbols.
90
 * We recommend keeping 6 bits for G and 5 each for R and B.
91
 * If you have plenty of memory and cycles, 6 bits all around gives marginally
92
 * better results; if you are short of memory, 5 bits all around will save
93
 * some space but degrade the results.
94
 * To maintain a fully accurate histogram, we'd need to allocate a "long"
95
 * (preferably unsigned long) for each cell.  In practice this is overkill;
96
 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
97
 * and clamping those that do overflow to the maximum value will give close-
98
 * enough results.  This reduces the recommended histogram size from 256Kb
99
 * to 128Kb, which is a useful savings on PC-class machines.
100
 * (In the second pass the histogram space is re-used for pixel mapping data;
101
 * in that capacity, each cell must be able to store zero to the number of
102
 * desired colors.  16 bits/cell is plenty for that too.)
103
 * Since the JPEG code is intended to run in small memory model on 80x86
104
 * machines, we can't just allocate the histogram in one chunk.  Instead
105
 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
106
 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
107
 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
108
 */
109
110
0
#define MAXNUMCOLORS  (_MAXJSAMPLE + 1) /* maximum size of colormap */
111
112
/* These will do the right thing for either R,G,B or B,G,R color order,
113
 * but you may not like the results for other color orders.
114
 */
115
0
#define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
116
0
#define HIST_C1_BITS  6         /* bits of precision in G histogram */
117
0
#define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
118
119
/* Number of elements along histogram axes. */
120
0
#define HIST_C0_ELEMS  (1 << HIST_C0_BITS)
121
0
#define HIST_C1_ELEMS  (1 << HIST_C1_BITS)
122
0
#define HIST_C2_ELEMS  (1 << HIST_C2_BITS)
123
124
/* These are the amounts to shift an input value to get a histogram index. */
125
0
#define C0_SHIFT  (BITS_IN_JSAMPLE - HIST_C0_BITS)
126
0
#define C1_SHIFT  (BITS_IN_JSAMPLE - HIST_C1_BITS)
127
0
#define C2_SHIFT  (BITS_IN_JSAMPLE - HIST_C2_BITS)
128
129
130
typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
131
132
typedef histcell *histptr;      /* for pointers to histogram cells */
133
134
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
135
typedef hist1d *hist2d;         /* type for the 2nd-level pointers */
136
typedef hist2d *hist3d;         /* type for top-level pointer */
137
138
139
/* Declarations for Floyd-Steinberg dithering.
140
 *
141
 * Errors are accumulated into the array fserrors[], at a resolution of
142
 * 1/16th of a pixel count.  The error at a given pixel is propagated
143
 * to its not-yet-processed neighbors using the standard F-S fractions,
144
 *              ...     (here)  7/16
145
 *              3/16    5/16    1/16
146
 * We work left-to-right on even rows, right-to-left on odd rows.
147
 *
148
 * We can get away with a single array (holding one row's worth of errors)
149
 * by using it to store the current row's errors at pixel columns not yet
150
 * processed, but the next row's errors at columns already processed.  We
151
 * need only a few extra variables to hold the errors immediately around the
152
 * current column.  (If we are lucky, those variables are in registers, but
153
 * even if not, they're probably cheaper to access than array elements are.)
154
 *
155
 * The fserrors[] array has (#columns + 2) entries; the extra entry at
156
 * each end saves us from special-casing the first and last pixels.
157
 * Each entry is three values long, one value for each color component.
158
 */
159
160
#if BITS_IN_JSAMPLE == 8
161
typedef INT16 FSERROR;          /* 16 bits should be enough */
162
typedef int LOCFSERROR;         /* use 'int' for calculation temps */
163
#else
164
typedef JLONG FSERROR;          /* may need more than 16 bits */
165
typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
166
#endif
167
168
typedef FSERROR *FSERRPTR;      /* pointer to error array */
169
170
171
/* Private subobject */
172
173
typedef struct {
174
  struct jpeg_color_quantizer pub; /* public fields */
175
176
  /* Space for the eventually created colormap is stashed here */
177
  _JSAMPARRAY sv_colormap;      /* colormap allocated at init time */
178
  int desired;                  /* desired # of colors = size of colormap */
179
180
  /* Variables for accumulating image statistics */
181
  hist3d histogram;             /* pointer to the histogram */
182
183
  boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
184
185
  /* Variables for Floyd-Steinberg dithering */
186
  FSERRPTR fserrors;            /* accumulated errors */
187
  boolean on_odd_row;           /* flag to remember which row we are on */
188
  int *error_limiter;           /* table for clamping the applied error */
189
} my_cquantizer;
190
191
typedef my_cquantizer *my_cquantize_ptr;
192
193
194
/*
195
 * Prescan some rows of pixels.
196
 * In this module the prescan simply updates the histogram, which has been
197
 * initialized to zeroes by start_pass.
198
 * An output_buf parameter is required by the method signature, but no data
199
 * is actually output (in fact the buffer controller is probably passing a
200
 * NULL pointer).
201
 */
202
203
METHODDEF(void)
204
prescan_quantize(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
205
                 _JSAMPARRAY output_buf, int num_rows)
206
0
{
207
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
208
0
  register _JSAMPROW ptr;
209
0
  register histptr histp;
210
0
  register hist3d histogram = cquantize->histogram;
211
0
  int row;
212
0
  JDIMENSION col;
213
0
  JDIMENSION width = cinfo->output_width;
214
215
0
  for (row = 0; row < num_rows; row++) {
216
0
    ptr = input_buf[row];
217
0
    for (col = width; col > 0; col--) {
218
      /* get pixel value and index into the histogram */
219
0
      histp = &histogram[ptr[0] >> C0_SHIFT]
220
0
                        [ptr[1] >> C1_SHIFT]
221
0
                        [ptr[2] >> C2_SHIFT];
222
      /* increment, check for overflow and undo increment if so. */
223
0
      if (++(*histp) <= 0)
224
0
        (*histp)--;
225
0
      ptr += 3;
226
0
    }
227
0
  }
228
0
}
229
230
231
/*
232
 * Next we have the really interesting routines: selection of a colormap
233
 * given the completed histogram.
234
 * These routines work with a list of "boxes", each representing a rectangular
235
 * subset of the input color space (to histogram precision).
236
 */
237
238
typedef struct {
239
  /* The bounds of the box (inclusive); expressed as histogram indexes */
240
  int c0min, c0max;
241
  int c1min, c1max;
242
  int c2min, c2max;
243
  /* The volume (actually 2-norm) of the box */
244
  JLONG volume;
245
  /* The number of nonzero histogram cells within this box */
246
  long colorcount;
247
} box;
248
249
typedef box *boxptr;
250
251
252
LOCAL(boxptr)
253
find_biggest_color_pop(boxptr boxlist, int numboxes)
254
/* Find the splittable box with the largest color population */
255
/* Returns NULL if no splittable boxes remain */
256
0
{
257
0
  register boxptr boxp;
258
0
  register int i;
259
0
  register long maxc = 0;
260
0
  boxptr which = NULL;
261
262
0
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
263
0
    if (boxp->colorcount > maxc && boxp->volume > 0) {
264
0
      which = boxp;
265
0
      maxc = boxp->colorcount;
266
0
    }
267
0
  }
268
0
  return which;
269
0
}
270
271
272
LOCAL(boxptr)
273
find_biggest_volume(boxptr boxlist, int numboxes)
274
/* Find the splittable box with the largest (scaled) volume */
275
/* Returns NULL if no splittable boxes remain */
276
0
{
277
0
  register boxptr boxp;
278
0
  register int i;
279
0
  register JLONG maxv = 0;
280
0
  boxptr which = NULL;
281
282
0
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
283
0
    if (boxp->volume > maxv) {
284
0
      which = boxp;
285
0
      maxv = boxp->volume;
286
0
    }
287
0
  }
288
0
  return which;
289
0
}
290
291
292
LOCAL(void)
293
update_box(j_decompress_ptr cinfo, boxptr boxp)
294
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
295
/* and recompute its volume and population */
296
0
{
297
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
298
0
  hist3d histogram = cquantize->histogram;
299
0
  histptr histp;
300
0
  int c0, c1, c2;
301
0
  int c0min, c0max, c1min, c1max, c2min, c2max;
302
0
  JLONG dist0, dist1, dist2;
303
0
  long ccount;
304
305
0
  c0min = boxp->c0min;  c0max = boxp->c0max;
306
0
  c1min = boxp->c1min;  c1max = boxp->c1max;
307
0
  c2min = boxp->c2min;  c2max = boxp->c2max;
308
309
0
  if (c0max > c0min)
310
0
    for (c0 = c0min; c0 <= c0max; c0++)
311
0
      for (c1 = c1min; c1 <= c1max; c1++) {
312
0
        histp = &histogram[c0][c1][c2min];
313
0
        for (c2 = c2min; c2 <= c2max; c2++)
314
0
          if (*histp++ != 0) {
315
0
            boxp->c0min = c0min = c0;
316
0
            goto have_c0min;
317
0
          }
318
0
      }
319
0
have_c0min:
320
0
  if (c0max > c0min)
321
0
    for (c0 = c0max; c0 >= c0min; c0--)
322
0
      for (c1 = c1min; c1 <= c1max; c1++) {
323
0
        histp = &histogram[c0][c1][c2min];
324
0
        for (c2 = c2min; c2 <= c2max; c2++)
325
0
          if (*histp++ != 0) {
326
0
            boxp->c0max = c0max = c0;
327
0
            goto have_c0max;
328
0
          }
329
0
      }
330
0
have_c0max:
331
0
  if (c1max > c1min)
332
0
    for (c1 = c1min; c1 <= c1max; c1++)
333
0
      for (c0 = c0min; c0 <= c0max; c0++) {
334
0
        histp = &histogram[c0][c1][c2min];
335
0
        for (c2 = c2min; c2 <= c2max; c2++)
336
0
          if (*histp++ != 0) {
337
0
            boxp->c1min = c1min = c1;
338
0
            goto have_c1min;
339
0
          }
340
0
      }
341
0
have_c1min:
342
0
  if (c1max > c1min)
343
0
    for (c1 = c1max; c1 >= c1min; c1--)
344
0
      for (c0 = c0min; c0 <= c0max; c0++) {
345
0
        histp = &histogram[c0][c1][c2min];
346
0
        for (c2 = c2min; c2 <= c2max; c2++)
347
0
          if (*histp++ != 0) {
348
0
            boxp->c1max = c1max = c1;
349
0
            goto have_c1max;
350
0
          }
351
0
      }
352
0
have_c1max:
353
0
  if (c2max > c2min)
354
0
    for (c2 = c2min; c2 <= c2max; c2++)
355
0
      for (c0 = c0min; c0 <= c0max; c0++) {
356
0
        histp = &histogram[c0][c1min][c2];
357
0
        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
358
0
          if (*histp != 0) {
359
0
            boxp->c2min = c2min = c2;
360
0
            goto have_c2min;
361
0
          }
362
0
      }
363
0
have_c2min:
364
0
  if (c2max > c2min)
365
0
    for (c2 = c2max; c2 >= c2min; c2--)
366
0
      for (c0 = c0min; c0 <= c0max; c0++) {
367
0
        histp = &histogram[c0][c1min][c2];
368
0
        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
369
0
          if (*histp != 0) {
370
0
            boxp->c2max = c2max = c2;
371
0
            goto have_c2max;
372
0
          }
373
0
      }
374
0
have_c2max:
375
376
  /* Update box volume.
377
   * We use 2-norm rather than real volume here; this biases the method
378
   * against making long narrow boxes, and it has the side benefit that
379
   * a box is splittable iff norm > 0.
380
   * Since the differences are expressed in histogram-cell units,
381
   * we have to shift back to _JSAMPLE units to get consistent distances;
382
   * after which, we scale according to the selected distance scale factors.
383
   */
384
0
  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
385
0
  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
386
0
  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
387
0
  boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
388
389
  /* Now scan remaining volume of box and compute population */
390
0
  ccount = 0;
391
0
  for (c0 = c0min; c0 <= c0max; c0++)
392
0
    for (c1 = c1min; c1 <= c1max; c1++) {
393
0
      histp = &histogram[c0][c1][c2min];
394
0
      for (c2 = c2min; c2 <= c2max; c2++, histp++)
395
0
        if (*histp != 0) {
396
0
          ccount++;
397
0
        }
398
0
    }
399
0
  boxp->colorcount = ccount;
400
0
}
401
402
403
LOCAL(int)
404
median_cut(j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
405
           int desired_colors)
406
/* Repeatedly select and split the largest box until we have enough boxes */
407
0
{
408
0
  int n, lb;
409
0
  int c0, c1, c2, cmax;
410
0
  register boxptr b1, b2;
411
412
0
  while (numboxes < desired_colors) {
413
    /* Select box to split.
414
     * Current algorithm: by population for first half, then by volume.
415
     */
416
0
    if (numboxes * 2 <= desired_colors) {
417
0
      b1 = find_biggest_color_pop(boxlist, numboxes);
418
0
    } else {
419
0
      b1 = find_biggest_volume(boxlist, numboxes);
420
0
    }
421
0
    if (b1 == NULL)             /* no splittable boxes left! */
422
0
      break;
423
0
    b2 = &boxlist[numboxes];    /* where new box will go */
424
    /* Copy the color bounds to the new box. */
425
0
    b2->c0max = b1->c0max;  b2->c1max = b1->c1max;  b2->c2max = b1->c2max;
426
0
    b2->c0min = b1->c0min;  b2->c1min = b1->c1min;  b2->c2min = b1->c2min;
427
    /* Choose which axis to split the box on.
428
     * Current algorithm: longest scaled axis.
429
     * See notes in update_box about scaling distances.
430
     */
431
0
    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
432
0
    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
433
0
    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
434
    /* We want to break any ties in favor of green, then red, blue last.
435
     * This code does the right thing for R,G,B or B,G,R color orders only.
436
     */
437
0
    if (rgb_red[cinfo->out_color_space] == 0) {
438
0
      cmax = c1;  n = 1;
439
0
      if (c0 > cmax) { cmax = c0;  n = 0; }
440
0
      if (c2 > cmax) { n = 2; }
441
0
    } else {
442
0
      cmax = c1;  n = 1;
443
0
      if (c2 > cmax) { cmax = c2;  n = 2; }
444
0
      if (c0 > cmax) { n = 0; }
445
0
    }
446
    /* Choose split point along selected axis, and update box bounds.
447
     * Current algorithm: split at halfway point.
448
     * (Since the box has been shrunk to minimum volume,
449
     * any split will produce two nonempty subboxes.)
450
     * Note that lb value is max for lower box, so must be < old max.
451
     */
452
0
    switch (n) {
453
0
    case 0:
454
0
      lb = (b1->c0max + b1->c0min) / 2;
455
0
      b1->c0max = lb;
456
0
      b2->c0min = lb + 1;
457
0
      break;
458
0
    case 1:
459
0
      lb = (b1->c1max + b1->c1min) / 2;
460
0
      b1->c1max = lb;
461
0
      b2->c1min = lb + 1;
462
0
      break;
463
0
    case 2:
464
0
      lb = (b1->c2max + b1->c2min) / 2;
465
0
      b1->c2max = lb;
466
0
      b2->c2min = lb + 1;
467
0
      break;
468
0
    }
469
    /* Update stats for boxes */
470
0
    update_box(cinfo, b1);
471
0
    update_box(cinfo, b2);
472
0
    numboxes++;
473
0
  }
474
0
  return numboxes;
475
0
}
476
477
478
LOCAL(void)
479
compute_color(j_decompress_ptr cinfo, boxptr boxp, int icolor)
480
/* Compute representative color for a box, put it in colormap[icolor] */
481
0
{
482
  /* Current algorithm: mean weighted by pixels (not colors) */
483
  /* Note it is important to get the rounding correct! */
484
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
485
0
  hist3d histogram = cquantize->histogram;
486
0
  histptr histp;
487
0
  int c0, c1, c2;
488
0
  int c0min, c0max, c1min, c1max, c2min, c2max;
489
0
  long count;
490
0
  long total = 0;
491
0
  long c0total = 0;
492
0
  long c1total = 0;
493
0
  long c2total = 0;
494
495
0
  c0min = boxp->c0min;  c0max = boxp->c0max;
496
0
  c1min = boxp->c1min;  c1max = boxp->c1max;
497
0
  c2min = boxp->c2min;  c2max = boxp->c2max;
498
499
0
  for (c0 = c0min; c0 <= c0max; c0++)
500
0
    for (c1 = c1min; c1 <= c1max; c1++) {
501
0
      histp = &histogram[c0][c1][c2min];
502
0
      for (c2 = c2min; c2 <= c2max; c2++) {
503
0
        if ((count = *histp++) != 0) {
504
0
          total += count;
505
0
          c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
506
0
          c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
507
0
          c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
508
0
        }
509
0
      }
510
0
    }
511
512
0
  ((_JSAMPARRAY)cinfo->colormap)[0][icolor] =
513
0
    (_JSAMPLE)((c0total + (total >> 1)) / total);
514
0
  ((_JSAMPARRAY)cinfo->colormap)[1][icolor] =
515
0
    (_JSAMPLE)((c1total + (total >> 1)) / total);
516
0
  ((_JSAMPARRAY)cinfo->colormap)[2][icolor] =
517
0
    (_JSAMPLE)((c2total + (total >> 1)) / total);
518
0
}
519
520
521
LOCAL(void)
522
select_colors(j_decompress_ptr cinfo, int desired_colors)
523
/* Master routine for color selection */
524
0
{
525
0
  boxptr boxlist;
526
0
  int numboxes;
527
0
  int i;
528
529
  /* Allocate workspace for box list */
530
0
  boxlist = (boxptr)(*cinfo->mem->alloc_small)
531
0
    ((j_common_ptr)cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
532
  /* Initialize one box containing whole space */
533
0
  numboxes = 1;
534
0
  boxlist[0].c0min = 0;
535
0
  boxlist[0].c0max = _MAXJSAMPLE >> C0_SHIFT;
536
0
  boxlist[0].c1min = 0;
537
0
  boxlist[0].c1max = _MAXJSAMPLE >> C1_SHIFT;
538
0
  boxlist[0].c2min = 0;
539
0
  boxlist[0].c2max = _MAXJSAMPLE >> C2_SHIFT;
540
  /* Shrink it to actually-used volume and set its statistics */
541
0
  update_box(cinfo, &boxlist[0]);
542
  /* Perform median-cut to produce final box list */
543
0
  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
544
  /* Compute the representative color for each box, fill colormap */
545
0
  for (i = 0; i < numboxes; i++)
546
0
    compute_color(cinfo, &boxlist[i], i);
547
0
  cinfo->actual_number_of_colors = numboxes;
548
0
  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
549
0
}
550
551
552
/*
553
 * These routines are concerned with the time-critical task of mapping input
554
 * colors to the nearest color in the selected colormap.
555
 *
556
 * We re-use the histogram space as an "inverse color map", essentially a
557
 * cache for the results of nearest-color searches.  All colors within a
558
 * histogram cell will be mapped to the same colormap entry, namely the one
559
 * closest to the cell's center.  This may not be quite the closest entry to
560
 * the actual input color, but it's almost as good.  A zero in the cache
561
 * indicates we haven't found the nearest color for that cell yet; the array
562
 * is cleared to zeroes before starting the mapping pass.  When we find the
563
 * nearest color for a cell, its colormap index plus one is recorded in the
564
 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
565
 * when they need to use an unfilled entry in the cache.
566
 *
567
 * Our method of efficiently finding nearest colors is based on the "locally
568
 * sorted search" idea described by Heckbert and on the incremental distance
569
 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
570
 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
571
 * the distances from a given colormap entry to each cell of the histogram can
572
 * be computed quickly using an incremental method: the differences between
573
 * distances to adjacent cells themselves differ by a constant.  This allows a
574
 * fairly fast implementation of the "brute force" approach of computing the
575
 * distance from every colormap entry to every histogram cell.  Unfortunately,
576
 * it needs a work array to hold the best-distance-so-far for each histogram
577
 * cell (because the inner loop has to be over cells, not colormap entries).
578
 * The work array elements have to be JLONGs, so the work array would need
579
 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
580
 *
581
 * To get around these problems, we apply Thomas' method to compute the
582
 * nearest colors for only the cells within a small subbox of the histogram.
583
 * The work array need be only as big as the subbox, so the memory usage
584
 * problem is solved.  Furthermore, we need not fill subboxes that are never
585
 * referenced in pass2; many images use only part of the color gamut, so a
586
 * fair amount of work is saved.  An additional advantage of this
587
 * approach is that we can apply Heckbert's locality criterion to quickly
588
 * eliminate colormap entries that are far away from the subbox; typically
589
 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
590
 * and we need not compute their distances to individual cells in the subbox.
591
 * The speed of this approach is heavily influenced by the subbox size: too
592
 * small means too much overhead, too big loses because Heckbert's criterion
593
 * can't eliminate as many colormap entries.  Empirically the best subbox
594
 * size seems to be about 1/512th of the histogram (1/8th in each direction).
595
 *
596
 * Thomas' article also describes a refined method which is asymptotically
597
 * faster than the brute-force method, but it is also far more complex and
598
 * cannot efficiently be applied to small subboxes.  It is therefore not
599
 * useful for programs intended to be portable to DOS machines.  On machines
600
 * with plenty of memory, filling the whole histogram in one shot with Thomas'
601
 * refined method might be faster than the present code --- but then again,
602
 * it might not be any faster, and it's certainly more complicated.
603
 */
604
605
606
/* log2(histogram cells in update box) for each axis; this can be adjusted */
607
0
#define BOX_C0_LOG  (HIST_C0_BITS - 3)
608
0
#define BOX_C1_LOG  (HIST_C1_BITS - 3)
609
0
#define BOX_C2_LOG  (HIST_C2_BITS - 3)
610
611
0
#define BOX_C0_ELEMS  (1 << BOX_C0_LOG) /* # of hist cells in update box */
612
0
#define BOX_C1_ELEMS  (1 << BOX_C1_LOG)
613
0
#define BOX_C2_ELEMS  (1 << BOX_C2_LOG)
614
615
0
#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
616
0
#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
617
0
#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
618
619
620
/*
621
 * The next three routines implement inverse colormap filling.  They could
622
 * all be folded into one big routine, but splitting them up this way saves
623
 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
624
 * and may allow some compilers to produce better code by registerizing more
625
 * inner-loop variables.
626
 */
627
628
LOCAL(int)
629
find_nearby_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
630
                   _JSAMPLE colorlist[])
631
/* Locate the colormap entries close enough to an update box to be candidates
632
 * for the nearest entry to some cell(s) in the update box.  The update box
633
 * is specified by the center coordinates of its first cell.  The number of
634
 * candidate colormap entries is returned, and their colormap indexes are
635
 * placed in colorlist[].
636
 * This routine uses Heckbert's "locally sorted search" criterion to select
637
 * the colors that need further consideration.
638
 */
639
0
{
640
0
  int numcolors = cinfo->actual_number_of_colors;
641
0
  int maxc0, maxc1, maxc2;
642
0
  int centerc0, centerc1, centerc2;
643
0
  int i, x, ncolors;
644
0
  JLONG minmaxdist, min_dist, max_dist, tdist;
645
0
  JLONG mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
646
647
  /* Compute true coordinates of update box's upper corner and center.
648
   * Actually we compute the coordinates of the center of the upper-corner
649
   * histogram cell, which are the upper bounds of the volume we care about.
650
   * Note that since ">>" rounds down, the "center" values may be closer to
651
   * min than to max; hence comparisons to them must be "<=", not "<".
652
   */
653
0
  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
654
0
  centerc0 = (minc0 + maxc0) >> 1;
655
0
  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
656
0
  centerc1 = (minc1 + maxc1) >> 1;
657
0
  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
658
0
  centerc2 = (minc2 + maxc2) >> 1;
659
660
  /* For each color in colormap, find:
661
   *  1. its minimum squared-distance to any point in the update box
662
   *     (zero if color is within update box);
663
   *  2. its maximum squared-distance to any point in the update box.
664
   * Both of these can be found by considering only the corners of the box.
665
   * We save the minimum distance for each color in mindist[];
666
   * only the smallest maximum distance is of interest.
667
   */
668
0
  minmaxdist = 0x7FFFFFFFL;
669
670
0
  for (i = 0; i < numcolors; i++) {
671
    /* We compute the squared-c0-distance term, then add in the other two. */
672
0
    x = ((_JSAMPARRAY)cinfo->colormap)[0][i];
673
0
    if (x < minc0) {
674
0
      tdist = (x - minc0) * C0_SCALE;
675
0
      min_dist = tdist * tdist;
676
0
      tdist = (x - maxc0) * C0_SCALE;
677
0
      max_dist = tdist * tdist;
678
0
    } else if (x > maxc0) {
679
0
      tdist = (x - maxc0) * C0_SCALE;
680
0
      min_dist = tdist * tdist;
681
0
      tdist = (x - minc0) * C0_SCALE;
682
0
      max_dist = tdist * tdist;
683
0
    } else {
684
      /* within cell range so no contribution to min_dist */
685
0
      min_dist = 0;
686
0
      if (x <= centerc0) {
687
0
        tdist = (x - maxc0) * C0_SCALE;
688
0
        max_dist = tdist * tdist;
689
0
      } else {
690
0
        tdist = (x - minc0) * C0_SCALE;
691
0
        max_dist = tdist * tdist;
692
0
      }
693
0
    }
694
695
0
    x = ((_JSAMPARRAY)cinfo->colormap)[1][i];
696
0
    if (x < minc1) {
697
0
      tdist = (x - minc1) * C1_SCALE;
698
0
      min_dist += tdist * tdist;
699
0
      tdist = (x - maxc1) * C1_SCALE;
700
0
      max_dist += tdist * tdist;
701
0
    } else if (x > maxc1) {
702
0
      tdist = (x - maxc1) * C1_SCALE;
703
0
      min_dist += tdist * tdist;
704
0
      tdist = (x - minc1) * C1_SCALE;
705
0
      max_dist += tdist * tdist;
706
0
    } else {
707
      /* within cell range so no contribution to min_dist */
708
0
      if (x <= centerc1) {
709
0
        tdist = (x - maxc1) * C1_SCALE;
710
0
        max_dist += tdist * tdist;
711
0
      } else {
712
0
        tdist = (x - minc1) * C1_SCALE;
713
0
        max_dist += tdist * tdist;
714
0
      }
715
0
    }
716
717
0
    x = ((_JSAMPARRAY)cinfo->colormap)[2][i];
718
0
    if (x < minc2) {
719
0
      tdist = (x - minc2) * C2_SCALE;
720
0
      min_dist += tdist * tdist;
721
0
      tdist = (x - maxc2) * C2_SCALE;
722
0
      max_dist += tdist * tdist;
723
0
    } else if (x > maxc2) {
724
0
      tdist = (x - maxc2) * C2_SCALE;
725
0
      min_dist += tdist * tdist;
726
0
      tdist = (x - minc2) * C2_SCALE;
727
0
      max_dist += tdist * tdist;
728
0
    } else {
729
      /* within cell range so no contribution to min_dist */
730
0
      if (x <= centerc2) {
731
0
        tdist = (x - maxc2) * C2_SCALE;
732
0
        max_dist += tdist * tdist;
733
0
      } else {
734
0
        tdist = (x - minc2) * C2_SCALE;
735
0
        max_dist += tdist * tdist;
736
0
      }
737
0
    }
738
739
0
    mindist[i] = min_dist;      /* save away the results */
740
0
    if (max_dist < minmaxdist)
741
0
      minmaxdist = max_dist;
742
0
  }
743
744
  /* Now we know that no cell in the update box is more than minmaxdist
745
   * away from some colormap entry.  Therefore, only colors that are
746
   * within minmaxdist of some part of the box need be considered.
747
   */
748
0
  ncolors = 0;
749
0
  for (i = 0; i < numcolors; i++) {
750
0
    if (mindist[i] <= minmaxdist)
751
0
      colorlist[ncolors++] = (_JSAMPLE)i;
752
0
  }
753
0
  return ncolors;
754
0
}
755
756
757
LOCAL(void)
758
find_best_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
759
                 int numcolors, _JSAMPLE colorlist[], _JSAMPLE bestcolor[])
760
/* Find the closest colormap entry for each cell in the update box,
761
 * given the list of candidate colors prepared by find_nearby_colors.
762
 * Return the indexes of the closest entries in the bestcolor[] array.
763
 * This routine uses Thomas' incremental distance calculation method to
764
 * find the distance from a colormap entry to successive cells in the box.
765
 */
766
0
{
767
0
  int ic0, ic1, ic2;
768
0
  int i, icolor;
769
0
  register JLONG *bptr;         /* pointer into bestdist[] array */
770
0
  _JSAMPLE *cptr;               /* pointer into bestcolor[] array */
771
0
  JLONG dist0, dist1;           /* initial distance values */
772
0
  register JLONG dist2;         /* current distance in inner loop */
773
0
  JLONG xx0, xx1;               /* distance increments */
774
0
  register JLONG xx2;
775
0
  JLONG inc0, inc1, inc2;       /* initial values for increments */
776
  /* This array holds the distance to the nearest-so-far color for each cell */
777
0
  JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
778
779
  /* Initialize best-distance for each cell of the update box */
780
0
  bptr = bestdist;
781
0
  for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
782
0
    *bptr++ = 0x7FFFFFFFL;
783
784
  /* For each color selected by find_nearby_colors,
785
   * compute its distance to the center of each cell in the box.
786
   * If that's less than best-so-far, update best distance and color number.
787
   */
788
789
  /* Nominal steps between cell centers ("x" in Thomas article) */
790
0
#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
791
0
#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
792
0
#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
793
794
0
  for (i = 0; i < numcolors; i++) {
795
0
    icolor = colorlist[i];
796
    /* Compute (square of) distance from minc0/c1/c2 to this color */
797
0
    inc0 = (minc0 - ((_JSAMPARRAY)cinfo->colormap)[0][icolor]) * C0_SCALE;
798
0
    dist0 = inc0 * inc0;
799
0
    inc1 = (minc1 - ((_JSAMPARRAY)cinfo->colormap)[1][icolor]) * C1_SCALE;
800
0
    dist0 += inc1 * inc1;
801
0
    inc2 = (minc2 - ((_JSAMPARRAY)cinfo->colormap)[2][icolor]) * C2_SCALE;
802
0
    dist0 += inc2 * inc2;
803
    /* Form the initial difference increments */
804
0
    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
805
0
    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
806
0
    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
807
    /* Now loop over all cells in box, updating distance per Thomas method */
808
0
    bptr = bestdist;
809
0
    cptr = bestcolor;
810
0
    xx0 = inc0;
811
0
    for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) {
812
0
      dist1 = dist0;
813
0
      xx1 = inc1;
814
0
      for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) {
815
0
        dist2 = dist1;
816
0
        xx2 = inc2;
817
0
        for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) {
818
0
          if (dist2 < *bptr) {
819
0
            *bptr = dist2;
820
0
            *cptr = (_JSAMPLE)icolor;
821
0
          }
822
0
          dist2 += xx2;
823
0
          xx2 += 2 * STEP_C2 * STEP_C2;
824
0
          bptr++;
825
0
          cptr++;
826
0
        }
827
0
        dist1 += xx1;
828
0
        xx1 += 2 * STEP_C1 * STEP_C1;
829
0
      }
830
0
      dist0 += xx0;
831
0
      xx0 += 2 * STEP_C0 * STEP_C0;
832
0
    }
833
0
  }
834
0
}
835
836
837
LOCAL(void)
838
fill_inverse_cmap(j_decompress_ptr cinfo, int c0, int c1, int c2)
839
/* Fill the inverse-colormap entries in the update box that contains */
840
/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
841
/* we can fill as many others as we wish.) */
842
0
{
843
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
844
0
  hist3d histogram = cquantize->histogram;
845
0
  int minc0, minc1, minc2;      /* lower left corner of update box */
846
0
  int ic0, ic1, ic2;
847
0
  register _JSAMPLE *cptr;      /* pointer into bestcolor[] array */
848
0
  register histptr cachep;      /* pointer into main cache array */
849
  /* This array lists the candidate colormap indexes. */
850
0
  _JSAMPLE colorlist[MAXNUMCOLORS];
851
0
  int numcolors;                /* number of candidate colors */
852
  /* This array holds the actually closest colormap index for each cell. */
853
0
  _JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
854
855
  /* Convert cell coordinates to update box ID */
856
0
  c0 >>= BOX_C0_LOG;
857
0
  c1 >>= BOX_C1_LOG;
858
0
  c2 >>= BOX_C2_LOG;
859
860
  /* Compute true coordinates of update box's origin corner.
861
   * Actually we compute the coordinates of the center of the corner
862
   * histogram cell, which are the lower bounds of the volume we care about.
863
   */
864
0
  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
865
0
  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
866
0
  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
867
868
  /* Determine which colormap entries are close enough to be candidates
869
   * for the nearest entry to some cell in the update box.
870
   */
871
0
  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
872
873
  /* Determine the actually nearest colors. */
874
0
  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
875
0
                   bestcolor);
876
877
  /* Save the best color numbers (plus 1) in the main cache array */
878
0
  c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
879
0
  c1 <<= BOX_C1_LOG;
880
0
  c2 <<= BOX_C2_LOG;
881
0
  cptr = bestcolor;
882
0
  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
883
0
    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
884
0
      cachep = &histogram[c0 + ic0][c1 + ic1][c2];
885
0
      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
886
0
        *cachep++ = (histcell)((*cptr++) + 1);
887
0
      }
888
0
    }
889
0
  }
890
0
}
891
892
893
/*
894
 * Map some rows of pixels to the output colormapped representation.
895
 */
896
897
METHODDEF(void)
898
pass2_no_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
899
                _JSAMPARRAY output_buf, int num_rows)
900
/* This version performs no dithering */
901
0
{
902
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
903
0
  hist3d histogram = cquantize->histogram;
904
0
  register _JSAMPROW inptr, outptr;
905
0
  register histptr cachep;
906
0
  register int c0, c1, c2;
907
0
  int row;
908
0
  JDIMENSION col;
909
0
  JDIMENSION width = cinfo->output_width;
910
911
0
  for (row = 0; row < num_rows; row++) {
912
0
    inptr = input_buf[row];
913
0
    outptr = output_buf[row];
914
0
    for (col = width; col > 0; col--) {
915
      /* get pixel value and index into the cache */
916
0
      c0 = (*inptr++) >> C0_SHIFT;
917
0
      c1 = (*inptr++) >> C1_SHIFT;
918
0
      c2 = (*inptr++) >> C2_SHIFT;
919
0
      cachep = &histogram[c0][c1][c2];
920
      /* If we have not seen this color before, find nearest colormap entry */
921
      /* and update the cache */
922
0
      if (*cachep == 0)
923
0
        fill_inverse_cmap(cinfo, c0, c1, c2);
924
      /* Now emit the colormap index for this cell */
925
0
      *outptr++ = (_JSAMPLE)(*cachep - 1);
926
0
    }
927
0
  }
928
0
}
929
930
931
METHODDEF(void)
932
pass2_fs_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
933
                _JSAMPARRAY output_buf, int num_rows)
934
/* This version performs Floyd-Steinberg dithering */
935
0
{
936
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
937
0
  hist3d histogram = cquantize->histogram;
938
0
  register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
939
0
  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
940
0
  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
941
0
  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
942
0
  _JSAMPROW inptr;              /* => current input pixel */
943
0
  _JSAMPROW outptr;             /* => current output pixel */
944
0
  histptr cachep;
945
0
  int dir;                      /* +1 or -1 depending on direction */
946
0
  int dir3;                     /* 3*dir, for advancing inptr & errorptr */
947
0
  int row;
948
0
  JDIMENSION col;
949
0
  JDIMENSION width = cinfo->output_width;
950
0
  _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
951
0
  int *error_limit = cquantize->error_limiter;
952
0
  _JSAMPROW colormap0 = ((_JSAMPARRAY)cinfo->colormap)[0];
953
0
  _JSAMPROW colormap1 = ((_JSAMPARRAY)cinfo->colormap)[1];
954
0
  _JSAMPROW colormap2 = ((_JSAMPARRAY)cinfo->colormap)[2];
955
0
  SHIFT_TEMPS
956
957
0
  for (row = 0; row < num_rows; row++) {
958
0
    inptr = input_buf[row];
959
0
    outptr = output_buf[row];
960
0
    if (cquantize->on_odd_row) {
961
      /* work right to left in this row */
962
0
      inptr += (width - 1) * 3; /* so point to rightmost pixel */
963
0
      outptr += width - 1;
964
0
      dir = -1;
965
0
      dir3 = -3;
966
0
      errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */
967
0
      cquantize->on_odd_row = FALSE; /* flip for next time */
968
0
    } else {
969
      /* work left to right in this row */
970
0
      dir = 1;
971
0
      dir3 = 3;
972
0
      errorptr = cquantize->fserrors; /* => entry before first real column */
973
0
      cquantize->on_odd_row = TRUE; /* flip for next time */
974
0
    }
975
    /* Preset error values: no error propagated to first pixel from left */
976
0
    cur0 = cur1 = cur2 = 0;
977
    /* and no error propagated to row below yet */
978
0
    belowerr0 = belowerr1 = belowerr2 = 0;
979
0
    bpreverr0 = bpreverr1 = bpreverr2 = 0;
980
981
0
    for (col = width; col > 0; col--) {
982
      /* curN holds the error propagated from the previous pixel on the
983
       * current line.  Add the error propagated from the previous line
984
       * to form the complete error correction term for this pixel, and
985
       * round the error term (which is expressed * 16) to an integer.
986
       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
987
       * for either sign of the error value.
988
       * Note: errorptr points to *previous* column's array entry.
989
       */
990
0
      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4);
991
0
      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4);
992
0
      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4);
993
      /* Limit the error using transfer function set by init_error_limit.
994
       * See comments with init_error_limit for rationale.
995
       */
996
0
      cur0 = error_limit[cur0];
997
0
      cur1 = error_limit[cur1];
998
0
      cur2 = error_limit[cur2];
999
      /* Form pixel value + error, and range-limit to 0.._MAXJSAMPLE.
1000
       * The maximum error is +- _MAXJSAMPLE (or less with error limiting);
1001
       * this sets the required size of the range_limit array.
1002
       */
1003
0
      cur0 += inptr[0];
1004
0
      cur1 += inptr[1];
1005
0
      cur2 += inptr[2];
1006
0
      cur0 = range_limit[cur0];
1007
0
      cur1 = range_limit[cur1];
1008
0
      cur2 = range_limit[cur2];
1009
      /* Index into the cache with adjusted pixel value */
1010
0
      cachep =
1011
0
        &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
1012
      /* If we have not seen this color before, find nearest colormap */
1013
      /* entry and update the cache */
1014
0
      if (*cachep == 0)
1015
0
        fill_inverse_cmap(cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT,
1016
0
                          cur2 >> C2_SHIFT);
1017
      /* Now emit the colormap index for this cell */
1018
0
      {
1019
0
        register int pixcode = *cachep - 1;
1020
0
        *outptr = (_JSAMPLE)pixcode;
1021
        /* Compute representation error for this pixel */
1022
0
        cur0 -= colormap0[pixcode];
1023
0
        cur1 -= colormap1[pixcode];
1024
0
        cur2 -= colormap2[pixcode];
1025
0
      }
1026
      /* Compute error fractions to be propagated to adjacent pixels.
1027
       * Add these into the running sums, and simultaneously shift the
1028
       * next-line error sums left by 1 column.
1029
       */
1030
0
      {
1031
0
        register LOCFSERROR bnexterr;
1032
1033
0
        bnexterr = cur0;        /* Process component 0 */
1034
0
        errorptr[0] = (FSERROR)(bpreverr0 + cur0 * 3);
1035
0
        bpreverr0 = belowerr0 + cur0 * 5;
1036
0
        belowerr0 = bnexterr;
1037
0
        cur0 *= 7;
1038
0
        bnexterr = cur1;        /* Process component 1 */
1039
0
        errorptr[1] = (FSERROR)(bpreverr1 + cur1 * 3);
1040
0
        bpreverr1 = belowerr1 + cur1 * 5;
1041
0
        belowerr1 = bnexterr;
1042
0
        cur1 *= 7;
1043
0
        bnexterr = cur2;        /* Process component 2 */
1044
0
        errorptr[2] = (FSERROR)(bpreverr2 + cur2 * 3);
1045
0
        bpreverr2 = belowerr2 + cur2 * 5;
1046
0
        belowerr2 = bnexterr;
1047
0
        cur2 *= 7;
1048
0
      }
1049
      /* At this point curN contains the 7/16 error value to be propagated
1050
       * to the next pixel on the current line, and all the errors for the
1051
       * next line have been shifted over.  We are therefore ready to move on.
1052
       */
1053
0
      inptr += dir3;            /* Advance pixel pointers to next column */
1054
0
      outptr += dir;
1055
0
      errorptr += dir3;         /* advance errorptr to current column */
1056
0
    }
1057
    /* Post-loop cleanup: we must unload the final error values into the
1058
     * final fserrors[] entry.  Note we need not unload belowerrN because
1059
     * it is for the dummy column before or after the actual array.
1060
     */
1061
0
    errorptr[0] = (FSERROR)bpreverr0; /* unload prev errs into array */
1062
0
    errorptr[1] = (FSERROR)bpreverr1;
1063
0
    errorptr[2] = (FSERROR)bpreverr2;
1064
0
  }
1065
0
}
1066
1067
1068
/*
1069
 * Initialize the error-limiting transfer function (lookup table).
1070
 * The raw F-S error computation can potentially compute error values of up to
1071
 * +- _MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1072
 * much less, otherwise obviously wrong pixels will be created.  (Typical
1073
 * effects include weird fringes at color-area boundaries, isolated bright
1074
 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1075
 * is to ensure that the "corners" of the color cube are allocated as output
1076
 * colors; then repeated errors in the same direction cannot cause cascading
1077
 * error buildup.  However, that only prevents the error from getting
1078
 * completely out of hand; Aaron Giles reports that error limiting improves
1079
 * the results even with corner colors allocated.
1080
 * A simple clamping of the error values to about +- _MAXJSAMPLE/8 works pretty
1081
 * well, but the smoother transfer function used below is even better.  Thanks
1082
 * to Aaron Giles for this idea.
1083
 */
1084
1085
LOCAL(void)
1086
init_error_limit(j_decompress_ptr cinfo)
1087
/* Allocate and fill in the error_limiter table */
1088
0
{
1089
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1090
0
  int *table;
1091
0
  int in, out;
1092
1093
0
  table = (int *)(*cinfo->mem->alloc_small)
1094
0
    ((j_common_ptr)cinfo, JPOOL_IMAGE, (_MAXJSAMPLE * 2 + 1) * sizeof(int));
1095
0
  table += _MAXJSAMPLE;         /* so can index -_MAXJSAMPLE .. +_MAXJSAMPLE */
1096
0
  cquantize->error_limiter = table;
1097
1098
0
#define STEPSIZE  ((_MAXJSAMPLE + 1) / 16)
1099
  /* Map errors 1:1 up to +- _MAXJSAMPLE/16 */
1100
0
  out = 0;
1101
0
  for (in = 0; in < STEPSIZE; in++, out++) {
1102
0
    table[in] = out;  table[-in] = -out;
1103
0
  }
1104
  /* Map errors 1:2 up to +- 3*_MAXJSAMPLE/16 */
1105
0
  for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) {
1106
0
    table[in] = out;  table[-in] = -out;
1107
0
  }
1108
  /* Clamp the rest to final out value (which is (_MAXJSAMPLE+1)/8) */
1109
0
  for (; in <= _MAXJSAMPLE; in++) {
1110
0
    table[in] = out;  table[-in] = -out;
1111
0
  }
1112
0
#undef STEPSIZE
1113
0
}
1114
1115
1116
/*
1117
 * Finish up at the end of each pass.
1118
 */
1119
1120
METHODDEF(void)
1121
finish_pass1(j_decompress_ptr cinfo)
1122
0
{
1123
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1124
1125
  /* Select the representative colors and fill in cinfo->colormap */
1126
0
  cinfo->colormap = (JSAMPARRAY)cquantize->sv_colormap;
1127
0
  select_colors(cinfo, cquantize->desired);
1128
  /* Force next pass to zero the color index table */
1129
0
  cquantize->needs_zeroed = TRUE;
1130
0
}
1131
1132
1133
METHODDEF(void)
1134
finish_pass2(j_decompress_ptr cinfo)
1135
0
{
1136
  /* no work */
1137
0
}
1138
1139
1140
/*
1141
 * Initialize for each processing pass.
1142
 */
1143
1144
METHODDEF(void)
1145
start_pass_2_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
1146
0
{
1147
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1148
0
  hist3d histogram = cquantize->histogram;
1149
0
  int i;
1150
1151
  /* Only F-S dithering or no dithering is supported. */
1152
  /* If user asks for ordered dither, give them F-S. */
1153
0
  if (cinfo->dither_mode != JDITHER_NONE)
1154
0
    cinfo->dither_mode = JDITHER_FS;
1155
1156
0
  if (is_pre_scan) {
1157
    /* Set up method pointers */
1158
0
    cquantize->pub._color_quantize = prescan_quantize;
1159
0
    cquantize->pub.finish_pass = finish_pass1;
1160
0
    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1161
0
  } else {
1162
    /* Set up method pointers */
1163
0
    if (cinfo->dither_mode == JDITHER_FS)
1164
0
      cquantize->pub._color_quantize = pass2_fs_dither;
1165
0
    else
1166
0
      cquantize->pub._color_quantize = pass2_no_dither;
1167
0
    cquantize->pub.finish_pass = finish_pass2;
1168
1169
    /* Make sure color count is acceptable */
1170
0
    i = cinfo->actual_number_of_colors;
1171
0
    if (i < 1)
1172
0
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1173
0
    if (i > MAXNUMCOLORS)
1174
0
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1175
1176
0
    if (cinfo->dither_mode == JDITHER_FS) {
1177
0
      size_t arraysize =
1178
0
        (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR)));
1179
      /* Allocate Floyd-Steinberg workspace if we didn't already. */
1180
0
      if (cquantize->fserrors == NULL)
1181
0
        cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)
1182
0
          ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
1183
      /* Initialize the propagated errors to zero. */
1184
0
      jzero_far((void *)cquantize->fserrors, arraysize);
1185
      /* Make the error-limit table if we didn't already. */
1186
0
      if (cquantize->error_limiter == NULL)
1187
0
        init_error_limit(cinfo);
1188
0
      cquantize->on_odd_row = FALSE;
1189
0
    }
1190
1191
0
  }
1192
  /* Zero the histogram or inverse color map, if necessary */
1193
0
  if (cquantize->needs_zeroed) {
1194
0
    for (i = 0; i < HIST_C0_ELEMS; i++) {
1195
0
      jzero_far((void *)histogram[i],
1196
0
                HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
1197
0
    }
1198
0
    cquantize->needs_zeroed = FALSE;
1199
0
  }
1200
0
}
1201
1202
1203
/*
1204
 * Switch to a new external colormap between output passes.
1205
 */
1206
1207
METHODDEF(void)
1208
new_color_map_2_quant(j_decompress_ptr cinfo)
1209
0
{
1210
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1211
1212
  /* Reset the inverse color map */
1213
0
  cquantize->needs_zeroed = TRUE;
1214
0
}
1215
1216
1217
/*
1218
 * Module initialization routine for 2-pass color quantization.
1219
 */
1220
1221
GLOBAL(void)
1222
_jinit_2pass_quantizer(j_decompress_ptr cinfo)
1223
0
{
1224
0
  my_cquantize_ptr cquantize;
1225
0
  int i;
1226
1227
0
  if (cinfo->data_precision != BITS_IN_JSAMPLE)
1228
0
    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
1229
1230
0
  cquantize = (my_cquantize_ptr)
1231
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1232
0
                                sizeof(my_cquantizer));
1233
0
  cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
1234
0
  cquantize->pub.start_pass = start_pass_2_quant;
1235
0
  cquantize->pub.new_color_map = new_color_map_2_quant;
1236
0
  cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1237
0
  cquantize->error_limiter = NULL;
1238
1239
  /* Make sure jdmaster didn't give me a case I can't handle */
1240
0
  if (cinfo->out_color_components != 3 ||
1241
0
      cinfo->out_color_space == JCS_RGB565 || cinfo->master->lossless)
1242
0
    ERREXIT(cinfo, JERR_NOTIMPL);
1243
1244
  /* Allocate the histogram/inverse colormap storage */
1245
0
  cquantize->histogram = (hist3d)(*cinfo->mem->alloc_small)
1246
0
    ((j_common_ptr)cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
1247
0
  for (i = 0; i < HIST_C0_ELEMS; i++) {
1248
0
    cquantize->histogram[i] = (hist2d)(*cinfo->mem->alloc_large)
1249
0
      ((j_common_ptr)cinfo, JPOOL_IMAGE,
1250
0
       HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
1251
0
  }
1252
0
  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1253
1254
  /* Allocate storage for the completed colormap, if required.
1255
   * We do this now since it may affect the memory manager's space
1256
   * calculations.
1257
   */
1258
0
  if (cinfo->enable_2pass_quant) {
1259
    /* Make sure color count is acceptable */
1260
0
    int desired = cinfo->desired_number_of_colors;
1261
    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1262
0
    if (desired < 8)
1263
0
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1264
    /* Make sure colormap indexes can be represented by _JSAMPLEs */
1265
0
    if (desired > MAXNUMCOLORS)
1266
0
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1267
0
    cquantize->sv_colormap = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
1268
0
      ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)desired, (JDIMENSION)3);
1269
0
    cquantize->desired = desired;
1270
0
  } else
1271
0
    cquantize->sv_colormap = NULL;
1272
1273
  /* Only F-S dithering or no dithering is supported. */
1274
  /* If user asks for ordered dither, give them F-S. */
1275
0
  if (cinfo->dither_mode != JDITHER_NONE)
1276
0
    cinfo->dither_mode = JDITHER_FS;
1277
1278
  /* Allocate Floyd-Steinberg workspace if necessary.
1279
   * This isn't really needed until pass 2, but again it may affect the memory
1280
   * manager's space calculations.  Although we will cope with a later change
1281
   * in dither_mode, we do not promise to honor max_memory_to_use if
1282
   * dither_mode changes.
1283
   */
1284
0
  if (cinfo->dither_mode == JDITHER_FS) {
1285
0
    cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)
1286
0
      ((j_common_ptr)cinfo, JPOOL_IMAGE,
1287
0
       (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1288
    /* Might as well create the error-limiting table too. */
1289
0
    init_error_limit(cinfo);
1290
0
  }
1291
0
}
Unexecuted instantiation: j12init_2pass_quantizer
Unexecuted instantiation: jinit_2pass_quantizer
1292
1293
#endif /* defined(QUANT_2PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16 */