Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 |
3 | | * The Regents of the University of California. All rights reserved. |
4 | | * |
5 | | * Redistribution and use in source and binary forms, with or without |
6 | | * modification, are permitted provided that: (1) source code distributions |
7 | | * retain the above copyright notice and this paragraph in its entirety, (2) |
8 | | * distributions including binary code include the above copyright notice and |
9 | | * this paragraph in its entirety in the documentation or other materials |
10 | | * provided with the distribution, and (3) all advertising materials mentioning |
11 | | * features or use of this software display the following acknowledgement: |
12 | | * ``This product includes software developed by the University of California, |
13 | | * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of |
14 | | * the University nor the names of its contributors may be used to endorse |
15 | | * or promote products derived from this software without specific prior |
16 | | * written permission. |
17 | | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
18 | | * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
19 | | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
20 | | * |
21 | | * Optimization module for BPF code intermediate representation. |
22 | | */ |
23 | | |
24 | | #ifdef HAVE_CONFIG_H |
25 | | #include <config.h> |
26 | | #endif |
27 | | |
28 | | #include <pcap-types.h> |
29 | | |
30 | | #include <stdio.h> |
31 | | #include <stdlib.h> |
32 | | #include <memory.h> |
33 | | #include <setjmp.h> |
34 | | #include <string.h> |
35 | | #include <limits.h> /* for SIZE_MAX */ |
36 | | #include <errno.h> |
37 | | |
38 | | #include "pcap-int.h" |
39 | | |
40 | | #include "gencode.h" |
41 | | #include "optimize.h" |
42 | | #include "diag-control.h" |
43 | | |
44 | | #ifdef HAVE_OS_PROTO_H |
45 | | #include "os-proto.h" |
46 | | #endif |
47 | | |
48 | | #ifdef BDEBUG |
49 | | /* |
50 | | * The internal "debug printout" flag for the filter expression optimizer. |
51 | | * The code to print that stuff is present only if BDEBUG is defined, so |
52 | | * the flag, and the routine to set it, are defined only if BDEBUG is |
53 | | * defined. |
54 | | */ |
55 | | static int pcap_optimizer_debug; |
56 | | |
57 | | /* |
58 | | * Routine to set that flag. |
59 | | * |
60 | | * This is intended for libpcap developers, not for general use. |
61 | | * If you want to set these in a program, you'll have to declare this |
62 | | * routine yourself, with the appropriate DLL import attribute on Windows; |
63 | | * it's not declared in any header file, and won't be declared in any |
64 | | * header file provided by libpcap. |
65 | | */ |
66 | | PCAP_API void pcap_set_optimizer_debug(int value); |
67 | | |
68 | | PCAP_API_DEF void |
69 | | pcap_set_optimizer_debug(int value) |
70 | | { |
71 | | pcap_optimizer_debug = value; |
72 | | } |
73 | | |
74 | | /* |
75 | | * The internal "print dot graph" flag for the filter expression optimizer. |
76 | | * The code to print that stuff is present only if BDEBUG is defined, so |
77 | | * the flag, and the routine to set it, are defined only if BDEBUG is |
78 | | * defined. |
79 | | */ |
80 | | static int pcap_print_dot_graph; |
81 | | |
82 | | /* |
83 | | * Routine to set that flag. |
84 | | * |
85 | | * This is intended for libpcap developers, not for general use. |
86 | | * If you want to set these in a program, you'll have to declare this |
87 | | * routine yourself, with the appropriate DLL import attribute on Windows; |
88 | | * it's not declared in any header file, and won't be declared in any |
89 | | * header file provided by libpcap. |
90 | | */ |
91 | | PCAP_API void pcap_set_print_dot_graph(int value); |
92 | | |
93 | | PCAP_API_DEF void |
94 | | pcap_set_print_dot_graph(int value) |
95 | | { |
96 | | pcap_print_dot_graph = value; |
97 | | } |
98 | | |
99 | | #endif |
100 | | |
101 | | /* |
102 | | * lowest_set_bit(). |
103 | | * |
104 | | * Takes a 32-bit integer as an argument. |
105 | | * |
106 | | * If handed a non-zero value, returns the index of the lowest set bit, |
107 | | * counting upwards from zero. |
108 | | * |
109 | | * If handed zero, the results are platform- and compiler-dependent. |
110 | | * Keep it out of the light, don't give it any water, don't feed it |
111 | | * after midnight, and don't pass zero to it. |
112 | | * |
113 | | * This is the same as the count of trailing zeroes in the word. |
114 | | */ |
115 | | #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4) |
116 | | /* |
117 | | * GCC 3.4 and later; we have __builtin_ctz(). |
118 | | */ |
119 | 332k | #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask)) |
120 | | #elif defined(_MSC_VER) |
121 | | /* |
122 | | * Visual Studio; we support only 2005 and later, so use |
123 | | * _BitScanForward(). |
124 | | */ |
125 | | #include <intrin.h> |
126 | | |
127 | | #ifndef __clang__ |
128 | | #pragma intrinsic(_BitScanForward) |
129 | | #endif |
130 | | |
131 | | static __forceinline u_int |
132 | | lowest_set_bit(int mask) |
133 | | { |
134 | | unsigned long bit; |
135 | | |
136 | | /* |
137 | | * Don't sign-extend mask if long is longer than int. |
138 | | * (It's currently not, in MSVC, even on 64-bit platforms, but....) |
139 | | */ |
140 | | if (_BitScanForward(&bit, (unsigned int)mask) == 0) |
141 | | abort(); /* mask is zero */ |
142 | | return (u_int)bit; |
143 | | } |
144 | | #elif defined(MSDOS) && defined(__DJGPP__) |
145 | | /* |
146 | | * MS-DOS with DJGPP, which declares ffs() in <string.h>, which |
147 | | * we've already included. |
148 | | */ |
149 | | #define lowest_set_bit(mask) ((u_int)(ffs((mask)) - 1)) |
150 | | #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS) |
151 | | /* |
152 | | * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there, |
153 | | * or some other platform (UN*X conforming to a sufficient recent version |
154 | | * of the Single UNIX Specification). |
155 | | */ |
156 | | #include <strings.h> |
157 | | #define lowest_set_bit(mask) (u_int)((ffs((mask)) - 1)) |
158 | | #else |
159 | | /* |
160 | | * None of the above. |
161 | | * Use a perfect-hash-function-based function. |
162 | | */ |
163 | | static u_int |
164 | | lowest_set_bit(int mask) |
165 | | { |
166 | | unsigned int v = (unsigned int)mask; |
167 | | |
168 | | static const u_int MultiplyDeBruijnBitPosition[32] = { |
169 | | 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, |
170 | | 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 |
171 | | }; |
172 | | |
173 | | /* |
174 | | * We strip off all but the lowermost set bit (v & ~v), |
175 | | * and perform a minimal perfect hash on it to look up the |
176 | | * number of low-order zero bits in a table. |
177 | | * |
178 | | * See: |
179 | | * |
180 | | * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf |
181 | | * |
182 | | * http://supertech.csail.mit.edu/papers/debruijn.pdf |
183 | | */ |
184 | | return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]); |
185 | | } |
186 | | #endif |
187 | | |
188 | | /* |
189 | | * Represents a deleted instruction. |
190 | | */ |
191 | 7.08M | #define NOP -1 |
192 | | |
193 | | /* |
194 | | * Register numbers for use-def values. |
195 | | * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory |
196 | | * location. A_ATOM is the accumulator and X_ATOM is the index |
197 | | * register. |
198 | | */ |
199 | 3.50M | #define A_ATOM BPF_MEMWORDS |
200 | 758k | #define X_ATOM (BPF_MEMWORDS+1) |
201 | | |
202 | | /* |
203 | | * This define is used to represent *both* the accumulator and |
204 | | * x register in use-def computations. |
205 | | * Currently, the use-def code assumes only one definition per instruction. |
206 | | */ |
207 | 1.20M | #define AX_ATOM N_ATOMS |
208 | | |
209 | | /* |
210 | | * These data structures are used in a Cocke and Shwarz style |
211 | | * value numbering scheme. Since the flowgraph is acyclic, |
212 | | * exit values can be propagated from a node's predecessors |
213 | | * provided it is uniquely defined. |
214 | | */ |
215 | | struct valnode { |
216 | | int code; |
217 | | bpf_u_int32 v0, v1; |
218 | | int val; /* the value number */ |
219 | | struct valnode *next; |
220 | | }; |
221 | | |
222 | | /* Integer constants mapped with the load immediate opcode. */ |
223 | 362k | #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U) |
224 | | |
225 | | struct vmapinfo { |
226 | | int is_const; |
227 | | bpf_u_int32 const_val; |
228 | | }; |
229 | | |
230 | | typedef struct { |
231 | | /* |
232 | | * Place to longjmp to on an error. |
233 | | */ |
234 | | jmp_buf top_ctx; |
235 | | |
236 | | /* |
237 | | * The buffer into which to put error message. |
238 | | */ |
239 | | char *errbuf; |
240 | | |
241 | | /* |
242 | | * A flag to indicate that further optimization is needed. |
243 | | * Iterative passes are continued until a given pass yields no |
244 | | * code simplification or branch movement. |
245 | | */ |
246 | | int done; |
247 | | |
248 | | /* |
249 | | * XXX - detect loops that do nothing but repeated AND/OR pullups |
250 | | * and edge moves. |
251 | | * If 100 passes in a row do nothing but that, treat that as a |
252 | | * sign that we're in a loop that just shuffles in a cycle in |
253 | | * which each pass just shuffles the code and we eventually |
254 | | * get back to the original configuration. |
255 | | * |
256 | | * XXX - we need a non-heuristic way of detecting, or preventing, |
257 | | * such a cycle. |
258 | | */ |
259 | | int non_branch_movement_performed; |
260 | | |
261 | | u_int n_blocks; /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */ |
262 | | struct block **blocks; |
263 | | u_int n_edges; /* twice n_blocks, so guaranteed to be > 0 */ |
264 | | struct edge **edges; |
265 | | |
266 | | /* |
267 | | * A bit vector set representation of the dominators. |
268 | | * We round up the set size to the next power of two. |
269 | | */ |
270 | | u_int nodewords; /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */ |
271 | | u_int edgewords; /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */ |
272 | | struct block **levels; |
273 | | bpf_u_int32 *space; |
274 | | |
275 | 2.14M | #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) |
276 | | /* |
277 | | * True if a is in uset {p} |
278 | | */ |
279 | 118k | #define SET_MEMBER(p, a) \ |
280 | 118k | ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))) |
281 | | |
282 | | /* |
283 | | * Add 'a' to uset p. |
284 | | */ |
285 | 776k | #define SET_INSERT(p, a) \ |
286 | 776k | (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)) |
287 | | |
288 | | /* |
289 | | * Delete 'a' from uset p. |
290 | | */ |
291 | | #define SET_DELETE(p, a) \ |
292 | | (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)) |
293 | | |
294 | | /* |
295 | | * a := a intersect b |
296 | | * n must be guaranteed to be > 0 |
297 | | */ |
298 | 807k | #define SET_INTERSECT(a, b, n)\ |
299 | 807k | {\ |
300 | 807k | register bpf_u_int32 *_x = a, *_y = b;\ |
301 | 807k | register u_int _n = n;\ |
302 | 2.01M | do *_x++ &= *_y++; while (--_n != 0);\ |
303 | 807k | } |
304 | | |
305 | | /* |
306 | | * a := a - b |
307 | | * n must be guaranteed to be > 0 |
308 | | */ |
309 | | #define SET_SUBTRACT(a, b, n)\ |
310 | | {\ |
311 | | register bpf_u_int32 *_x = a, *_y = b;\ |
312 | | register u_int _n = n;\ |
313 | | do *_x++ &=~ *_y++; while (--_n != 0);\ |
314 | | } |
315 | | |
316 | | /* |
317 | | * a := a union b |
318 | | * n must be guaranteed to be > 0 |
319 | | */ |
320 | 269k | #define SET_UNION(a, b, n)\ |
321 | 269k | {\ |
322 | 269k | register bpf_u_int32 *_x = a, *_y = b;\ |
323 | 269k | register u_int _n = n;\ |
324 | 478k | do *_x++ |= *_y++; while (--_n != 0);\ |
325 | 269k | } |
326 | | |
327 | | uset all_dom_sets; |
328 | | uset all_closure_sets; |
329 | | uset all_edge_sets; |
330 | | |
331 | 561k | #define MODULUS 213 |
332 | | struct valnode *hashtbl[MODULUS]; |
333 | | bpf_u_int32 curval; |
334 | | bpf_u_int32 maxval; |
335 | | |
336 | | struct vmapinfo *vmap; |
337 | | struct valnode *vnode_base; |
338 | | struct valnode *next_vnode; |
339 | | } opt_state_t; |
340 | | |
341 | | typedef struct { |
342 | | /* |
343 | | * Place to longjmp to on an error. |
344 | | */ |
345 | | jmp_buf top_ctx; |
346 | | |
347 | | /* |
348 | | * The buffer into which to put error message. |
349 | | */ |
350 | | char *errbuf; |
351 | | |
352 | | /* |
353 | | * Some pointers used to convert the basic block form of the code, |
354 | | * into the array form that BPF requires. 'fstart' will point to |
355 | | * the malloc'd array while 'ftail' is used during the recursive |
356 | | * traversal. |
357 | | */ |
358 | | struct bpf_insn *fstart; |
359 | | struct bpf_insn *ftail; |
360 | | } conv_state_t; |
361 | | |
362 | | static void opt_init(opt_state_t *, struct icode *); |
363 | | static void opt_cleanup(opt_state_t *); |
364 | | static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...) |
365 | | PCAP_PRINTFLIKE(2, 3); |
366 | | |
367 | | static void intern_blocks(opt_state_t *, struct icode *); |
368 | | |
369 | | static void find_inedges(opt_state_t *, struct block *); |
370 | | #ifdef BDEBUG |
371 | | static void opt_dump(opt_state_t *, struct icode *); |
372 | | #endif |
373 | | |
374 | | #ifndef MAX |
375 | 134k | #define MAX(a,b) ((a)>(b)?(a):(b)) |
376 | | #endif |
377 | | |
378 | | static void |
379 | | find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b) |
380 | 305k | { |
381 | 305k | int level; |
382 | | |
383 | 305k | if (isMarked(ic, b)) |
384 | 111k | return; |
385 | | |
386 | 194k | Mark(ic, b); |
387 | 194k | b->link = 0; |
388 | | |
389 | 194k | if (JT(b)) { |
390 | 134k | find_levels_r(opt_state, ic, JT(b)); |
391 | 134k | find_levels_r(opt_state, ic, JF(b)); |
392 | 134k | level = MAX(JT(b)->level, JF(b)->level) + 1; |
393 | 134k | } else |
394 | 59.5k | level = 0; |
395 | 194k | b->level = level; |
396 | 194k | b->link = opt_state->levels[level]; |
397 | 194k | opt_state->levels[level] = b; |
398 | 194k | } |
399 | | |
400 | | /* |
401 | | * Level graph. The levels go from 0 at the leaves to |
402 | | * N_LEVELS at the root. The opt_state->levels[] array points to the |
403 | | * first node of the level list, whose elements are linked |
404 | | * with the 'link' field of the struct block. |
405 | | */ |
406 | | static void |
407 | | find_levels(opt_state_t *opt_state, struct icode *ic) |
408 | 36.6k | { |
409 | 36.6k | memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels)); |
410 | 36.6k | unMarkAll(ic); |
411 | 36.6k | find_levels_r(opt_state, ic, ic->root); |
412 | 36.6k | } |
413 | | |
414 | | /* |
415 | | * Find dominator relationships. |
416 | | * Assumes graph has been leveled. |
417 | | */ |
418 | | static void |
419 | | find_dom(opt_state_t *opt_state, struct block *root) |
420 | 36.6k | { |
421 | 36.6k | u_int i; |
422 | 36.6k | int level; |
423 | 36.6k | struct block *b; |
424 | 36.6k | bpf_u_int32 *x; |
425 | | |
426 | | /* |
427 | | * Initialize sets to contain all nodes. |
428 | | */ |
429 | 36.6k | x = opt_state->all_dom_sets; |
430 | | /* |
431 | | * In opt_init(), we've made sure the product doesn't overflow. |
432 | | */ |
433 | 36.6k | i = opt_state->n_blocks * opt_state->nodewords; |
434 | 536k | while (i != 0) { |
435 | 500k | --i; |
436 | 500k | *x++ = 0xFFFFFFFFU; |
437 | 500k | } |
438 | | /* Root starts off empty. */ |
439 | 76.0k | for (i = opt_state->nodewords; i != 0;) { |
440 | 39.3k | --i; |
441 | 39.3k | root->dom[i] = 0; |
442 | 39.3k | } |
443 | | |
444 | | /* root->level is the highest level no found. */ |
445 | 200k | for (level = root->level; level >= 0; --level) { |
446 | 358k | for (b = opt_state->levels[level]; b; b = b->link) { |
447 | 194k | SET_INSERT(b->dom, b->id); |
448 | 194k | if (JT(b) == 0) |
449 | 59.5k | continue; |
450 | 134k | SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords); |
451 | 134k | SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords); |
452 | 134k | } |
453 | 163k | } |
454 | 36.6k | } |
455 | | |
456 | | static void |
457 | | propedom(opt_state_t *opt_state, struct edge *ep) |
458 | 388k | { |
459 | 388k | SET_INSERT(ep->edom, ep->id); |
460 | 388k | if (ep->succ) { |
461 | 269k | SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords); |
462 | 269k | SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords); |
463 | 269k | } |
464 | 388k | } |
465 | | |
466 | | /* |
467 | | * Compute edge dominators. |
468 | | * Assumes graph has been leveled and predecessors established. |
469 | | */ |
470 | | static void |
471 | | find_edom(opt_state_t *opt_state, struct block *root) |
472 | 36.6k | { |
473 | 36.6k | u_int i; |
474 | 36.6k | uset x; |
475 | 36.6k | int level; |
476 | 36.6k | struct block *b; |
477 | | |
478 | 36.6k | x = opt_state->all_edge_sets; |
479 | | /* |
480 | | * In opt_init(), we've made sure the product doesn't overflow. |
481 | | */ |
482 | 1.62M | for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) { |
483 | 1.58M | --i; |
484 | 1.58M | x[i] = 0xFFFFFFFFU; |
485 | 1.58M | } |
486 | | |
487 | | /* root->level is the highest level no found. */ |
488 | 36.6k | memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); |
489 | 36.6k | memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); |
490 | 200k | for (level = root->level; level >= 0; --level) { |
491 | 358k | for (b = opt_state->levels[level]; b != 0; b = b->link) { |
492 | 194k | propedom(opt_state, &b->et); |
493 | 194k | propedom(opt_state, &b->ef); |
494 | 194k | } |
495 | 163k | } |
496 | 36.6k | } |
497 | | |
498 | | /* |
499 | | * Find the backwards transitive closure of the flow graph. These sets |
500 | | * are backwards in the sense that we find the set of nodes that reach |
501 | | * a given node, not the set of nodes that can be reached by a node. |
502 | | * |
503 | | * Assumes graph has been leveled. |
504 | | */ |
505 | | static void |
506 | | find_closure(opt_state_t *opt_state, struct block *root) |
507 | 36.6k | { |
508 | 36.6k | int level; |
509 | 36.6k | struct block *b; |
510 | | |
511 | | /* |
512 | | * Initialize sets to contain no nodes. |
513 | | */ |
514 | 36.6k | memset((char *)opt_state->all_closure_sets, 0, |
515 | 36.6k | opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets)); |
516 | | |
517 | | /* root->level is the highest level no found. */ |
518 | 200k | for (level = root->level; level >= 0; --level) { |
519 | 358k | for (b = opt_state->levels[level]; b; b = b->link) { |
520 | 194k | SET_INSERT(b->closure, b->id); |
521 | 194k | if (JT(b) == 0) |
522 | 59.5k | continue; |
523 | 134k | SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords); |
524 | 134k | SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords); |
525 | 134k | } |
526 | 163k | } |
527 | 36.6k | } |
528 | | |
529 | | /* |
530 | | * Return the register number that is used by s. |
531 | | * |
532 | | * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X |
533 | | * are used, the scratch memory location's number if a scratch memory |
534 | | * location is used (e.g., 0 for M[0]), or -1 if none of those are used. |
535 | | * |
536 | | * The implementation should probably change to an array access. |
537 | | */ |
538 | | static int |
539 | | atomuse(struct stmt *s) |
540 | 1.90M | { |
541 | 1.90M | register int c = s->code; |
542 | | |
543 | 1.90M | if (c == NOP) |
544 | 338k | return -1; |
545 | | |
546 | 1.57M | switch (BPF_CLASS(c)) { |
547 | | |
548 | 36.1k | case BPF_RET: |
549 | 36.1k | return (BPF_RVAL(c) == BPF_A) ? A_ATOM : |
550 | 36.1k | (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; |
551 | | |
552 | 610k | case BPF_LD: |
553 | 698k | case BPF_LDX: |
554 | | /* |
555 | | * As there are fewer than 2^31 memory locations, |
556 | | * s->k should be convertible to int without problems. |
557 | | */ |
558 | 698k | return (BPF_MODE(c) == BPF_IND) ? X_ATOM : |
559 | 698k | (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1; |
560 | | |
561 | 262k | case BPF_ST: |
562 | 262k | return A_ATOM; |
563 | | |
564 | 0 | case BPF_STX: |
565 | 0 | return X_ATOM; |
566 | | |
567 | 268k | case BPF_JMP: |
568 | 481k | case BPF_ALU: |
569 | 481k | if (BPF_SRC(c) == BPF_X) |
570 | 133k | return AX_ATOM; |
571 | 348k | return A_ATOM; |
572 | | |
573 | 92.0k | case BPF_MISC: |
574 | 92.0k | return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; |
575 | 1.57M | } |
576 | 0 | abort(); |
577 | | /* NOTREACHED */ |
578 | 1.57M | } |
579 | | |
580 | | /* |
581 | | * Return the register number that is defined by 's'. We assume that |
582 | | * a single stmt cannot define more than one register. If no register |
583 | | * is defined, return -1. |
584 | | * |
585 | | * The implementation should probably change to an array access. |
586 | | */ |
587 | | static int |
588 | | atomdef(struct stmt *s) |
589 | 1.77M | { |
590 | 1.77M | if (s->code == NOP) |
591 | 338k | return -1; |
592 | | |
593 | 1.43M | switch (BPF_CLASS(s->code)) { |
594 | | |
595 | 610k | case BPF_LD: |
596 | 824k | case BPF_ALU: |
597 | 824k | return A_ATOM; |
598 | | |
599 | 87.4k | case BPF_LDX: |
600 | 87.4k | return X_ATOM; |
601 | | |
602 | 262k | case BPF_ST: |
603 | 262k | case BPF_STX: |
604 | 262k | return s->k; |
605 | | |
606 | 92.0k | case BPF_MISC: |
607 | 92.0k | return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; |
608 | 1.43M | } |
609 | 169k | return -1; |
610 | 1.43M | } |
611 | | |
612 | | /* |
613 | | * Compute the sets of registers used, defined, and killed by 'b'. |
614 | | * |
615 | | * "Used" means that a statement in 'b' uses the register before any |
616 | | * statement in 'b' defines it, i.e. it uses the value left in |
617 | | * that register by a predecessor block of this block. |
618 | | * "Defined" means that a statement in 'b' defines it. |
619 | | * "Killed" means that a statement in 'b' defines it before any |
620 | | * statement in 'b' uses it, i.e. it kills the value left in that |
621 | | * register by a predecessor block of this block. |
622 | | */ |
623 | | static void |
624 | | compute_local_ud(struct block *b) |
625 | 194k | { |
626 | 194k | struct slist *s; |
627 | 194k | atomset def = 0, use = 0, killed = 0; |
628 | 194k | int atom; |
629 | | |
630 | 1.15M | for (s = b->stmts; s; s = s->next) { |
631 | 965k | if (s->s.code == NOP) |
632 | 304k | continue; |
633 | 661k | atom = atomuse(&s->s); |
634 | 661k | if (atom >= 0) { |
635 | 431k | if (atom == AX_ATOM) { |
636 | 63.3k | if (!ATOMELEM(def, X_ATOM)) |
637 | 0 | use |= ATOMMASK(X_ATOM); |
638 | 63.3k | if (!ATOMELEM(def, A_ATOM)) |
639 | 0 | use |= ATOMMASK(A_ATOM); |
640 | 63.3k | } |
641 | 368k | else if (atom < N_ATOMS) { |
642 | 368k | if (!ATOMELEM(def, atom)) |
643 | 3.62k | use |= ATOMMASK(atom); |
644 | 368k | } |
645 | 0 | else |
646 | 0 | abort(); |
647 | 431k | } |
648 | 661k | atom = atomdef(&s->s); |
649 | 661k | if (atom >= 0) { |
650 | 661k | if (!ATOMELEM(use, atom)) |
651 | 661k | killed |= ATOMMASK(atom); |
652 | 661k | def |= ATOMMASK(atom); |
653 | 661k | } |
654 | 661k | } |
655 | 194k | if (BPF_CLASS(b->s.code) == BPF_JMP) { |
656 | | /* |
657 | | * XXX - what about RET? |
658 | | */ |
659 | 134k | atom = atomuse(&b->s); |
660 | 134k | if (atom >= 0) { |
661 | 134k | if (atom == AX_ATOM) { |
662 | 13.6k | if (!ATOMELEM(def, X_ATOM)) |
663 | 392 | use |= ATOMMASK(X_ATOM); |
664 | 13.6k | if (!ATOMELEM(def, A_ATOM)) |
665 | 392 | use |= ATOMMASK(A_ATOM); |
666 | 13.6k | } |
667 | 120k | else if (atom < N_ATOMS) { |
668 | 120k | if (!ATOMELEM(def, atom)) |
669 | 997 | use |= ATOMMASK(atom); |
670 | 120k | } |
671 | 0 | else |
672 | 0 | abort(); |
673 | 134k | } |
674 | 134k | } |
675 | | |
676 | 194k | b->def = def; |
677 | 194k | b->kill = killed; |
678 | 194k | b->in_use = use; |
679 | 194k | } |
680 | | |
681 | | /* |
682 | | * Assume graph is already leveled. |
683 | | */ |
684 | | static void |
685 | | find_ud(opt_state_t *opt_state, struct block *root) |
686 | 36.6k | { |
687 | 36.6k | int i, maxlevel; |
688 | 36.6k | struct block *p; |
689 | | |
690 | | /* |
691 | | * root->level is the highest level no found; |
692 | | * count down from there. |
693 | | */ |
694 | 36.6k | maxlevel = root->level; |
695 | 200k | for (i = maxlevel; i >= 0; --i) |
696 | 358k | for (p = opt_state->levels[i]; p; p = p->link) { |
697 | 194k | compute_local_ud(p); |
698 | 194k | p->out_use = 0; |
699 | 194k | } |
700 | | |
701 | 163k | for (i = 1; i <= maxlevel; ++i) { |
702 | 261k | for (p = opt_state->levels[i]; p; p = p->link) { |
703 | 134k | p->out_use |= JT(p)->in_use | JF(p)->in_use; |
704 | 134k | p->in_use |= p->out_use &~ p->kill; |
705 | 134k | } |
706 | 127k | } |
707 | 36.6k | } |
708 | | static void |
709 | | init_val(opt_state_t *opt_state) |
710 | 36.6k | { |
711 | 36.6k | opt_state->curval = 0; |
712 | 36.6k | opt_state->next_vnode = opt_state->vnode_base; |
713 | 36.6k | memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap)); |
714 | 36.6k | memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl); |
715 | 36.6k | } |
716 | | |
717 | | /* |
718 | | * Because we really don't have an IR, this stuff is a little messy. |
719 | | * |
720 | | * This routine looks in the table of existing value number for a value |
721 | | * with generated from an operation with the specified opcode and |
722 | | * the specified values. If it finds it, it returns its value number, |
723 | | * otherwise it makes a new entry in the table and returns the |
724 | | * value number of that entry. |
725 | | */ |
726 | | static bpf_u_int32 |
727 | | F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1) |
728 | 561k | { |
729 | 561k | u_int hash; |
730 | 561k | bpf_u_int32 val; |
731 | 561k | struct valnode *p; |
732 | | |
733 | 561k | hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); |
734 | 561k | hash %= MODULUS; |
735 | | |
736 | 587k | for (p = opt_state->hashtbl[hash]; p; p = p->next) |
737 | 294k | if (p->code == code && p->v0 == v0 && p->v1 == v1) |
738 | 267k | return p->val; |
739 | | |
740 | | /* |
741 | | * Not found. Allocate a new value, and assign it a new |
742 | | * value number. |
743 | | * |
744 | | * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we |
745 | | * increment it before using it as the new value number, which |
746 | | * means we never assign VAL_UNKNOWN. |
747 | | * |
748 | | * XXX - unless we overflow, but we probably won't have 2^32-1 |
749 | | * values; we treat 32 bits as effectively infinite. |
750 | | */ |
751 | 293k | val = ++opt_state->curval; |
752 | 293k | if (BPF_MODE(code) == BPF_IMM && |
753 | 293k | (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { |
754 | 175k | opt_state->vmap[val].const_val = v0; |
755 | 175k | opt_state->vmap[val].is_const = 1; |
756 | 175k | } |
757 | 293k | p = opt_state->next_vnode++; |
758 | 293k | p->val = val; |
759 | 293k | p->code = code; |
760 | 293k | p->v0 = v0; |
761 | 293k | p->v1 = v1; |
762 | 293k | p->next = opt_state->hashtbl[hash]; |
763 | 293k | opt_state->hashtbl[hash] = p; |
764 | | |
765 | 293k | return val; |
766 | 561k | } |
767 | | |
768 | | static inline void |
769 | | vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter) |
770 | 539k | { |
771 | 539k | if (alter && newval != VAL_UNKNOWN && *valp == newval) |
772 | 41.5k | s->code = NOP; |
773 | 498k | else |
774 | 498k | *valp = newval; |
775 | 539k | } |
776 | | |
777 | | /* |
778 | | * Do constant-folding on binary operators. |
779 | | * (Unary operators are handled elsewhere.) |
780 | | */ |
781 | | static void |
782 | | fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1) |
783 | 13.9k | { |
784 | 13.9k | bpf_u_int32 a, b; |
785 | | |
786 | 13.9k | a = opt_state->vmap[v0].const_val; |
787 | 13.9k | b = opt_state->vmap[v1].const_val; |
788 | | |
789 | 13.9k | switch (BPF_OP(s->code)) { |
790 | 1.27k | case BPF_ADD: |
791 | 1.27k | a += b; |
792 | 1.27k | break; |
793 | | |
794 | 837 | case BPF_SUB: |
795 | 837 | a -= b; |
796 | 837 | break; |
797 | | |
798 | 3.13k | case BPF_MUL: |
799 | 3.13k | a *= b; |
800 | 3.13k | break; |
801 | | |
802 | 2.20k | case BPF_DIV: |
803 | 2.20k | if (b == 0) |
804 | 21 | opt_error(opt_state, "division by zero"); |
805 | 2.18k | a /= b; |
806 | 2.18k | break; |
807 | | |
808 | 1.28k | case BPF_MOD: |
809 | 1.28k | if (b == 0) |
810 | 205 | opt_error(opt_state, "modulus by zero"); |
811 | 1.07k | a %= b; |
812 | 1.07k | break; |
813 | | |
814 | 3.32k | case BPF_AND: |
815 | 3.32k | a &= b; |
816 | 3.32k | break; |
817 | | |
818 | 447 | case BPF_OR: |
819 | 447 | a |= b; |
820 | 447 | break; |
821 | | |
822 | 153 | case BPF_XOR: |
823 | 153 | a ^= b; |
824 | 153 | break; |
825 | | |
826 | 373 | case BPF_LSH: |
827 | | /* |
828 | | * A left shift of more than the width of the type |
829 | | * is undefined in C; we'll just treat it as shifting |
830 | | * all the bits out. |
831 | | * |
832 | | * XXX - the BPF interpreter doesn't check for this, |
833 | | * so its behavior is dependent on the behavior of |
834 | | * the processor on which it's running. There are |
835 | | * processors on which it shifts all the bits out |
836 | | * and processors on which it does no shift. |
837 | | */ |
838 | 373 | if (b < 32) |
839 | 357 | a <<= b; |
840 | 16 | else |
841 | 16 | a = 0; |
842 | 373 | break; |
843 | | |
844 | 956 | case BPF_RSH: |
845 | | /* |
846 | | * A right shift of more than the width of the type |
847 | | * is undefined in C; we'll just treat it as shifting |
848 | | * all the bits out. |
849 | | * |
850 | | * XXX - the BPF interpreter doesn't check for this, |
851 | | * so its behavior is dependent on the behavior of |
852 | | * the processor on which it's running. There are |
853 | | * processors on which it shifts all the bits out |
854 | | * and processors on which it does no shift. |
855 | | */ |
856 | 956 | if (b < 32) |
857 | 867 | a >>= b; |
858 | 89 | else |
859 | 89 | a = 0; |
860 | 956 | break; |
861 | | |
862 | 0 | default: |
863 | 0 | abort(); |
864 | 13.9k | } |
865 | 13.7k | s->k = a; |
866 | 13.7k | s->code = BPF_LD|BPF_IMM; |
867 | | /* |
868 | | * XXX - optimizer loop detection. |
869 | | */ |
870 | 13.7k | opt_state->non_branch_movement_performed = 1; |
871 | 13.7k | opt_state->done = 0; |
872 | 13.7k | } |
873 | | |
874 | | static inline struct slist * |
875 | | this_op(struct slist *s) |
876 | 1.22M | { |
877 | 1.55M | while (s != 0 && s->s.code == NOP) |
878 | 335k | s = s->next; |
879 | 1.22M | return s; |
880 | 1.22M | } |
881 | | |
882 | | static void |
883 | | opt_not(struct block *b) |
884 | 455 | { |
885 | 455 | struct block *tmp = JT(b); |
886 | | |
887 | 455 | JT(b) = JF(b); |
888 | 455 | JF(b) = tmp; |
889 | 455 | } |
890 | | |
891 | | static void |
892 | | opt_peep(opt_state_t *opt_state, struct block *b) |
893 | 169k | { |
894 | 169k | struct slist *s; |
895 | 169k | struct slist *next, *last; |
896 | 169k | bpf_u_int32 val; |
897 | | |
898 | 169k | s = b->stmts; |
899 | 169k | if (s == 0) |
900 | 36.6k | return; |
901 | | |
902 | 132k | last = s; |
903 | 613k | for (/*empty*/; /*empty*/; s = next) { |
904 | | /* |
905 | | * Skip over nops. |
906 | | */ |
907 | 613k | s = this_op(s); |
908 | 613k | if (s == 0) |
909 | 5.13k | break; /* nothing left in the block */ |
910 | | |
911 | | /* |
912 | | * Find the next real instruction after that one |
913 | | * (skipping nops). |
914 | | */ |
915 | 608k | next = this_op(s->next); |
916 | 608k | if (next == 0) |
917 | 127k | break; /* no next instruction */ |
918 | 480k | last = next; |
919 | | |
920 | | /* |
921 | | * st M[k] --> st M[k] |
922 | | * ldx M[k] tax |
923 | | */ |
924 | 480k | if (s->s.code == BPF_ST && |
925 | 480k | next->s.code == (BPF_LDX|BPF_MEM) && |
926 | 480k | s->s.k == next->s.k) { |
927 | | /* |
928 | | * XXX - optimizer loop detection. |
929 | | */ |
930 | 21.6k | opt_state->non_branch_movement_performed = 1; |
931 | 21.6k | opt_state->done = 0; |
932 | 21.6k | next->s.code = BPF_MISC|BPF_TAX; |
933 | 21.6k | } |
934 | | /* |
935 | | * ld #k --> ldx #k |
936 | | * tax txa |
937 | | */ |
938 | 480k | if (s->s.code == (BPF_LD|BPF_IMM) && |
939 | 480k | next->s.code == (BPF_MISC|BPF_TAX)) { |
940 | 14.4k | s->s.code = BPF_LDX|BPF_IMM; |
941 | 14.4k | next->s.code = BPF_MISC|BPF_TXA; |
942 | | /* |
943 | | * XXX - optimizer loop detection. |
944 | | */ |
945 | 14.4k | opt_state->non_branch_movement_performed = 1; |
946 | 14.4k | opt_state->done = 0; |
947 | 14.4k | } |
948 | | /* |
949 | | * This is an ugly special case, but it happens |
950 | | * when you say tcp[k] or udp[k] where k is a constant. |
951 | | */ |
952 | 480k | if (s->s.code == (BPF_LD|BPF_IMM)) { |
953 | 95.0k | struct slist *add, *tax, *ild; |
954 | | |
955 | | /* |
956 | | * Check that X isn't used on exit from this |
957 | | * block (which the optimizer might cause). |
958 | | * We know the code generator won't generate |
959 | | * any local dependencies. |
960 | | */ |
961 | 95.0k | if (ATOMELEM(b->out_use, X_ATOM)) |
962 | 376 | continue; |
963 | | |
964 | | /* |
965 | | * Check that the instruction following the ldi |
966 | | * is an addx, or it's an ldxms with an addx |
967 | | * following it (with 0 or more nops between the |
968 | | * ldxms and addx). |
969 | | */ |
970 | 94.7k | if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) |
971 | 94.7k | add = next; |
972 | 0 | else |
973 | 0 | add = this_op(next->next); |
974 | 94.7k | if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) |
975 | 94.6k | continue; |
976 | | |
977 | | /* |
978 | | * Check that a tax follows that (with 0 or more |
979 | | * nops between them). |
980 | | */ |
981 | 56 | tax = this_op(add->next); |
982 | 56 | if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) |
983 | 34 | continue; |
984 | | |
985 | | /* |
986 | | * Check that an ild follows that (with 0 or more |
987 | | * nops between them). |
988 | | */ |
989 | 22 | ild = this_op(tax->next); |
990 | 22 | if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || |
991 | 22 | BPF_MODE(ild->s.code) != BPF_IND) |
992 | 22 | continue; |
993 | | /* |
994 | | * We want to turn this sequence: |
995 | | * |
996 | | * (004) ldi #0x2 {s} |
997 | | * (005) ldxms [14] {next} -- optional |
998 | | * (006) addx {add} |
999 | | * (007) tax {tax} |
1000 | | * (008) ild [x+0] {ild} |
1001 | | * |
1002 | | * into this sequence: |
1003 | | * |
1004 | | * (004) nop |
1005 | | * (005) ldxms [14] |
1006 | | * (006) nop |
1007 | | * (007) nop |
1008 | | * (008) ild [x+2] |
1009 | | * |
1010 | | * XXX We need to check that X is not |
1011 | | * subsequently used, because we want to change |
1012 | | * what'll be in it after this sequence. |
1013 | | * |
1014 | | * We know we can eliminate the accumulator |
1015 | | * modifications earlier in the sequence since |
1016 | | * it is defined by the last stmt of this sequence |
1017 | | * (i.e., the last statement of the sequence loads |
1018 | | * a value into the accumulator, so we can eliminate |
1019 | | * earlier operations on the accumulator). |
1020 | | */ |
1021 | 0 | ild->s.k += s->s.k; |
1022 | 0 | s->s.code = NOP; |
1023 | 0 | add->s.code = NOP; |
1024 | 0 | tax->s.code = NOP; |
1025 | | /* |
1026 | | * XXX - optimizer loop detection. |
1027 | | */ |
1028 | 0 | opt_state->non_branch_movement_performed = 1; |
1029 | 0 | opt_state->done = 0; |
1030 | 0 | } |
1031 | 480k | } |
1032 | | /* |
1033 | | * If the comparison at the end of a block is an equality |
1034 | | * comparison against a constant, and nobody uses the value |
1035 | | * we leave in the A register at the end of a block, and |
1036 | | * the operation preceding the comparison is an arithmetic |
1037 | | * operation, we can sometime optimize it away. |
1038 | | */ |
1039 | 132k | if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) && |
1040 | 132k | !ATOMELEM(b->out_use, A_ATOM)) { |
1041 | | /* |
1042 | | * We can optimize away certain subtractions of the |
1043 | | * X register. |
1044 | | */ |
1045 | 109k | if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) { |
1046 | 2.56k | val = b->val[X_ATOM]; |
1047 | 2.56k | if (opt_state->vmap[val].is_const) { |
1048 | | /* |
1049 | | * If we have a subtract to do a comparison, |
1050 | | * and the X register is a known constant, |
1051 | | * we can merge this value into the |
1052 | | * comparison: |
1053 | | * |
1054 | | * sub x -> nop |
1055 | | * jeq #y jeq #(x+y) |
1056 | | */ |
1057 | 984 | b->s.k += opt_state->vmap[val].const_val; |
1058 | 984 | last->s.code = NOP; |
1059 | | /* |
1060 | | * XXX - optimizer loop detection. |
1061 | | */ |
1062 | 984 | opt_state->non_branch_movement_performed = 1; |
1063 | 984 | opt_state->done = 0; |
1064 | 1.57k | } else if (b->s.k == 0) { |
1065 | | /* |
1066 | | * If the X register isn't a constant, |
1067 | | * and the comparison in the test is |
1068 | | * against 0, we can compare with the |
1069 | | * X register, instead: |
1070 | | * |
1071 | | * sub x -> nop |
1072 | | * jeq #0 jeq x |
1073 | | */ |
1074 | 1.57k | last->s.code = NOP; |
1075 | 1.57k | b->s.code = BPF_JMP|BPF_JEQ|BPF_X; |
1076 | | /* |
1077 | | * XXX - optimizer loop detection. |
1078 | | */ |
1079 | 1.57k | opt_state->non_branch_movement_performed = 1; |
1080 | 1.57k | opt_state->done = 0; |
1081 | 1.57k | } |
1082 | 2.56k | } |
1083 | | /* |
1084 | | * Likewise, a constant subtract can be simplified: |
1085 | | * |
1086 | | * sub #x -> nop |
1087 | | * jeq #y -> jeq #(x+y) |
1088 | | */ |
1089 | 106k | else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) { |
1090 | 0 | last->s.code = NOP; |
1091 | 0 | b->s.k += last->s.k; |
1092 | | /* |
1093 | | * XXX - optimizer loop detection. |
1094 | | */ |
1095 | 0 | opt_state->non_branch_movement_performed = 1; |
1096 | 0 | opt_state->done = 0; |
1097 | 0 | } |
1098 | | /* |
1099 | | * And, similarly, a constant AND can be simplified |
1100 | | * if we're testing against 0, i.e.: |
1101 | | * |
1102 | | * and #k nop |
1103 | | * jeq #0 -> jset #k |
1104 | | */ |
1105 | 106k | else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && |
1106 | 106k | b->s.k == 0) { |
1107 | 455 | b->s.k = last->s.k; |
1108 | 455 | b->s.code = BPF_JMP|BPF_K|BPF_JSET; |
1109 | 455 | last->s.code = NOP; |
1110 | | /* |
1111 | | * XXX - optimizer loop detection. |
1112 | | */ |
1113 | 455 | opt_state->non_branch_movement_performed = 1; |
1114 | 455 | opt_state->done = 0; |
1115 | 455 | opt_not(b); |
1116 | 455 | } |
1117 | 109k | } |
1118 | | /* |
1119 | | * jset #0 -> never |
1120 | | * jset #ffffffff -> always |
1121 | | */ |
1122 | 132k | if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) { |
1123 | 782 | if (b->s.k == 0) |
1124 | 330 | JT(b) = JF(b); |
1125 | 782 | if (b->s.k == 0xffffffffU) |
1126 | 0 | JF(b) = JT(b); |
1127 | 782 | } |
1128 | | /* |
1129 | | * If we're comparing against the index register, and the index |
1130 | | * register is a known constant, we can just compare against that |
1131 | | * constant. |
1132 | | */ |
1133 | 132k | val = b->val[X_ATOM]; |
1134 | 132k | if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) { |
1135 | 4.18k | bpf_u_int32 v = opt_state->vmap[val].const_val; |
1136 | 4.18k | b->s.code &= ~BPF_X; |
1137 | 4.18k | b->s.k = v; |
1138 | 4.18k | } |
1139 | | /* |
1140 | | * If the accumulator is a known constant, we can compute the |
1141 | | * comparison result. |
1142 | | */ |
1143 | 132k | val = b->val[A_ATOM]; |
1144 | 132k | if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { |
1145 | 18.0k | bpf_u_int32 v = opt_state->vmap[val].const_val; |
1146 | 18.0k | switch (BPF_OP(b->s.code)) { |
1147 | | |
1148 | 10.4k | case BPF_JEQ: |
1149 | 10.4k | v = v == b->s.k; |
1150 | 10.4k | break; |
1151 | | |
1152 | 2.23k | case BPF_JGT: |
1153 | 2.23k | v = v > b->s.k; |
1154 | 2.23k | break; |
1155 | | |
1156 | 5.43k | case BPF_JGE: |
1157 | 5.43k | v = v >= b->s.k; |
1158 | 5.43k | break; |
1159 | | |
1160 | 0 | case BPF_JSET: |
1161 | 0 | v &= b->s.k; |
1162 | 0 | break; |
1163 | | |
1164 | 0 | default: |
1165 | 0 | abort(); |
1166 | 18.0k | } |
1167 | 18.0k | if (JF(b) != JT(b)) { |
1168 | | /* |
1169 | | * XXX - optimizer loop detection. |
1170 | | */ |
1171 | 8.15k | opt_state->non_branch_movement_performed = 1; |
1172 | 8.15k | opt_state->done = 0; |
1173 | 8.15k | } |
1174 | 18.0k | if (v) |
1175 | 5.38k | JF(b) = JT(b); |
1176 | 12.6k | else |
1177 | 12.6k | JT(b) = JF(b); |
1178 | 18.0k | } |
1179 | 132k | } |
1180 | | |
1181 | | /* |
1182 | | * Compute the symbolic value of expression of 's', and update |
1183 | | * anything it defines in the value table 'val'. If 'alter' is true, |
1184 | | * do various optimizations. This code would be cleaner if symbolic |
1185 | | * evaluation and code transformations weren't folded together. |
1186 | | */ |
1187 | | static void |
1188 | | opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter) |
1189 | 962k | { |
1190 | 962k | int op; |
1191 | 962k | bpf_u_int32 v; |
1192 | | |
1193 | 962k | switch (s->code) { |
1194 | | |
1195 | 38.0k | case BPF_LD|BPF_ABS|BPF_W: |
1196 | 58.4k | case BPF_LD|BPF_ABS|BPF_H: |
1197 | 96.8k | case BPF_LD|BPF_ABS|BPF_B: |
1198 | 96.8k | v = F(opt_state, s->code, s->k, 0L); |
1199 | 96.8k | vstore(s, &val[A_ATOM], v, alter); |
1200 | 96.8k | break; |
1201 | | |
1202 | 1.70k | case BPF_LD|BPF_IND|BPF_W: |
1203 | 1.70k | case BPF_LD|BPF_IND|BPF_H: |
1204 | 3.64k | case BPF_LD|BPF_IND|BPF_B: |
1205 | 3.64k | v = val[X_ATOM]; |
1206 | 3.64k | if (alter && opt_state->vmap[v].is_const) { |
1207 | 83 | s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); |
1208 | 83 | s->k += opt_state->vmap[v].const_val; |
1209 | 83 | v = F(opt_state, s->code, s->k, 0L); |
1210 | | /* |
1211 | | * XXX - optimizer loop detection. |
1212 | | */ |
1213 | 83 | opt_state->non_branch_movement_performed = 1; |
1214 | 83 | opt_state->done = 0; |
1215 | 83 | } |
1216 | 3.56k | else |
1217 | 3.56k | v = F(opt_state, s->code, s->k, v); |
1218 | 3.64k | vstore(s, &val[A_ATOM], v, alter); |
1219 | 3.64k | break; |
1220 | | |
1221 | 1.04k | case BPF_LD|BPF_LEN: |
1222 | 1.04k | v = F(opt_state, s->code, 0L, 0L); |
1223 | 1.04k | vstore(s, &val[A_ATOM], v, alter); |
1224 | 1.04k | break; |
1225 | | |
1226 | 107k | case BPF_LD|BPF_IMM: |
1227 | 107k | v = K(s->k); |
1228 | 107k | vstore(s, &val[A_ATOM], v, alter); |
1229 | 107k | break; |
1230 | | |
1231 | 23.8k | case BPF_LDX|BPF_IMM: |
1232 | 23.8k | v = K(s->k); |
1233 | 23.8k | vstore(s, &val[X_ATOM], v, alter); |
1234 | 23.8k | break; |
1235 | | |
1236 | 0 | case BPF_LDX|BPF_MSH|BPF_B: |
1237 | 0 | v = F(opt_state, s->code, s->k, 0L); |
1238 | 0 | vstore(s, &val[X_ATOM], v, alter); |
1239 | 0 | break; |
1240 | | |
1241 | 29.2k | case BPF_ALU|BPF_NEG: |
1242 | 29.2k | if (alter && opt_state->vmap[val[A_ATOM]].is_const) { |
1243 | 7.28k | s->code = BPF_LD|BPF_IMM; |
1244 | | /* |
1245 | | * Do this negation as unsigned arithmetic; that's |
1246 | | * what modern BPF engines do, and it guarantees |
1247 | | * that all possible values can be negated. (Yeah, |
1248 | | * negating 0x80000000, the minimum signed 32-bit |
1249 | | * two's-complement value, results in 0x80000000, |
1250 | | * so it's still negative, but we *should* be doing |
1251 | | * all unsigned arithmetic here, to match what |
1252 | | * modern BPF engines do.) |
1253 | | * |
1254 | | * Express it as 0U - (unsigned value) so that we |
1255 | | * don't get compiler warnings about negating an |
1256 | | * unsigned value and don't get UBSan warnings |
1257 | | * about the result of negating 0x80000000 being |
1258 | | * undefined. |
1259 | | */ |
1260 | 7.28k | s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val; |
1261 | 7.28k | val[A_ATOM] = K(s->k); |
1262 | 7.28k | } |
1263 | 21.9k | else |
1264 | 21.9k | val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L); |
1265 | 29.2k | break; |
1266 | | |
1267 | 859 | case BPF_ALU|BPF_ADD|BPF_K: |
1268 | 859 | case BPF_ALU|BPF_SUB|BPF_K: |
1269 | 1.20k | case BPF_ALU|BPF_MUL|BPF_K: |
1270 | 1.26k | case BPF_ALU|BPF_DIV|BPF_K: |
1271 | 1.29k | case BPF_ALU|BPF_MOD|BPF_K: |
1272 | 26.5k | case BPF_ALU|BPF_AND|BPF_K: |
1273 | 26.5k | case BPF_ALU|BPF_OR|BPF_K: |
1274 | 26.5k | case BPF_ALU|BPF_XOR|BPF_K: |
1275 | 26.5k | case BPF_ALU|BPF_LSH|BPF_K: |
1276 | 26.6k | case BPF_ALU|BPF_RSH|BPF_K: |
1277 | 26.6k | op = BPF_OP(s->code); |
1278 | 26.6k | if (alter) { |
1279 | 5.14k | if (s->k == 0) { |
1280 | | /* |
1281 | | * Optimize operations where the constant |
1282 | | * is zero. |
1283 | | * |
1284 | | * Don't optimize away "sub #0" |
1285 | | * as it may be needed later to |
1286 | | * fixup the generated math code. |
1287 | | * |
1288 | | * Fail if we're dividing by zero or taking |
1289 | | * a modulus by zero. |
1290 | | */ |
1291 | 255 | if (op == BPF_ADD || |
1292 | 255 | op == BPF_LSH || op == BPF_RSH || |
1293 | 255 | op == BPF_OR || op == BPF_XOR) { |
1294 | 32 | s->code = NOP; |
1295 | 32 | break; |
1296 | 32 | } |
1297 | 223 | if (op == BPF_MUL || op == BPF_AND) { |
1298 | 221 | s->code = BPF_LD|BPF_IMM; |
1299 | 221 | val[A_ATOM] = K(s->k); |
1300 | 221 | break; |
1301 | 221 | } |
1302 | 2 | if (op == BPF_DIV) |
1303 | 1 | opt_error(opt_state, |
1304 | 1 | "division by zero"); |
1305 | 1 | if (op == BPF_MOD) |
1306 | 1 | opt_error(opt_state, |
1307 | 1 | "modulus by zero"); |
1308 | 1 | } |
1309 | 4.89k | if (opt_state->vmap[val[A_ATOM]].is_const) { |
1310 | 77 | fold_op(opt_state, s, val[A_ATOM], K(s->k)); |
1311 | 77 | val[A_ATOM] = K(s->k); |
1312 | 77 | break; |
1313 | 77 | } |
1314 | 4.89k | } |
1315 | 26.2k | val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k)); |
1316 | 26.2k | break; |
1317 | | |
1318 | 5.62k | case BPF_ALU|BPF_ADD|BPF_X: |
1319 | 11.8k | case BPF_ALU|BPF_SUB|BPF_X: |
1320 | 25.5k | case BPF_ALU|BPF_MUL|BPF_X: |
1321 | 35.0k | case BPF_ALU|BPF_DIV|BPF_X: |
1322 | 40.4k | case BPF_ALU|BPF_MOD|BPF_X: |
1323 | 54.7k | case BPF_ALU|BPF_AND|BPF_X: |
1324 | 56.6k | case BPF_ALU|BPF_OR|BPF_X: |
1325 | 57.3k | case BPF_ALU|BPF_XOR|BPF_X: |
1326 | 58.8k | case BPF_ALU|BPF_LSH|BPF_X: |
1327 | 63.0k | case BPF_ALU|BPF_RSH|BPF_X: |
1328 | 63.0k | op = BPF_OP(s->code); |
1329 | 63.0k | if (alter && opt_state->vmap[val[X_ATOM]].is_const) { |
1330 | 14.3k | if (opt_state->vmap[val[A_ATOM]].is_const) { |
1331 | 13.9k | fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]); |
1332 | 13.9k | val[A_ATOM] = K(s->k); |
1333 | 13.9k | } |
1334 | 469 | else { |
1335 | 469 | s->code = BPF_ALU|BPF_K|op; |
1336 | 469 | s->k = opt_state->vmap[val[X_ATOM]].const_val; |
1337 | 469 | if ((op == BPF_LSH || op == BPF_RSH) && |
1338 | 469 | s->k > 31) |
1339 | 1 | opt_error(opt_state, |
1340 | 1 | "shift by more than 31 bits"); |
1341 | | /* |
1342 | | * XXX - optimizer loop detection. |
1343 | | */ |
1344 | 468 | opt_state->non_branch_movement_performed = 1; |
1345 | 468 | opt_state->done = 0; |
1346 | 468 | val[A_ATOM] = |
1347 | 468 | F(opt_state, s->code, val[A_ATOM], K(s->k)); |
1348 | 468 | } |
1349 | 14.3k | break; |
1350 | 14.3k | } |
1351 | | /* |
1352 | | * Check if we're doing something to an accumulator |
1353 | | * that is 0, and simplify. This may not seem like |
1354 | | * much of a simplification but it could open up further |
1355 | | * optimizations. |
1356 | | * XXX We could also check for mul by 1, etc. |
1357 | | */ |
1358 | 48.6k | if (alter && opt_state->vmap[val[A_ATOM]].is_const |
1359 | 48.6k | && opt_state->vmap[val[A_ATOM]].const_val == 0) { |
1360 | 51 | if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) { |
1361 | 40 | s->code = BPF_MISC|BPF_TXA; |
1362 | 40 | vstore(s, &val[A_ATOM], val[X_ATOM], alter); |
1363 | 40 | break; |
1364 | 40 | } |
1365 | 11 | else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD || |
1366 | 11 | op == BPF_AND || op == BPF_LSH || op == BPF_RSH) { |
1367 | 11 | s->code = BPF_LD|BPF_IMM; |
1368 | 11 | s->k = 0; |
1369 | 11 | vstore(s, &val[A_ATOM], K(s->k), alter); |
1370 | 11 | break; |
1371 | 11 | } |
1372 | 0 | else if (op == BPF_NEG) { |
1373 | 0 | s->code = NOP; |
1374 | 0 | break; |
1375 | 0 | } |
1376 | 51 | } |
1377 | 48.5k | val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]); |
1378 | 48.5k | break; |
1379 | | |
1380 | 779 | case BPF_MISC|BPF_TXA: |
1381 | 779 | vstore(s, &val[A_ATOM], val[X_ATOM], alter); |
1382 | 779 | break; |
1383 | | |
1384 | 111k | case BPF_LD|BPF_MEM: |
1385 | 111k | v = val[s->k]; |
1386 | 111k | if (alter && opt_state->vmap[v].is_const) { |
1387 | 26.0k | s->code = BPF_LD|BPF_IMM; |
1388 | 26.0k | s->k = opt_state->vmap[v].const_val; |
1389 | | /* |
1390 | | * XXX - optimizer loop detection. |
1391 | | */ |
1392 | 26.0k | opt_state->non_branch_movement_performed = 1; |
1393 | 26.0k | opt_state->done = 0; |
1394 | 26.0k | } |
1395 | 111k | vstore(s, &val[A_ATOM], v, alter); |
1396 | 111k | break; |
1397 | | |
1398 | 35.9k | case BPF_MISC|BPF_TAX: |
1399 | 35.9k | vstore(s, &val[X_ATOM], val[A_ATOM], alter); |
1400 | 35.9k | break; |
1401 | | |
1402 | 25.1k | case BPF_LDX|BPF_MEM: |
1403 | 25.1k | v = val[s->k]; |
1404 | 25.1k | if (alter && opt_state->vmap[v].is_const) { |
1405 | 83 | s->code = BPF_LDX|BPF_IMM; |
1406 | 83 | s->k = opt_state->vmap[v].const_val; |
1407 | | /* |
1408 | | * XXX - optimizer loop detection. |
1409 | | */ |
1410 | 83 | opt_state->non_branch_movement_performed = 1; |
1411 | 83 | opt_state->done = 0; |
1412 | 83 | } |
1413 | 25.1k | vstore(s, &val[X_ATOM], v, alter); |
1414 | 25.1k | break; |
1415 | | |
1416 | 133k | case BPF_ST: |
1417 | 133k | vstore(s, &val[s->k], val[A_ATOM], alter); |
1418 | 133k | break; |
1419 | | |
1420 | 0 | case BPF_STX: |
1421 | 0 | vstore(s, &val[s->k], val[X_ATOM], alter); |
1422 | 0 | break; |
1423 | 962k | } |
1424 | 962k | } |
1425 | | |
1426 | | static void |
1427 | | deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[]) |
1428 | 1.11M | { |
1429 | 1.11M | register int atom; |
1430 | | |
1431 | 1.11M | atom = atomuse(s); |
1432 | 1.11M | if (atom >= 0) { |
1433 | 501k | if (atom == AX_ATOM) { |
1434 | 56.3k | last[X_ATOM] = 0; |
1435 | 56.3k | last[A_ATOM] = 0; |
1436 | 56.3k | } |
1437 | 445k | else |
1438 | 445k | last[atom] = 0; |
1439 | 501k | } |
1440 | 1.11M | atom = atomdef(s); |
1441 | 1.11M | if (atom >= 0) { |
1442 | 605k | if (last[atom]) { |
1443 | | /* |
1444 | | * XXX - optimizer loop detection. |
1445 | | */ |
1446 | 62.2k | opt_state->non_branch_movement_performed = 1; |
1447 | 62.2k | opt_state->done = 0; |
1448 | 62.2k | last[atom]->code = NOP; |
1449 | 62.2k | } |
1450 | 605k | last[atom] = s; |
1451 | 605k | } |
1452 | 1.11M | } |
1453 | | |
1454 | | static void |
1455 | | opt_deadstores(opt_state_t *opt_state, register struct block *b) |
1456 | 169k | { |
1457 | 169k | register struct slist *s; |
1458 | 169k | register int atom; |
1459 | 169k | struct stmt *last[N_ATOMS]; |
1460 | | |
1461 | 169k | memset((char *)last, 0, sizeof last); |
1462 | | |
1463 | 1.11M | for (s = b->stmts; s != 0; s = s->next) |
1464 | 943k | deadstmt(opt_state, &s->s, last); |
1465 | 169k | deadstmt(opt_state, &b->s, last); |
1466 | | |
1467 | 3.22M | for (atom = 0; atom < N_ATOMS; ++atom) |
1468 | 3.05M | if (last[atom] && !ATOMELEM(b->out_use, atom)) { |
1469 | 29.6k | last[atom]->code = NOP; |
1470 | | /* |
1471 | | * XXX - optimizer loop detection. |
1472 | | */ |
1473 | 29.6k | opt_state->non_branch_movement_performed = 1; |
1474 | 29.6k | opt_state->done = 0; |
1475 | 29.6k | } |
1476 | 169k | } |
1477 | | |
1478 | | static void |
1479 | | opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts) |
1480 | 193k | { |
1481 | 193k | struct slist *s; |
1482 | 193k | struct edge *p; |
1483 | 193k | int i; |
1484 | 193k | bpf_u_int32 aval, xval; |
1485 | | |
1486 | | #if 0 |
1487 | | for (s = b->stmts; s && s->next; s = s->next) |
1488 | | if (BPF_CLASS(s->s.code) == BPF_JMP) { |
1489 | | do_stmts = 0; |
1490 | | break; |
1491 | | } |
1492 | | #endif |
1493 | | |
1494 | | /* |
1495 | | * Initialize the atom values. |
1496 | | */ |
1497 | 193k | p = b->in_edges; |
1498 | 193k | if (p == 0) { |
1499 | | /* |
1500 | | * We have no predecessors, so everything is undefined |
1501 | | * upon entry to this block. |
1502 | | */ |
1503 | 36.6k | memset((char *)b->val, 0, sizeof(b->val)); |
1504 | 157k | } else { |
1505 | | /* |
1506 | | * Inherit values from our predecessors. |
1507 | | * |
1508 | | * First, get the values from the predecessor along the |
1509 | | * first edge leading to this node. |
1510 | | */ |
1511 | 157k | memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); |
1512 | | /* |
1513 | | * Now look at all the other nodes leading to this node. |
1514 | | * If, for the predecessor along that edge, a register |
1515 | | * has a different value from the one we have (i.e., |
1516 | | * control paths are merging, and the merging paths |
1517 | | * assign different values to that register), give the |
1518 | | * register the undefined value of 0. |
1519 | | */ |
1520 | 268k | while ((p = p->next) != NULL) { |
1521 | 2.12M | for (i = 0; i < N_ATOMS; ++i) |
1522 | 2.00M | if (b->val[i] != p->pred->val[i]) |
1523 | 131k | b->val[i] = 0; |
1524 | 111k | } |
1525 | 157k | } |
1526 | 193k | aval = b->val[A_ATOM]; |
1527 | 193k | xval = b->val[X_ATOM]; |
1528 | 1.15M | for (s = b->stmts; s; s = s->next) |
1529 | 962k | opt_stmt(opt_state, &s->s, b->val, do_stmts); |
1530 | | |
1531 | | /* |
1532 | | * This is a special case: if we don't use anything from this |
1533 | | * block, and we load the accumulator or index register with a |
1534 | | * value that is already there, or if this block is a return, |
1535 | | * eliminate all the statements. |
1536 | | * |
1537 | | * XXX - what if it does a store? Presumably that falls under |
1538 | | * the heading of "if we don't use anything from this block", |
1539 | | * i.e., if we use any memory location set to a different |
1540 | | * value by this block, then we use something from this block. |
1541 | | * |
1542 | | * XXX - why does it matter whether we use anything from this |
1543 | | * block? If the accumulator or index register doesn't change |
1544 | | * its value, isn't that OK even if we use that value? |
1545 | | * |
1546 | | * XXX - if we load the accumulator with a different value, |
1547 | | * and the block ends with a conditional branch, we obviously |
1548 | | * can't eliminate it, as the branch depends on that value. |
1549 | | * For the index register, the conditional branch only depends |
1550 | | * on the index register value if the test is against the index |
1551 | | * register value rather than a constant; if nothing uses the |
1552 | | * value we put into the index register, and we're not testing |
1553 | | * against the index register's value, and there aren't any |
1554 | | * other problems that would keep us from eliminating this |
1555 | | * block, can we eliminate it? |
1556 | | */ |
1557 | 193k | if (do_stmts && |
1558 | 193k | ((b->out_use == 0 && |
1559 | 58.9k | aval != VAL_UNKNOWN && b->val[A_ATOM] == aval && |
1560 | 58.9k | xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) || |
1561 | 58.9k | BPF_CLASS(b->s.code) == BPF_RET)) { |
1562 | 23.9k | if (b->stmts != 0) { |
1563 | 660 | b->stmts = 0; |
1564 | | /* |
1565 | | * XXX - optimizer loop detection. |
1566 | | */ |
1567 | 660 | opt_state->non_branch_movement_performed = 1; |
1568 | 660 | opt_state->done = 0; |
1569 | 660 | } |
1570 | 169k | } else { |
1571 | 169k | opt_peep(opt_state, b); |
1572 | 169k | opt_deadstores(opt_state, b); |
1573 | 169k | } |
1574 | | /* |
1575 | | * Set up values for branch optimizer. |
1576 | | */ |
1577 | 193k | if (BPF_SRC(b->s.code) == BPF_K) |
1578 | 182k | b->oval = K(b->s.k); |
1579 | 11.0k | else |
1580 | 11.0k | b->oval = b->val[X_ATOM]; |
1581 | 193k | b->et.code = b->s.code; |
1582 | 193k | b->ef.code = -b->s.code; |
1583 | 193k | } |
1584 | | |
1585 | | /* |
1586 | | * Return true if any register that is used on exit from 'succ', has |
1587 | | * an exit value that is different from the corresponding exit value |
1588 | | * from 'b'. |
1589 | | */ |
1590 | | static int |
1591 | | use_conflict(struct block *b, struct block *succ) |
1592 | 64.0k | { |
1593 | 64.0k | int atom; |
1594 | 64.0k | atomset use = succ->out_use; |
1595 | | |
1596 | 64.0k | if (use == 0) |
1597 | 62.9k | return 0; |
1598 | | |
1599 | 19.5k | for (atom = 0; atom < N_ATOMS; ++atom) |
1600 | 18.5k | if (ATOMELEM(use, atom)) |
1601 | 1.04k | if (b->val[atom] != succ->val[atom]) |
1602 | 14 | return 1; |
1603 | 1.02k | return 0; |
1604 | 1.04k | } |
1605 | | |
1606 | | /* |
1607 | | * Given a block that is the successor of an edge, and an edge that |
1608 | | * dominates that edge, return either a pointer to a child of that |
1609 | | * block (a block to which that block jumps) if that block is a |
1610 | | * candidate to replace the successor of the latter edge or NULL |
1611 | | * if neither of the children of the first block are candidates. |
1612 | | */ |
1613 | | static struct block * |
1614 | | fold_edge(struct block *child, struct edge *ep) |
1615 | 332k | { |
1616 | 332k | int sense; |
1617 | 332k | bpf_u_int32 aval0, aval1, oval0, oval1; |
1618 | 332k | int code = ep->code; |
1619 | | |
1620 | 332k | if (code < 0) { |
1621 | | /* |
1622 | | * This edge is a "branch if false" edge. |
1623 | | */ |
1624 | 152k | code = -code; |
1625 | 152k | sense = 0; |
1626 | 180k | } else { |
1627 | | /* |
1628 | | * This edge is a "branch if true" edge. |
1629 | | */ |
1630 | 180k | sense = 1; |
1631 | 180k | } |
1632 | | |
1633 | | /* |
1634 | | * If the opcode for the branch at the end of the block we |
1635 | | * were handed isn't the same as the opcode for the branch |
1636 | | * to which the edge we were handed corresponds, the tests |
1637 | | * for those branches aren't testing the same conditions, |
1638 | | * so the blocks to which the first block branches aren't |
1639 | | * candidates to replace the successor of the edge. |
1640 | | */ |
1641 | 332k | if (child->s.code != code) |
1642 | 66.1k | return 0; |
1643 | | |
1644 | 266k | aval0 = child->val[A_ATOM]; |
1645 | 266k | oval0 = child->oval; |
1646 | 266k | aval1 = ep->pred->val[A_ATOM]; |
1647 | 266k | oval1 = ep->pred->oval; |
1648 | | |
1649 | | /* |
1650 | | * If the A register value on exit from the successor block |
1651 | | * isn't the same as the A register value on exit from the |
1652 | | * predecessor of the edge, the blocks to which the first |
1653 | | * block branches aren't candidates to replace the successor |
1654 | | * of the edge. |
1655 | | */ |
1656 | 266k | if (aval0 != aval1) |
1657 | 184k | return 0; |
1658 | | |
1659 | 81.8k | if (oval0 == oval1) |
1660 | | /* |
1661 | | * The operands of the branch instructions are |
1662 | | * identical, so the branches are testing the |
1663 | | * same condition, and the result is true if a true |
1664 | | * branch was taken to get here, otherwise false. |
1665 | | */ |
1666 | 41.1k | return sense ? JT(child) : JF(child); |
1667 | | |
1668 | 40.6k | if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) |
1669 | | /* |
1670 | | * At this point, we only know the comparison if we |
1671 | | * came down the true branch, and it was an equality |
1672 | | * comparison with a constant. |
1673 | | * |
1674 | | * I.e., if we came down the true branch, and the branch |
1675 | | * was an equality comparison with a constant, we know the |
1676 | | * accumulator contains that constant. If we came down |
1677 | | * the false branch, or the comparison wasn't with a |
1678 | | * constant, we don't know what was in the accumulator. |
1679 | | * |
1680 | | * We rely on the fact that distinct constants have distinct |
1681 | | * value numbers. |
1682 | | */ |
1683 | 7.01k | return JF(child); |
1684 | | |
1685 | 33.6k | return 0; |
1686 | 40.6k | } |
1687 | | |
1688 | | /* |
1689 | | * If we can make this edge go directly to a child of the edge's current |
1690 | | * successor, do so. |
1691 | | */ |
1692 | | static void |
1693 | | opt_j(opt_state_t *opt_state, struct edge *ep) |
1694 | 196k | { |
1695 | 196k | register u_int i, k; |
1696 | 196k | register struct block *target; |
1697 | | |
1698 | | /* |
1699 | | * Does this edge go to a block where, if the test |
1700 | | * at the end of it succeeds, it goes to a block |
1701 | | * that's a leaf node of the DAG, i.e. a return |
1702 | | * statement? |
1703 | | * If so, there's nothing to optimize. |
1704 | | */ |
1705 | 196k | if (JT(ep->succ) == 0) |
1706 | 82.2k | return; |
1707 | | |
1708 | | /* |
1709 | | * Does this edge go to a block that goes, in turn, to |
1710 | | * the same block regardless of whether the test at the |
1711 | | * end succeeds or fails? |
1712 | | */ |
1713 | 114k | if (JT(ep->succ) == JF(ep->succ)) { |
1714 | | /* |
1715 | | * Common branch targets can be eliminated, provided |
1716 | | * there is no data dependency. |
1717 | | * |
1718 | | * Check whether any register used on exit from the |
1719 | | * block to which the successor of this edge goes |
1720 | | * has a value at that point that's different from |
1721 | | * the value it has on exit from the predecessor of |
1722 | | * this edge. If not, the predecessor of this edge |
1723 | | * can just go to the block to which the successor |
1724 | | * of this edge goes, bypassing the successor of this |
1725 | | * edge, as the successor of this edge isn't doing |
1726 | | * any calculations whose results are different |
1727 | | * from what the blocks before it did and isn't |
1728 | | * doing any tests the results of which matter. |
1729 | | */ |
1730 | 15.8k | if (!use_conflict(ep->pred, JT(ep->succ))) { |
1731 | | /* |
1732 | | * No, there isn't. |
1733 | | * Make this edge go to the block to |
1734 | | * which the successor of that edge |
1735 | | * goes. |
1736 | | * |
1737 | | * XXX - optimizer loop detection. |
1738 | | */ |
1739 | 15.8k | opt_state->non_branch_movement_performed = 1; |
1740 | 15.8k | opt_state->done = 0; |
1741 | 15.8k | ep->succ = JT(ep->succ); |
1742 | 15.8k | } |
1743 | 15.8k | } |
1744 | | /* |
1745 | | * For each edge dominator that matches the successor of this |
1746 | | * edge, promote the edge successor to the its grandchild. |
1747 | | * |
1748 | | * XXX We violate the set abstraction here in favor a reasonably |
1749 | | * efficient loop. |
1750 | | */ |
1751 | 146k | top: |
1752 | 584k | for (i = 0; i < opt_state->edgewords; ++i) { |
1753 | | /* i'th word in the bitset of dominators */ |
1754 | 485k | register bpf_u_int32 x = ep->edom[i]; |
1755 | | |
1756 | 770k | while (x != 0) { |
1757 | | /* Find the next dominator in that word and mark it as found */ |
1758 | 332k | k = lowest_set_bit(x); |
1759 | 332k | x &=~ ((bpf_u_int32)1 << k); |
1760 | 332k | k += i * BITS_PER_WORD; |
1761 | | |
1762 | 332k | target = fold_edge(ep->succ, opt_state->edges[k]); |
1763 | | /* |
1764 | | * We have a candidate to replace the successor |
1765 | | * of ep. |
1766 | | * |
1767 | | * Check that there is no data dependency between |
1768 | | * nodes that will be violated if we move the edge; |
1769 | | * i.e., if any register used on exit from the |
1770 | | * candidate has a value at that point different |
1771 | | * from the value it has when we exit the |
1772 | | * predecessor of that edge, there's a data |
1773 | | * dependency that will be violated. |
1774 | | */ |
1775 | 332k | if (target != 0 && !use_conflict(ep->pred, target)) { |
1776 | | /* |
1777 | | * It's safe to replace the successor of |
1778 | | * ep; do so, and note that we've made |
1779 | | * at least one change. |
1780 | | * |
1781 | | * XXX - this is one of the operations that |
1782 | | * happens when the optimizer gets into |
1783 | | * one of those infinite loops. |
1784 | | */ |
1785 | 48.1k | opt_state->done = 0; |
1786 | 48.1k | ep->succ = target; |
1787 | 48.1k | if (JT(target) != 0) |
1788 | | /* |
1789 | | * Start over unless we hit a leaf. |
1790 | | */ |
1791 | 32.1k | goto top; |
1792 | 15.9k | return; |
1793 | 48.1k | } |
1794 | 332k | } |
1795 | 485k | } |
1796 | 146k | } |
1797 | | |
1798 | | /* |
1799 | | * XXX - is this, and and_pullup(), what's described in section 6.1.2 |
1800 | | * "Predicate Assertion Propagation" in the BPF+ paper? |
1801 | | * |
1802 | | * Note that this looks at block dominators, not edge dominators. |
1803 | | * Don't think so. |
1804 | | * |
1805 | | * "A or B" compiles into |
1806 | | * |
1807 | | * A |
1808 | | * t / \ f |
1809 | | * / B |
1810 | | * / t / \ f |
1811 | | * \ / |
1812 | | * \ / |
1813 | | * X |
1814 | | * |
1815 | | * |
1816 | | */ |
1817 | | static void |
1818 | | or_pullup(opt_state_t *opt_state, struct block *b) |
1819 | 98.3k | { |
1820 | 98.3k | bpf_u_int32 val; |
1821 | 98.3k | int at_top; |
1822 | 98.3k | struct block *pull; |
1823 | 98.3k | struct block **diffp, **samep; |
1824 | 98.3k | struct edge *ep; |
1825 | | |
1826 | 98.3k | ep = b->in_edges; |
1827 | 98.3k | if (ep == 0) |
1828 | 39.8k | return; |
1829 | | |
1830 | | /* |
1831 | | * Make sure each predecessor loads the same value. |
1832 | | * XXX why? |
1833 | | */ |
1834 | 58.4k | val = ep->pred->val[A_ATOM]; |
1835 | 63.7k | for (ep = ep->next; ep != 0; ep = ep->next) |
1836 | 18.3k | if (val != ep->pred->val[A_ATOM]) |
1837 | 13.0k | return; |
1838 | | |
1839 | | /* |
1840 | | * For the first edge in the list of edges coming into this block, |
1841 | | * see whether the predecessor of that edge comes here via a true |
1842 | | * branch or a false branch. |
1843 | | */ |
1844 | 45.3k | if (JT(b->in_edges->pred) == b) |
1845 | 26.5k | diffp = &JT(b->in_edges->pred); /* jt */ |
1846 | 18.8k | else |
1847 | 18.8k | diffp = &JF(b->in_edges->pred); /* jf */ |
1848 | | |
1849 | | /* |
1850 | | * diffp is a pointer to a pointer to the block. |
1851 | | * |
1852 | | * Go down the false chain looking as far as you can, |
1853 | | * making sure that each jump-compare is doing the |
1854 | | * same as the original block. |
1855 | | * |
1856 | | * If you reach the bottom before you reach a |
1857 | | * different jump-compare, just exit. There's nothing |
1858 | | * to do here. XXX - no, this version is checking for |
1859 | | * the value leaving the block; that's from the BPF+ |
1860 | | * pullup routine. |
1861 | | */ |
1862 | 45.3k | at_top = 1; |
1863 | 61.3k | for (;;) { |
1864 | | /* |
1865 | | * Done if that's not going anywhere XXX |
1866 | | */ |
1867 | 61.3k | if (*diffp == 0) |
1868 | 0 | return; |
1869 | | |
1870 | | /* |
1871 | | * Done if that predecessor blah blah blah isn't |
1872 | | * going the same place we're going XXX |
1873 | | * |
1874 | | * Does the true edge of this block point to the same |
1875 | | * location as the true edge of b? |
1876 | | */ |
1877 | 61.3k | if (JT(*diffp) != JT(b)) |
1878 | 11.0k | return; |
1879 | | |
1880 | | /* |
1881 | | * Done if this node isn't a dominator of that |
1882 | | * node blah blah blah XXX |
1883 | | * |
1884 | | * Does b dominate diffp? |
1885 | | */ |
1886 | 50.3k | if (!SET_MEMBER((*diffp)->dom, b->id)) |
1887 | 91 | return; |
1888 | | |
1889 | | /* |
1890 | | * Break out of the loop if that node's value of A |
1891 | | * isn't the value of A above XXX |
1892 | | */ |
1893 | 50.2k | if ((*diffp)->val[A_ATOM] != val) |
1894 | 34.2k | break; |
1895 | | |
1896 | | /* |
1897 | | * Get the JF for that node XXX |
1898 | | * Go down the false path. |
1899 | | */ |
1900 | 16.0k | diffp = &JF(*diffp); |
1901 | 16.0k | at_top = 0; |
1902 | 16.0k | } |
1903 | | |
1904 | | /* |
1905 | | * Now that we've found a different jump-compare in a chain |
1906 | | * below b, search further down until we find another |
1907 | | * jump-compare that looks at the original value. This |
1908 | | * jump-compare should get pulled up. XXX again we're |
1909 | | * comparing values not jump-compares. |
1910 | | */ |
1911 | 34.2k | samep = &JF(*diffp); |
1912 | 42.3k | for (;;) { |
1913 | | /* |
1914 | | * Done if that's not going anywhere XXX |
1915 | | */ |
1916 | 42.3k | if (*samep == 0) |
1917 | 0 | return; |
1918 | | |
1919 | | /* |
1920 | | * Done if that predecessor blah blah blah isn't |
1921 | | * going the same place we're going XXX |
1922 | | */ |
1923 | 42.3k | if (JT(*samep) != JT(b)) |
1924 | 32.2k | return; |
1925 | | |
1926 | | /* |
1927 | | * Done if this node isn't a dominator of that |
1928 | | * node blah blah blah XXX |
1929 | | * |
1930 | | * Does b dominate samep? |
1931 | | */ |
1932 | 10.1k | if (!SET_MEMBER((*samep)->dom, b->id)) |
1933 | 1.95k | return; |
1934 | | |
1935 | | /* |
1936 | | * Break out of the loop if that node's value of A |
1937 | | * is the value of A above XXX |
1938 | | */ |
1939 | 8.22k | if ((*samep)->val[A_ATOM] == val) |
1940 | 118 | break; |
1941 | | |
1942 | | /* XXX Need to check that there are no data dependencies |
1943 | | between dp0 and dp1. Currently, the code generator |
1944 | | will not produce such dependencies. */ |
1945 | 8.10k | samep = &JF(*samep); |
1946 | 8.10k | } |
1947 | | #ifdef notdef |
1948 | | /* XXX This doesn't cover everything. */ |
1949 | | for (i = 0; i < N_ATOMS; ++i) |
1950 | | if ((*samep)->val[i] != pred->val[i]) |
1951 | | return; |
1952 | | #endif |
1953 | | /* Pull up the node. */ |
1954 | 118 | pull = *samep; |
1955 | 118 | *samep = JF(pull); |
1956 | 118 | JF(pull) = *diffp; |
1957 | | |
1958 | | /* |
1959 | | * At the top of the chain, each predecessor needs to point at the |
1960 | | * pulled up node. Inside the chain, there is only one predecessor |
1961 | | * to worry about. |
1962 | | */ |
1963 | 118 | if (at_top) { |
1964 | 242 | for (ep = b->in_edges; ep != 0; ep = ep->next) { |
1965 | 125 | if (JT(ep->pred) == b) |
1966 | 18 | JT(ep->pred) = pull; |
1967 | 107 | else |
1968 | 107 | JF(ep->pred) = pull; |
1969 | 125 | } |
1970 | 117 | } |
1971 | 1 | else |
1972 | 1 | *diffp = pull; |
1973 | | |
1974 | | /* |
1975 | | * XXX - this is one of the operations that happens when the |
1976 | | * optimizer gets into one of those infinite loops. |
1977 | | */ |
1978 | 118 | opt_state->done = 0; |
1979 | 118 | } |
1980 | | |
1981 | | static void |
1982 | | and_pullup(opt_state_t *opt_state, struct block *b) |
1983 | 98.3k | { |
1984 | 98.3k | bpf_u_int32 val; |
1985 | 98.3k | int at_top; |
1986 | 98.3k | struct block *pull; |
1987 | 98.3k | struct block **diffp, **samep; |
1988 | 98.3k | struct edge *ep; |
1989 | | |
1990 | 98.3k | ep = b->in_edges; |
1991 | 98.3k | if (ep == 0) |
1992 | 39.8k | return; |
1993 | | |
1994 | | /* |
1995 | | * Make sure each predecessor loads the same value. |
1996 | | */ |
1997 | 58.4k | val = ep->pred->val[A_ATOM]; |
1998 | 63.7k | for (ep = ep->next; ep != 0; ep = ep->next) |
1999 | 18.3k | if (val != ep->pred->val[A_ATOM]) |
2000 | 13.0k | return; |
2001 | | |
2002 | 45.3k | if (JT(b->in_edges->pred) == b) |
2003 | 26.4k | diffp = &JT(b->in_edges->pred); |
2004 | 18.8k | else |
2005 | 18.8k | diffp = &JF(b->in_edges->pred); |
2006 | | |
2007 | 45.3k | at_top = 1; |
2008 | 56.7k | for (;;) { |
2009 | 56.7k | if (*diffp == 0) |
2010 | 0 | return; |
2011 | | |
2012 | 56.7k | if (JF(*diffp) != JF(b)) |
2013 | 8.77k | return; |
2014 | | |
2015 | 47.9k | if (!SET_MEMBER((*diffp)->dom, b->id)) |
2016 | 1.14k | return; |
2017 | | |
2018 | 46.8k | if ((*diffp)->val[A_ATOM] != val) |
2019 | 35.4k | break; |
2020 | | |
2021 | 11.3k | diffp = &JT(*diffp); |
2022 | 11.3k | at_top = 0; |
2023 | 11.3k | } |
2024 | 35.4k | samep = &JT(*diffp); |
2025 | 44.9k | for (;;) { |
2026 | 44.9k | if (*samep == 0) |
2027 | 0 | return; |
2028 | | |
2029 | 44.9k | if (JF(*samep) != JF(b)) |
2030 | 34.7k | return; |
2031 | | |
2032 | 10.1k | if (!SET_MEMBER((*samep)->dom, b->id)) |
2033 | 425 | return; |
2034 | | |
2035 | 9.75k | if ((*samep)->val[A_ATOM] == val) |
2036 | 303 | break; |
2037 | | |
2038 | | /* XXX Need to check that there are no data dependencies |
2039 | | between diffp and samep. Currently, the code generator |
2040 | | will not produce such dependencies. */ |
2041 | 9.45k | samep = &JT(*samep); |
2042 | 9.45k | } |
2043 | | #ifdef notdef |
2044 | | /* XXX This doesn't cover everything. */ |
2045 | | for (i = 0; i < N_ATOMS; ++i) |
2046 | | if ((*samep)->val[i] != pred->val[i]) |
2047 | | return; |
2048 | | #endif |
2049 | | /* Pull up the node. */ |
2050 | 303 | pull = *samep; |
2051 | 303 | *samep = JT(pull); |
2052 | 303 | JT(pull) = *diffp; |
2053 | | |
2054 | | /* |
2055 | | * At the top of the chain, each predecessor needs to point at the |
2056 | | * pulled up node. Inside the chain, there is only one predecessor |
2057 | | * to worry about. |
2058 | | */ |
2059 | 303 | if (at_top) { |
2060 | 611 | for (ep = b->in_edges; ep != 0; ep = ep->next) { |
2061 | 309 | if (JT(ep->pred) == b) |
2062 | 93 | JT(ep->pred) = pull; |
2063 | 216 | else |
2064 | 216 | JF(ep->pred) = pull; |
2065 | 309 | } |
2066 | 302 | } |
2067 | 1 | else |
2068 | 1 | *diffp = pull; |
2069 | | |
2070 | | /* |
2071 | | * XXX - this is one of the operations that happens when the |
2072 | | * optimizer gets into one of those infinite loops. |
2073 | | */ |
2074 | 303 | opt_state->done = 0; |
2075 | 303 | } |
2076 | | |
2077 | | static void |
2078 | | opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts) |
2079 | 36.6k | { |
2080 | 36.6k | int i, maxlevel; |
2081 | 36.6k | struct block *p; |
2082 | | |
2083 | 36.6k | init_val(opt_state); |
2084 | 36.6k | maxlevel = ic->root->level; |
2085 | | |
2086 | 36.6k | find_inedges(opt_state, ic->root); |
2087 | 200k | for (i = maxlevel; i >= 0; --i) |
2088 | 357k | for (p = opt_state->levels[i]; p; p = p->link) |
2089 | 193k | opt_blk(opt_state, p, do_stmts); |
2090 | | |
2091 | 36.6k | if (do_stmts) |
2092 | | /* |
2093 | | * No point trying to move branches; it can't possibly |
2094 | | * make a difference at this point. |
2095 | | * |
2096 | | * XXX - this might be after we detect a loop where |
2097 | | * we were just looping infinitely moving branches |
2098 | | * in such a fashion that we went through two or more |
2099 | | * versions of the machine code, eventually returning |
2100 | | * to the first version. (We're really not doing a |
2101 | | * full loop detection, we're just testing for two |
2102 | | * passes in a row where we do nothing but |
2103 | | * move branches.) |
2104 | | */ |
2105 | 15.9k | return; |
2106 | | |
2107 | | /* |
2108 | | * Is this what the BPF+ paper describes in sections 6.1.1, |
2109 | | * 6.1.2, and 6.1.3? |
2110 | | */ |
2111 | 113k | for (i = 1; i <= maxlevel; ++i) { |
2112 | 191k | for (p = opt_state->levels[i]; p; p = p->link) { |
2113 | 98.3k | opt_j(opt_state, &p->et); |
2114 | 98.3k | opt_j(opt_state, &p->ef); |
2115 | 98.3k | } |
2116 | 93.2k | } |
2117 | | |
2118 | 20.7k | find_inedges(opt_state, ic->root); |
2119 | 113k | for (i = 1; i <= maxlevel; ++i) { |
2120 | 191k | for (p = opt_state->levels[i]; p; p = p->link) { |
2121 | 98.3k | or_pullup(opt_state, p); |
2122 | 98.3k | and_pullup(opt_state, p); |
2123 | 98.3k | } |
2124 | 93.2k | } |
2125 | 20.7k | } |
2126 | | |
2127 | | static inline void |
2128 | | link_inedge(struct edge *parent, struct block *child) |
2129 | 465k | { |
2130 | 465k | parent->next = child->in_edges; |
2131 | 465k | child->in_edges = parent; |
2132 | 465k | } |
2133 | | |
2134 | | static void |
2135 | | find_inedges(opt_state_t *opt_state, struct block *root) |
2136 | 57.1k | { |
2137 | 57.1k | u_int i; |
2138 | 57.1k | int level; |
2139 | 57.1k | struct block *b; |
2140 | | |
2141 | 533k | for (i = 0; i < opt_state->n_blocks; ++i) |
2142 | 476k | opt_state->blocks[i]->in_edges = 0; |
2143 | | |
2144 | | /* |
2145 | | * Traverse the graph, adding each edge to the predecessor |
2146 | | * list of its successors. Skip the leaves (i.e. level 0). |
2147 | | */ |
2148 | 277k | for (level = root->level; level > 0; --level) { |
2149 | 453k | for (b = opt_state->levels[level]; b != 0; b = b->link) { |
2150 | 232k | link_inedge(&b->et, JT(b)); |
2151 | 232k | link_inedge(&b->ef, JF(b)); |
2152 | 232k | } |
2153 | 220k | } |
2154 | 57.1k | } |
2155 | | |
2156 | | static void |
2157 | | opt_root(struct block **b) |
2158 | 9.49k | { |
2159 | 9.49k | struct slist *tmp, *s; |
2160 | | |
2161 | 9.49k | s = (*b)->stmts; |
2162 | 9.49k | (*b)->stmts = 0; |
2163 | 13.0k | while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) |
2164 | 3.60k | *b = JT(*b); |
2165 | | |
2166 | 9.49k | tmp = (*b)->stmts; |
2167 | 9.49k | if (tmp != 0) |
2168 | 128 | sappend(s, tmp); |
2169 | 9.49k | (*b)->stmts = s; |
2170 | | |
2171 | | /* |
2172 | | * If the root node is a return, then there is no |
2173 | | * point executing any statements (since the bpf machine |
2174 | | * has no side effects). |
2175 | | */ |
2176 | 9.49k | if (BPF_CLASS((*b)->s.code) == BPF_RET) |
2177 | 5.66k | (*b)->stmts = 0; |
2178 | 9.49k | } |
2179 | | |
2180 | | static void |
2181 | | opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts) |
2182 | 19.4k | { |
2183 | | |
2184 | | #ifdef BDEBUG |
2185 | | if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { |
2186 | | printf("opt_loop(root, %d) begin\n", do_stmts); |
2187 | | opt_dump(opt_state, ic); |
2188 | | } |
2189 | | #endif |
2190 | | |
2191 | | /* |
2192 | | * XXX - optimizer loop detection. |
2193 | | */ |
2194 | 19.4k | int loop_count = 0; |
2195 | 36.6k | for (;;) { |
2196 | 36.6k | opt_state->done = 1; |
2197 | | /* |
2198 | | * XXX - optimizer loop detection. |
2199 | | */ |
2200 | 36.6k | opt_state->non_branch_movement_performed = 0; |
2201 | 36.6k | find_levels(opt_state, ic); |
2202 | 36.6k | find_dom(opt_state, ic->root); |
2203 | 36.6k | find_closure(opt_state, ic->root); |
2204 | 36.6k | find_ud(opt_state, ic->root); |
2205 | 36.6k | find_edom(opt_state, ic->root); |
2206 | 36.6k | opt_blks(opt_state, ic, do_stmts); |
2207 | | #ifdef BDEBUG |
2208 | | if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { |
2209 | | printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done); |
2210 | | opt_dump(opt_state, ic); |
2211 | | } |
2212 | | #endif |
2213 | | |
2214 | | /* |
2215 | | * Was anything done in this optimizer pass? |
2216 | | */ |
2217 | 36.6k | if (opt_state->done) { |
2218 | | /* |
2219 | | * No, so we've reached a fixed point. |
2220 | | * We're done. |
2221 | | */ |
2222 | 19.2k | break; |
2223 | 19.2k | } |
2224 | | |
2225 | | /* |
2226 | | * XXX - was anything done other than branch movement |
2227 | | * in this pass? |
2228 | | */ |
2229 | 17.4k | if (opt_state->non_branch_movement_performed) { |
2230 | | /* |
2231 | | * Yes. Clear any loop-detection counter; |
2232 | | * we're making some form of progress (assuming |
2233 | | * we can't get into a cycle doing *other* |
2234 | | * optimizations...). |
2235 | | */ |
2236 | 15.5k | loop_count = 0; |
2237 | 15.5k | } else { |
2238 | | /* |
2239 | | * No - increment the counter, and quit if |
2240 | | * it's up to 100. |
2241 | | */ |
2242 | 1.91k | loop_count++; |
2243 | 1.91k | if (loop_count >= 100) { |
2244 | | /* |
2245 | | * We've done nothing but branch movement |
2246 | | * for 100 passes; we're probably |
2247 | | * in a cycle and will never reach a |
2248 | | * fixed point. |
2249 | | * |
2250 | | * XXX - yes, we really need a non- |
2251 | | * heuristic way of detecting a cycle. |
2252 | | */ |
2253 | 0 | opt_state->done = 1; |
2254 | 0 | break; |
2255 | 0 | } |
2256 | 1.91k | } |
2257 | 17.4k | } |
2258 | 19.4k | } |
2259 | | |
2260 | | /* |
2261 | | * Optimize the filter code in its dag representation. |
2262 | | * Return 0 on success, -1 on error. |
2263 | | */ |
2264 | | int |
2265 | | bpf_optimize(struct icode *ic, char *errbuf) |
2266 | 9.71k | { |
2267 | 9.71k | opt_state_t opt_state; |
2268 | | |
2269 | 9.71k | memset(&opt_state, 0, sizeof(opt_state)); |
2270 | 9.71k | opt_state.errbuf = errbuf; |
2271 | 9.71k | opt_state.non_branch_movement_performed = 0; |
2272 | 9.71k | if (setjmp(opt_state.top_ctx)) { |
2273 | 229 | opt_cleanup(&opt_state); |
2274 | 229 | return -1; |
2275 | 229 | } |
2276 | 9.49k | opt_init(&opt_state, ic); |
2277 | 9.49k | opt_loop(&opt_state, ic, 0); |
2278 | 9.49k | opt_loop(&opt_state, ic, 1); |
2279 | 9.49k | intern_blocks(&opt_state, ic); |
2280 | | #ifdef BDEBUG |
2281 | | if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { |
2282 | | printf("after intern_blocks()\n"); |
2283 | | opt_dump(&opt_state, ic); |
2284 | | } |
2285 | | #endif |
2286 | 9.49k | opt_root(&ic->root); |
2287 | | #ifdef BDEBUG |
2288 | | if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { |
2289 | | printf("after opt_root()\n"); |
2290 | | opt_dump(&opt_state, ic); |
2291 | | } |
2292 | | #endif |
2293 | 9.49k | opt_cleanup(&opt_state); |
2294 | 9.49k | return 0; |
2295 | 9.71k | } |
2296 | | |
2297 | | static void |
2298 | | make_marks(struct icode *ic, struct block *p) |
2299 | 115k | { |
2300 | 115k | if (!isMarked(ic, p)) { |
2301 | 66.7k | Mark(ic, p); |
2302 | 66.7k | if (BPF_CLASS(p->s.code) != BPF_RET) { |
2303 | 52.5k | make_marks(ic, JT(p)); |
2304 | 52.5k | make_marks(ic, JF(p)); |
2305 | 52.5k | } |
2306 | 66.7k | } |
2307 | 115k | } |
2308 | | |
2309 | | /* |
2310 | | * Mark code array such that isMarked(ic->cur_mark, i) is true |
2311 | | * only for nodes that are alive. |
2312 | | */ |
2313 | | static void |
2314 | | mark_code(struct icode *ic) |
2315 | 10.2k | { |
2316 | 10.2k | ic->cur_mark += 1; |
2317 | 10.2k | make_marks(ic, ic->root); |
2318 | 10.2k | } |
2319 | | |
2320 | | /* |
2321 | | * True iff the two stmt lists load the same value from the packet into |
2322 | | * the accumulator. |
2323 | | */ |
2324 | | static int |
2325 | | eq_slist(struct slist *x, struct slist *y) |
2326 | 1.97k | { |
2327 | 3.24k | for (;;) { |
2328 | 3.32k | while (x && x->s.code == NOP) |
2329 | 75 | x = x->next; |
2330 | 3.36k | while (y && y->s.code == NOP) |
2331 | 120 | y = y->next; |
2332 | 3.24k | if (x == 0) |
2333 | 785 | return y == 0; |
2334 | 2.46k | if (y == 0) |
2335 | 0 | return x == 0; |
2336 | 2.46k | if (x->s.code != y->s.code || x->s.k != y->s.k) |
2337 | 1.19k | return 0; |
2338 | 1.27k | x = x->next; |
2339 | 1.27k | y = y->next; |
2340 | 1.27k | } |
2341 | 1.97k | } |
2342 | | |
2343 | | static inline int |
2344 | | eq_blk(struct block *b0, struct block *b1) |
2345 | 1.18M | { |
2346 | 1.18M | if (b0->s.code == b1->s.code && |
2347 | 1.18M | b0->s.k == b1->s.k && |
2348 | 1.18M | b0->et.succ == b1->et.succ && |
2349 | 1.18M | b0->ef.succ == b1->ef.succ) |
2350 | 1.97k | return eq_slist(b0->stmts, b1->stmts); |
2351 | 1.18M | return 0; |
2352 | 1.18M | } |
2353 | | |
2354 | | static void |
2355 | | intern_blocks(opt_state_t *opt_state, struct icode *ic) |
2356 | 9.49k | { |
2357 | 9.49k | struct block *p; |
2358 | 9.49k | u_int i, j; |
2359 | 9.49k | int done1; /* don't shadow global */ |
2360 | 10.2k | top: |
2361 | 10.2k | done1 = 1; |
2362 | 136k | for (i = 0; i < opt_state->n_blocks; ++i) |
2363 | 126k | opt_state->blocks[i]->link = 0; |
2364 | | |
2365 | 10.2k | mark_code(ic); |
2366 | | |
2367 | 126k | for (i = opt_state->n_blocks - 1; i != 0; ) { |
2368 | 116k | --i; |
2369 | 116k | if (!isMarked(ic, opt_state->blocks[i])) |
2370 | 58.3k | continue; |
2371 | 2.03M | for (j = i + 1; j < opt_state->n_blocks; ++j) { |
2372 | 1.97M | if (!isMarked(ic, opt_state->blocks[j])) |
2373 | 792k | continue; |
2374 | 1.18M | if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) { |
2375 | 780 | opt_state->blocks[i]->link = opt_state->blocks[j]->link ? |
2376 | 764 | opt_state->blocks[j]->link : opt_state->blocks[j]; |
2377 | 780 | break; |
2378 | 780 | } |
2379 | 1.18M | } |
2380 | 58.1k | } |
2381 | 136k | for (i = 0; i < opt_state->n_blocks; ++i) { |
2382 | 126k | p = opt_state->blocks[i]; |
2383 | 126k | if (JT(p) == 0) |
2384 | 17.8k | continue; |
2385 | 108k | if (JT(p)->link) { |
2386 | 1.18k | done1 = 0; |
2387 | 1.18k | JT(p) = JT(p)->link; |
2388 | 1.18k | } |
2389 | 108k | if (JF(p)->link) { |
2390 | 467 | done1 = 0; |
2391 | 467 | JF(p) = JF(p)->link; |
2392 | 467 | } |
2393 | 108k | } |
2394 | 10.2k | if (!done1) |
2395 | 719 | goto top; |
2396 | 10.2k | } |
2397 | | |
2398 | | static void |
2399 | | opt_cleanup(opt_state_t *opt_state) |
2400 | 9.71k | { |
2401 | 9.71k | free((void *)opt_state->vnode_base); |
2402 | 9.71k | free((void *)opt_state->vmap); |
2403 | 9.71k | free((void *)opt_state->edges); |
2404 | 9.71k | free((void *)opt_state->space); |
2405 | 9.71k | free((void *)opt_state->levels); |
2406 | 9.71k | free((void *)opt_state->blocks); |
2407 | 9.71k | } |
2408 | | |
2409 | | /* |
2410 | | * For optimizer errors. |
2411 | | */ |
2412 | | static void PCAP_NORETURN |
2413 | | opt_error(opt_state_t *opt_state, const char *fmt, ...) |
2414 | 229 | { |
2415 | 229 | va_list ap; |
2416 | | |
2417 | 229 | if (opt_state->errbuf != NULL) { |
2418 | 229 | va_start(ap, fmt); |
2419 | 229 | (void)vsnprintf(opt_state->errbuf, |
2420 | 229 | PCAP_ERRBUF_SIZE, fmt, ap); |
2421 | 229 | va_end(ap); |
2422 | 229 | } |
2423 | 229 | longjmp(opt_state->top_ctx, 1); |
2424 | | /* NOTREACHED */ |
2425 | | #ifdef _AIX |
2426 | | PCAP_UNREACHABLE |
2427 | | #endif /* _AIX */ |
2428 | 229 | } |
2429 | | |
2430 | | /* |
2431 | | * Return the number of stmts in 's'. |
2432 | | */ |
2433 | | static u_int |
2434 | | slength(struct slist *s) |
2435 | 246k | { |
2436 | 246k | u_int n = 0; |
2437 | | |
2438 | 906k | for (; s; s = s->next) |
2439 | 659k | if (s->s.code != NOP) |
2440 | 565k | ++n; |
2441 | 246k | return n; |
2442 | 246k | } |
2443 | | |
2444 | | /* |
2445 | | * Return the number of nodes reachable by 'p'. |
2446 | | * All nodes should be initially unmarked. |
2447 | | */ |
2448 | | static int |
2449 | | count_blocks(struct icode *ic, struct block *p) |
2450 | 153k | { |
2451 | 153k | if (p == 0 || isMarked(ic, p)) |
2452 | 81.5k | return 0; |
2453 | 71.8k | Mark(ic, p); |
2454 | 71.8k | return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1; |
2455 | 153k | } |
2456 | | |
2457 | | /* |
2458 | | * Do a depth first search on the flow graph, numbering the |
2459 | | * the basic blocks, and entering them into the 'blocks' array.` |
2460 | | */ |
2461 | | static void |
2462 | | number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p) |
2463 | 153k | { |
2464 | 153k | u_int n; |
2465 | | |
2466 | 153k | if (p == 0 || isMarked(ic, p)) |
2467 | 81.5k | return; |
2468 | | |
2469 | 71.8k | Mark(ic, p); |
2470 | 71.8k | n = opt_state->n_blocks++; |
2471 | 71.8k | if (opt_state->n_blocks == 0) { |
2472 | | /* |
2473 | | * Overflow. |
2474 | | */ |
2475 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2476 | 0 | } |
2477 | 71.8k | p->id = n; |
2478 | 71.8k | opt_state->blocks[n] = p; |
2479 | | |
2480 | 71.8k | number_blks_r(opt_state, ic, JT(p)); |
2481 | 71.8k | number_blks_r(opt_state, ic, JF(p)); |
2482 | 71.8k | } |
2483 | | |
2484 | | /* |
2485 | | * Return the number of stmts in the flowgraph reachable by 'p'. |
2486 | | * The nodes should be unmarked before calling. |
2487 | | * |
2488 | | * Note that "stmts" means "instructions", and that this includes |
2489 | | * |
2490 | | * side-effect statements in 'p' (slength(p->stmts)); |
2491 | | * |
2492 | | * statements in the true branch from 'p' (count_stmts(JT(p))); |
2493 | | * |
2494 | | * statements in the false branch from 'p' (count_stmts(JF(p))); |
2495 | | * |
2496 | | * the conditional jump itself (1); |
2497 | | * |
2498 | | * an extra long jump if the true branch requires it (p->longjt); |
2499 | | * |
2500 | | * an extra long jump if the false branch requires it (p->longjf). |
2501 | | */ |
2502 | | static u_int |
2503 | | count_stmts(struct icode *ic, struct block *p) |
2504 | 191k | { |
2505 | 191k | u_int n; |
2506 | | |
2507 | 191k | if (p == 0 || isMarked(ic, p)) |
2508 | 100k | return 0; |
2509 | 90.8k | Mark(ic, p); |
2510 | 90.8k | n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p)); |
2511 | 90.8k | return slength(p->stmts) + n + 1 + p->longjt + p->longjf; |
2512 | 191k | } |
2513 | | |
2514 | | /* |
2515 | | * Allocate memory. All allocation is done before optimization |
2516 | | * is begun. A linear bound on the size of all data structures is computed |
2517 | | * from the total number of blocks and/or statements. |
2518 | | */ |
2519 | | static void |
2520 | | opt_init(opt_state_t *opt_state, struct icode *ic) |
2521 | 9.71k | { |
2522 | 9.71k | bpf_u_int32 *p; |
2523 | 9.71k | int i, n, max_stmts; |
2524 | 9.71k | u_int product; |
2525 | 9.71k | size_t block_memsize, edge_memsize; |
2526 | | |
2527 | | /* |
2528 | | * First, count the blocks, so we can malloc an array to map |
2529 | | * block number to block. Then, put the blocks into the array. |
2530 | | */ |
2531 | 9.71k | unMarkAll(ic); |
2532 | 9.71k | n = count_blocks(ic, ic->root); |
2533 | 9.71k | opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks)); |
2534 | 9.71k | if (opt_state->blocks == NULL) |
2535 | 0 | opt_error(opt_state, "malloc"); |
2536 | 9.71k | unMarkAll(ic); |
2537 | 9.71k | opt_state->n_blocks = 0; |
2538 | 9.71k | number_blks_r(opt_state, ic, ic->root); |
2539 | | |
2540 | | /* |
2541 | | * This "should not happen". |
2542 | | */ |
2543 | 9.71k | if (opt_state->n_blocks == 0) |
2544 | 0 | opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue"); |
2545 | | |
2546 | 9.71k | opt_state->n_edges = 2 * opt_state->n_blocks; |
2547 | 9.71k | if ((opt_state->n_edges / 2) != opt_state->n_blocks) { |
2548 | | /* |
2549 | | * Overflow. |
2550 | | */ |
2551 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2552 | 0 | } |
2553 | 9.71k | opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges)); |
2554 | 9.71k | if (opt_state->edges == NULL) { |
2555 | 0 | opt_error(opt_state, "malloc"); |
2556 | 0 | } |
2557 | | |
2558 | | /* |
2559 | | * The number of levels is bounded by the number of nodes. |
2560 | | */ |
2561 | 9.71k | opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels)); |
2562 | 9.71k | if (opt_state->levels == NULL) { |
2563 | 0 | opt_error(opt_state, "malloc"); |
2564 | 0 | } |
2565 | | |
2566 | 9.71k | opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1; |
2567 | 9.71k | opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1; |
2568 | | |
2569 | | /* |
2570 | | * Make sure opt_state->n_blocks * opt_state->nodewords fits |
2571 | | * in a u_int; we use it as a u_int number-of-iterations |
2572 | | * value. |
2573 | | */ |
2574 | 9.71k | product = opt_state->n_blocks * opt_state->nodewords; |
2575 | 9.71k | if ((product / opt_state->n_blocks) != opt_state->nodewords) { |
2576 | | /* |
2577 | | * XXX - just punt and don't try to optimize? |
2578 | | * In practice, this is unlikely to happen with |
2579 | | * a normal filter. |
2580 | | */ |
2581 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2582 | 0 | } |
2583 | | |
2584 | | /* |
2585 | | * Make sure the total memory required for that doesn't |
2586 | | * overflow. |
2587 | | */ |
2588 | 9.71k | block_memsize = (size_t)2 * product * sizeof(*opt_state->space); |
2589 | 9.71k | if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) { |
2590 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2591 | 0 | } |
2592 | | |
2593 | | /* |
2594 | | * Make sure opt_state->n_edges * opt_state->edgewords fits |
2595 | | * in a u_int; we use it as a u_int number-of-iterations |
2596 | | * value. |
2597 | | */ |
2598 | 9.71k | product = opt_state->n_edges * opt_state->edgewords; |
2599 | 9.71k | if ((product / opt_state->n_edges) != opt_state->edgewords) { |
2600 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2601 | 0 | } |
2602 | | |
2603 | | /* |
2604 | | * Make sure the total memory required for that doesn't |
2605 | | * overflow. |
2606 | | */ |
2607 | 9.71k | edge_memsize = (size_t)product * sizeof(*opt_state->space); |
2608 | 9.71k | if (edge_memsize / product != sizeof(*opt_state->space)) { |
2609 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2610 | 0 | } |
2611 | | |
2612 | | /* |
2613 | | * Make sure the total memory required for both of them doesn't |
2614 | | * overflow. |
2615 | | */ |
2616 | 9.71k | if (block_memsize > SIZE_MAX - edge_memsize) { |
2617 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2618 | 0 | } |
2619 | | |
2620 | | /* XXX */ |
2621 | 9.71k | opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize); |
2622 | 9.71k | if (opt_state->space == NULL) { |
2623 | 0 | opt_error(opt_state, "malloc"); |
2624 | 0 | } |
2625 | 9.71k | p = opt_state->space; |
2626 | 9.71k | opt_state->all_dom_sets = p; |
2627 | 81.5k | for (i = 0; i < n; ++i) { |
2628 | 71.8k | opt_state->blocks[i]->dom = p; |
2629 | 71.8k | p += opt_state->nodewords; |
2630 | 71.8k | } |
2631 | 9.71k | opt_state->all_closure_sets = p; |
2632 | 81.5k | for (i = 0; i < n; ++i) { |
2633 | 71.8k | opt_state->blocks[i]->closure = p; |
2634 | 71.8k | p += opt_state->nodewords; |
2635 | 71.8k | } |
2636 | 9.71k | opt_state->all_edge_sets = p; |
2637 | 81.5k | for (i = 0; i < n; ++i) { |
2638 | 71.8k | register struct block *b = opt_state->blocks[i]; |
2639 | | |
2640 | 71.8k | b->et.edom = p; |
2641 | 71.8k | p += opt_state->edgewords; |
2642 | 71.8k | b->ef.edom = p; |
2643 | 71.8k | p += opt_state->edgewords; |
2644 | 71.8k | b->et.id = i; |
2645 | 71.8k | opt_state->edges[i] = &b->et; |
2646 | 71.8k | b->ef.id = opt_state->n_blocks + i; |
2647 | 71.8k | opt_state->edges[opt_state->n_blocks + i] = &b->ef; |
2648 | 71.8k | b->et.pred = b; |
2649 | 71.8k | b->ef.pred = b; |
2650 | 71.8k | } |
2651 | 9.71k | max_stmts = 0; |
2652 | 81.5k | for (i = 0; i < n; ++i) |
2653 | 71.8k | max_stmts += slength(opt_state->blocks[i]->stmts) + 1; |
2654 | | /* |
2655 | | * We allocate at most 3 value numbers per statement, |
2656 | | * so this is an upper bound on the number of valnodes |
2657 | | * we'll need. |
2658 | | */ |
2659 | 9.71k | opt_state->maxval = 3 * max_stmts; |
2660 | 9.71k | opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap)); |
2661 | 9.71k | if (opt_state->vmap == NULL) { |
2662 | 0 | opt_error(opt_state, "malloc"); |
2663 | 0 | } |
2664 | 9.71k | opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base)); |
2665 | 9.71k | if (opt_state->vnode_base == NULL) { |
2666 | 0 | opt_error(opt_state, "malloc"); |
2667 | 0 | } |
2668 | 9.71k | } |
2669 | | |
2670 | | /* |
2671 | | * This is only used when supporting optimizer debugging. It is |
2672 | | * global state, so do *not* do more than one compile in parallel |
2673 | | * and expect it to provide meaningful information. |
2674 | | */ |
2675 | | #ifdef BDEBUG |
2676 | | int bids[NBIDS]; |
2677 | | #endif |
2678 | | |
2679 | | static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...) |
2680 | | PCAP_PRINTFLIKE(2, 3); |
2681 | | |
2682 | | /* |
2683 | | * Returns true if successful. Returns false if a branch has |
2684 | | * an offset that is too large. If so, we have marked that |
2685 | | * branch so that on a subsequent iteration, it will be treated |
2686 | | * properly. |
2687 | | */ |
2688 | | static int |
2689 | | convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p) |
2690 | 181k | { |
2691 | 181k | struct bpf_insn *dst; |
2692 | 181k | struct slist *src; |
2693 | 181k | u_int slen; |
2694 | 181k | u_int off; |
2695 | 181k | struct slist **offset = NULL; |
2696 | | |
2697 | 181k | if (p == 0 || isMarked(ic, p)) |
2698 | 94.2k | return (1); |
2699 | 87.6k | Mark(ic, p); |
2700 | | |
2701 | 87.6k | if (convert_code_r(conv_state, ic, JF(p)) == 0) |
2702 | 3.29k | return (0); |
2703 | 84.3k | if (convert_code_r(conv_state, ic, JT(p)) == 0) |
2704 | 798 | return (0); |
2705 | | |
2706 | 83.5k | slen = slength(p->stmts); |
2707 | 83.5k | dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf); |
2708 | | /* inflate length by any extra jumps */ |
2709 | | |
2710 | 83.5k | p->offset = (int)(dst - conv_state->fstart); |
2711 | | |
2712 | | /* generate offset[] for convenience */ |
2713 | 83.5k | if (slen) { |
2714 | 63.2k | offset = (struct slist **)calloc(slen, sizeof(struct slist *)); |
2715 | 63.2k | if (!offset) { |
2716 | 0 | conv_error(conv_state, "not enough core"); |
2717 | | /*NOTREACHED*/ |
2718 | 0 | } |
2719 | 63.2k | } |
2720 | 83.5k | src = p->stmts; |
2721 | 246k | for (off = 0; off < slen && src; off++) { |
2722 | | #if 0 |
2723 | | printf("off=%d src=%x\n", off, src); |
2724 | | #endif |
2725 | 162k | offset[off] = src; |
2726 | 162k | src = src->next; |
2727 | 162k | } |
2728 | | |
2729 | 83.5k | off = 0; |
2730 | 293k | for (src = p->stmts; src; src = src->next) { |
2731 | 210k | if (src->s.code == NOP) |
2732 | 47.2k | continue; |
2733 | 162k | dst->code = (u_short)src->s.code; |
2734 | 162k | dst->k = src->s.k; |
2735 | | |
2736 | | /* fill block-local relative jump */ |
2737 | 162k | if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { |
2738 | | #if 0 |
2739 | | if (src->s.jt || src->s.jf) { |
2740 | | free(offset); |
2741 | | conv_error(conv_state, "illegal jmp destination"); |
2742 | | /*NOTREACHED*/ |
2743 | | } |
2744 | | #endif |
2745 | 158k | goto filled; |
2746 | 158k | } |
2747 | 4.46k | if (off == slen - 2) /*???*/ |
2748 | 0 | goto filled; |
2749 | | |
2750 | 4.46k | { |
2751 | 4.46k | u_int i; |
2752 | 4.46k | int jt, jf; |
2753 | 4.46k | const char ljerr[] = "%s for block-local relative jump: off=%d"; |
2754 | | |
2755 | | #if 0 |
2756 | | printf("code=%x off=%d %x %x\n", src->s.code, |
2757 | | off, src->s.jt, src->s.jf); |
2758 | | #endif |
2759 | | |
2760 | 4.46k | if (!src->s.jt || !src->s.jf) { |
2761 | 0 | free(offset); |
2762 | 0 | conv_error(conv_state, ljerr, "no jmp destination", off); |
2763 | | /*NOTREACHED*/ |
2764 | 0 | } |
2765 | | |
2766 | 4.46k | jt = jf = 0; |
2767 | 115k | for (i = 0; i < slen; i++) { |
2768 | 110k | if (offset[i] == src->s.jt) { |
2769 | 4.46k | if (jt) { |
2770 | 0 | free(offset); |
2771 | 0 | conv_error(conv_state, ljerr, "multiple matches", off); |
2772 | | /*NOTREACHED*/ |
2773 | 0 | } |
2774 | | |
2775 | 4.46k | if (i - off - 1 >= 256) { |
2776 | 0 | free(offset); |
2777 | 0 | conv_error(conv_state, ljerr, "out-of-range jump", off); |
2778 | | /*NOTREACHED*/ |
2779 | 0 | } |
2780 | 4.46k | dst->jt = (u_char)(i - off - 1); |
2781 | 4.46k | jt++; |
2782 | 4.46k | } |
2783 | 110k | if (offset[i] == src->s.jf) { |
2784 | 4.46k | if (jf) { |
2785 | 0 | free(offset); |
2786 | 0 | conv_error(conv_state, ljerr, "multiple matches", off); |
2787 | | /*NOTREACHED*/ |
2788 | 0 | } |
2789 | 4.46k | if (i - off - 1 >= 256) { |
2790 | 0 | free(offset); |
2791 | 0 | conv_error(conv_state, ljerr, "out-of-range jump", off); |
2792 | | /*NOTREACHED*/ |
2793 | 0 | } |
2794 | 4.46k | dst->jf = (u_char)(i - off - 1); |
2795 | 4.46k | jf++; |
2796 | 4.46k | } |
2797 | 110k | } |
2798 | 4.46k | if (!jt || !jf) { |
2799 | 0 | free(offset); |
2800 | 0 | conv_error(conv_state, ljerr, "no destination found", off); |
2801 | | /*NOTREACHED*/ |
2802 | 0 | } |
2803 | 4.46k | } |
2804 | 162k | filled: |
2805 | 162k | ++dst; |
2806 | 162k | ++off; |
2807 | 162k | } |
2808 | 83.5k | if (offset) |
2809 | 63.2k | free(offset); |
2810 | | |
2811 | | #ifdef BDEBUG |
2812 | | if (dst - conv_state->fstart < NBIDS) |
2813 | | bids[dst - conv_state->fstart] = p->id + 1; |
2814 | | #endif |
2815 | 83.5k | dst->code = (u_short)p->s.code; |
2816 | 83.5k | dst->k = p->s.k; |
2817 | 83.5k | if (JT(p)) { |
2818 | | /* number of extra jumps inserted */ |
2819 | 68.0k | u_char extrajmps = 0; |
2820 | 68.0k | off = JT(p)->offset - (p->offset + slen) - 1; |
2821 | 68.0k | if (off >= 256) { |
2822 | | /* offset too large for branch, must add a jump */ |
2823 | 1.16k | if (p->longjt == 0) { |
2824 | | /* mark this instruction and retry */ |
2825 | 215 | p->longjt++; |
2826 | 215 | return(0); |
2827 | 215 | } |
2828 | 948 | dst->jt = extrajmps; |
2829 | 948 | extrajmps++; |
2830 | 948 | dst[extrajmps].code = BPF_JMP|BPF_JA; |
2831 | 948 | dst[extrajmps].k = off - extrajmps; |
2832 | 948 | } |
2833 | 66.9k | else |
2834 | 66.9k | dst->jt = (u_char)off; |
2835 | 67.8k | off = JF(p)->offset - (p->offset + slen) - 1; |
2836 | 67.8k | if (off >= 256) { |
2837 | | /* offset too large for branch, must add a jump */ |
2838 | 964 | if (p->longjf == 0) { |
2839 | | /* mark this instruction and retry */ |
2840 | 89 | p->longjf++; |
2841 | 89 | return(0); |
2842 | 89 | } |
2843 | | /* branch if F to following jump */ |
2844 | | /* if two jumps are inserted, F goes to second one */ |
2845 | 875 | dst->jf = extrajmps; |
2846 | 875 | extrajmps++; |
2847 | 875 | dst[extrajmps].code = BPF_JMP|BPF_JA; |
2848 | 875 | dst[extrajmps].k = off - extrajmps; |
2849 | 875 | } |
2850 | 66.9k | else |
2851 | 66.9k | dst->jf = (u_char)off; |
2852 | 67.8k | } |
2853 | 83.2k | return (1); |
2854 | 83.5k | } |
2855 | | |
2856 | | |
2857 | | /* |
2858 | | * Convert flowgraph intermediate representation to the |
2859 | | * BPF array representation. Set *lenp to the number of instructions. |
2860 | | * |
2861 | | * This routine does *NOT* leak the memory pointed to by fp. It *must |
2862 | | * not* do free(fp) before returning fp; doing so would make no sense, |
2863 | | * as the BPF array pointed to by the return value of icode_to_fcode() |
2864 | | * must be valid - it's being returned for use in a bpf_program structure. |
2865 | | * |
2866 | | * If it appears that icode_to_fcode() is leaking, the problem is that |
2867 | | * the program using pcap_compile() is failing to free the memory in |
2868 | | * the BPF program when it's done - the leak is in the program, not in |
2869 | | * the routine that happens to be allocating the memory. (By analogy, if |
2870 | | * a program calls fopen() without ever calling fclose() on the FILE *, |
2871 | | * it will leak the FILE structure; the leak is not in fopen(), it's in |
2872 | | * the program.) Change the program to use pcap_freecode() when it's |
2873 | | * done with the filter program. See the pcap man page. |
2874 | | */ |
2875 | | struct bpf_insn * |
2876 | | icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp, |
2877 | | char *errbuf) |
2878 | 9.60k | { |
2879 | 9.60k | u_int n; |
2880 | 9.60k | struct bpf_insn *fp; |
2881 | 9.60k | conv_state_t conv_state; |
2882 | | |
2883 | 9.60k | conv_state.fstart = NULL; |
2884 | 9.60k | conv_state.errbuf = errbuf; |
2885 | 9.60k | if (setjmp(conv_state.top_ctx) != 0) { |
2886 | 0 | free(conv_state.fstart); |
2887 | 0 | return NULL; |
2888 | 0 | } |
2889 | | |
2890 | | /* |
2891 | | * Loop doing convert_code_r() until no branches remain |
2892 | | * with too-large offsets. |
2893 | | */ |
2894 | 9.90k | for (;;) { |
2895 | 9.90k | unMarkAll(ic); |
2896 | 9.90k | n = *lenp = count_stmts(ic, root); |
2897 | | |
2898 | 9.90k | fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); |
2899 | 9.90k | if (fp == NULL) { |
2900 | 0 | (void)snprintf(errbuf, PCAP_ERRBUF_SIZE, |
2901 | 0 | "malloc"); |
2902 | 0 | return NULL; |
2903 | 0 | } |
2904 | 9.90k | memset((char *)fp, 0, sizeof(*fp) * n); |
2905 | 9.90k | conv_state.fstart = fp; |
2906 | 9.90k | conv_state.ftail = fp + n; |
2907 | | |
2908 | 9.90k | unMarkAll(ic); |
2909 | 9.90k | if (convert_code_r(&conv_state, ic, root)) |
2910 | 9.60k | break; |
2911 | 304 | free(fp); |
2912 | 304 | } |
2913 | | |
2914 | 9.60k | return fp; |
2915 | 9.60k | } |
2916 | | |
2917 | | /* |
2918 | | * For iconv_to_fconv() errors. |
2919 | | */ |
2920 | | static void PCAP_NORETURN |
2921 | | conv_error(conv_state_t *conv_state, const char *fmt, ...) |
2922 | 0 | { |
2923 | 0 | va_list ap; |
2924 | |
|
2925 | 0 | va_start(ap, fmt); |
2926 | 0 | (void)vsnprintf(conv_state->errbuf, |
2927 | 0 | PCAP_ERRBUF_SIZE, fmt, ap); |
2928 | 0 | va_end(ap); |
2929 | 0 | longjmp(conv_state->top_ctx, 1); |
2930 | | /* NOTREACHED */ |
2931 | | #ifdef _AIX |
2932 | | PCAP_UNREACHABLE |
2933 | | #endif /* _AIX */ |
2934 | 0 | } |
2935 | | |
2936 | | /* |
2937 | | * Make a copy of a BPF program and put it in the "fcode" member of |
2938 | | * a "pcap_t". |
2939 | | * |
2940 | | * If we fail to allocate memory for the copy, fill in the "errbuf" |
2941 | | * member of the "pcap_t" with an error message, and return -1; |
2942 | | * otherwise, return 0. |
2943 | | */ |
2944 | | int |
2945 | | install_bpf_program(pcap_t *p, struct bpf_program *fp) |
2946 | 0 | { |
2947 | 0 | size_t prog_size; |
2948 | | |
2949 | | /* |
2950 | | * Validate the program. |
2951 | | */ |
2952 | 0 | if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) { |
2953 | 0 | snprintf(p->errbuf, sizeof(p->errbuf), |
2954 | 0 | "BPF program is not valid"); |
2955 | 0 | return (-1); |
2956 | 0 | } |
2957 | | |
2958 | | /* |
2959 | | * Free up any already installed program. |
2960 | | */ |
2961 | 0 | pcap_freecode(&p->fcode); |
2962 | |
|
2963 | 0 | prog_size = sizeof(*fp->bf_insns) * fp->bf_len; |
2964 | 0 | p->fcode.bf_len = fp->bf_len; |
2965 | 0 | p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); |
2966 | 0 | if (p->fcode.bf_insns == NULL) { |
2967 | 0 | pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf), |
2968 | 0 | errno, "malloc"); |
2969 | 0 | return (-1); |
2970 | 0 | } |
2971 | 0 | memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); |
2972 | 0 | return (0); |
2973 | 0 | } |
2974 | | |
2975 | | #ifdef BDEBUG |
2976 | | static void |
2977 | | dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog, |
2978 | | FILE *out) |
2979 | | { |
2980 | | int icount, noffset; |
2981 | | int i; |
2982 | | |
2983 | | if (block == NULL || isMarked(ic, block)) |
2984 | | return; |
2985 | | Mark(ic, block); |
2986 | | |
2987 | | icount = slength(block->stmts) + 1 + block->longjt + block->longjf; |
2988 | | noffset = min(block->offset + icount, (int)prog->bf_len); |
2989 | | |
2990 | | fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id); |
2991 | | for (i = block->offset; i < noffset; i++) { |
2992 | | fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i)); |
2993 | | } |
2994 | | fprintf(out, "\" tooltip=\""); |
2995 | | for (i = 0; i < BPF_MEMWORDS; i++) |
2996 | | if (block->val[i] != VAL_UNKNOWN) |
2997 | | fprintf(out, "val[%d]=%d ", i, block->val[i]); |
2998 | | fprintf(out, "val[A]=%d ", block->val[A_ATOM]); |
2999 | | fprintf(out, "val[X]=%d", block->val[X_ATOM]); |
3000 | | fprintf(out, "\""); |
3001 | | if (JT(block) == NULL) |
3002 | | fprintf(out, ", peripheries=2"); |
3003 | | fprintf(out, "];\n"); |
3004 | | |
3005 | | dot_dump_node(ic, JT(block), prog, out); |
3006 | | dot_dump_node(ic, JF(block), prog, out); |
3007 | | } |
3008 | | |
3009 | | static void |
3010 | | dot_dump_edge(struct icode *ic, struct block *block, FILE *out) |
3011 | | { |
3012 | | if (block == NULL || isMarked(ic, block)) |
3013 | | return; |
3014 | | Mark(ic, block); |
3015 | | |
3016 | | if (JT(block)) { |
3017 | | fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n", |
3018 | | block->id, JT(block)->id); |
3019 | | fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n", |
3020 | | block->id, JF(block)->id); |
3021 | | } |
3022 | | dot_dump_edge(ic, JT(block), out); |
3023 | | dot_dump_edge(ic, JF(block), out); |
3024 | | } |
3025 | | |
3026 | | /* Output the block CFG using graphviz/DOT language |
3027 | | * In the CFG, block's code, value index for each registers at EXIT, |
3028 | | * and the jump relationship is show. |
3029 | | * |
3030 | | * example DOT for BPF `ip src host 1.1.1.1' is: |
3031 | | digraph BPF { |
3032 | | block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"]; |
3033 | | block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"]; |
3034 | | block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2]; |
3035 | | block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2]; |
3036 | | "block0":se -> "block1":n [label="T"]; |
3037 | | "block0":sw -> "block3":n [label="F"]; |
3038 | | "block1":se -> "block2":n [label="T"]; |
3039 | | "block1":sw -> "block3":n [label="F"]; |
3040 | | } |
3041 | | * |
3042 | | * After install graphviz on https://www.graphviz.org/, save it as bpf.dot |
3043 | | * and run `dot -Tpng -O bpf.dot' to draw the graph. |
3044 | | */ |
3045 | | static int |
3046 | | dot_dump(struct icode *ic, char *errbuf) |
3047 | | { |
3048 | | struct bpf_program f; |
3049 | | FILE *out = stdout; |
3050 | | |
3051 | | memset(bids, 0, sizeof bids); |
3052 | | f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf); |
3053 | | if (f.bf_insns == NULL) |
3054 | | return -1; |
3055 | | |
3056 | | fprintf(out, "digraph BPF {\n"); |
3057 | | unMarkAll(ic); |
3058 | | dot_dump_node(ic, ic->root, &f, out); |
3059 | | unMarkAll(ic); |
3060 | | dot_dump_edge(ic, ic->root, out); |
3061 | | fprintf(out, "}\n"); |
3062 | | |
3063 | | free((char *)f.bf_insns); |
3064 | | return 0; |
3065 | | } |
3066 | | |
3067 | | static int |
3068 | | plain_dump(struct icode *ic, char *errbuf) |
3069 | | { |
3070 | | struct bpf_program f; |
3071 | | |
3072 | | memset(bids, 0, sizeof bids); |
3073 | | f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf); |
3074 | | if (f.bf_insns == NULL) |
3075 | | return -1; |
3076 | | bpf_dump(&f, 1); |
3077 | | putchar('\n'); |
3078 | | free((char *)f.bf_insns); |
3079 | | return 0; |
3080 | | } |
3081 | | |
3082 | | static void |
3083 | | opt_dump(opt_state_t *opt_state, struct icode *ic) |
3084 | | { |
3085 | | int status; |
3086 | | char errbuf[PCAP_ERRBUF_SIZE]; |
3087 | | |
3088 | | /* |
3089 | | * If the CFG, in DOT format, is requested, output it rather than |
3090 | | * the code that would be generated from that graph. |
3091 | | */ |
3092 | | if (pcap_print_dot_graph) |
3093 | | status = dot_dump(ic, errbuf); |
3094 | | else |
3095 | | status = plain_dump(ic, errbuf); |
3096 | | if (status == -1) |
3097 | | opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf); |
3098 | | } |
3099 | | #endif |