Coverage Report

Created: 2024-08-27 12:18

/src/libpcap/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
#include <limits.h> /* for SIZE_MAX */
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
#include "diag-control.h"
43
44
#ifdef HAVE_OS_PROTO_H
45
#include "os-proto.h"
46
#endif
47
48
#ifdef BDEBUG
49
/*
50
 * The internal "debug printout" flag for the filter expression optimizer.
51
 * The code to print that stuff is present only if BDEBUG is defined, so
52
 * the flag, and the routine to set it, are defined only if BDEBUG is
53
 * defined.
54
 */
55
static int pcap_optimizer_debug;
56
57
/*
58
 * Routine to set that flag.
59
 *
60
 * This is intended for libpcap developers, not for general use.
61
 * If you want to set these in a program, you'll have to declare this
62
 * routine yourself, with the appropriate DLL import attribute on Windows;
63
 * it's not declared in any header file, and won't be declared in any
64
 * header file provided by libpcap.
65
 */
66
PCAP_API void pcap_set_optimizer_debug(int value);
67
68
PCAP_API_DEF void
69
pcap_set_optimizer_debug(int value)
70
{
71
  pcap_optimizer_debug = value;
72
}
73
74
/*
75
 * The internal "print dot graph" flag for the filter expression optimizer.
76
 * The code to print that stuff is present only if BDEBUG is defined, so
77
 * the flag, and the routine to set it, are defined only if BDEBUG is
78
 * defined.
79
 */
80
static int pcap_print_dot_graph;
81
82
/*
83
 * Routine to set that flag.
84
 *
85
 * This is intended for libpcap developers, not for general use.
86
 * If you want to set these in a program, you'll have to declare this
87
 * routine yourself, with the appropriate DLL import attribute on Windows;
88
 * it's not declared in any header file, and won't be declared in any
89
 * header file provided by libpcap.
90
 */
91
PCAP_API void pcap_set_print_dot_graph(int value);
92
93
PCAP_API_DEF void
94
pcap_set_print_dot_graph(int value)
95
{
96
  pcap_print_dot_graph = value;
97
}
98
99
#endif
100
101
/*
102
 * lowest_set_bit().
103
 *
104
 * Takes a 32-bit integer as an argument.
105
 *
106
 * If handed a non-zero value, returns the index of the lowest set bit,
107
 * counting upwards from zero.
108
 *
109
 * If handed zero, the results are platform- and compiler-dependent.
110
 * Keep it out of the light, don't give it any water, don't feed it
111
 * after midnight, and don't pass zero to it.
112
 *
113
 * This is the same as the count of trailing zeroes in the word.
114
 */
115
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116
  /*
117
   * GCC 3.4 and later; we have __builtin_ctz().
118
   */
119
0
  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120
#elif defined(_MSC_VER)
121
  /*
122
   * Visual Studio; we support only 2005 and later, so use
123
   * _BitScanForward().
124
   */
125
#include <intrin.h>
126
127
#ifndef __clang__
128
#pragma intrinsic(_BitScanForward)
129
#endif
130
131
static __forceinline u_int
132
lowest_set_bit(int mask)
133
{
134
  unsigned long bit;
135
136
  /*
137
   * Don't sign-extend mask if long is longer than int.
138
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139
   */
140
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141
    abort();  /* mask is zero */
142
  return (u_int)bit;
143
}
144
#elif defined(MSDOS) && defined(__DJGPP__)
145
  /*
146
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147
   * we've already included.
148
   */
149
  #define lowest_set_bit(mask)  ((u_int)(ffs((mask)) - 1))
150
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151
  /*
152
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153
   * or some other platform (UN*X conforming to a sufficient recent version
154
   * of the Single UNIX Specification).
155
   */
156
  #include <strings.h>
157
  #define lowest_set_bit(mask)  (u_int)((ffs((mask)) - 1))
158
#else
159
/*
160
 * None of the above.
161
 * Use a perfect-hash-function-based function.
162
 */
163
static u_int
164
lowest_set_bit(int mask)
165
{
166
  unsigned int v = (unsigned int)mask;
167
168
  static const u_int MultiplyDeBruijnBitPosition[32] = {
169
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171
  };
172
173
  /*
174
   * We strip off all but the lowermost set bit (v & ~v),
175
   * and perform a minimal perfect hash on it to look up the
176
   * number of low-order zero bits in a table.
177
   *
178
   * See:
179
   *
180
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181
   *
182
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
183
   */
184
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185
}
186
#endif
187
188
/*
189
 * Represents a deleted instruction.
190
 */
191
0
#define NOP -1
192
193
/*
194
 * Register numbers for use-def values.
195
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196
 * location.  A_ATOM is the accumulator and X_ATOM is the index
197
 * register.
198
 */
199
0
#define A_ATOM BPF_MEMWORDS
200
0
#define X_ATOM (BPF_MEMWORDS+1)
201
202
/*
203
 * This define is used to represent *both* the accumulator and
204
 * x register in use-def computations.
205
 * Currently, the use-def code assumes only one definition per instruction.
206
 */
207
0
#define AX_ATOM N_ATOMS
208
209
/*
210
 * These data structures are used in a Cocke and Shwarz style
211
 * value numbering scheme.  Since the flowgraph is acyclic,
212
 * exit values can be propagated from a node's predecessors
213
 * provided it is uniquely defined.
214
 */
215
struct valnode {
216
  int code;
217
  bpf_u_int32 v0, v1;
218
  int val;    /* the value number */
219
  struct valnode *next;
220
};
221
222
/* Integer constants mapped with the load immediate opcode. */
223
0
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225
struct vmapinfo {
226
  int is_const;
227
  bpf_u_int32 const_val;
228
};
229
230
typedef struct {
231
  /*
232
   * Place to longjmp to on an error.
233
   */
234
  jmp_buf top_ctx;
235
236
  /*
237
   * The buffer into which to put error message.
238
   */
239
  char *errbuf;
240
241
  /*
242
   * A flag to indicate that further optimization is needed.
243
   * Iterative passes are continued until a given pass yields no
244
   * code simplification or branch movement.
245
   */
246
  int done;
247
248
  /*
249
   * XXX - detect loops that do nothing but repeated AND/OR pullups
250
   * and edge moves.
251
   * If 100 passes in a row do nothing but that, treat that as a
252
   * sign that we're in a loop that just shuffles in a cycle in
253
   * which each pass just shuffles the code and we eventually
254
   * get back to the original configuration.
255
   *
256
   * XXX - we need a non-heuristic way of detecting, or preventing,
257
   * such a cycle.
258
   */
259
  int non_branch_movement_performed;
260
261
  u_int n_blocks;   /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262
  struct block **blocks;
263
  u_int n_edges;    /* twice n_blocks, so guaranteed to be > 0 */
264
  struct edge **edges;
265
266
  /*
267
   * A bit vector set representation of the dominators.
268
   * We round up the set size to the next power of two.
269
   */
270
  u_int nodewords;  /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271
  u_int edgewords;  /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272
  struct block **levels;
273
  bpf_u_int32 *space;
274
275
0
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276
/*
277
 * True if a is in uset {p}
278
 */
279
0
#define SET_MEMBER(p, a) \
280
0
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282
/*
283
 * Add 'a' to uset p.
284
 */
285
0
#define SET_INSERT(p, a) \
286
0
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288
/*
289
 * Delete 'a' from uset p.
290
 */
291
#define SET_DELETE(p, a) \
292
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294
/*
295
 * a := a intersect b
296
 * n must be guaranteed to be > 0
297
 */
298
0
#define SET_INTERSECT(a, b, n)\
299
0
{\
300
0
  register bpf_u_int32 *_x = a, *_y = b;\
301
0
  register u_int _n = n;\
302
0
  do *_x++ &= *_y++; while (--_n != 0);\
303
0
}
304
305
/*
306
 * a := a - b
307
 * n must be guaranteed to be > 0
308
 */
309
#define SET_SUBTRACT(a, b, n)\
310
{\
311
  register bpf_u_int32 *_x = a, *_y = b;\
312
  register u_int _n = n;\
313
  do *_x++ &=~ *_y++; while (--_n != 0);\
314
}
315
316
/*
317
 * a := a union b
318
 * n must be guaranteed to be > 0
319
 */
320
0
#define SET_UNION(a, b, n)\
321
0
{\
322
0
  register bpf_u_int32 *_x = a, *_y = b;\
323
0
  register u_int _n = n;\
324
0
  do *_x++ |= *_y++; while (--_n != 0);\
325
0
}
326
327
  uset all_dom_sets;
328
  uset all_closure_sets;
329
  uset all_edge_sets;
330
331
0
#define MODULUS 213
332
  struct valnode *hashtbl[MODULUS];
333
  bpf_u_int32 curval;
334
  bpf_u_int32 maxval;
335
336
  struct vmapinfo *vmap;
337
  struct valnode *vnode_base;
338
  struct valnode *next_vnode;
339
} opt_state_t;
340
341
typedef struct {
342
  /*
343
   * Place to longjmp to on an error.
344
   */
345
  jmp_buf top_ctx;
346
347
  /*
348
   * The buffer into which to put error message.
349
   */
350
  char *errbuf;
351
352
  /*
353
   * Some pointers used to convert the basic block form of the code,
354
   * into the array form that BPF requires.  'fstart' will point to
355
   * the malloc'd array while 'ftail' is used during the recursive
356
   * traversal.
357
   */
358
  struct bpf_insn *fstart;
359
  struct bpf_insn *ftail;
360
} conv_state_t;
361
362
static void opt_init(opt_state_t *, struct icode *);
363
static void opt_cleanup(opt_state_t *);
364
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365
    PCAP_PRINTFLIKE(2, 3);
366
367
static void intern_blocks(opt_state_t *, struct icode *);
368
369
static void find_inedges(opt_state_t *, struct block *);
370
#ifdef BDEBUG
371
static void opt_dump(opt_state_t *, struct icode *);
372
#endif
373
374
#ifndef MAX
375
0
#define MAX(a,b) ((a)>(b)?(a):(b))
376
#endif
377
378
static void
379
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380
0
{
381
0
  int level;
382
383
0
  if (isMarked(ic, b))
384
0
    return;
385
386
0
  Mark(ic, b);
387
0
  b->link = 0;
388
389
0
  if (JT(b)) {
390
0
    find_levels_r(opt_state, ic, JT(b));
391
0
    find_levels_r(opt_state, ic, JF(b));
392
0
    level = MAX(JT(b)->level, JF(b)->level) + 1;
393
0
  } else
394
0
    level = 0;
395
0
  b->level = level;
396
0
  b->link = opt_state->levels[level];
397
0
  opt_state->levels[level] = b;
398
0
}
399
400
/*
401
 * Level graph.  The levels go from 0 at the leaves to
402
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403
 * first node of the level list, whose elements are linked
404
 * with the 'link' field of the struct block.
405
 */
406
static void
407
find_levels(opt_state_t *opt_state, struct icode *ic)
408
0
{
409
0
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410
0
  unMarkAll(ic);
411
0
  find_levels_r(opt_state, ic, ic->root);
412
0
}
413
414
/*
415
 * Find dominator relationships.
416
 * Assumes graph has been leveled.
417
 */
418
static void
419
find_dom(opt_state_t *opt_state, struct block *root)
420
0
{
421
0
  u_int i;
422
0
  int level;
423
0
  struct block *b;
424
0
  bpf_u_int32 *x;
425
426
  /*
427
   * Initialize sets to contain all nodes.
428
   */
429
0
  x = opt_state->all_dom_sets;
430
  /*
431
   * In opt_init(), we've made sure the product doesn't overflow.
432
   */
433
0
  i = opt_state->n_blocks * opt_state->nodewords;
434
0
  while (i != 0) {
435
0
    --i;
436
0
    *x++ = 0xFFFFFFFFU;
437
0
  }
438
  /* Root starts off empty. */
439
0
  for (i = opt_state->nodewords; i != 0;) {
440
0
    --i;
441
0
    root->dom[i] = 0;
442
0
  }
443
444
  /* root->level is the highest level no found. */
445
0
  for (level = root->level; level >= 0; --level) {
446
0
    for (b = opt_state->levels[level]; b; b = b->link) {
447
0
      SET_INSERT(b->dom, b->id);
448
0
      if (JT(b) == 0)
449
0
        continue;
450
0
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451
0
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452
0
    }
453
0
  }
454
0
}
455
456
static void
457
propedom(opt_state_t *opt_state, struct edge *ep)
458
0
{
459
0
  SET_INSERT(ep->edom, ep->id);
460
0
  if (ep->succ) {
461
0
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462
0
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463
0
  }
464
0
}
465
466
/*
467
 * Compute edge dominators.
468
 * Assumes graph has been leveled and predecessors established.
469
 */
470
static void
471
find_edom(opt_state_t *opt_state, struct block *root)
472
0
{
473
0
  u_int i;
474
0
  uset x;
475
0
  int level;
476
0
  struct block *b;
477
478
0
  x = opt_state->all_edge_sets;
479
  /*
480
   * In opt_init(), we've made sure the product doesn't overflow.
481
   */
482
0
  for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483
0
    --i;
484
0
    x[i] = 0xFFFFFFFFU;
485
0
  }
486
487
  /* root->level is the highest level no found. */
488
0
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489
0
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490
0
  for (level = root->level; level >= 0; --level) {
491
0
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
492
0
      propedom(opt_state, &b->et);
493
0
      propedom(opt_state, &b->ef);
494
0
    }
495
0
  }
496
0
}
497
498
/*
499
 * Find the backwards transitive closure of the flow graph.  These sets
500
 * are backwards in the sense that we find the set of nodes that reach
501
 * a given node, not the set of nodes that can be reached by a node.
502
 *
503
 * Assumes graph has been leveled.
504
 */
505
static void
506
find_closure(opt_state_t *opt_state, struct block *root)
507
0
{
508
0
  int level;
509
0
  struct block *b;
510
511
  /*
512
   * Initialize sets to contain no nodes.
513
   */
514
0
  memset((char *)opt_state->all_closure_sets, 0,
515
0
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517
  /* root->level is the highest level no found. */
518
0
  for (level = root->level; level >= 0; --level) {
519
0
    for (b = opt_state->levels[level]; b; b = b->link) {
520
0
      SET_INSERT(b->closure, b->id);
521
0
      if (JT(b) == 0)
522
0
        continue;
523
0
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524
0
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525
0
    }
526
0
  }
527
0
}
528
529
/*
530
 * Return the register number that is used by s.
531
 *
532
 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533
 * are used, the scratch memory location's number if a scratch memory
534
 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535
 *
536
 * The implementation should probably change to an array access.
537
 */
538
static int
539
atomuse(struct stmt *s)
540
0
{
541
0
  register int c = s->code;
542
543
0
  if (c == NOP)
544
0
    return -1;
545
546
0
  switch (BPF_CLASS(c)) {
547
548
0
  case BPF_RET:
549
0
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550
0
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552
0
  case BPF_LD:
553
0
  case BPF_LDX:
554
    /*
555
     * As there are fewer than 2^31 memory locations,
556
     * s->k should be convertible to int without problems.
557
     */
558
0
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559
0
      (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561
0
  case BPF_ST:
562
0
    return A_ATOM;
563
564
0
  case BPF_STX:
565
0
    return X_ATOM;
566
567
0
  case BPF_JMP:
568
0
  case BPF_ALU:
569
0
    if (BPF_SRC(c) == BPF_X)
570
0
      return AX_ATOM;
571
0
    return A_ATOM;
572
573
0
  case BPF_MISC:
574
0
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575
0
  }
576
0
  abort();
577
  /* NOTREACHED */
578
0
}
579
580
/*
581
 * Return the register number that is defined by 's'.  We assume that
582
 * a single stmt cannot define more than one register.  If no register
583
 * is defined, return -1.
584
 *
585
 * The implementation should probably change to an array access.
586
 */
587
static int
588
atomdef(struct stmt *s)
589
0
{
590
0
  if (s->code == NOP)
591
0
    return -1;
592
593
0
  switch (BPF_CLASS(s->code)) {
594
595
0
  case BPF_LD:
596
0
  case BPF_ALU:
597
0
    return A_ATOM;
598
599
0
  case BPF_LDX:
600
0
    return X_ATOM;
601
602
0
  case BPF_ST:
603
0
  case BPF_STX:
604
0
    return s->k;
605
606
0
  case BPF_MISC:
607
0
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608
0
  }
609
0
  return -1;
610
0
}
611
612
/*
613
 * Compute the sets of registers used, defined, and killed by 'b'.
614
 *
615
 * "Used" means that a statement in 'b' uses the register before any
616
 * statement in 'b' defines it, i.e. it uses the value left in
617
 * that register by a predecessor block of this block.
618
 * "Defined" means that a statement in 'b' defines it.
619
 * "Killed" means that a statement in 'b' defines it before any
620
 * statement in 'b' uses it, i.e. it kills the value left in that
621
 * register by a predecessor block of this block.
622
 */
623
static void
624
compute_local_ud(struct block *b)
625
0
{
626
0
  struct slist *s;
627
0
  atomset def = 0, use = 0, killed = 0;
628
0
  int atom;
629
630
0
  for (s = b->stmts; s; s = s->next) {
631
0
    if (s->s.code == NOP)
632
0
      continue;
633
0
    atom = atomuse(&s->s);
634
0
    if (atom >= 0) {
635
0
      if (atom == AX_ATOM) {
636
0
        if (!ATOMELEM(def, X_ATOM))
637
0
          use |= ATOMMASK(X_ATOM);
638
0
        if (!ATOMELEM(def, A_ATOM))
639
0
          use |= ATOMMASK(A_ATOM);
640
0
      }
641
0
      else if (atom < N_ATOMS) {
642
0
        if (!ATOMELEM(def, atom))
643
0
          use |= ATOMMASK(atom);
644
0
      }
645
0
      else
646
0
        abort();
647
0
    }
648
0
    atom = atomdef(&s->s);
649
0
    if (atom >= 0) {
650
0
      if (!ATOMELEM(use, atom))
651
0
        killed |= ATOMMASK(atom);
652
0
      def |= ATOMMASK(atom);
653
0
    }
654
0
  }
655
0
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
656
    /*
657
     * XXX - what about RET?
658
     */
659
0
    atom = atomuse(&b->s);
660
0
    if (atom >= 0) {
661
0
      if (atom == AX_ATOM) {
662
0
        if (!ATOMELEM(def, X_ATOM))
663
0
          use |= ATOMMASK(X_ATOM);
664
0
        if (!ATOMELEM(def, A_ATOM))
665
0
          use |= ATOMMASK(A_ATOM);
666
0
      }
667
0
      else if (atom < N_ATOMS) {
668
0
        if (!ATOMELEM(def, atom))
669
0
          use |= ATOMMASK(atom);
670
0
      }
671
0
      else
672
0
        abort();
673
0
    }
674
0
  }
675
676
0
  b->def = def;
677
0
  b->kill = killed;
678
0
  b->in_use = use;
679
0
}
680
681
/*
682
 * Assume graph is already leveled.
683
 */
684
static void
685
find_ud(opt_state_t *opt_state, struct block *root)
686
0
{
687
0
  int i, maxlevel;
688
0
  struct block *p;
689
690
  /*
691
   * root->level is the highest level no found;
692
   * count down from there.
693
   */
694
0
  maxlevel = root->level;
695
0
  for (i = maxlevel; i >= 0; --i)
696
0
    for (p = opt_state->levels[i]; p; p = p->link) {
697
0
      compute_local_ud(p);
698
0
      p->out_use = 0;
699
0
    }
700
701
0
  for (i = 1; i <= maxlevel; ++i) {
702
0
    for (p = opt_state->levels[i]; p; p = p->link) {
703
0
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
704
0
      p->in_use |= p->out_use &~ p->kill;
705
0
    }
706
0
  }
707
0
}
708
static void
709
init_val(opt_state_t *opt_state)
710
0
{
711
0
  opt_state->curval = 0;
712
0
  opt_state->next_vnode = opt_state->vnode_base;
713
0
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714
0
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715
0
}
716
717
/*
718
 * Because we really don't have an IR, this stuff is a little messy.
719
 *
720
 * This routine looks in the table of existing value number for a value
721
 * with generated from an operation with the specified opcode and
722
 * the specified values.  If it finds it, it returns its value number,
723
 * otherwise it makes a new entry in the table and returns the
724
 * value number of that entry.
725
 */
726
static bpf_u_int32
727
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728
0
{
729
0
  u_int hash;
730
0
  bpf_u_int32 val;
731
0
  struct valnode *p;
732
733
0
  hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734
0
  hash %= MODULUS;
735
736
0
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
737
0
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
738
0
      return p->val;
739
740
  /*
741
   * Not found.  Allocate a new value, and assign it a new
742
   * value number.
743
   *
744
   * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745
   * increment it before using it as the new value number, which
746
   * means we never assign VAL_UNKNOWN.
747
   *
748
   * XXX - unless we overflow, but we probably won't have 2^32-1
749
   * values; we treat 32 bits as effectively infinite.
750
   */
751
0
  val = ++opt_state->curval;
752
0
  if (BPF_MODE(code) == BPF_IMM &&
753
0
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754
0
    opt_state->vmap[val].const_val = v0;
755
0
    opt_state->vmap[val].is_const = 1;
756
0
  }
757
0
  p = opt_state->next_vnode++;
758
0
  p->val = val;
759
0
  p->code = code;
760
0
  p->v0 = v0;
761
0
  p->v1 = v1;
762
0
  p->next = opt_state->hashtbl[hash];
763
0
  opt_state->hashtbl[hash] = p;
764
765
0
  return val;
766
0
}
767
768
static inline void
769
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770
0
{
771
0
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
772
0
    s->code = NOP;
773
0
  else
774
0
    *valp = newval;
775
0
}
776
777
/*
778
 * Do constant-folding on binary operators.
779
 * (Unary operators are handled elsewhere.)
780
 */
781
static void
782
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783
0
{
784
0
  bpf_u_int32 a, b;
785
786
0
  a = opt_state->vmap[v0].const_val;
787
0
  b = opt_state->vmap[v1].const_val;
788
789
0
  switch (BPF_OP(s->code)) {
790
0
  case BPF_ADD:
791
0
    a += b;
792
0
    break;
793
794
0
  case BPF_SUB:
795
0
    a -= b;
796
0
    break;
797
798
0
  case BPF_MUL:
799
0
    a *= b;
800
0
    break;
801
802
0
  case BPF_DIV:
803
0
    if (b == 0)
804
0
      opt_error(opt_state, "division by zero");
805
0
    a /= b;
806
0
    break;
807
808
0
  case BPF_MOD:
809
0
    if (b == 0)
810
0
      opt_error(opt_state, "modulus by zero");
811
0
    a %= b;
812
0
    break;
813
814
0
  case BPF_AND:
815
0
    a &= b;
816
0
    break;
817
818
0
  case BPF_OR:
819
0
    a |= b;
820
0
    break;
821
822
0
  case BPF_XOR:
823
0
    a ^= b;
824
0
    break;
825
826
0
  case BPF_LSH:
827
    /*
828
     * A left shift of more than the width of the type
829
     * is undefined in C; we'll just treat it as shifting
830
     * all the bits out.
831
     *
832
     * XXX - the BPF interpreter doesn't check for this,
833
     * so its behavior is dependent on the behavior of
834
     * the processor on which it's running.  There are
835
     * processors on which it shifts all the bits out
836
     * and processors on which it does no shift.
837
     */
838
0
    if (b < 32)
839
0
      a <<= b;
840
0
    else
841
0
      a = 0;
842
0
    break;
843
844
0
  case BPF_RSH:
845
    /*
846
     * A right shift of more than the width of the type
847
     * is undefined in C; we'll just treat it as shifting
848
     * all the bits out.
849
     *
850
     * XXX - the BPF interpreter doesn't check for this,
851
     * so its behavior is dependent on the behavior of
852
     * the processor on which it's running.  There are
853
     * processors on which it shifts all the bits out
854
     * and processors on which it does no shift.
855
     */
856
0
    if (b < 32)
857
0
      a >>= b;
858
0
    else
859
0
      a = 0;
860
0
    break;
861
862
0
  default:
863
0
    abort();
864
0
  }
865
0
  s->k = a;
866
0
  s->code = BPF_LD|BPF_IMM;
867
  /*
868
   * XXX - optimizer loop detection.
869
   */
870
0
  opt_state->non_branch_movement_performed = 1;
871
0
  opt_state->done = 0;
872
0
}
873
874
static inline struct slist *
875
this_op(struct slist *s)
876
0
{
877
0
  while (s != 0 && s->s.code == NOP)
878
0
    s = s->next;
879
0
  return s;
880
0
}
881
882
static void
883
opt_not(struct block *b)
884
0
{
885
0
  struct block *tmp = JT(b);
886
887
0
  JT(b) = JF(b);
888
0
  JF(b) = tmp;
889
0
}
890
891
static void
892
opt_peep(opt_state_t *opt_state, struct block *b)
893
0
{
894
0
  struct slist *s;
895
0
  struct slist *next, *last;
896
0
  bpf_u_int32 val;
897
898
0
  s = b->stmts;
899
0
  if (s == 0)
900
0
    return;
901
902
0
  last = s;
903
0
  for (/*empty*/; /*empty*/; s = next) {
904
    /*
905
     * Skip over nops.
906
     */
907
0
    s = this_op(s);
908
0
    if (s == 0)
909
0
      break; /* nothing left in the block */
910
911
    /*
912
     * Find the next real instruction after that one
913
     * (skipping nops).
914
     */
915
0
    next = this_op(s->next);
916
0
    if (next == 0)
917
0
      break; /* no next instruction */
918
0
    last = next;
919
920
    /*
921
     * st  M[k] --> st  M[k]
922
     * ldx M[k]   tax
923
     */
924
0
    if (s->s.code == BPF_ST &&
925
0
        next->s.code == (BPF_LDX|BPF_MEM) &&
926
0
        s->s.k == next->s.k) {
927
      /*
928
       * XXX - optimizer loop detection.
929
       */
930
0
      opt_state->non_branch_movement_performed = 1;
931
0
      opt_state->done = 0;
932
0
      next->s.code = BPF_MISC|BPF_TAX;
933
0
    }
934
    /*
935
     * ld  #k --> ldx  #k
936
     * tax      txa
937
     */
938
0
    if (s->s.code == (BPF_LD|BPF_IMM) &&
939
0
        next->s.code == (BPF_MISC|BPF_TAX)) {
940
0
      s->s.code = BPF_LDX|BPF_IMM;
941
0
      next->s.code = BPF_MISC|BPF_TXA;
942
      /*
943
       * XXX - optimizer loop detection.
944
       */
945
0
      opt_state->non_branch_movement_performed = 1;
946
0
      opt_state->done = 0;
947
0
    }
948
    /*
949
     * This is an ugly special case, but it happens
950
     * when you say tcp[k] or udp[k] where k is a constant.
951
     */
952
0
    if (s->s.code == (BPF_LD|BPF_IMM)) {
953
0
      struct slist *add, *tax, *ild;
954
955
      /*
956
       * Check that X isn't used on exit from this
957
       * block (which the optimizer might cause).
958
       * We know the code generator won't generate
959
       * any local dependencies.
960
       */
961
0
      if (ATOMELEM(b->out_use, X_ATOM))
962
0
        continue;
963
964
      /*
965
       * Check that the instruction following the ldi
966
       * is an addx, or it's an ldxms with an addx
967
       * following it (with 0 or more nops between the
968
       * ldxms and addx).
969
       */
970
0
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971
0
        add = next;
972
0
      else
973
0
        add = this_op(next->next);
974
0
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975
0
        continue;
976
977
      /*
978
       * Check that a tax follows that (with 0 or more
979
       * nops between them).
980
       */
981
0
      tax = this_op(add->next);
982
0
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983
0
        continue;
984
985
      /*
986
       * Check that an ild follows that (with 0 or more
987
       * nops between them).
988
       */
989
0
      ild = this_op(tax->next);
990
0
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991
0
          BPF_MODE(ild->s.code) != BPF_IND)
992
0
        continue;
993
      /*
994
       * We want to turn this sequence:
995
       *
996
       * (004) ldi     #0x2   {s}
997
       * (005) ldxms   [14]   {next}  -- optional
998
       * (006) addx     {add}
999
       * (007) tax      {tax}
1000
       * (008) ild     [x+0]    {ild}
1001
       *
1002
       * into this sequence:
1003
       *
1004
       * (004) nop
1005
       * (005) ldxms   [14]
1006
       * (006) nop
1007
       * (007) nop
1008
       * (008) ild     [x+2]
1009
       *
1010
       * XXX We need to check that X is not
1011
       * subsequently used, because we want to change
1012
       * what'll be in it after this sequence.
1013
       *
1014
       * We know we can eliminate the accumulator
1015
       * modifications earlier in the sequence since
1016
       * it is defined by the last stmt of this sequence
1017
       * (i.e., the last statement of the sequence loads
1018
       * a value into the accumulator, so we can eliminate
1019
       * earlier operations on the accumulator).
1020
       */
1021
0
      ild->s.k += s->s.k;
1022
0
      s->s.code = NOP;
1023
0
      add->s.code = NOP;
1024
0
      tax->s.code = NOP;
1025
      /*
1026
       * XXX - optimizer loop detection.
1027
       */
1028
0
      opt_state->non_branch_movement_performed = 1;
1029
0
      opt_state->done = 0;
1030
0
    }
1031
0
  }
1032
  /*
1033
   * If the comparison at the end of a block is an equality
1034
   * comparison against a constant, and nobody uses the value
1035
   * we leave in the A register at the end of a block, and
1036
   * the operation preceding the comparison is an arithmetic
1037
   * operation, we can sometime optimize it away.
1038
   */
1039
0
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040
0
      !ATOMELEM(b->out_use, A_ATOM)) {
1041
    /*
1042
     * We can optimize away certain subtractions of the
1043
     * X register.
1044
     */
1045
0
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046
0
      val = b->val[X_ATOM];
1047
0
      if (opt_state->vmap[val].is_const) {
1048
        /*
1049
         * If we have a subtract to do a comparison,
1050
         * and the X register is a known constant,
1051
         * we can merge this value into the
1052
         * comparison:
1053
         *
1054
         * sub x  ->  nop
1055
         * jeq #y jeq #(x+y)
1056
         */
1057
0
        b->s.k += opt_state->vmap[val].const_val;
1058
0
        last->s.code = NOP;
1059
        /*
1060
         * XXX - optimizer loop detection.
1061
         */
1062
0
        opt_state->non_branch_movement_performed = 1;
1063
0
        opt_state->done = 0;
1064
0
      } else if (b->s.k == 0) {
1065
        /*
1066
         * If the X register isn't a constant,
1067
         * and the comparison in the test is
1068
         * against 0, we can compare with the
1069
         * X register, instead:
1070
         *
1071
         * sub x  ->  nop
1072
         * jeq #0 jeq x
1073
         */
1074
0
        last->s.code = NOP;
1075
0
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076
        /*
1077
         * XXX - optimizer loop detection.
1078
         */
1079
0
        opt_state->non_branch_movement_performed = 1;
1080
0
        opt_state->done = 0;
1081
0
      }
1082
0
    }
1083
    /*
1084
     * Likewise, a constant subtract can be simplified:
1085
     *
1086
     * sub #x ->  nop
1087
     * jeq #y ->  jeq #(x+y)
1088
     */
1089
0
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090
0
      last->s.code = NOP;
1091
0
      b->s.k += last->s.k;
1092
      /*
1093
       * XXX - optimizer loop detection.
1094
       */
1095
0
      opt_state->non_branch_movement_performed = 1;
1096
0
      opt_state->done = 0;
1097
0
    }
1098
    /*
1099
     * And, similarly, a constant AND can be simplified
1100
     * if we're testing against 0, i.e.:
1101
     *
1102
     * and #k nop
1103
     * jeq #0  -> jset #k
1104
     */
1105
0
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106
0
        b->s.k == 0) {
1107
0
      b->s.k = last->s.k;
1108
0
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109
0
      last->s.code = NOP;
1110
      /*
1111
       * XXX - optimizer loop detection.
1112
       */
1113
0
      opt_state->non_branch_movement_performed = 1;
1114
0
      opt_state->done = 0;
1115
0
      opt_not(b);
1116
0
    }
1117
0
  }
1118
  /*
1119
   * jset #0        ->   never
1120
   * jset #ffffffff ->   always
1121
   */
1122
0
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123
0
    if (b->s.k == 0)
1124
0
      JT(b) = JF(b);
1125
0
    if (b->s.k == 0xffffffffU)
1126
0
      JF(b) = JT(b);
1127
0
  }
1128
  /*
1129
   * If we're comparing against the index register, and the index
1130
   * register is a known constant, we can just compare against that
1131
   * constant.
1132
   */
1133
0
  val = b->val[X_ATOM];
1134
0
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135
0
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1136
0
    b->s.code &= ~BPF_X;
1137
0
    b->s.k = v;
1138
0
  }
1139
  /*
1140
   * If the accumulator is a known constant, we can compute the
1141
   * comparison result.
1142
   */
1143
0
  val = b->val[A_ATOM];
1144
0
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145
0
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1146
0
    switch (BPF_OP(b->s.code)) {
1147
1148
0
    case BPF_JEQ:
1149
0
      v = v == b->s.k;
1150
0
      break;
1151
1152
0
    case BPF_JGT:
1153
0
      v = v > b->s.k;
1154
0
      break;
1155
1156
0
    case BPF_JGE:
1157
0
      v = v >= b->s.k;
1158
0
      break;
1159
1160
0
    case BPF_JSET:
1161
0
      v &= b->s.k;
1162
0
      break;
1163
1164
0
    default:
1165
0
      abort();
1166
0
    }
1167
0
    if (JF(b) != JT(b)) {
1168
      /*
1169
       * XXX - optimizer loop detection.
1170
       */
1171
0
      opt_state->non_branch_movement_performed = 1;
1172
0
      opt_state->done = 0;
1173
0
    }
1174
0
    if (v)
1175
0
      JF(b) = JT(b);
1176
0
    else
1177
0
      JT(b) = JF(b);
1178
0
  }
1179
0
}
1180
1181
/*
1182
 * Compute the symbolic value of expression of 's', and update
1183
 * anything it defines in the value table 'val'.  If 'alter' is true,
1184
 * do various optimizations.  This code would be cleaner if symbolic
1185
 * evaluation and code transformations weren't folded together.
1186
 */
1187
static void
1188
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189
0
{
1190
0
  int op;
1191
0
  bpf_u_int32 v;
1192
1193
0
  switch (s->code) {
1194
1195
0
  case BPF_LD|BPF_ABS|BPF_W:
1196
0
  case BPF_LD|BPF_ABS|BPF_H:
1197
0
  case BPF_LD|BPF_ABS|BPF_B:
1198
0
    v = F(opt_state, s->code, s->k, 0L);
1199
0
    vstore(s, &val[A_ATOM], v, alter);
1200
0
    break;
1201
1202
0
  case BPF_LD|BPF_IND|BPF_W:
1203
0
  case BPF_LD|BPF_IND|BPF_H:
1204
0
  case BPF_LD|BPF_IND|BPF_B:
1205
0
    v = val[X_ATOM];
1206
0
    if (alter && opt_state->vmap[v].is_const) {
1207
0
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208
0
      s->k += opt_state->vmap[v].const_val;
1209
0
      v = F(opt_state, s->code, s->k, 0L);
1210
      /*
1211
       * XXX - optimizer loop detection.
1212
       */
1213
0
      opt_state->non_branch_movement_performed = 1;
1214
0
      opt_state->done = 0;
1215
0
    }
1216
0
    else
1217
0
      v = F(opt_state, s->code, s->k, v);
1218
0
    vstore(s, &val[A_ATOM], v, alter);
1219
0
    break;
1220
1221
0
  case BPF_LD|BPF_LEN:
1222
0
    v = F(opt_state, s->code, 0L, 0L);
1223
0
    vstore(s, &val[A_ATOM], v, alter);
1224
0
    break;
1225
1226
0
  case BPF_LD|BPF_IMM:
1227
0
    v = K(s->k);
1228
0
    vstore(s, &val[A_ATOM], v, alter);
1229
0
    break;
1230
1231
0
  case BPF_LDX|BPF_IMM:
1232
0
    v = K(s->k);
1233
0
    vstore(s, &val[X_ATOM], v, alter);
1234
0
    break;
1235
1236
0
  case BPF_LDX|BPF_MSH|BPF_B:
1237
0
    v = F(opt_state, s->code, s->k, 0L);
1238
0
    vstore(s, &val[X_ATOM], v, alter);
1239
0
    break;
1240
1241
0
  case BPF_ALU|BPF_NEG:
1242
0
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243
0
      s->code = BPF_LD|BPF_IMM;
1244
      /*
1245
       * Do this negation as unsigned arithmetic; that's
1246
       * what modern BPF engines do, and it guarantees
1247
       * that all possible values can be negated.  (Yeah,
1248
       * negating 0x80000000, the minimum signed 32-bit
1249
       * two's-complement value, results in 0x80000000,
1250
       * so it's still negative, but we *should* be doing
1251
       * all unsigned arithmetic here, to match what
1252
       * modern BPF engines do.)
1253
       *
1254
       * Express it as 0U - (unsigned value) so that we
1255
       * don't get compiler warnings about negating an
1256
       * unsigned value and don't get UBSan warnings
1257
       * about the result of negating 0x80000000 being
1258
       * undefined.
1259
       */
1260
0
      s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261
0
      val[A_ATOM] = K(s->k);
1262
0
    }
1263
0
    else
1264
0
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265
0
    break;
1266
1267
0
  case BPF_ALU|BPF_ADD|BPF_K:
1268
0
  case BPF_ALU|BPF_SUB|BPF_K:
1269
0
  case BPF_ALU|BPF_MUL|BPF_K:
1270
0
  case BPF_ALU|BPF_DIV|BPF_K:
1271
0
  case BPF_ALU|BPF_MOD|BPF_K:
1272
0
  case BPF_ALU|BPF_AND|BPF_K:
1273
0
  case BPF_ALU|BPF_OR|BPF_K:
1274
0
  case BPF_ALU|BPF_XOR|BPF_K:
1275
0
  case BPF_ALU|BPF_LSH|BPF_K:
1276
0
  case BPF_ALU|BPF_RSH|BPF_K:
1277
0
    op = BPF_OP(s->code);
1278
0
    if (alter) {
1279
0
      if (s->k == 0) {
1280
        /*
1281
         * Optimize operations where the constant
1282
         * is zero.
1283
         *
1284
         * Don't optimize away "sub #0"
1285
         * as it may be needed later to
1286
         * fixup the generated math code.
1287
         *
1288
         * Fail if we're dividing by zero or taking
1289
         * a modulus by zero.
1290
         */
1291
0
        if (op == BPF_ADD ||
1292
0
            op == BPF_LSH || op == BPF_RSH ||
1293
0
            op == BPF_OR || op == BPF_XOR) {
1294
0
          s->code = NOP;
1295
0
          break;
1296
0
        }
1297
0
        if (op == BPF_MUL || op == BPF_AND) {
1298
0
          s->code = BPF_LD|BPF_IMM;
1299
0
          val[A_ATOM] = K(s->k);
1300
0
          break;
1301
0
        }
1302
0
        if (op == BPF_DIV)
1303
0
          opt_error(opt_state,
1304
0
              "division by zero");
1305
0
        if (op == BPF_MOD)
1306
0
          opt_error(opt_state,
1307
0
              "modulus by zero");
1308
0
      }
1309
0
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1310
0
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311
0
        val[A_ATOM] = K(s->k);
1312
0
        break;
1313
0
      }
1314
0
    }
1315
0
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316
0
    break;
1317
1318
0
  case BPF_ALU|BPF_ADD|BPF_X:
1319
0
  case BPF_ALU|BPF_SUB|BPF_X:
1320
0
  case BPF_ALU|BPF_MUL|BPF_X:
1321
0
  case BPF_ALU|BPF_DIV|BPF_X:
1322
0
  case BPF_ALU|BPF_MOD|BPF_X:
1323
0
  case BPF_ALU|BPF_AND|BPF_X:
1324
0
  case BPF_ALU|BPF_OR|BPF_X:
1325
0
  case BPF_ALU|BPF_XOR|BPF_X:
1326
0
  case BPF_ALU|BPF_LSH|BPF_X:
1327
0
  case BPF_ALU|BPF_RSH|BPF_X:
1328
0
    op = BPF_OP(s->code);
1329
0
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330
0
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1331
0
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332
0
        val[A_ATOM] = K(s->k);
1333
0
      }
1334
0
      else {
1335
0
        s->code = BPF_ALU|BPF_K|op;
1336
0
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337
0
        if ((op == BPF_LSH || op == BPF_RSH) &&
1338
0
            s->k > 31)
1339
0
          opt_error(opt_state,
1340
0
              "shift by more than 31 bits");
1341
        /*
1342
         * XXX - optimizer loop detection.
1343
         */
1344
0
        opt_state->non_branch_movement_performed = 1;
1345
0
        opt_state->done = 0;
1346
0
        val[A_ATOM] =
1347
0
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1348
0
      }
1349
0
      break;
1350
0
    }
1351
    /*
1352
     * Check if we're doing something to an accumulator
1353
     * that is 0, and simplify.  This may not seem like
1354
     * much of a simplification but it could open up further
1355
     * optimizations.
1356
     * XXX We could also check for mul by 1, etc.
1357
     */
1358
0
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359
0
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360
0
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361
0
        s->code = BPF_MISC|BPF_TXA;
1362
0
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363
0
        break;
1364
0
      }
1365
0
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366
0
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367
0
        s->code = BPF_LD|BPF_IMM;
1368
0
        s->k = 0;
1369
0
        vstore(s, &val[A_ATOM], K(s->k), alter);
1370
0
        break;
1371
0
      }
1372
0
      else if (op == BPF_NEG) {
1373
0
        s->code = NOP;
1374
0
        break;
1375
0
      }
1376
0
    }
1377
0
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378
0
    break;
1379
1380
0
  case BPF_MISC|BPF_TXA:
1381
0
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382
0
    break;
1383
1384
0
  case BPF_LD|BPF_MEM:
1385
0
    v = val[s->k];
1386
0
    if (alter && opt_state->vmap[v].is_const) {
1387
0
      s->code = BPF_LD|BPF_IMM;
1388
0
      s->k = opt_state->vmap[v].const_val;
1389
      /*
1390
       * XXX - optimizer loop detection.
1391
       */
1392
0
      opt_state->non_branch_movement_performed = 1;
1393
0
      opt_state->done = 0;
1394
0
    }
1395
0
    vstore(s, &val[A_ATOM], v, alter);
1396
0
    break;
1397
1398
0
  case BPF_MISC|BPF_TAX:
1399
0
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400
0
    break;
1401
1402
0
  case BPF_LDX|BPF_MEM:
1403
0
    v = val[s->k];
1404
0
    if (alter && opt_state->vmap[v].is_const) {
1405
0
      s->code = BPF_LDX|BPF_IMM;
1406
0
      s->k = opt_state->vmap[v].const_val;
1407
      /*
1408
       * XXX - optimizer loop detection.
1409
       */
1410
0
      opt_state->non_branch_movement_performed = 1;
1411
0
      opt_state->done = 0;
1412
0
    }
1413
0
    vstore(s, &val[X_ATOM], v, alter);
1414
0
    break;
1415
1416
0
  case BPF_ST:
1417
0
    vstore(s, &val[s->k], val[A_ATOM], alter);
1418
0
    break;
1419
1420
0
  case BPF_STX:
1421
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1422
0
    break;
1423
0
  }
1424
0
}
1425
1426
static void
1427
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428
0
{
1429
0
  register int atom;
1430
1431
0
  atom = atomuse(s);
1432
0
  if (atom >= 0) {
1433
0
    if (atom == AX_ATOM) {
1434
0
      last[X_ATOM] = 0;
1435
0
      last[A_ATOM] = 0;
1436
0
    }
1437
0
    else
1438
0
      last[atom] = 0;
1439
0
  }
1440
0
  atom = atomdef(s);
1441
0
  if (atom >= 0) {
1442
0
    if (last[atom]) {
1443
      /*
1444
       * XXX - optimizer loop detection.
1445
       */
1446
0
      opt_state->non_branch_movement_performed = 1;
1447
0
      opt_state->done = 0;
1448
0
      last[atom]->code = NOP;
1449
0
    }
1450
0
    last[atom] = s;
1451
0
  }
1452
0
}
1453
1454
static void
1455
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456
0
{
1457
0
  register struct slist *s;
1458
0
  register int atom;
1459
0
  struct stmt *last[N_ATOMS];
1460
1461
0
  memset((char *)last, 0, sizeof last);
1462
1463
0
  for (s = b->stmts; s != 0; s = s->next)
1464
0
    deadstmt(opt_state, &s->s, last);
1465
0
  deadstmt(opt_state, &b->s, last);
1466
1467
0
  for (atom = 0; atom < N_ATOMS; ++atom)
1468
0
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469
0
      last[atom]->code = NOP;
1470
      /*
1471
       * XXX - optimizer loop detection.
1472
       */
1473
0
      opt_state->non_branch_movement_performed = 1;
1474
0
      opt_state->done = 0;
1475
0
    }
1476
0
}
1477
1478
static void
1479
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480
0
{
1481
0
  struct slist *s;
1482
0
  struct edge *p;
1483
0
  int i;
1484
0
  bpf_u_int32 aval, xval;
1485
1486
#if 0
1487
  for (s = b->stmts; s && s->next; s = s->next)
1488
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489
      do_stmts = 0;
1490
      break;
1491
    }
1492
#endif
1493
1494
  /*
1495
   * Initialize the atom values.
1496
   */
1497
0
  p = b->in_edges;
1498
0
  if (p == 0) {
1499
    /*
1500
     * We have no predecessors, so everything is undefined
1501
     * upon entry to this block.
1502
     */
1503
0
    memset((char *)b->val, 0, sizeof(b->val));
1504
0
  } else {
1505
    /*
1506
     * Inherit values from our predecessors.
1507
     *
1508
     * First, get the values from the predecessor along the
1509
     * first edge leading to this node.
1510
     */
1511
0
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512
    /*
1513
     * Now look at all the other nodes leading to this node.
1514
     * If, for the predecessor along that edge, a register
1515
     * has a different value from the one we have (i.e.,
1516
     * control paths are merging, and the merging paths
1517
     * assign different values to that register), give the
1518
     * register the undefined value of 0.
1519
     */
1520
0
    while ((p = p->next) != NULL) {
1521
0
      for (i = 0; i < N_ATOMS; ++i)
1522
0
        if (b->val[i] != p->pred->val[i])
1523
0
          b->val[i] = 0;
1524
0
    }
1525
0
  }
1526
0
  aval = b->val[A_ATOM];
1527
0
  xval = b->val[X_ATOM];
1528
0
  for (s = b->stmts; s; s = s->next)
1529
0
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531
  /*
1532
   * This is a special case: if we don't use anything from this
1533
   * block, and we load the accumulator or index register with a
1534
   * value that is already there, or if this block is a return,
1535
   * eliminate all the statements.
1536
   *
1537
   * XXX - what if it does a store?  Presumably that falls under
1538
   * the heading of "if we don't use anything from this block",
1539
   * i.e., if we use any memory location set to a different
1540
   * value by this block, then we use something from this block.
1541
   *
1542
   * XXX - why does it matter whether we use anything from this
1543
   * block?  If the accumulator or index register doesn't change
1544
   * its value, isn't that OK even if we use that value?
1545
   *
1546
   * XXX - if we load the accumulator with a different value,
1547
   * and the block ends with a conditional branch, we obviously
1548
   * can't eliminate it, as the branch depends on that value.
1549
   * For the index register, the conditional branch only depends
1550
   * on the index register value if the test is against the index
1551
   * register value rather than a constant; if nothing uses the
1552
   * value we put into the index register, and we're not testing
1553
   * against the index register's value, and there aren't any
1554
   * other problems that would keep us from eliminating this
1555
   * block, can we eliminate it?
1556
   */
1557
0
  if (do_stmts &&
1558
0
      ((b->out_use == 0 &&
1559
0
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560
0
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561
0
       BPF_CLASS(b->s.code) == BPF_RET)) {
1562
0
    if (b->stmts != 0) {
1563
0
      b->stmts = 0;
1564
      /*
1565
       * XXX - optimizer loop detection.
1566
       */
1567
0
      opt_state->non_branch_movement_performed = 1;
1568
0
      opt_state->done = 0;
1569
0
    }
1570
0
  } else {
1571
0
    opt_peep(opt_state, b);
1572
0
    opt_deadstores(opt_state, b);
1573
0
  }
1574
  /*
1575
   * Set up values for branch optimizer.
1576
   */
1577
0
  if (BPF_SRC(b->s.code) == BPF_K)
1578
0
    b->oval = K(b->s.k);
1579
0
  else
1580
0
    b->oval = b->val[X_ATOM];
1581
0
  b->et.code = b->s.code;
1582
0
  b->ef.code = -b->s.code;
1583
0
}
1584
1585
/*
1586
 * Return true if any register that is used on exit from 'succ', has
1587
 * an exit value that is different from the corresponding exit value
1588
 * from 'b'.
1589
 */
1590
static int
1591
use_conflict(struct block *b, struct block *succ)
1592
0
{
1593
0
  int atom;
1594
0
  atomset use = succ->out_use;
1595
1596
0
  if (use == 0)
1597
0
    return 0;
1598
1599
0
  for (atom = 0; atom < N_ATOMS; ++atom)
1600
0
    if (ATOMELEM(use, atom))
1601
0
      if (b->val[atom] != succ->val[atom])
1602
0
        return 1;
1603
0
  return 0;
1604
0
}
1605
1606
/*
1607
 * Given a block that is the successor of an edge, and an edge that
1608
 * dominates that edge, return either a pointer to a child of that
1609
 * block (a block to which that block jumps) if that block is a
1610
 * candidate to replace the successor of the latter edge or NULL
1611
 * if neither of the children of the first block are candidates.
1612
 */
1613
static struct block *
1614
fold_edge(struct block *child, struct edge *ep)
1615
0
{
1616
0
  int sense;
1617
0
  bpf_u_int32 aval0, aval1, oval0, oval1;
1618
0
  int code = ep->code;
1619
1620
0
  if (code < 0) {
1621
    /*
1622
     * This edge is a "branch if false" edge.
1623
     */
1624
0
    code = -code;
1625
0
    sense = 0;
1626
0
  } else {
1627
    /*
1628
     * This edge is a "branch if true" edge.
1629
     */
1630
0
    sense = 1;
1631
0
  }
1632
1633
  /*
1634
   * If the opcode for the branch at the end of the block we
1635
   * were handed isn't the same as the opcode for the branch
1636
   * to which the edge we were handed corresponds, the tests
1637
   * for those branches aren't testing the same conditions,
1638
   * so the blocks to which the first block branches aren't
1639
   * candidates to replace the successor of the edge.
1640
   */
1641
0
  if (child->s.code != code)
1642
0
    return 0;
1643
1644
0
  aval0 = child->val[A_ATOM];
1645
0
  oval0 = child->oval;
1646
0
  aval1 = ep->pred->val[A_ATOM];
1647
0
  oval1 = ep->pred->oval;
1648
1649
  /*
1650
   * If the A register value on exit from the successor block
1651
   * isn't the same as the A register value on exit from the
1652
   * predecessor of the edge, the blocks to which the first
1653
   * block branches aren't candidates to replace the successor
1654
   * of the edge.
1655
   */
1656
0
  if (aval0 != aval1)
1657
0
    return 0;
1658
1659
0
  if (oval0 == oval1)
1660
    /*
1661
     * The operands of the branch instructions are
1662
     * identical, so the branches are testing the
1663
     * same condition, and the result is true if a true
1664
     * branch was taken to get here, otherwise false.
1665
     */
1666
0
    return sense ? JT(child) : JF(child);
1667
1668
0
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669
    /*
1670
     * At this point, we only know the comparison if we
1671
     * came down the true branch, and it was an equality
1672
     * comparison with a constant.
1673
     *
1674
     * I.e., if we came down the true branch, and the branch
1675
     * was an equality comparison with a constant, we know the
1676
     * accumulator contains that constant.  If we came down
1677
     * the false branch, or the comparison wasn't with a
1678
     * constant, we don't know what was in the accumulator.
1679
     *
1680
     * We rely on the fact that distinct constants have distinct
1681
     * value numbers.
1682
     */
1683
0
    return JF(child);
1684
1685
0
  return 0;
1686
0
}
1687
1688
/*
1689
 * If we can make this edge go directly to a child of the edge's current
1690
 * successor, do so.
1691
 */
1692
static void
1693
opt_j(opt_state_t *opt_state, struct edge *ep)
1694
0
{
1695
0
  register u_int i, k;
1696
0
  register struct block *target;
1697
1698
  /*
1699
   * Does this edge go to a block where, if the test
1700
   * at the end of it succeeds, it goes to a block
1701
   * that's a leaf node of the DAG, i.e. a return
1702
   * statement?
1703
   * If so, there's nothing to optimize.
1704
   */
1705
0
  if (JT(ep->succ) == 0)
1706
0
    return;
1707
1708
  /*
1709
   * Does this edge go to a block that goes, in turn, to
1710
   * the same block regardless of whether the test at the
1711
   * end succeeds or fails?
1712
   */
1713
0
  if (JT(ep->succ) == JF(ep->succ)) {
1714
    /*
1715
     * Common branch targets can be eliminated, provided
1716
     * there is no data dependency.
1717
     *
1718
     * Check whether any register used on exit from the
1719
     * block to which the successor of this edge goes
1720
     * has a value at that point that's different from
1721
     * the value it has on exit from the predecessor of
1722
     * this edge.  If not, the predecessor of this edge
1723
     * can just go to the block to which the successor
1724
     * of this edge goes, bypassing the successor of this
1725
     * edge, as the successor of this edge isn't doing
1726
     * any calculations whose results are different
1727
     * from what the blocks before it did and isn't
1728
     * doing any tests the results of which matter.
1729
     */
1730
0
    if (!use_conflict(ep->pred, JT(ep->succ))) {
1731
      /*
1732
       * No, there isn't.
1733
       * Make this edge go to the block to
1734
       * which the successor of that edge
1735
       * goes.
1736
       *
1737
       * XXX - optimizer loop detection.
1738
       */
1739
0
      opt_state->non_branch_movement_performed = 1;
1740
0
      opt_state->done = 0;
1741
0
      ep->succ = JT(ep->succ);
1742
0
    }
1743
0
  }
1744
  /*
1745
   * For each edge dominator that matches the successor of this
1746
   * edge, promote the edge successor to the its grandchild.
1747
   *
1748
   * XXX We violate the set abstraction here in favor a reasonably
1749
   * efficient loop.
1750
   */
1751
0
 top:
1752
0
  for (i = 0; i < opt_state->edgewords; ++i) {
1753
    /* i'th word in the bitset of dominators */
1754
0
    register bpf_u_int32 x = ep->edom[i];
1755
1756
0
    while (x != 0) {
1757
      /* Find the next dominator in that word and mark it as found */
1758
0
      k = lowest_set_bit(x);
1759
0
      x &=~ ((bpf_u_int32)1 << k);
1760
0
      k += i * BITS_PER_WORD;
1761
1762
0
      target = fold_edge(ep->succ, opt_state->edges[k]);
1763
      /*
1764
       * We have a candidate to replace the successor
1765
       * of ep.
1766
       *
1767
       * Check that there is no data dependency between
1768
       * nodes that will be violated if we move the edge;
1769
       * i.e., if any register used on exit from the
1770
       * candidate has a value at that point different
1771
       * from the value it has when we exit the
1772
       * predecessor of that edge, there's a data
1773
       * dependency that will be violated.
1774
       */
1775
0
      if (target != 0 && !use_conflict(ep->pred, target)) {
1776
        /*
1777
         * It's safe to replace the successor of
1778
         * ep; do so, and note that we've made
1779
         * at least one change.
1780
         *
1781
         * XXX - this is one of the operations that
1782
         * happens when the optimizer gets into
1783
         * one of those infinite loops.
1784
         */
1785
0
        opt_state->done = 0;
1786
0
        ep->succ = target;
1787
0
        if (JT(target) != 0)
1788
          /*
1789
           * Start over unless we hit a leaf.
1790
           */
1791
0
          goto top;
1792
0
        return;
1793
0
      }
1794
0
    }
1795
0
  }
1796
0
}
1797
1798
/*
1799
 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800
 * "Predicate Assertion Propagation" in the BPF+ paper?
1801
 *
1802
 * Note that this looks at block dominators, not edge dominators.
1803
 * Don't think so.
1804
 *
1805
 * "A or B" compiles into
1806
 *
1807
 *          A
1808
 *       t / \ f
1809
 *        /   B
1810
 *       / t / \ f
1811
 *      \   /
1812
 *       \ /
1813
 *        X
1814
 *
1815
 *
1816
 */
1817
static void
1818
or_pullup(opt_state_t *opt_state, struct block *b)
1819
0
{
1820
0
  bpf_u_int32 val;
1821
0
  int at_top;
1822
0
  struct block *pull;
1823
0
  struct block **diffp, **samep;
1824
0
  struct edge *ep;
1825
1826
0
  ep = b->in_edges;
1827
0
  if (ep == 0)
1828
0
    return;
1829
1830
  /*
1831
   * Make sure each predecessor loads the same value.
1832
   * XXX why?
1833
   */
1834
0
  val = ep->pred->val[A_ATOM];
1835
0
  for (ep = ep->next; ep != 0; ep = ep->next)
1836
0
    if (val != ep->pred->val[A_ATOM])
1837
0
      return;
1838
1839
  /*
1840
   * For the first edge in the list of edges coming into this block,
1841
   * see whether the predecessor of that edge comes here via a true
1842
   * branch or a false branch.
1843
   */
1844
0
  if (JT(b->in_edges->pred) == b)
1845
0
    diffp = &JT(b->in_edges->pred);  /* jt */
1846
0
  else
1847
0
    diffp = &JF(b->in_edges->pred);  /* jf */
1848
1849
  /*
1850
   * diffp is a pointer to a pointer to the block.
1851
   *
1852
   * Go down the false chain looking as far as you can,
1853
   * making sure that each jump-compare is doing the
1854
   * same as the original block.
1855
   *
1856
   * If you reach the bottom before you reach a
1857
   * different jump-compare, just exit.  There's nothing
1858
   * to do here.  XXX - no, this version is checking for
1859
   * the value leaving the block; that's from the BPF+
1860
   * pullup routine.
1861
   */
1862
0
  at_top = 1;
1863
0
  for (;;) {
1864
    /*
1865
     * Done if that's not going anywhere XXX
1866
     */
1867
0
    if (*diffp == 0)
1868
0
      return;
1869
1870
    /*
1871
     * Done if that predecessor blah blah blah isn't
1872
     * going the same place we're going XXX
1873
     *
1874
     * Does the true edge of this block point to the same
1875
     * location as the true edge of b?
1876
     */
1877
0
    if (JT(*diffp) != JT(b))
1878
0
      return;
1879
1880
    /*
1881
     * Done if this node isn't a dominator of that
1882
     * node blah blah blah XXX
1883
     *
1884
     * Does b dominate diffp?
1885
     */
1886
0
    if (!SET_MEMBER((*diffp)->dom, b->id))
1887
0
      return;
1888
1889
    /*
1890
     * Break out of the loop if that node's value of A
1891
     * isn't the value of A above XXX
1892
     */
1893
0
    if ((*diffp)->val[A_ATOM] != val)
1894
0
      break;
1895
1896
    /*
1897
     * Get the JF for that node XXX
1898
     * Go down the false path.
1899
     */
1900
0
    diffp = &JF(*diffp);
1901
0
    at_top = 0;
1902
0
  }
1903
1904
  /*
1905
   * Now that we've found a different jump-compare in a chain
1906
   * below b, search further down until we find another
1907
   * jump-compare that looks at the original value.  This
1908
   * jump-compare should get pulled up.  XXX again we're
1909
   * comparing values not jump-compares.
1910
   */
1911
0
  samep = &JF(*diffp);
1912
0
  for (;;) {
1913
    /*
1914
     * Done if that's not going anywhere XXX
1915
     */
1916
0
    if (*samep == 0)
1917
0
      return;
1918
1919
    /*
1920
     * Done if that predecessor blah blah blah isn't
1921
     * going the same place we're going XXX
1922
     */
1923
0
    if (JT(*samep) != JT(b))
1924
0
      return;
1925
1926
    /*
1927
     * Done if this node isn't a dominator of that
1928
     * node blah blah blah XXX
1929
     *
1930
     * Does b dominate samep?
1931
     */
1932
0
    if (!SET_MEMBER((*samep)->dom, b->id))
1933
0
      return;
1934
1935
    /*
1936
     * Break out of the loop if that node's value of A
1937
     * is the value of A above XXX
1938
     */
1939
0
    if ((*samep)->val[A_ATOM] == val)
1940
0
      break;
1941
1942
    /* XXX Need to check that there are no data dependencies
1943
       between dp0 and dp1.  Currently, the code generator
1944
       will not produce such dependencies. */
1945
0
    samep = &JF(*samep);
1946
0
  }
1947
#ifdef notdef
1948
  /* XXX This doesn't cover everything. */
1949
  for (i = 0; i < N_ATOMS; ++i)
1950
    if ((*samep)->val[i] != pred->val[i])
1951
      return;
1952
#endif
1953
  /* Pull up the node. */
1954
0
  pull = *samep;
1955
0
  *samep = JF(pull);
1956
0
  JF(pull) = *diffp;
1957
1958
  /*
1959
   * At the top of the chain, each predecessor needs to point at the
1960
   * pulled up node.  Inside the chain, there is only one predecessor
1961
   * to worry about.
1962
   */
1963
0
  if (at_top) {
1964
0
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965
0
      if (JT(ep->pred) == b)
1966
0
        JT(ep->pred) = pull;
1967
0
      else
1968
0
        JF(ep->pred) = pull;
1969
0
    }
1970
0
  }
1971
0
  else
1972
0
    *diffp = pull;
1973
1974
  /*
1975
   * XXX - this is one of the operations that happens when the
1976
   * optimizer gets into one of those infinite loops.
1977
   */
1978
0
  opt_state->done = 0;
1979
0
}
1980
1981
static void
1982
and_pullup(opt_state_t *opt_state, struct block *b)
1983
0
{
1984
0
  bpf_u_int32 val;
1985
0
  int at_top;
1986
0
  struct block *pull;
1987
0
  struct block **diffp, **samep;
1988
0
  struct edge *ep;
1989
1990
0
  ep = b->in_edges;
1991
0
  if (ep == 0)
1992
0
    return;
1993
1994
  /*
1995
   * Make sure each predecessor loads the same value.
1996
   */
1997
0
  val = ep->pred->val[A_ATOM];
1998
0
  for (ep = ep->next; ep != 0; ep = ep->next)
1999
0
    if (val != ep->pred->val[A_ATOM])
2000
0
      return;
2001
2002
0
  if (JT(b->in_edges->pred) == b)
2003
0
    diffp = &JT(b->in_edges->pred);
2004
0
  else
2005
0
    diffp = &JF(b->in_edges->pred);
2006
2007
0
  at_top = 1;
2008
0
  for (;;) {
2009
0
    if (*diffp == 0)
2010
0
      return;
2011
2012
0
    if (JF(*diffp) != JF(b))
2013
0
      return;
2014
2015
0
    if (!SET_MEMBER((*diffp)->dom, b->id))
2016
0
      return;
2017
2018
0
    if ((*diffp)->val[A_ATOM] != val)
2019
0
      break;
2020
2021
0
    diffp = &JT(*diffp);
2022
0
    at_top = 0;
2023
0
  }
2024
0
  samep = &JT(*diffp);
2025
0
  for (;;) {
2026
0
    if (*samep == 0)
2027
0
      return;
2028
2029
0
    if (JF(*samep) != JF(b))
2030
0
      return;
2031
2032
0
    if (!SET_MEMBER((*samep)->dom, b->id))
2033
0
      return;
2034
2035
0
    if ((*samep)->val[A_ATOM] == val)
2036
0
      break;
2037
2038
    /* XXX Need to check that there are no data dependencies
2039
       between diffp and samep.  Currently, the code generator
2040
       will not produce such dependencies. */
2041
0
    samep = &JT(*samep);
2042
0
  }
2043
#ifdef notdef
2044
  /* XXX This doesn't cover everything. */
2045
  for (i = 0; i < N_ATOMS; ++i)
2046
    if ((*samep)->val[i] != pred->val[i])
2047
      return;
2048
#endif
2049
  /* Pull up the node. */
2050
0
  pull = *samep;
2051
0
  *samep = JT(pull);
2052
0
  JT(pull) = *diffp;
2053
2054
  /*
2055
   * At the top of the chain, each predecessor needs to point at the
2056
   * pulled up node.  Inside the chain, there is only one predecessor
2057
   * to worry about.
2058
   */
2059
0
  if (at_top) {
2060
0
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061
0
      if (JT(ep->pred) == b)
2062
0
        JT(ep->pred) = pull;
2063
0
      else
2064
0
        JF(ep->pred) = pull;
2065
0
    }
2066
0
  }
2067
0
  else
2068
0
    *diffp = pull;
2069
2070
  /*
2071
   * XXX - this is one of the operations that happens when the
2072
   * optimizer gets into one of those infinite loops.
2073
   */
2074
0
  opt_state->done = 0;
2075
0
}
2076
2077
static void
2078
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079
0
{
2080
0
  int i, maxlevel;
2081
0
  struct block *p;
2082
2083
0
  init_val(opt_state);
2084
0
  maxlevel = ic->root->level;
2085
2086
0
  find_inedges(opt_state, ic->root);
2087
0
  for (i = maxlevel; i >= 0; --i)
2088
0
    for (p = opt_state->levels[i]; p; p = p->link)
2089
0
      opt_blk(opt_state, p, do_stmts);
2090
2091
0
  if (do_stmts)
2092
    /*
2093
     * No point trying to move branches; it can't possibly
2094
     * make a difference at this point.
2095
     *
2096
     * XXX - this might be after we detect a loop where
2097
     * we were just looping infinitely moving branches
2098
     * in such a fashion that we went through two or more
2099
     * versions of the machine code, eventually returning
2100
     * to the first version.  (We're really not doing a
2101
     * full loop detection, we're just testing for two
2102
     * passes in a row where we do nothing but
2103
     * move branches.)
2104
     */
2105
0
    return;
2106
2107
  /*
2108
   * Is this what the BPF+ paper describes in sections 6.1.1,
2109
   * 6.1.2, and 6.1.3?
2110
   */
2111
0
  for (i = 1; i <= maxlevel; ++i) {
2112
0
    for (p = opt_state->levels[i]; p; p = p->link) {
2113
0
      opt_j(opt_state, &p->et);
2114
0
      opt_j(opt_state, &p->ef);
2115
0
    }
2116
0
  }
2117
2118
0
  find_inedges(opt_state, ic->root);
2119
0
  for (i = 1; i <= maxlevel; ++i) {
2120
0
    for (p = opt_state->levels[i]; p; p = p->link) {
2121
0
      or_pullup(opt_state, p);
2122
0
      and_pullup(opt_state, p);
2123
0
    }
2124
0
  }
2125
0
}
2126
2127
static inline void
2128
link_inedge(struct edge *parent, struct block *child)
2129
0
{
2130
0
  parent->next = child->in_edges;
2131
0
  child->in_edges = parent;
2132
0
}
2133
2134
static void
2135
find_inedges(opt_state_t *opt_state, struct block *root)
2136
0
{
2137
0
  u_int i;
2138
0
  int level;
2139
0
  struct block *b;
2140
2141
0
  for (i = 0; i < opt_state->n_blocks; ++i)
2142
0
    opt_state->blocks[i]->in_edges = 0;
2143
2144
  /*
2145
   * Traverse the graph, adding each edge to the predecessor
2146
   * list of its successors.  Skip the leaves (i.e. level 0).
2147
   */
2148
0
  for (level = root->level; level > 0; --level) {
2149
0
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150
0
      link_inedge(&b->et, JT(b));
2151
0
      link_inedge(&b->ef, JF(b));
2152
0
    }
2153
0
  }
2154
0
}
2155
2156
static void
2157
opt_root(struct block **b)
2158
0
{
2159
0
  struct slist *tmp, *s;
2160
2161
0
  s = (*b)->stmts;
2162
0
  (*b)->stmts = 0;
2163
0
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164
0
    *b = JT(*b);
2165
2166
0
  tmp = (*b)->stmts;
2167
0
  if (tmp != 0)
2168
0
    sappend(s, tmp);
2169
0
  (*b)->stmts = s;
2170
2171
  /*
2172
   * If the root node is a return, then there is no
2173
   * point executing any statements (since the bpf machine
2174
   * has no side effects).
2175
   */
2176
0
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177
0
    (*b)->stmts = 0;
2178
0
}
2179
2180
static void
2181
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182
0
{
2183
2184
#ifdef BDEBUG
2185
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186
    printf("opt_loop(root, %d) begin\n", do_stmts);
2187
    opt_dump(opt_state, ic);
2188
  }
2189
#endif
2190
2191
  /*
2192
   * XXX - optimizer loop detection.
2193
   */
2194
0
  int loop_count = 0;
2195
0
  for (;;) {
2196
0
    opt_state->done = 1;
2197
    /*
2198
     * XXX - optimizer loop detection.
2199
     */
2200
0
    opt_state->non_branch_movement_performed = 0;
2201
0
    find_levels(opt_state, ic);
2202
0
    find_dom(opt_state, ic->root);
2203
0
    find_closure(opt_state, ic->root);
2204
0
    find_ud(opt_state, ic->root);
2205
0
    find_edom(opt_state, ic->root);
2206
0
    opt_blks(opt_state, ic, do_stmts);
2207
#ifdef BDEBUG
2208
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210
      opt_dump(opt_state, ic);
2211
    }
2212
#endif
2213
2214
    /*
2215
     * Was anything done in this optimizer pass?
2216
     */
2217
0
    if (opt_state->done) {
2218
      /*
2219
       * No, so we've reached a fixed point.
2220
       * We're done.
2221
       */
2222
0
      break;
2223
0
    }
2224
2225
    /*
2226
     * XXX - was anything done other than branch movement
2227
     * in this pass?
2228
     */
2229
0
    if (opt_state->non_branch_movement_performed) {
2230
      /*
2231
       * Yes.  Clear any loop-detection counter;
2232
       * we're making some form of progress (assuming
2233
       * we can't get into a cycle doing *other*
2234
       * optimizations...).
2235
       */
2236
0
      loop_count = 0;
2237
0
    } else {
2238
      /*
2239
       * No - increment the counter, and quit if
2240
       * it's up to 100.
2241
       */
2242
0
      loop_count++;
2243
0
      if (loop_count >= 100) {
2244
        /*
2245
         * We've done nothing but branch movement
2246
         * for 100 passes; we're probably
2247
         * in a cycle and will never reach a
2248
         * fixed point.
2249
         *
2250
         * XXX - yes, we really need a non-
2251
         * heuristic way of detecting a cycle.
2252
         */
2253
0
        opt_state->done = 1;
2254
0
        break;
2255
0
      }
2256
0
    }
2257
0
  }
2258
0
}
2259
2260
/*
2261
 * Optimize the filter code in its dag representation.
2262
 * Return 0 on success, -1 on error.
2263
 */
2264
int
2265
bpf_optimize(struct icode *ic, char *errbuf)
2266
0
{
2267
0
  opt_state_t opt_state;
2268
2269
0
  memset(&opt_state, 0, sizeof(opt_state));
2270
0
  opt_state.errbuf = errbuf;
2271
0
  opt_state.non_branch_movement_performed = 0;
2272
0
  if (setjmp(opt_state.top_ctx)) {
2273
0
    opt_cleanup(&opt_state);
2274
0
    return -1;
2275
0
  }
2276
0
  opt_init(&opt_state, ic);
2277
0
  opt_loop(&opt_state, ic, 0);
2278
0
  opt_loop(&opt_state, ic, 1);
2279
0
  intern_blocks(&opt_state, ic);
2280
#ifdef BDEBUG
2281
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282
    printf("after intern_blocks()\n");
2283
    opt_dump(&opt_state, ic);
2284
  }
2285
#endif
2286
0
  opt_root(&ic->root);
2287
#ifdef BDEBUG
2288
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289
    printf("after opt_root()\n");
2290
    opt_dump(&opt_state, ic);
2291
  }
2292
#endif
2293
0
  opt_cleanup(&opt_state);
2294
0
  return 0;
2295
0
}
2296
2297
static void
2298
make_marks(struct icode *ic, struct block *p)
2299
0
{
2300
0
  if (!isMarked(ic, p)) {
2301
0
    Mark(ic, p);
2302
0
    if (BPF_CLASS(p->s.code) != BPF_RET) {
2303
0
      make_marks(ic, JT(p));
2304
0
      make_marks(ic, JF(p));
2305
0
    }
2306
0
  }
2307
0
}
2308
2309
/*
2310
 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311
 * only for nodes that are alive.
2312
 */
2313
static void
2314
mark_code(struct icode *ic)
2315
0
{
2316
0
  ic->cur_mark += 1;
2317
0
  make_marks(ic, ic->root);
2318
0
}
2319
2320
/*
2321
 * True iff the two stmt lists load the same value from the packet into
2322
 * the accumulator.
2323
 */
2324
static int
2325
eq_slist(struct slist *x, struct slist *y)
2326
0
{
2327
0
  for (;;) {
2328
0
    while (x && x->s.code == NOP)
2329
0
      x = x->next;
2330
0
    while (y && y->s.code == NOP)
2331
0
      y = y->next;
2332
0
    if (x == 0)
2333
0
      return y == 0;
2334
0
    if (y == 0)
2335
0
      return x == 0;
2336
0
    if (x->s.code != y->s.code || x->s.k != y->s.k)
2337
0
      return 0;
2338
0
    x = x->next;
2339
0
    y = y->next;
2340
0
  }
2341
0
}
2342
2343
static inline int
2344
eq_blk(struct block *b0, struct block *b1)
2345
0
{
2346
0
  if (b0->s.code == b1->s.code &&
2347
0
      b0->s.k == b1->s.k &&
2348
0
      b0->et.succ == b1->et.succ &&
2349
0
      b0->ef.succ == b1->ef.succ)
2350
0
    return eq_slist(b0->stmts, b1->stmts);
2351
0
  return 0;
2352
0
}
2353
2354
static void
2355
intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356
0
{
2357
0
  struct block *p;
2358
0
  u_int i, j;
2359
0
  int done1; /* don't shadow global */
2360
0
 top:
2361
0
  done1 = 1;
2362
0
  for (i = 0; i < opt_state->n_blocks; ++i)
2363
0
    opt_state->blocks[i]->link = 0;
2364
2365
0
  mark_code(ic);
2366
2367
0
  for (i = opt_state->n_blocks - 1; i != 0; ) {
2368
0
    --i;
2369
0
    if (!isMarked(ic, opt_state->blocks[i]))
2370
0
      continue;
2371
0
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372
0
      if (!isMarked(ic, opt_state->blocks[j]))
2373
0
        continue;
2374
0
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375
0
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376
0
          opt_state->blocks[j]->link : opt_state->blocks[j];
2377
0
        break;
2378
0
      }
2379
0
    }
2380
0
  }
2381
0
  for (i = 0; i < opt_state->n_blocks; ++i) {
2382
0
    p = opt_state->blocks[i];
2383
0
    if (JT(p) == 0)
2384
0
      continue;
2385
0
    if (JT(p)->link) {
2386
0
      done1 = 0;
2387
0
      JT(p) = JT(p)->link;
2388
0
    }
2389
0
    if (JF(p)->link) {
2390
0
      done1 = 0;
2391
0
      JF(p) = JF(p)->link;
2392
0
    }
2393
0
  }
2394
0
  if (!done1)
2395
0
    goto top;
2396
0
}
2397
2398
static void
2399
opt_cleanup(opt_state_t *opt_state)
2400
0
{
2401
0
  free((void *)opt_state->vnode_base);
2402
0
  free((void *)opt_state->vmap);
2403
0
  free((void *)opt_state->edges);
2404
0
  free((void *)opt_state->space);
2405
0
  free((void *)opt_state->levels);
2406
0
  free((void *)opt_state->blocks);
2407
0
}
2408
2409
/*
2410
 * For optimizer errors.
2411
 */
2412
static void PCAP_NORETURN
2413
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414
0
{
2415
0
  va_list ap;
2416
2417
0
  if (opt_state->errbuf != NULL) {
2418
0
    va_start(ap, fmt);
2419
0
    (void)vsnprintf(opt_state->errbuf,
2420
0
        PCAP_ERRBUF_SIZE, fmt, ap);
2421
0
    va_end(ap);
2422
0
  }
2423
0
  longjmp(opt_state->top_ctx, 1);
2424
  /* NOTREACHED */
2425
#ifdef _AIX
2426
  PCAP_UNREACHABLE
2427
#endif /* _AIX */
2428
0
}
2429
2430
/*
2431
 * Return the number of stmts in 's'.
2432
 */
2433
static u_int
2434
slength(struct slist *s)
2435
0
{
2436
0
  u_int n = 0;
2437
2438
0
  for (; s; s = s->next)
2439
0
    if (s->s.code != NOP)
2440
0
      ++n;
2441
0
  return n;
2442
0
}
2443
2444
/*
2445
 * Return the number of nodes reachable by 'p'.
2446
 * All nodes should be initially unmarked.
2447
 */
2448
static int
2449
count_blocks(struct icode *ic, struct block *p)
2450
0
{
2451
0
  if (p == 0 || isMarked(ic, p))
2452
0
    return 0;
2453
0
  Mark(ic, p);
2454
0
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455
0
}
2456
2457
/*
2458
 * Do a depth first search on the flow graph, numbering the
2459
 * the basic blocks, and entering them into the 'blocks' array.`
2460
 */
2461
static void
2462
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463
0
{
2464
0
  u_int n;
2465
2466
0
  if (p == 0 || isMarked(ic, p))
2467
0
    return;
2468
2469
0
  Mark(ic, p);
2470
0
  n = opt_state->n_blocks++;
2471
0
  if (opt_state->n_blocks == 0) {
2472
    /*
2473
     * Overflow.
2474
     */
2475
0
    opt_error(opt_state, "filter is too complex to optimize");
2476
0
  }
2477
0
  p->id = n;
2478
0
  opt_state->blocks[n] = p;
2479
2480
0
  number_blks_r(opt_state, ic, JT(p));
2481
0
  number_blks_r(opt_state, ic, JF(p));
2482
0
}
2483
2484
/*
2485
 * Return the number of stmts in the flowgraph reachable by 'p'.
2486
 * The nodes should be unmarked before calling.
2487
 *
2488
 * Note that "stmts" means "instructions", and that this includes
2489
 *
2490
 *  side-effect statements in 'p' (slength(p->stmts));
2491
 *
2492
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2493
 *
2494
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2495
 *
2496
 *  the conditional jump itself (1);
2497
 *
2498
 *  an extra long jump if the true branch requires it (p->longjt);
2499
 *
2500
 *  an extra long jump if the false branch requires it (p->longjf).
2501
 */
2502
static u_int
2503
count_stmts(struct icode *ic, struct block *p)
2504
0
{
2505
0
  u_int n;
2506
2507
0
  if (p == 0 || isMarked(ic, p))
2508
0
    return 0;
2509
0
  Mark(ic, p);
2510
0
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511
0
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512
0
}
2513
2514
/*
2515
 * Allocate memory.  All allocation is done before optimization
2516
 * is begun.  A linear bound on the size of all data structures is computed
2517
 * from the total number of blocks and/or statements.
2518
 */
2519
static void
2520
opt_init(opt_state_t *opt_state, struct icode *ic)
2521
0
{
2522
0
  bpf_u_int32 *p;
2523
0
  int i, n, max_stmts;
2524
0
  u_int product;
2525
0
  size_t block_memsize, edge_memsize;
2526
2527
  /*
2528
   * First, count the blocks, so we can malloc an array to map
2529
   * block number to block.  Then, put the blocks into the array.
2530
   */
2531
0
  unMarkAll(ic);
2532
0
  n = count_blocks(ic, ic->root);
2533
0
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534
0
  if (opt_state->blocks == NULL)
2535
0
    opt_error(opt_state, "malloc");
2536
0
  unMarkAll(ic);
2537
0
  opt_state->n_blocks = 0;
2538
0
  number_blks_r(opt_state, ic, ic->root);
2539
2540
  /*
2541
   * This "should not happen".
2542
   */
2543
0
  if (opt_state->n_blocks == 0)
2544
0
    opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546
0
  opt_state->n_edges = 2 * opt_state->n_blocks;
2547
0
  if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548
    /*
2549
     * Overflow.
2550
     */
2551
0
    opt_error(opt_state, "filter is too complex to optimize");
2552
0
  }
2553
0
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554
0
  if (opt_state->edges == NULL) {
2555
0
    opt_error(opt_state, "malloc");
2556
0
  }
2557
2558
  /*
2559
   * The number of levels is bounded by the number of nodes.
2560
   */
2561
0
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562
0
  if (opt_state->levels == NULL) {
2563
0
    opt_error(opt_state, "malloc");
2564
0
  }
2565
2566
0
  opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567
0
  opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569
  /*
2570
   * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571
   * in a u_int; we use it as a u_int number-of-iterations
2572
   * value.
2573
   */
2574
0
  product = opt_state->n_blocks * opt_state->nodewords;
2575
0
  if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576
    /*
2577
     * XXX - just punt and don't try to optimize?
2578
     * In practice, this is unlikely to happen with
2579
     * a normal filter.
2580
     */
2581
0
    opt_error(opt_state, "filter is too complex to optimize");
2582
0
  }
2583
2584
  /*
2585
   * Make sure the total memory required for that doesn't
2586
   * overflow.
2587
   */
2588
0
  block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589
0
  if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590
0
    opt_error(opt_state, "filter is too complex to optimize");
2591
0
  }
2592
2593
  /*
2594
   * Make sure opt_state->n_edges * opt_state->edgewords fits
2595
   * in a u_int; we use it as a u_int number-of-iterations
2596
   * value.
2597
   */
2598
0
  product = opt_state->n_edges * opt_state->edgewords;
2599
0
  if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600
0
    opt_error(opt_state, "filter is too complex to optimize");
2601
0
  }
2602
2603
  /*
2604
   * Make sure the total memory required for that doesn't
2605
   * overflow.
2606
   */
2607
0
  edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608
0
  if (edge_memsize / product != sizeof(*opt_state->space)) {
2609
0
    opt_error(opt_state, "filter is too complex to optimize");
2610
0
  }
2611
2612
  /*
2613
   * Make sure the total memory required for both of them doesn't
2614
   * overflow.
2615
   */
2616
0
  if (block_memsize > SIZE_MAX - edge_memsize) {
2617
0
    opt_error(opt_state, "filter is too complex to optimize");
2618
0
  }
2619
2620
  /* XXX */
2621
0
  opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622
0
  if (opt_state->space == NULL) {
2623
0
    opt_error(opt_state, "malloc");
2624
0
  }
2625
0
  p = opt_state->space;
2626
0
  opt_state->all_dom_sets = p;
2627
0
  for (i = 0; i < n; ++i) {
2628
0
    opt_state->blocks[i]->dom = p;
2629
0
    p += opt_state->nodewords;
2630
0
  }
2631
0
  opt_state->all_closure_sets = p;
2632
0
  for (i = 0; i < n; ++i) {
2633
0
    opt_state->blocks[i]->closure = p;
2634
0
    p += opt_state->nodewords;
2635
0
  }
2636
0
  opt_state->all_edge_sets = p;
2637
0
  for (i = 0; i < n; ++i) {
2638
0
    register struct block *b = opt_state->blocks[i];
2639
2640
0
    b->et.edom = p;
2641
0
    p += opt_state->edgewords;
2642
0
    b->ef.edom = p;
2643
0
    p += opt_state->edgewords;
2644
0
    b->et.id = i;
2645
0
    opt_state->edges[i] = &b->et;
2646
0
    b->ef.id = opt_state->n_blocks + i;
2647
0
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648
0
    b->et.pred = b;
2649
0
    b->ef.pred = b;
2650
0
  }
2651
0
  max_stmts = 0;
2652
0
  for (i = 0; i < n; ++i)
2653
0
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654
  /*
2655
   * We allocate at most 3 value numbers per statement,
2656
   * so this is an upper bound on the number of valnodes
2657
   * we'll need.
2658
   */
2659
0
  opt_state->maxval = 3 * max_stmts;
2660
0
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661
0
  if (opt_state->vmap == NULL) {
2662
0
    opt_error(opt_state, "malloc");
2663
0
  }
2664
0
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665
0
  if (opt_state->vnode_base == NULL) {
2666
0
    opt_error(opt_state, "malloc");
2667
0
  }
2668
0
}
2669
2670
/*
2671
 * This is only used when supporting optimizer debugging.  It is
2672
 * global state, so do *not* do more than one compile in parallel
2673
 * and expect it to provide meaningful information.
2674
 */
2675
#ifdef BDEBUG
2676
int bids[NBIDS];
2677
#endif
2678
2679
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680
    PCAP_PRINTFLIKE(2, 3);
2681
2682
/*
2683
 * Returns true if successful.  Returns false if a branch has
2684
 * an offset that is too large.  If so, we have marked that
2685
 * branch so that on a subsequent iteration, it will be treated
2686
 * properly.
2687
 */
2688
static int
2689
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690
0
{
2691
0
  struct bpf_insn *dst;
2692
0
  struct slist *src;
2693
0
  u_int slen;
2694
0
  u_int off;
2695
0
  struct slist **offset = NULL;
2696
2697
0
  if (p == 0 || isMarked(ic, p))
2698
0
    return (1);
2699
0
  Mark(ic, p);
2700
2701
0
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702
0
    return (0);
2703
0
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704
0
    return (0);
2705
2706
0
  slen = slength(p->stmts);
2707
0
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708
    /* inflate length by any extra jumps */
2709
2710
0
  p->offset = (int)(dst - conv_state->fstart);
2711
2712
  /* generate offset[] for convenience  */
2713
0
  if (slen) {
2714
0
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715
0
    if (!offset) {
2716
0
      conv_error(conv_state, "not enough core");
2717
      /*NOTREACHED*/
2718
0
    }
2719
0
  }
2720
0
  src = p->stmts;
2721
0
  for (off = 0; off < slen && src; off++) {
2722
#if 0
2723
    printf("off=%d src=%x\n", off, src);
2724
#endif
2725
0
    offset[off] = src;
2726
0
    src = src->next;
2727
0
  }
2728
2729
0
  off = 0;
2730
0
  for (src = p->stmts; src; src = src->next) {
2731
0
    if (src->s.code == NOP)
2732
0
      continue;
2733
0
    dst->code = (u_short)src->s.code;
2734
0
    dst->k = src->s.k;
2735
2736
    /* fill block-local relative jump */
2737
0
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738
#if 0
2739
      if (src->s.jt || src->s.jf) {
2740
        free(offset);
2741
        conv_error(conv_state, "illegal jmp destination");
2742
        /*NOTREACHED*/
2743
      }
2744
#endif
2745
0
      goto filled;
2746
0
    }
2747
0
    if (off == slen - 2) /*???*/
2748
0
      goto filled;
2749
2750
0
      {
2751
0
    u_int i;
2752
0
    int jt, jf;
2753
0
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755
#if 0
2756
    printf("code=%x off=%d %x %x\n", src->s.code,
2757
      off, src->s.jt, src->s.jf);
2758
#endif
2759
2760
0
    if (!src->s.jt || !src->s.jf) {
2761
0
      free(offset);
2762
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2763
      /*NOTREACHED*/
2764
0
    }
2765
2766
0
    jt = jf = 0;
2767
0
    for (i = 0; i < slen; i++) {
2768
0
      if (offset[i] == src->s.jt) {
2769
0
        if (jt) {
2770
0
          free(offset);
2771
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2772
          /*NOTREACHED*/
2773
0
        }
2774
2775
0
        if (i - off - 1 >= 256) {
2776
0
          free(offset);
2777
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2778
          /*NOTREACHED*/
2779
0
        }
2780
0
        dst->jt = (u_char)(i - off - 1);
2781
0
        jt++;
2782
0
      }
2783
0
      if (offset[i] == src->s.jf) {
2784
0
        if (jf) {
2785
0
          free(offset);
2786
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2787
          /*NOTREACHED*/
2788
0
        }
2789
0
        if (i - off - 1 >= 256) {
2790
0
          free(offset);
2791
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2792
          /*NOTREACHED*/
2793
0
        }
2794
0
        dst->jf = (u_char)(i - off - 1);
2795
0
        jf++;
2796
0
      }
2797
0
    }
2798
0
    if (!jt || !jf) {
2799
0
      free(offset);
2800
0
      conv_error(conv_state, ljerr, "no destination found", off);
2801
      /*NOTREACHED*/
2802
0
    }
2803
0
      }
2804
0
filled:
2805
0
    ++dst;
2806
0
    ++off;
2807
0
  }
2808
0
  if (offset)
2809
0
    free(offset);
2810
2811
#ifdef BDEBUG
2812
  if (dst - conv_state->fstart < NBIDS)
2813
    bids[dst - conv_state->fstart] = p->id + 1;
2814
#endif
2815
0
  dst->code = (u_short)p->s.code;
2816
0
  dst->k = p->s.k;
2817
0
  if (JT(p)) {
2818
    /* number of extra jumps inserted */
2819
0
    u_char extrajmps = 0;
2820
0
    off = JT(p)->offset - (p->offset + slen) - 1;
2821
0
    if (off >= 256) {
2822
        /* offset too large for branch, must add a jump */
2823
0
        if (p->longjt == 0) {
2824
      /* mark this instruction and retry */
2825
0
      p->longjt++;
2826
0
      return(0);
2827
0
        }
2828
0
        dst->jt = extrajmps;
2829
0
        extrajmps++;
2830
0
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2831
0
        dst[extrajmps].k = off - extrajmps;
2832
0
    }
2833
0
    else
2834
0
        dst->jt = (u_char)off;
2835
0
    off = JF(p)->offset - (p->offset + slen) - 1;
2836
0
    if (off >= 256) {
2837
        /* offset too large for branch, must add a jump */
2838
0
        if (p->longjf == 0) {
2839
      /* mark this instruction and retry */
2840
0
      p->longjf++;
2841
0
      return(0);
2842
0
        }
2843
        /* branch if F to following jump */
2844
        /* if two jumps are inserted, F goes to second one */
2845
0
        dst->jf = extrajmps;
2846
0
        extrajmps++;
2847
0
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2848
0
        dst[extrajmps].k = off - extrajmps;
2849
0
    }
2850
0
    else
2851
0
        dst->jf = (u_char)off;
2852
0
  }
2853
0
  return (1);
2854
0
}
2855
2856
2857
/*
2858
 * Convert flowgraph intermediate representation to the
2859
 * BPF array representation.  Set *lenp to the number of instructions.
2860
 *
2861
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862
 * not* do free(fp) before returning fp; doing so would make no sense,
2863
 * as the BPF array pointed to by the return value of icode_to_fcode()
2864
 * must be valid - it's being returned for use in a bpf_program structure.
2865
 *
2866
 * If it appears that icode_to_fcode() is leaking, the problem is that
2867
 * the program using pcap_compile() is failing to free the memory in
2868
 * the BPF program when it's done - the leak is in the program, not in
2869
 * the routine that happens to be allocating the memory.  (By analogy, if
2870
 * a program calls fopen() without ever calling fclose() on the FILE *,
2871
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872
 * the program.)  Change the program to use pcap_freecode() when it's
2873
 * done with the filter program.  See the pcap man page.
2874
 */
2875
struct bpf_insn *
2876
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877
    char *errbuf)
2878
0
{
2879
0
  u_int n;
2880
0
  struct bpf_insn *fp;
2881
0
  conv_state_t conv_state;
2882
2883
0
  conv_state.fstart = NULL;
2884
0
  conv_state.errbuf = errbuf;
2885
0
  if (setjmp(conv_state.top_ctx) != 0) {
2886
0
    free(conv_state.fstart);
2887
0
    return NULL;
2888
0
  }
2889
2890
  /*
2891
   * Loop doing convert_code_r() until no branches remain
2892
   * with too-large offsets.
2893
   */
2894
0
  for (;;) {
2895
0
      unMarkAll(ic);
2896
0
      n = *lenp = count_stmts(ic, root);
2897
2898
0
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899
0
      if (fp == NULL) {
2900
0
    (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901
0
        "malloc");
2902
0
    return NULL;
2903
0
      }
2904
0
      memset((char *)fp, 0, sizeof(*fp) * n);
2905
0
      conv_state.fstart = fp;
2906
0
      conv_state.ftail = fp + n;
2907
2908
0
      unMarkAll(ic);
2909
0
      if (convert_code_r(&conv_state, ic, root))
2910
0
    break;
2911
0
      free(fp);
2912
0
  }
2913
2914
0
  return fp;
2915
0
}
2916
2917
/*
2918
 * For iconv_to_fconv() errors.
2919
 */
2920
static void PCAP_NORETURN
2921
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922
0
{
2923
0
  va_list ap;
2924
2925
0
  va_start(ap, fmt);
2926
0
  (void)vsnprintf(conv_state->errbuf,
2927
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2928
0
  va_end(ap);
2929
0
  longjmp(conv_state->top_ctx, 1);
2930
  /* NOTREACHED */
2931
#ifdef _AIX
2932
  PCAP_UNREACHABLE
2933
#endif /* _AIX */
2934
0
}
2935
2936
/*
2937
 * Make a copy of a BPF program and put it in the "fcode" member of
2938
 * a "pcap_t".
2939
 *
2940
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941
 * member of the "pcap_t" with an error message, and return -1;
2942
 * otherwise, return 0.
2943
 */
2944
int
2945
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946
0
{
2947
0
  size_t prog_size;
2948
2949
  /*
2950
   * Validate the program.
2951
   */
2952
0
  if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953
0
    snprintf(p->errbuf, sizeof(p->errbuf),
2954
0
      "BPF program is not valid");
2955
0
    return (-1);
2956
0
  }
2957
2958
  /*
2959
   * Free up any already installed program.
2960
   */
2961
0
  pcap_freecode(&p->fcode);
2962
2963
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964
0
  p->fcode.bf_len = fp->bf_len;
2965
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966
0
  if (p->fcode.bf_insns == NULL) {
2967
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968
0
        errno, "malloc");
2969
0
    return (-1);
2970
0
  }
2971
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972
0
  return (0);
2973
0
}
2974
2975
#ifdef BDEBUG
2976
static void
2977
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978
    FILE *out)
2979
{
2980
  int icount, noffset;
2981
  int i;
2982
2983
  if (block == NULL || isMarked(ic, block))
2984
    return;
2985
  Mark(ic, block);
2986
2987
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988
  noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990
  fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991
  for (i = block->offset; i < noffset; i++) {
2992
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993
  }
2994
  fprintf(out, "\" tooltip=\"");
2995
  for (i = 0; i < BPF_MEMWORDS; i++)
2996
    if (block->val[i] != VAL_UNKNOWN)
2997
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000
  fprintf(out, "\"");
3001
  if (JT(block) == NULL)
3002
    fprintf(out, ", peripheries=2");
3003
  fprintf(out, "];\n");
3004
3005
  dot_dump_node(ic, JT(block), prog, out);
3006
  dot_dump_node(ic, JF(block), prog, out);
3007
}
3008
3009
static void
3010
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011
{
3012
  if (block == NULL || isMarked(ic, block))
3013
    return;
3014
  Mark(ic, block);
3015
3016
  if (JT(block)) {
3017
    fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018
        block->id, JT(block)->id);
3019
    fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020
         block->id, JF(block)->id);
3021
  }
3022
  dot_dump_edge(ic, JT(block), out);
3023
  dot_dump_edge(ic, JF(block), out);
3024
}
3025
3026
/* Output the block CFG using graphviz/DOT language
3027
 * In the CFG, block's code, value index for each registers at EXIT,
3028
 * and the jump relationship is show.
3029
 *
3030
 * example DOT for BPF `ip src host 1.1.1.1' is:
3031
    digraph BPF {
3032
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
3033
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
3034
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036
      "block0":se -> "block1":n [label="T"];
3037
      "block0":sw -> "block3":n [label="F"];
3038
      "block1":se -> "block2":n [label="T"];
3039
      "block1":sw -> "block3":n [label="F"];
3040
    }
3041
 *
3042
 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044
 */
3045
static int
3046
dot_dump(struct icode *ic, char *errbuf)
3047
{
3048
  struct bpf_program f;
3049
  FILE *out = stdout;
3050
3051
  memset(bids, 0, sizeof bids);
3052
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053
  if (f.bf_insns == NULL)
3054
    return -1;
3055
3056
  fprintf(out, "digraph BPF {\n");
3057
  unMarkAll(ic);
3058
  dot_dump_node(ic, ic->root, &f, out);
3059
  unMarkAll(ic);
3060
  dot_dump_edge(ic, ic->root, out);
3061
  fprintf(out, "}\n");
3062
3063
  free((char *)f.bf_insns);
3064
  return 0;
3065
}
3066
3067
static int
3068
plain_dump(struct icode *ic, char *errbuf)
3069
{
3070
  struct bpf_program f;
3071
3072
  memset(bids, 0, sizeof bids);
3073
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074
  if (f.bf_insns == NULL)
3075
    return -1;
3076
  bpf_dump(&f, 1);
3077
  putchar('\n');
3078
  free((char *)f.bf_insns);
3079
  return 0;
3080
}
3081
3082
static void
3083
opt_dump(opt_state_t *opt_state, struct icode *ic)
3084
{
3085
  int status;
3086
  char errbuf[PCAP_ERRBUF_SIZE];
3087
3088
  /*
3089
   * If the CFG, in DOT format, is requested, output it rather than
3090
   * the code that would be generated from that graph.
3091
   */
3092
  if (pcap_print_dot_graph)
3093
    status = dot_dump(ic, errbuf);
3094
  else
3095
    status = plain_dump(ic, errbuf);
3096
  if (status == -1)
3097
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098
}
3099
#endif