Coverage Report

Created: 2024-08-27 12:18

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
553k
{
81
553k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
553k
  int ci, blkn, dctbl, actbl;
83
553k
  d_derived_tbl **pdtbl;
84
553k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
553k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
553k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
531k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
1.17M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
617k
    compptr = cinfo->cur_comp_info[ci];
96
617k
    dctbl = compptr->dc_tbl_no;
97
617k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
617k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
617k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
617k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
617k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
617k
    entropy->saved.last_dc_val[ci] = 0;
106
617k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
1.30M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
748k
    ci = cinfo->MCU_membership[blkn];
111
748k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
748k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
748k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
748k
    if (compptr->component_needed) {
117
740k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
740k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
740k
    } else {
121
8.08k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
8.08k
    }
123
748k
  }
124
125
  /* Initialize bitread state variables */
126
553k
  entropy->bitstate.bits_left = 0;
127
553k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
553k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
553k
  entropy->restarts_to_go = cinfo->restart_interval;
132
553k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
1.64M
{
146
1.64M
  JHUFF_TBL *htbl;
147
1.64M
  d_derived_tbl *dtbl;
148
1.64M
  int p, i, l, si, numsymbols;
149
1.64M
  int lookbits, ctr;
150
1.64M
  char huffsize[257];
151
1.64M
  unsigned int huffcode[257];
152
1.64M
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
1.64M
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
1.24k
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
1.64M
  htbl =
162
1.64M
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
1.64M
  if (htbl == NULL)
164
268
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
1.64M
  if (*pdtbl == NULL)
168
166k
    *pdtbl = (d_derived_tbl *)
169
166k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
166k
                                  sizeof(d_derived_tbl));
171
1.64M
  dtbl = *pdtbl;
172
1.64M
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
1.64M
  p = 0;
177
27.9M
  for (l = 1; l <= 16; l++) {
178
26.2M
    i = (int)htbl->bits[l];
179
26.2M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
50.2M
    while (i--)
182
23.9M
      huffsize[p++] = (char)l;
183
26.2M
  }
184
1.64M
  huffsize[p] = 0;
185
1.64M
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
1.64M
  code = 0;
191
1.64M
  si = huffsize[0];
192
1.64M
  p = 0;
193
11.6M
  while (huffsize[p]) {
194
33.9M
    while (((int)huffsize[p]) == si) {
195
23.9M
      huffcode[p++] = code;
196
23.9M
      code++;
197
23.9M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
10.0M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
179
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
10.0M
    code <<= 1;
204
10.0M
    si++;
205
10.0M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
1.64M
  p = 0;
210
27.9M
  for (l = 1; l <= 16; l++) {
211
26.2M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
8.50M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
8.50M
      p += htbl->bits[l];
217
8.50M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
17.7M
    } else {
219
17.7M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
17.7M
    }
221
26.2M
  }
222
1.64M
  dtbl->valoffset[17] = 0;
223
1.64M
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
422M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
420M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
1.64M
  p = 0;
236
14.7M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
31.5M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
18.3M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
380M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
361M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
361M
        lookbits++;
244
361M
      }
245
18.3M
    }
246
13.1M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
1.64M
  if (isDC) {
255
6.05M
    for (i = 0; i < numsymbols; i++) {
256
5.18M
      int sym = htbl->huffval[i];
257
5.18M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
815
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
5.18M
    }
260
864k
  }
261
1.64M
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
226M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
50.2M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
50.2M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
50.2M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
50.2M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
50.2M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
205M
    while (bits_left < MIN_GET_BITS) {
303
180M
      register int c;
304
305
      /* Attempt to read a byte */
306
180M
      if (bytes_in_buffer == 0) {
307
15.4k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
15.4k
        next_input_byte = cinfo->src->next_input_byte;
310
15.4k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
15.4k
      }
312
180M
      bytes_in_buffer--;
313
180M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
180M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
1.85M
        do {
323
1.85M
          if (bytes_in_buffer == 0) {
324
854
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
854
            next_input_byte = cinfo->src->next_input_byte;
327
854
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
854
          }
329
1.85M
          bytes_in_buffer--;
330
1.85M
          c = *next_input_byte++;
331
1.85M
        } while (c == 0xFF);
332
333
1.39M
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
582k
          c = 0xFF;
336
812k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
812k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
812k
          goto no_more_bytes;
348
812k
        }
349
1.39M
      }
350
351
      /* OK, load c into get_buffer */
352
179M
      get_buffer = (get_buffer << 8) | c;
353
179M
      bits_left += 8;
354
179M
    } /* end while */
355
25.7M
  } else {
356
25.3M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
25.3M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
10.5M
      if (!cinfo->entropy->insufficient_data) {
368
853k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
853k
        cinfo->entropy->insufficient_data = TRUE;
370
853k
      }
371
      /* Fill the buffer with zero bits */
372
10.5M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
10.5M
      bits_left = MIN_GET_BITS;
374
10.5M
    }
375
25.3M
  }
376
377
  /* Unload the local registers */
378
50.2M
  state->next_input_byte = next_input_byte;
379
50.2M
  state->bytes_in_buffer = bytes_in_buffer;
380
50.2M
  state->get_buffer = get_buffer;
381
50.2M
  state->bits_left = bits_left;
382
383
50.2M
  return TRUE;
384
50.2M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
60.8M
#define GET_BYTE { \
392
60.8M
  register int c0, c1; \
393
60.8M
  c0 = *buffer++; \
394
60.8M
  c1 = *buffer; \
395
60.8M
  /* Pre-execute most common case */ \
396
60.8M
  get_buffer = (get_buffer << 8) | c0; \
397
60.8M
  bits_left += 8; \
398
60.8M
  if (c0 == 0xFF) { \
399
4.72M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
4.72M
    buffer++; \
401
4.72M
    if (c1 != 0) { \
402
4.42M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
4.42M
      cinfo->unread_marker = c1; \
404
4.42M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
4.42M
      buffer -= 2; \
406
4.42M
      get_buffer &= ~0xFF; \
407
4.42M
    } \
408
4.72M
  } \
409
60.8M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
132M
  if (bits_left <= 16) { \
416
10.1M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
10.1M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
16.0M
{
440
16.0M
  register int l = min_bits;
441
16.0M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
16.0M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
16.0M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
39.8M
  while (code > htbl->maxcode[l]) {
453
23.8M
    code <<= 1;
454
23.8M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
23.8M
    code |= GET_BITS(1);
456
23.8M
    l++;
457
23.8M
  }
458
459
  /* Unload the local registers */
460
16.0M
  state->get_buffer = get_buffer;
461
16.0M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
16.0M
  if (l > 16) {
466
1.34M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
1.34M
    return 0;                   /* fake a zero as the safest result */
468
1.34M
  }
469
470
14.6M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
16.0M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
116M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
116M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.88M
{
514
1.88M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.88M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.88M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.88M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.88M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
3.92M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
2.03M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.88M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.88M
  if (cinfo->unread_marker == 0)
539
65.5k
    entropy->pub.insufficient_data = FALSE;
540
541
1.88M
  return TRUE;
542
1.88M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
1.48M
{
554
1.48M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
1.48M
  BITREAD_STATE_VARS;
556
1.48M
  int blkn;
557
1.48M
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
1.48M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
1.48M
  state = entropy->saved;
563
564
3.97M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
2.48M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
2.48M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
2.48M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
2.48M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
2.48M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
2.48M
    if (s) {
575
1.85M
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
1.85M
      r = GET_BITS(s);
577
1.85M
      s = HUFF_EXTEND(r, s);
578
1.85M
    }
579
580
2.48M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
2.38M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
2.38M
      s += state.last_dc_val[ci];
592
2.38M
      state.last_dc_val[ci] = s;
593
2.38M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
2.38M
        (*block)[0] = (JCOEF)s;
596
2.38M
      }
597
2.38M
    }
598
599
2.48M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
55.7M
      for (k = 1; k < DCTSIZE2; k++) {
604
54.9M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
54.9M
        r = s >> 4;
607
54.9M
        s &= 15;
608
609
54.9M
        if (s) {
610
53.2M
          k += r;
611
53.2M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
53.2M
          r = GET_BITS(s);
613
53.2M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
53.2M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
53.2M
        } else {
620
1.64M
          if (r != 15)
621
1.49M
            break;
622
143k
          k += 15;
623
143k
        }
624
54.9M
      }
625
626
2.38M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
2.03M
      for (k = 1; k < DCTSIZE2; k++) {
631
2.00M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
2.00M
        r = s >> 4;
634
2.00M
        s &= 15;
635
636
2.00M
        if (s) {
637
1.92M
          k += r;
638
1.92M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
1.92M
          DROP_BITS(s);
640
1.92M
        } else {
641
75.9k
          if (r != 15)
642
73.6k
            break;
643
2.22k
          k += 15;
644
2.22k
        }
645
2.00M
      }
646
104k
    }
647
2.48M
  }
648
649
  /* Completed MCU, so update state */
650
1.48M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
1.48M
  entropy->saved = state;
652
1.48M
  return TRUE;
653
1.48M
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
5.32M
{
665
5.32M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
5.32M
  BITREAD_STATE_VARS;
667
5.32M
  JOCTET *buffer;
668
5.32M
  int blkn;
669
5.32M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
5.32M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
5.32M
  buffer = (JOCTET *)br_state.next_input_byte;
675
5.32M
  state = entropy->saved;
676
677
11.4M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
6.08M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
6.08M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
6.08M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
6.08M
    register int s, k, r, l;
682
683
6.08M
    HUFF_DECODE_FAST(s, l, dctbl);
684
6.08M
    if (s) {
685
4.90M
      FILL_BIT_BUFFER_FAST
686
4.90M
      r = GET_BITS(s);
687
4.90M
      s = HUFF_EXTEND(r, s);
688
4.90M
    }
689
690
6.08M
    if (entropy->dc_needed[blkn]) {
691
6.01M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
6.01M
      s += state.last_dc_val[ci];
696
6.01M
      state.last_dc_val[ci] = s;
697
6.01M
      if (block)
698
6.01M
        (*block)[0] = (JCOEF)s;
699
6.01M
    }
700
701
6.08M
    if (entropy->ac_needed[blkn] && block) {
702
703
62.8M
      for (k = 1; k < DCTSIZE2; k++) {
704
61.8M
        HUFF_DECODE_FAST(s, l, actbl);
705
61.8M
        r = s >> 4;
706
61.8M
        s &= 15;
707
708
61.8M
        if (s) {
709
56.7M
          k += r;
710
56.7M
          FILL_BIT_BUFFER_FAST
711
56.7M
          r = GET_BITS(s);
712
56.7M
          s = HUFF_EXTEND(r, s);
713
56.7M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
56.7M
        } else {
715
5.07M
          if (r != 15) break;
716
84.7k
          k += 15;
717
84.7k
        }
718
61.8M
      }
719
720
6.01M
    } else {
721
722
1.27M
      for (k = 1; k < DCTSIZE2; k++) {
723
1.25M
        HUFF_DECODE_FAST(s, l, actbl);
724
1.25M
        r = s >> 4;
725
1.25M
        s &= 15;
726
727
1.25M
        if (s) {
728
1.20M
          k += r;
729
1.20M
          FILL_BIT_BUFFER_FAST
730
1.20M
          DROP_BITS(s);
731
1.20M
        } else {
732
54.2k
          if (r != 15) break;
733
565
          k += 15;
734
565
        }
735
1.25M
      }
736
72.5k
    }
737
6.08M
  }
738
739
5.32M
  if (cinfo->unread_marker != 0) {
740
341k
    cinfo->unread_marker = 0;
741
341k
    return FALSE;
742
341k
  }
743
744
4.98M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
4.98M
  br_state.next_input_byte = buffer;
746
4.98M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
4.98M
  entropy->saved = state;
748
4.98M
  return TRUE;
749
5.32M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
25.2M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
25.2M
{
772
25.2M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
25.2M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
25.2M
  if (cinfo->restart_interval) {
777
7.81M
    if (entropy->restarts_to_go == 0)
778
1.88M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
7.81M
    usefast = 0;
781
7.81M
  }
782
783
25.2M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
25.2M
      cinfo->unread_marker != 0)
785
19.5M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
25.2M
  if (!entropy->pub.insufficient_data) {
791
792
6.47M
    if (usefast) {
793
5.32M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
5.32M
    } else {
795
1.48M
use_slow:
796
1.48M
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
1.48M
    }
798
799
6.47M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
25.2M
  if (cinfo->restart_interval)
803
7.81M
    entropy->restarts_to_go--;
804
805
25.2M
  return TRUE;
806
25.2M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
35.7k
{
816
35.7k
  huff_entropy_ptr entropy;
817
35.7k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
35.7k
  std_huff_tables((j_common_ptr)cinfo);
824
825
35.7k
  entropy = (huff_entropy_ptr)
826
35.7k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
35.7k
                                sizeof(huff_entropy_decoder));
828
35.7k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
35.7k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
35.7k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
178k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
142k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
142k
  }
836
35.7k
}