Coverage Report

Created: 2024-08-27 12:18

/src/libpcap/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
#include <limits.h> /* for SIZE_MAX */
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
#include "diag-control.h"
43
44
#ifdef HAVE_OS_PROTO_H
45
#include "os-proto.h"
46
#endif
47
48
#ifdef BDEBUG
49
/*
50
 * The internal "debug printout" flag for the filter expression optimizer.
51
 * The code to print that stuff is present only if BDEBUG is defined, so
52
 * the flag, and the routine to set it, are defined only if BDEBUG is
53
 * defined.
54
 */
55
static int pcap_optimizer_debug;
56
57
/*
58
 * Routine to set that flag.
59
 *
60
 * This is intended for libpcap developers, not for general use.
61
 * If you want to set these in a program, you'll have to declare this
62
 * routine yourself, with the appropriate DLL import attribute on Windows;
63
 * it's not declared in any header file, and won't be declared in any
64
 * header file provided by libpcap.
65
 */
66
PCAP_API void pcap_set_optimizer_debug(int value);
67
68
PCAP_API_DEF void
69
pcap_set_optimizer_debug(int value)
70
{
71
  pcap_optimizer_debug = value;
72
}
73
74
/*
75
 * The internal "print dot graph" flag for the filter expression optimizer.
76
 * The code to print that stuff is present only if BDEBUG is defined, so
77
 * the flag, and the routine to set it, are defined only if BDEBUG is
78
 * defined.
79
 */
80
static int pcap_print_dot_graph;
81
82
/*
83
 * Routine to set that flag.
84
 *
85
 * This is intended for libpcap developers, not for general use.
86
 * If you want to set these in a program, you'll have to declare this
87
 * routine yourself, with the appropriate DLL import attribute on Windows;
88
 * it's not declared in any header file, and won't be declared in any
89
 * header file provided by libpcap.
90
 */
91
PCAP_API void pcap_set_print_dot_graph(int value);
92
93
PCAP_API_DEF void
94
pcap_set_print_dot_graph(int value)
95
{
96
  pcap_print_dot_graph = value;
97
}
98
99
#endif
100
101
/*
102
 * lowest_set_bit().
103
 *
104
 * Takes a 32-bit integer as an argument.
105
 *
106
 * If handed a non-zero value, returns the index of the lowest set bit,
107
 * counting upwards from zero.
108
 *
109
 * If handed zero, the results are platform- and compiler-dependent.
110
 * Keep it out of the light, don't give it any water, don't feed it
111
 * after midnight, and don't pass zero to it.
112
 *
113
 * This is the same as the count of trailing zeroes in the word.
114
 */
115
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116
  /*
117
   * GCC 3.4 and later; we have __builtin_ctz().
118
   */
119
332k
  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120
#elif defined(_MSC_VER)
121
  /*
122
   * Visual Studio; we support only 2005 and later, so use
123
   * _BitScanForward().
124
   */
125
#include <intrin.h>
126
127
#ifndef __clang__
128
#pragma intrinsic(_BitScanForward)
129
#endif
130
131
static __forceinline u_int
132
lowest_set_bit(int mask)
133
{
134
  unsigned long bit;
135
136
  /*
137
   * Don't sign-extend mask if long is longer than int.
138
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139
   */
140
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141
    abort();  /* mask is zero */
142
  return (u_int)bit;
143
}
144
#elif defined(MSDOS) && defined(__DJGPP__)
145
  /*
146
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147
   * we've already included.
148
   */
149
  #define lowest_set_bit(mask)  ((u_int)(ffs((mask)) - 1))
150
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151
  /*
152
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153
   * or some other platform (UN*X conforming to a sufficient recent version
154
   * of the Single UNIX Specification).
155
   */
156
  #include <strings.h>
157
  #define lowest_set_bit(mask)  (u_int)((ffs((mask)) - 1))
158
#else
159
/*
160
 * None of the above.
161
 * Use a perfect-hash-function-based function.
162
 */
163
static u_int
164
lowest_set_bit(int mask)
165
{
166
  unsigned int v = (unsigned int)mask;
167
168
  static const u_int MultiplyDeBruijnBitPosition[32] = {
169
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171
  };
172
173
  /*
174
   * We strip off all but the lowermost set bit (v & ~v),
175
   * and perform a minimal perfect hash on it to look up the
176
   * number of low-order zero bits in a table.
177
   *
178
   * See:
179
   *
180
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181
   *
182
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
183
   */
184
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185
}
186
#endif
187
188
/*
189
 * Represents a deleted instruction.
190
 */
191
7.08M
#define NOP -1
192
193
/*
194
 * Register numbers for use-def values.
195
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196
 * location.  A_ATOM is the accumulator and X_ATOM is the index
197
 * register.
198
 */
199
3.50M
#define A_ATOM BPF_MEMWORDS
200
758k
#define X_ATOM (BPF_MEMWORDS+1)
201
202
/*
203
 * This define is used to represent *both* the accumulator and
204
 * x register in use-def computations.
205
 * Currently, the use-def code assumes only one definition per instruction.
206
 */
207
1.20M
#define AX_ATOM N_ATOMS
208
209
/*
210
 * These data structures are used in a Cocke and Shwarz style
211
 * value numbering scheme.  Since the flowgraph is acyclic,
212
 * exit values can be propagated from a node's predecessors
213
 * provided it is uniquely defined.
214
 */
215
struct valnode {
216
  int code;
217
  bpf_u_int32 v0, v1;
218
  int val;    /* the value number */
219
  struct valnode *next;
220
};
221
222
/* Integer constants mapped with the load immediate opcode. */
223
362k
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225
struct vmapinfo {
226
  int is_const;
227
  bpf_u_int32 const_val;
228
};
229
230
typedef struct {
231
  /*
232
   * Place to longjmp to on an error.
233
   */
234
  jmp_buf top_ctx;
235
236
  /*
237
   * The buffer into which to put error message.
238
   */
239
  char *errbuf;
240
241
  /*
242
   * A flag to indicate that further optimization is needed.
243
   * Iterative passes are continued until a given pass yields no
244
   * code simplification or branch movement.
245
   */
246
  int done;
247
248
  /*
249
   * XXX - detect loops that do nothing but repeated AND/OR pullups
250
   * and edge moves.
251
   * If 100 passes in a row do nothing but that, treat that as a
252
   * sign that we're in a loop that just shuffles in a cycle in
253
   * which each pass just shuffles the code and we eventually
254
   * get back to the original configuration.
255
   *
256
   * XXX - we need a non-heuristic way of detecting, or preventing,
257
   * such a cycle.
258
   */
259
  int non_branch_movement_performed;
260
261
  u_int n_blocks;   /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262
  struct block **blocks;
263
  u_int n_edges;    /* twice n_blocks, so guaranteed to be > 0 */
264
  struct edge **edges;
265
266
  /*
267
   * A bit vector set representation of the dominators.
268
   * We round up the set size to the next power of two.
269
   */
270
  u_int nodewords;  /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271
  u_int edgewords;  /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272
  struct block **levels;
273
  bpf_u_int32 *space;
274
275
2.14M
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276
/*
277
 * True if a is in uset {p}
278
 */
279
118k
#define SET_MEMBER(p, a) \
280
118k
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282
/*
283
 * Add 'a' to uset p.
284
 */
285
776k
#define SET_INSERT(p, a) \
286
776k
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288
/*
289
 * Delete 'a' from uset p.
290
 */
291
#define SET_DELETE(p, a) \
292
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294
/*
295
 * a := a intersect b
296
 * n must be guaranteed to be > 0
297
 */
298
807k
#define SET_INTERSECT(a, b, n)\
299
807k
{\
300
807k
  register bpf_u_int32 *_x = a, *_y = b;\
301
807k
  register u_int _n = n;\
302
2.01M
  do *_x++ &= *_y++; while (--_n != 0);\
303
807k
}
304
305
/*
306
 * a := a - b
307
 * n must be guaranteed to be > 0
308
 */
309
#define SET_SUBTRACT(a, b, n)\
310
{\
311
  register bpf_u_int32 *_x = a, *_y = b;\
312
  register u_int _n = n;\
313
  do *_x++ &=~ *_y++; while (--_n != 0);\
314
}
315
316
/*
317
 * a := a union b
318
 * n must be guaranteed to be > 0
319
 */
320
269k
#define SET_UNION(a, b, n)\
321
269k
{\
322
269k
  register bpf_u_int32 *_x = a, *_y = b;\
323
269k
  register u_int _n = n;\
324
478k
  do *_x++ |= *_y++; while (--_n != 0);\
325
269k
}
326
327
  uset all_dom_sets;
328
  uset all_closure_sets;
329
  uset all_edge_sets;
330
331
561k
#define MODULUS 213
332
  struct valnode *hashtbl[MODULUS];
333
  bpf_u_int32 curval;
334
  bpf_u_int32 maxval;
335
336
  struct vmapinfo *vmap;
337
  struct valnode *vnode_base;
338
  struct valnode *next_vnode;
339
} opt_state_t;
340
341
typedef struct {
342
  /*
343
   * Place to longjmp to on an error.
344
   */
345
  jmp_buf top_ctx;
346
347
  /*
348
   * The buffer into which to put error message.
349
   */
350
  char *errbuf;
351
352
  /*
353
   * Some pointers used to convert the basic block form of the code,
354
   * into the array form that BPF requires.  'fstart' will point to
355
   * the malloc'd array while 'ftail' is used during the recursive
356
   * traversal.
357
   */
358
  struct bpf_insn *fstart;
359
  struct bpf_insn *ftail;
360
} conv_state_t;
361
362
static void opt_init(opt_state_t *, struct icode *);
363
static void opt_cleanup(opt_state_t *);
364
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365
    PCAP_PRINTFLIKE(2, 3);
366
367
static void intern_blocks(opt_state_t *, struct icode *);
368
369
static void find_inedges(opt_state_t *, struct block *);
370
#ifdef BDEBUG
371
static void opt_dump(opt_state_t *, struct icode *);
372
#endif
373
374
#ifndef MAX
375
134k
#define MAX(a,b) ((a)>(b)?(a):(b))
376
#endif
377
378
static void
379
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380
305k
{
381
305k
  int level;
382
383
305k
  if (isMarked(ic, b))
384
111k
    return;
385
386
194k
  Mark(ic, b);
387
194k
  b->link = 0;
388
389
194k
  if (JT(b)) {
390
134k
    find_levels_r(opt_state, ic, JT(b));
391
134k
    find_levels_r(opt_state, ic, JF(b));
392
134k
    level = MAX(JT(b)->level, JF(b)->level) + 1;
393
134k
  } else
394
59.5k
    level = 0;
395
194k
  b->level = level;
396
194k
  b->link = opt_state->levels[level];
397
194k
  opt_state->levels[level] = b;
398
194k
}
399
400
/*
401
 * Level graph.  The levels go from 0 at the leaves to
402
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403
 * first node of the level list, whose elements are linked
404
 * with the 'link' field of the struct block.
405
 */
406
static void
407
find_levels(opt_state_t *opt_state, struct icode *ic)
408
36.6k
{
409
36.6k
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410
36.6k
  unMarkAll(ic);
411
36.6k
  find_levels_r(opt_state, ic, ic->root);
412
36.6k
}
413
414
/*
415
 * Find dominator relationships.
416
 * Assumes graph has been leveled.
417
 */
418
static void
419
find_dom(opt_state_t *opt_state, struct block *root)
420
36.6k
{
421
36.6k
  u_int i;
422
36.6k
  int level;
423
36.6k
  struct block *b;
424
36.6k
  bpf_u_int32 *x;
425
426
  /*
427
   * Initialize sets to contain all nodes.
428
   */
429
36.6k
  x = opt_state->all_dom_sets;
430
  /*
431
   * In opt_init(), we've made sure the product doesn't overflow.
432
   */
433
36.6k
  i = opt_state->n_blocks * opt_state->nodewords;
434
536k
  while (i != 0) {
435
500k
    --i;
436
500k
    *x++ = 0xFFFFFFFFU;
437
500k
  }
438
  /* Root starts off empty. */
439
76.0k
  for (i = opt_state->nodewords; i != 0;) {
440
39.3k
    --i;
441
39.3k
    root->dom[i] = 0;
442
39.3k
  }
443
444
  /* root->level is the highest level no found. */
445
200k
  for (level = root->level; level >= 0; --level) {
446
358k
    for (b = opt_state->levels[level]; b; b = b->link) {
447
194k
      SET_INSERT(b->dom, b->id);
448
194k
      if (JT(b) == 0)
449
59.5k
        continue;
450
134k
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451
134k
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452
134k
    }
453
163k
  }
454
36.6k
}
455
456
static void
457
propedom(opt_state_t *opt_state, struct edge *ep)
458
388k
{
459
388k
  SET_INSERT(ep->edom, ep->id);
460
388k
  if (ep->succ) {
461
269k
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462
269k
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463
269k
  }
464
388k
}
465
466
/*
467
 * Compute edge dominators.
468
 * Assumes graph has been leveled and predecessors established.
469
 */
470
static void
471
find_edom(opt_state_t *opt_state, struct block *root)
472
36.6k
{
473
36.6k
  u_int i;
474
36.6k
  uset x;
475
36.6k
  int level;
476
36.6k
  struct block *b;
477
478
36.6k
  x = opt_state->all_edge_sets;
479
  /*
480
   * In opt_init(), we've made sure the product doesn't overflow.
481
   */
482
1.62M
  for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483
1.58M
    --i;
484
1.58M
    x[i] = 0xFFFFFFFFU;
485
1.58M
  }
486
487
  /* root->level is the highest level no found. */
488
36.6k
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489
36.6k
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490
200k
  for (level = root->level; level >= 0; --level) {
491
358k
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
492
194k
      propedom(opt_state, &b->et);
493
194k
      propedom(opt_state, &b->ef);
494
194k
    }
495
163k
  }
496
36.6k
}
497
498
/*
499
 * Find the backwards transitive closure of the flow graph.  These sets
500
 * are backwards in the sense that we find the set of nodes that reach
501
 * a given node, not the set of nodes that can be reached by a node.
502
 *
503
 * Assumes graph has been leveled.
504
 */
505
static void
506
find_closure(opt_state_t *opt_state, struct block *root)
507
36.6k
{
508
36.6k
  int level;
509
36.6k
  struct block *b;
510
511
  /*
512
   * Initialize sets to contain no nodes.
513
   */
514
36.6k
  memset((char *)opt_state->all_closure_sets, 0,
515
36.6k
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517
  /* root->level is the highest level no found. */
518
200k
  for (level = root->level; level >= 0; --level) {
519
358k
    for (b = opt_state->levels[level]; b; b = b->link) {
520
194k
      SET_INSERT(b->closure, b->id);
521
194k
      if (JT(b) == 0)
522
59.5k
        continue;
523
134k
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524
134k
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525
134k
    }
526
163k
  }
527
36.6k
}
528
529
/*
530
 * Return the register number that is used by s.
531
 *
532
 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533
 * are used, the scratch memory location's number if a scratch memory
534
 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535
 *
536
 * The implementation should probably change to an array access.
537
 */
538
static int
539
atomuse(struct stmt *s)
540
1.90M
{
541
1.90M
  register int c = s->code;
542
543
1.90M
  if (c == NOP)
544
338k
    return -1;
545
546
1.57M
  switch (BPF_CLASS(c)) {
547
548
36.1k
  case BPF_RET:
549
36.1k
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550
36.1k
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552
610k
  case BPF_LD:
553
698k
  case BPF_LDX:
554
    /*
555
     * As there are fewer than 2^31 memory locations,
556
     * s->k should be convertible to int without problems.
557
     */
558
698k
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559
698k
      (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561
262k
  case BPF_ST:
562
262k
    return A_ATOM;
563
564
0
  case BPF_STX:
565
0
    return X_ATOM;
566
567
268k
  case BPF_JMP:
568
481k
  case BPF_ALU:
569
481k
    if (BPF_SRC(c) == BPF_X)
570
133k
      return AX_ATOM;
571
348k
    return A_ATOM;
572
573
92.0k
  case BPF_MISC:
574
92.0k
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575
1.57M
  }
576
0
  abort();
577
  /* NOTREACHED */
578
1.57M
}
579
580
/*
581
 * Return the register number that is defined by 's'.  We assume that
582
 * a single stmt cannot define more than one register.  If no register
583
 * is defined, return -1.
584
 *
585
 * The implementation should probably change to an array access.
586
 */
587
static int
588
atomdef(struct stmt *s)
589
1.77M
{
590
1.77M
  if (s->code == NOP)
591
338k
    return -1;
592
593
1.43M
  switch (BPF_CLASS(s->code)) {
594
595
610k
  case BPF_LD:
596
824k
  case BPF_ALU:
597
824k
    return A_ATOM;
598
599
87.4k
  case BPF_LDX:
600
87.4k
    return X_ATOM;
601
602
262k
  case BPF_ST:
603
262k
  case BPF_STX:
604
262k
    return s->k;
605
606
92.0k
  case BPF_MISC:
607
92.0k
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608
1.43M
  }
609
169k
  return -1;
610
1.43M
}
611
612
/*
613
 * Compute the sets of registers used, defined, and killed by 'b'.
614
 *
615
 * "Used" means that a statement in 'b' uses the register before any
616
 * statement in 'b' defines it, i.e. it uses the value left in
617
 * that register by a predecessor block of this block.
618
 * "Defined" means that a statement in 'b' defines it.
619
 * "Killed" means that a statement in 'b' defines it before any
620
 * statement in 'b' uses it, i.e. it kills the value left in that
621
 * register by a predecessor block of this block.
622
 */
623
static void
624
compute_local_ud(struct block *b)
625
194k
{
626
194k
  struct slist *s;
627
194k
  atomset def = 0, use = 0, killed = 0;
628
194k
  int atom;
629
630
1.15M
  for (s = b->stmts; s; s = s->next) {
631
965k
    if (s->s.code == NOP)
632
304k
      continue;
633
661k
    atom = atomuse(&s->s);
634
661k
    if (atom >= 0) {
635
431k
      if (atom == AX_ATOM) {
636
63.3k
        if (!ATOMELEM(def, X_ATOM))
637
0
          use |= ATOMMASK(X_ATOM);
638
63.3k
        if (!ATOMELEM(def, A_ATOM))
639
0
          use |= ATOMMASK(A_ATOM);
640
63.3k
      }
641
368k
      else if (atom < N_ATOMS) {
642
368k
        if (!ATOMELEM(def, atom))
643
3.62k
          use |= ATOMMASK(atom);
644
368k
      }
645
0
      else
646
0
        abort();
647
431k
    }
648
661k
    atom = atomdef(&s->s);
649
661k
    if (atom >= 0) {
650
661k
      if (!ATOMELEM(use, atom))
651
661k
        killed |= ATOMMASK(atom);
652
661k
      def |= ATOMMASK(atom);
653
661k
    }
654
661k
  }
655
194k
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
656
    /*
657
     * XXX - what about RET?
658
     */
659
134k
    atom = atomuse(&b->s);
660
134k
    if (atom >= 0) {
661
134k
      if (atom == AX_ATOM) {
662
13.6k
        if (!ATOMELEM(def, X_ATOM))
663
392
          use |= ATOMMASK(X_ATOM);
664
13.6k
        if (!ATOMELEM(def, A_ATOM))
665
392
          use |= ATOMMASK(A_ATOM);
666
13.6k
      }
667
120k
      else if (atom < N_ATOMS) {
668
120k
        if (!ATOMELEM(def, atom))
669
997
          use |= ATOMMASK(atom);
670
120k
      }
671
0
      else
672
0
        abort();
673
134k
    }
674
134k
  }
675
676
194k
  b->def = def;
677
194k
  b->kill = killed;
678
194k
  b->in_use = use;
679
194k
}
680
681
/*
682
 * Assume graph is already leveled.
683
 */
684
static void
685
find_ud(opt_state_t *opt_state, struct block *root)
686
36.6k
{
687
36.6k
  int i, maxlevel;
688
36.6k
  struct block *p;
689
690
  /*
691
   * root->level is the highest level no found;
692
   * count down from there.
693
   */
694
36.6k
  maxlevel = root->level;
695
200k
  for (i = maxlevel; i >= 0; --i)
696
358k
    for (p = opt_state->levels[i]; p; p = p->link) {
697
194k
      compute_local_ud(p);
698
194k
      p->out_use = 0;
699
194k
    }
700
701
163k
  for (i = 1; i <= maxlevel; ++i) {
702
261k
    for (p = opt_state->levels[i]; p; p = p->link) {
703
134k
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
704
134k
      p->in_use |= p->out_use &~ p->kill;
705
134k
    }
706
127k
  }
707
36.6k
}
708
static void
709
init_val(opt_state_t *opt_state)
710
36.6k
{
711
36.6k
  opt_state->curval = 0;
712
36.6k
  opt_state->next_vnode = opt_state->vnode_base;
713
36.6k
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714
36.6k
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715
36.6k
}
716
717
/*
718
 * Because we really don't have an IR, this stuff is a little messy.
719
 *
720
 * This routine looks in the table of existing value number for a value
721
 * with generated from an operation with the specified opcode and
722
 * the specified values.  If it finds it, it returns its value number,
723
 * otherwise it makes a new entry in the table and returns the
724
 * value number of that entry.
725
 */
726
static bpf_u_int32
727
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728
561k
{
729
561k
  u_int hash;
730
561k
  bpf_u_int32 val;
731
561k
  struct valnode *p;
732
733
561k
  hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734
561k
  hash %= MODULUS;
735
736
587k
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
737
294k
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
738
267k
      return p->val;
739
740
  /*
741
   * Not found.  Allocate a new value, and assign it a new
742
   * value number.
743
   *
744
   * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745
   * increment it before using it as the new value number, which
746
   * means we never assign VAL_UNKNOWN.
747
   *
748
   * XXX - unless we overflow, but we probably won't have 2^32-1
749
   * values; we treat 32 bits as effectively infinite.
750
   */
751
293k
  val = ++opt_state->curval;
752
293k
  if (BPF_MODE(code) == BPF_IMM &&
753
293k
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754
175k
    opt_state->vmap[val].const_val = v0;
755
175k
    opt_state->vmap[val].is_const = 1;
756
175k
  }
757
293k
  p = opt_state->next_vnode++;
758
293k
  p->val = val;
759
293k
  p->code = code;
760
293k
  p->v0 = v0;
761
293k
  p->v1 = v1;
762
293k
  p->next = opt_state->hashtbl[hash];
763
293k
  opt_state->hashtbl[hash] = p;
764
765
293k
  return val;
766
561k
}
767
768
static inline void
769
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770
539k
{
771
539k
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
772
41.5k
    s->code = NOP;
773
498k
  else
774
498k
    *valp = newval;
775
539k
}
776
777
/*
778
 * Do constant-folding on binary operators.
779
 * (Unary operators are handled elsewhere.)
780
 */
781
static void
782
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783
13.9k
{
784
13.9k
  bpf_u_int32 a, b;
785
786
13.9k
  a = opt_state->vmap[v0].const_val;
787
13.9k
  b = opt_state->vmap[v1].const_val;
788
789
13.9k
  switch (BPF_OP(s->code)) {
790
1.27k
  case BPF_ADD:
791
1.27k
    a += b;
792
1.27k
    break;
793
794
837
  case BPF_SUB:
795
837
    a -= b;
796
837
    break;
797
798
3.13k
  case BPF_MUL:
799
3.13k
    a *= b;
800
3.13k
    break;
801
802
2.20k
  case BPF_DIV:
803
2.20k
    if (b == 0)
804
21
      opt_error(opt_state, "division by zero");
805
2.18k
    a /= b;
806
2.18k
    break;
807
808
1.28k
  case BPF_MOD:
809
1.28k
    if (b == 0)
810
205
      opt_error(opt_state, "modulus by zero");
811
1.07k
    a %= b;
812
1.07k
    break;
813
814
3.32k
  case BPF_AND:
815
3.32k
    a &= b;
816
3.32k
    break;
817
818
447
  case BPF_OR:
819
447
    a |= b;
820
447
    break;
821
822
153
  case BPF_XOR:
823
153
    a ^= b;
824
153
    break;
825
826
373
  case BPF_LSH:
827
    /*
828
     * A left shift of more than the width of the type
829
     * is undefined in C; we'll just treat it as shifting
830
     * all the bits out.
831
     *
832
     * XXX - the BPF interpreter doesn't check for this,
833
     * so its behavior is dependent on the behavior of
834
     * the processor on which it's running.  There are
835
     * processors on which it shifts all the bits out
836
     * and processors on which it does no shift.
837
     */
838
373
    if (b < 32)
839
357
      a <<= b;
840
16
    else
841
16
      a = 0;
842
373
    break;
843
844
956
  case BPF_RSH:
845
    /*
846
     * A right shift of more than the width of the type
847
     * is undefined in C; we'll just treat it as shifting
848
     * all the bits out.
849
     *
850
     * XXX - the BPF interpreter doesn't check for this,
851
     * so its behavior is dependent on the behavior of
852
     * the processor on which it's running.  There are
853
     * processors on which it shifts all the bits out
854
     * and processors on which it does no shift.
855
     */
856
956
    if (b < 32)
857
867
      a >>= b;
858
89
    else
859
89
      a = 0;
860
956
    break;
861
862
0
  default:
863
0
    abort();
864
13.9k
  }
865
13.7k
  s->k = a;
866
13.7k
  s->code = BPF_LD|BPF_IMM;
867
  /*
868
   * XXX - optimizer loop detection.
869
   */
870
13.7k
  opt_state->non_branch_movement_performed = 1;
871
13.7k
  opt_state->done = 0;
872
13.7k
}
873
874
static inline struct slist *
875
this_op(struct slist *s)
876
1.22M
{
877
1.55M
  while (s != 0 && s->s.code == NOP)
878
335k
    s = s->next;
879
1.22M
  return s;
880
1.22M
}
881
882
static void
883
opt_not(struct block *b)
884
455
{
885
455
  struct block *tmp = JT(b);
886
887
455
  JT(b) = JF(b);
888
455
  JF(b) = tmp;
889
455
}
890
891
static void
892
opt_peep(opt_state_t *opt_state, struct block *b)
893
169k
{
894
169k
  struct slist *s;
895
169k
  struct slist *next, *last;
896
169k
  bpf_u_int32 val;
897
898
169k
  s = b->stmts;
899
169k
  if (s == 0)
900
36.6k
    return;
901
902
132k
  last = s;
903
613k
  for (/*empty*/; /*empty*/; s = next) {
904
    /*
905
     * Skip over nops.
906
     */
907
613k
    s = this_op(s);
908
613k
    if (s == 0)
909
5.13k
      break;  /* nothing left in the block */
910
911
    /*
912
     * Find the next real instruction after that one
913
     * (skipping nops).
914
     */
915
608k
    next = this_op(s->next);
916
608k
    if (next == 0)
917
127k
      break;  /* no next instruction */
918
480k
    last = next;
919
920
    /*
921
     * st  M[k] --> st  M[k]
922
     * ldx M[k]   tax
923
     */
924
480k
    if (s->s.code == BPF_ST &&
925
480k
        next->s.code == (BPF_LDX|BPF_MEM) &&
926
480k
        s->s.k == next->s.k) {
927
      /*
928
       * XXX - optimizer loop detection.
929
       */
930
21.6k
      opt_state->non_branch_movement_performed = 1;
931
21.6k
      opt_state->done = 0;
932
21.6k
      next->s.code = BPF_MISC|BPF_TAX;
933
21.6k
    }
934
    /*
935
     * ld  #k --> ldx  #k
936
     * tax      txa
937
     */
938
480k
    if (s->s.code == (BPF_LD|BPF_IMM) &&
939
480k
        next->s.code == (BPF_MISC|BPF_TAX)) {
940
14.4k
      s->s.code = BPF_LDX|BPF_IMM;
941
14.4k
      next->s.code = BPF_MISC|BPF_TXA;
942
      /*
943
       * XXX - optimizer loop detection.
944
       */
945
14.4k
      opt_state->non_branch_movement_performed = 1;
946
14.4k
      opt_state->done = 0;
947
14.4k
    }
948
    /*
949
     * This is an ugly special case, but it happens
950
     * when you say tcp[k] or udp[k] where k is a constant.
951
     */
952
480k
    if (s->s.code == (BPF_LD|BPF_IMM)) {
953
95.0k
      struct slist *add, *tax, *ild;
954
955
      /*
956
       * Check that X isn't used on exit from this
957
       * block (which the optimizer might cause).
958
       * We know the code generator won't generate
959
       * any local dependencies.
960
       */
961
95.0k
      if (ATOMELEM(b->out_use, X_ATOM))
962
376
        continue;
963
964
      /*
965
       * Check that the instruction following the ldi
966
       * is an addx, or it's an ldxms with an addx
967
       * following it (with 0 or more nops between the
968
       * ldxms and addx).
969
       */
970
94.7k
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971
94.7k
        add = next;
972
0
      else
973
0
        add = this_op(next->next);
974
94.7k
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975
94.6k
        continue;
976
977
      /*
978
       * Check that a tax follows that (with 0 or more
979
       * nops between them).
980
       */
981
56
      tax = this_op(add->next);
982
56
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983
34
        continue;
984
985
      /*
986
       * Check that an ild follows that (with 0 or more
987
       * nops between them).
988
       */
989
22
      ild = this_op(tax->next);
990
22
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991
22
          BPF_MODE(ild->s.code) != BPF_IND)
992
22
        continue;
993
      /*
994
       * We want to turn this sequence:
995
       *
996
       * (004) ldi     #0x2   {s}
997
       * (005) ldxms   [14]   {next}  -- optional
998
       * (006) addx     {add}
999
       * (007) tax      {tax}
1000
       * (008) ild     [x+0]    {ild}
1001
       *
1002
       * into this sequence:
1003
       *
1004
       * (004) nop
1005
       * (005) ldxms   [14]
1006
       * (006) nop
1007
       * (007) nop
1008
       * (008) ild     [x+2]
1009
       *
1010
       * XXX We need to check that X is not
1011
       * subsequently used, because we want to change
1012
       * what'll be in it after this sequence.
1013
       *
1014
       * We know we can eliminate the accumulator
1015
       * modifications earlier in the sequence since
1016
       * it is defined by the last stmt of this sequence
1017
       * (i.e., the last statement of the sequence loads
1018
       * a value into the accumulator, so we can eliminate
1019
       * earlier operations on the accumulator).
1020
       */
1021
0
      ild->s.k += s->s.k;
1022
0
      s->s.code = NOP;
1023
0
      add->s.code = NOP;
1024
0
      tax->s.code = NOP;
1025
      /*
1026
       * XXX - optimizer loop detection.
1027
       */
1028
0
      opt_state->non_branch_movement_performed = 1;
1029
0
      opt_state->done = 0;
1030
0
    }
1031
480k
  }
1032
  /*
1033
   * If the comparison at the end of a block is an equality
1034
   * comparison against a constant, and nobody uses the value
1035
   * we leave in the A register at the end of a block, and
1036
   * the operation preceding the comparison is an arithmetic
1037
   * operation, we can sometime optimize it away.
1038
   */
1039
132k
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040
132k
      !ATOMELEM(b->out_use, A_ATOM)) {
1041
    /*
1042
     * We can optimize away certain subtractions of the
1043
     * X register.
1044
     */
1045
109k
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046
2.56k
      val = b->val[X_ATOM];
1047
2.56k
      if (opt_state->vmap[val].is_const) {
1048
        /*
1049
         * If we have a subtract to do a comparison,
1050
         * and the X register is a known constant,
1051
         * we can merge this value into the
1052
         * comparison:
1053
         *
1054
         * sub x  ->  nop
1055
         * jeq #y jeq #(x+y)
1056
         */
1057
984
        b->s.k += opt_state->vmap[val].const_val;
1058
984
        last->s.code = NOP;
1059
        /*
1060
         * XXX - optimizer loop detection.
1061
         */
1062
984
        opt_state->non_branch_movement_performed = 1;
1063
984
        opt_state->done = 0;
1064
1.57k
      } else if (b->s.k == 0) {
1065
        /*
1066
         * If the X register isn't a constant,
1067
         * and the comparison in the test is
1068
         * against 0, we can compare with the
1069
         * X register, instead:
1070
         *
1071
         * sub x  ->  nop
1072
         * jeq #0 jeq x
1073
         */
1074
1.57k
        last->s.code = NOP;
1075
1.57k
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076
        /*
1077
         * XXX - optimizer loop detection.
1078
         */
1079
1.57k
        opt_state->non_branch_movement_performed = 1;
1080
1.57k
        opt_state->done = 0;
1081
1.57k
      }
1082
2.56k
    }
1083
    /*
1084
     * Likewise, a constant subtract can be simplified:
1085
     *
1086
     * sub #x ->  nop
1087
     * jeq #y ->  jeq #(x+y)
1088
     */
1089
106k
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090
0
      last->s.code = NOP;
1091
0
      b->s.k += last->s.k;
1092
      /*
1093
       * XXX - optimizer loop detection.
1094
       */
1095
0
      opt_state->non_branch_movement_performed = 1;
1096
0
      opt_state->done = 0;
1097
0
    }
1098
    /*
1099
     * And, similarly, a constant AND can be simplified
1100
     * if we're testing against 0, i.e.:
1101
     *
1102
     * and #k nop
1103
     * jeq #0  -> jset #k
1104
     */
1105
106k
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106
106k
        b->s.k == 0) {
1107
455
      b->s.k = last->s.k;
1108
455
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109
455
      last->s.code = NOP;
1110
      /*
1111
       * XXX - optimizer loop detection.
1112
       */
1113
455
      opt_state->non_branch_movement_performed = 1;
1114
455
      opt_state->done = 0;
1115
455
      opt_not(b);
1116
455
    }
1117
109k
  }
1118
  /*
1119
   * jset #0        ->   never
1120
   * jset #ffffffff ->   always
1121
   */
1122
132k
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123
782
    if (b->s.k == 0)
1124
330
      JT(b) = JF(b);
1125
782
    if (b->s.k == 0xffffffffU)
1126
0
      JF(b) = JT(b);
1127
782
  }
1128
  /*
1129
   * If we're comparing against the index register, and the index
1130
   * register is a known constant, we can just compare against that
1131
   * constant.
1132
   */
1133
132k
  val = b->val[X_ATOM];
1134
132k
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135
4.18k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1136
4.18k
    b->s.code &= ~BPF_X;
1137
4.18k
    b->s.k = v;
1138
4.18k
  }
1139
  /*
1140
   * If the accumulator is a known constant, we can compute the
1141
   * comparison result.
1142
   */
1143
132k
  val = b->val[A_ATOM];
1144
132k
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145
18.0k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1146
18.0k
    switch (BPF_OP(b->s.code)) {
1147
1148
10.4k
    case BPF_JEQ:
1149
10.4k
      v = v == b->s.k;
1150
10.4k
      break;
1151
1152
2.23k
    case BPF_JGT:
1153
2.23k
      v = v > b->s.k;
1154
2.23k
      break;
1155
1156
5.43k
    case BPF_JGE:
1157
5.43k
      v = v >= b->s.k;
1158
5.43k
      break;
1159
1160
0
    case BPF_JSET:
1161
0
      v &= b->s.k;
1162
0
      break;
1163
1164
0
    default:
1165
0
      abort();
1166
18.0k
    }
1167
18.0k
    if (JF(b) != JT(b)) {
1168
      /*
1169
       * XXX - optimizer loop detection.
1170
       */
1171
8.15k
      opt_state->non_branch_movement_performed = 1;
1172
8.15k
      opt_state->done = 0;
1173
8.15k
    }
1174
18.0k
    if (v)
1175
5.38k
      JF(b) = JT(b);
1176
12.6k
    else
1177
12.6k
      JT(b) = JF(b);
1178
18.0k
  }
1179
132k
}
1180
1181
/*
1182
 * Compute the symbolic value of expression of 's', and update
1183
 * anything it defines in the value table 'val'.  If 'alter' is true,
1184
 * do various optimizations.  This code would be cleaner if symbolic
1185
 * evaluation and code transformations weren't folded together.
1186
 */
1187
static void
1188
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189
962k
{
1190
962k
  int op;
1191
962k
  bpf_u_int32 v;
1192
1193
962k
  switch (s->code) {
1194
1195
38.0k
  case BPF_LD|BPF_ABS|BPF_W:
1196
58.4k
  case BPF_LD|BPF_ABS|BPF_H:
1197
96.8k
  case BPF_LD|BPF_ABS|BPF_B:
1198
96.8k
    v = F(opt_state, s->code, s->k, 0L);
1199
96.8k
    vstore(s, &val[A_ATOM], v, alter);
1200
96.8k
    break;
1201
1202
1.70k
  case BPF_LD|BPF_IND|BPF_W:
1203
1.70k
  case BPF_LD|BPF_IND|BPF_H:
1204
3.64k
  case BPF_LD|BPF_IND|BPF_B:
1205
3.64k
    v = val[X_ATOM];
1206
3.64k
    if (alter && opt_state->vmap[v].is_const) {
1207
83
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208
83
      s->k += opt_state->vmap[v].const_val;
1209
83
      v = F(opt_state, s->code, s->k, 0L);
1210
      /*
1211
       * XXX - optimizer loop detection.
1212
       */
1213
83
      opt_state->non_branch_movement_performed = 1;
1214
83
      opt_state->done = 0;
1215
83
    }
1216
3.56k
    else
1217
3.56k
      v = F(opt_state, s->code, s->k, v);
1218
3.64k
    vstore(s, &val[A_ATOM], v, alter);
1219
3.64k
    break;
1220
1221
1.04k
  case BPF_LD|BPF_LEN:
1222
1.04k
    v = F(opt_state, s->code, 0L, 0L);
1223
1.04k
    vstore(s, &val[A_ATOM], v, alter);
1224
1.04k
    break;
1225
1226
107k
  case BPF_LD|BPF_IMM:
1227
107k
    v = K(s->k);
1228
107k
    vstore(s, &val[A_ATOM], v, alter);
1229
107k
    break;
1230
1231
23.8k
  case BPF_LDX|BPF_IMM:
1232
23.8k
    v = K(s->k);
1233
23.8k
    vstore(s, &val[X_ATOM], v, alter);
1234
23.8k
    break;
1235
1236
0
  case BPF_LDX|BPF_MSH|BPF_B:
1237
0
    v = F(opt_state, s->code, s->k, 0L);
1238
0
    vstore(s, &val[X_ATOM], v, alter);
1239
0
    break;
1240
1241
29.2k
  case BPF_ALU|BPF_NEG:
1242
29.2k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243
7.28k
      s->code = BPF_LD|BPF_IMM;
1244
      /*
1245
       * Do this negation as unsigned arithmetic; that's
1246
       * what modern BPF engines do, and it guarantees
1247
       * that all possible values can be negated.  (Yeah,
1248
       * negating 0x80000000, the minimum signed 32-bit
1249
       * two's-complement value, results in 0x80000000,
1250
       * so it's still negative, but we *should* be doing
1251
       * all unsigned arithmetic here, to match what
1252
       * modern BPF engines do.)
1253
       *
1254
       * Express it as 0U - (unsigned value) so that we
1255
       * don't get compiler warnings about negating an
1256
       * unsigned value and don't get UBSan warnings
1257
       * about the result of negating 0x80000000 being
1258
       * undefined.
1259
       */
1260
7.28k
      s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261
7.28k
      val[A_ATOM] = K(s->k);
1262
7.28k
    }
1263
21.9k
    else
1264
21.9k
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265
29.2k
    break;
1266
1267
859
  case BPF_ALU|BPF_ADD|BPF_K:
1268
859
  case BPF_ALU|BPF_SUB|BPF_K:
1269
1.20k
  case BPF_ALU|BPF_MUL|BPF_K:
1270
1.26k
  case BPF_ALU|BPF_DIV|BPF_K:
1271
1.29k
  case BPF_ALU|BPF_MOD|BPF_K:
1272
26.5k
  case BPF_ALU|BPF_AND|BPF_K:
1273
26.5k
  case BPF_ALU|BPF_OR|BPF_K:
1274
26.5k
  case BPF_ALU|BPF_XOR|BPF_K:
1275
26.5k
  case BPF_ALU|BPF_LSH|BPF_K:
1276
26.6k
  case BPF_ALU|BPF_RSH|BPF_K:
1277
26.6k
    op = BPF_OP(s->code);
1278
26.6k
    if (alter) {
1279
5.14k
      if (s->k == 0) {
1280
        /*
1281
         * Optimize operations where the constant
1282
         * is zero.
1283
         *
1284
         * Don't optimize away "sub #0"
1285
         * as it may be needed later to
1286
         * fixup the generated math code.
1287
         *
1288
         * Fail if we're dividing by zero or taking
1289
         * a modulus by zero.
1290
         */
1291
255
        if (op == BPF_ADD ||
1292
255
            op == BPF_LSH || op == BPF_RSH ||
1293
255
            op == BPF_OR || op == BPF_XOR) {
1294
32
          s->code = NOP;
1295
32
          break;
1296
32
        }
1297
223
        if (op == BPF_MUL || op == BPF_AND) {
1298
221
          s->code = BPF_LD|BPF_IMM;
1299
221
          val[A_ATOM] = K(s->k);
1300
221
          break;
1301
221
        }
1302
2
        if (op == BPF_DIV)
1303
1
          opt_error(opt_state,
1304
1
              "division by zero");
1305
1
        if (op == BPF_MOD)
1306
1
          opt_error(opt_state,
1307
1
              "modulus by zero");
1308
1
      }
1309
4.89k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1310
77
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311
77
        val[A_ATOM] = K(s->k);
1312
77
        break;
1313
77
      }
1314
4.89k
    }
1315
26.2k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316
26.2k
    break;
1317
1318
5.62k
  case BPF_ALU|BPF_ADD|BPF_X:
1319
11.8k
  case BPF_ALU|BPF_SUB|BPF_X:
1320
25.5k
  case BPF_ALU|BPF_MUL|BPF_X:
1321
35.0k
  case BPF_ALU|BPF_DIV|BPF_X:
1322
40.4k
  case BPF_ALU|BPF_MOD|BPF_X:
1323
54.7k
  case BPF_ALU|BPF_AND|BPF_X:
1324
56.6k
  case BPF_ALU|BPF_OR|BPF_X:
1325
57.3k
  case BPF_ALU|BPF_XOR|BPF_X:
1326
58.8k
  case BPF_ALU|BPF_LSH|BPF_X:
1327
63.0k
  case BPF_ALU|BPF_RSH|BPF_X:
1328
63.0k
    op = BPF_OP(s->code);
1329
63.0k
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330
14.3k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1331
13.9k
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332
13.9k
        val[A_ATOM] = K(s->k);
1333
13.9k
      }
1334
469
      else {
1335
469
        s->code = BPF_ALU|BPF_K|op;
1336
469
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337
469
        if ((op == BPF_LSH || op == BPF_RSH) &&
1338
469
            s->k > 31)
1339
1
          opt_error(opt_state,
1340
1
              "shift by more than 31 bits");
1341
        /*
1342
         * XXX - optimizer loop detection.
1343
         */
1344
468
        opt_state->non_branch_movement_performed = 1;
1345
468
        opt_state->done = 0;
1346
468
        val[A_ATOM] =
1347
468
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1348
468
      }
1349
14.3k
      break;
1350
14.3k
    }
1351
    /*
1352
     * Check if we're doing something to an accumulator
1353
     * that is 0, and simplify.  This may not seem like
1354
     * much of a simplification but it could open up further
1355
     * optimizations.
1356
     * XXX We could also check for mul by 1, etc.
1357
     */
1358
48.6k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359
48.6k
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360
51
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361
40
        s->code = BPF_MISC|BPF_TXA;
1362
40
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363
40
        break;
1364
40
      }
1365
11
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366
11
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367
11
        s->code = BPF_LD|BPF_IMM;
1368
11
        s->k = 0;
1369
11
        vstore(s, &val[A_ATOM], K(s->k), alter);
1370
11
        break;
1371
11
      }
1372
0
      else if (op == BPF_NEG) {
1373
0
        s->code = NOP;
1374
0
        break;
1375
0
      }
1376
51
    }
1377
48.5k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378
48.5k
    break;
1379
1380
779
  case BPF_MISC|BPF_TXA:
1381
779
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382
779
    break;
1383
1384
111k
  case BPF_LD|BPF_MEM:
1385
111k
    v = val[s->k];
1386
111k
    if (alter && opt_state->vmap[v].is_const) {
1387
26.0k
      s->code = BPF_LD|BPF_IMM;
1388
26.0k
      s->k = opt_state->vmap[v].const_val;
1389
      /*
1390
       * XXX - optimizer loop detection.
1391
       */
1392
26.0k
      opt_state->non_branch_movement_performed = 1;
1393
26.0k
      opt_state->done = 0;
1394
26.0k
    }
1395
111k
    vstore(s, &val[A_ATOM], v, alter);
1396
111k
    break;
1397
1398
35.9k
  case BPF_MISC|BPF_TAX:
1399
35.9k
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400
35.9k
    break;
1401
1402
25.1k
  case BPF_LDX|BPF_MEM:
1403
25.1k
    v = val[s->k];
1404
25.1k
    if (alter && opt_state->vmap[v].is_const) {
1405
83
      s->code = BPF_LDX|BPF_IMM;
1406
83
      s->k = opt_state->vmap[v].const_val;
1407
      /*
1408
       * XXX - optimizer loop detection.
1409
       */
1410
83
      opt_state->non_branch_movement_performed = 1;
1411
83
      opt_state->done = 0;
1412
83
    }
1413
25.1k
    vstore(s, &val[X_ATOM], v, alter);
1414
25.1k
    break;
1415
1416
133k
  case BPF_ST:
1417
133k
    vstore(s, &val[s->k], val[A_ATOM], alter);
1418
133k
    break;
1419
1420
0
  case BPF_STX:
1421
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1422
0
    break;
1423
962k
  }
1424
962k
}
1425
1426
static void
1427
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428
1.11M
{
1429
1.11M
  register int atom;
1430
1431
1.11M
  atom = atomuse(s);
1432
1.11M
  if (atom >= 0) {
1433
501k
    if (atom == AX_ATOM) {
1434
56.3k
      last[X_ATOM] = 0;
1435
56.3k
      last[A_ATOM] = 0;
1436
56.3k
    }
1437
445k
    else
1438
445k
      last[atom] = 0;
1439
501k
  }
1440
1.11M
  atom = atomdef(s);
1441
1.11M
  if (atom >= 0) {
1442
605k
    if (last[atom]) {
1443
      /*
1444
       * XXX - optimizer loop detection.
1445
       */
1446
62.2k
      opt_state->non_branch_movement_performed = 1;
1447
62.2k
      opt_state->done = 0;
1448
62.2k
      last[atom]->code = NOP;
1449
62.2k
    }
1450
605k
    last[atom] = s;
1451
605k
  }
1452
1.11M
}
1453
1454
static void
1455
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456
169k
{
1457
169k
  register struct slist *s;
1458
169k
  register int atom;
1459
169k
  struct stmt *last[N_ATOMS];
1460
1461
169k
  memset((char *)last, 0, sizeof last);
1462
1463
1.11M
  for (s = b->stmts; s != 0; s = s->next)
1464
943k
    deadstmt(opt_state, &s->s, last);
1465
169k
  deadstmt(opt_state, &b->s, last);
1466
1467
3.22M
  for (atom = 0; atom < N_ATOMS; ++atom)
1468
3.05M
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469
29.6k
      last[atom]->code = NOP;
1470
      /*
1471
       * XXX - optimizer loop detection.
1472
       */
1473
29.6k
      opt_state->non_branch_movement_performed = 1;
1474
29.6k
      opt_state->done = 0;
1475
29.6k
    }
1476
169k
}
1477
1478
static void
1479
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480
193k
{
1481
193k
  struct slist *s;
1482
193k
  struct edge *p;
1483
193k
  int i;
1484
193k
  bpf_u_int32 aval, xval;
1485
1486
#if 0
1487
  for (s = b->stmts; s && s->next; s = s->next)
1488
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489
      do_stmts = 0;
1490
      break;
1491
    }
1492
#endif
1493
1494
  /*
1495
   * Initialize the atom values.
1496
   */
1497
193k
  p = b->in_edges;
1498
193k
  if (p == 0) {
1499
    /*
1500
     * We have no predecessors, so everything is undefined
1501
     * upon entry to this block.
1502
     */
1503
36.6k
    memset((char *)b->val, 0, sizeof(b->val));
1504
157k
  } else {
1505
    /*
1506
     * Inherit values from our predecessors.
1507
     *
1508
     * First, get the values from the predecessor along the
1509
     * first edge leading to this node.
1510
     */
1511
157k
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512
    /*
1513
     * Now look at all the other nodes leading to this node.
1514
     * If, for the predecessor along that edge, a register
1515
     * has a different value from the one we have (i.e.,
1516
     * control paths are merging, and the merging paths
1517
     * assign different values to that register), give the
1518
     * register the undefined value of 0.
1519
     */
1520
268k
    while ((p = p->next) != NULL) {
1521
2.12M
      for (i = 0; i < N_ATOMS; ++i)
1522
2.00M
        if (b->val[i] != p->pred->val[i])
1523
131k
          b->val[i] = 0;
1524
111k
    }
1525
157k
  }
1526
193k
  aval = b->val[A_ATOM];
1527
193k
  xval = b->val[X_ATOM];
1528
1.15M
  for (s = b->stmts; s; s = s->next)
1529
962k
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531
  /*
1532
   * This is a special case: if we don't use anything from this
1533
   * block, and we load the accumulator or index register with a
1534
   * value that is already there, or if this block is a return,
1535
   * eliminate all the statements.
1536
   *
1537
   * XXX - what if it does a store?  Presumably that falls under
1538
   * the heading of "if we don't use anything from this block",
1539
   * i.e., if we use any memory location set to a different
1540
   * value by this block, then we use something from this block.
1541
   *
1542
   * XXX - why does it matter whether we use anything from this
1543
   * block?  If the accumulator or index register doesn't change
1544
   * its value, isn't that OK even if we use that value?
1545
   *
1546
   * XXX - if we load the accumulator with a different value,
1547
   * and the block ends with a conditional branch, we obviously
1548
   * can't eliminate it, as the branch depends on that value.
1549
   * For the index register, the conditional branch only depends
1550
   * on the index register value if the test is against the index
1551
   * register value rather than a constant; if nothing uses the
1552
   * value we put into the index register, and we're not testing
1553
   * against the index register's value, and there aren't any
1554
   * other problems that would keep us from eliminating this
1555
   * block, can we eliminate it?
1556
   */
1557
193k
  if (do_stmts &&
1558
193k
      ((b->out_use == 0 &&
1559
58.9k
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560
58.9k
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561
58.9k
       BPF_CLASS(b->s.code) == BPF_RET)) {
1562
23.9k
    if (b->stmts != 0) {
1563
660
      b->stmts = 0;
1564
      /*
1565
       * XXX - optimizer loop detection.
1566
       */
1567
660
      opt_state->non_branch_movement_performed = 1;
1568
660
      opt_state->done = 0;
1569
660
    }
1570
169k
  } else {
1571
169k
    opt_peep(opt_state, b);
1572
169k
    opt_deadstores(opt_state, b);
1573
169k
  }
1574
  /*
1575
   * Set up values for branch optimizer.
1576
   */
1577
193k
  if (BPF_SRC(b->s.code) == BPF_K)
1578
182k
    b->oval = K(b->s.k);
1579
11.0k
  else
1580
11.0k
    b->oval = b->val[X_ATOM];
1581
193k
  b->et.code = b->s.code;
1582
193k
  b->ef.code = -b->s.code;
1583
193k
}
1584
1585
/*
1586
 * Return true if any register that is used on exit from 'succ', has
1587
 * an exit value that is different from the corresponding exit value
1588
 * from 'b'.
1589
 */
1590
static int
1591
use_conflict(struct block *b, struct block *succ)
1592
64.0k
{
1593
64.0k
  int atom;
1594
64.0k
  atomset use = succ->out_use;
1595
1596
64.0k
  if (use == 0)
1597
62.9k
    return 0;
1598
1599
19.5k
  for (atom = 0; atom < N_ATOMS; ++atom)
1600
18.5k
    if (ATOMELEM(use, atom))
1601
1.04k
      if (b->val[atom] != succ->val[atom])
1602
14
        return 1;
1603
1.02k
  return 0;
1604
1.04k
}
1605
1606
/*
1607
 * Given a block that is the successor of an edge, and an edge that
1608
 * dominates that edge, return either a pointer to a child of that
1609
 * block (a block to which that block jumps) if that block is a
1610
 * candidate to replace the successor of the latter edge or NULL
1611
 * if neither of the children of the first block are candidates.
1612
 */
1613
static struct block *
1614
fold_edge(struct block *child, struct edge *ep)
1615
332k
{
1616
332k
  int sense;
1617
332k
  bpf_u_int32 aval0, aval1, oval0, oval1;
1618
332k
  int code = ep->code;
1619
1620
332k
  if (code < 0) {
1621
    /*
1622
     * This edge is a "branch if false" edge.
1623
     */
1624
152k
    code = -code;
1625
152k
    sense = 0;
1626
180k
  } else {
1627
    /*
1628
     * This edge is a "branch if true" edge.
1629
     */
1630
180k
    sense = 1;
1631
180k
  }
1632
1633
  /*
1634
   * If the opcode for the branch at the end of the block we
1635
   * were handed isn't the same as the opcode for the branch
1636
   * to which the edge we were handed corresponds, the tests
1637
   * for those branches aren't testing the same conditions,
1638
   * so the blocks to which the first block branches aren't
1639
   * candidates to replace the successor of the edge.
1640
   */
1641
332k
  if (child->s.code != code)
1642
66.1k
    return 0;
1643
1644
266k
  aval0 = child->val[A_ATOM];
1645
266k
  oval0 = child->oval;
1646
266k
  aval1 = ep->pred->val[A_ATOM];
1647
266k
  oval1 = ep->pred->oval;
1648
1649
  /*
1650
   * If the A register value on exit from the successor block
1651
   * isn't the same as the A register value on exit from the
1652
   * predecessor of the edge, the blocks to which the first
1653
   * block branches aren't candidates to replace the successor
1654
   * of the edge.
1655
   */
1656
266k
  if (aval0 != aval1)
1657
184k
    return 0;
1658
1659
81.8k
  if (oval0 == oval1)
1660
    /*
1661
     * The operands of the branch instructions are
1662
     * identical, so the branches are testing the
1663
     * same condition, and the result is true if a true
1664
     * branch was taken to get here, otherwise false.
1665
     */
1666
41.1k
    return sense ? JT(child) : JF(child);
1667
1668
40.6k
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669
    /*
1670
     * At this point, we only know the comparison if we
1671
     * came down the true branch, and it was an equality
1672
     * comparison with a constant.
1673
     *
1674
     * I.e., if we came down the true branch, and the branch
1675
     * was an equality comparison with a constant, we know the
1676
     * accumulator contains that constant.  If we came down
1677
     * the false branch, or the comparison wasn't with a
1678
     * constant, we don't know what was in the accumulator.
1679
     *
1680
     * We rely on the fact that distinct constants have distinct
1681
     * value numbers.
1682
     */
1683
7.01k
    return JF(child);
1684
1685
33.6k
  return 0;
1686
40.6k
}
1687
1688
/*
1689
 * If we can make this edge go directly to a child of the edge's current
1690
 * successor, do so.
1691
 */
1692
static void
1693
opt_j(opt_state_t *opt_state, struct edge *ep)
1694
196k
{
1695
196k
  register u_int i, k;
1696
196k
  register struct block *target;
1697
1698
  /*
1699
   * Does this edge go to a block where, if the test
1700
   * at the end of it succeeds, it goes to a block
1701
   * that's a leaf node of the DAG, i.e. a return
1702
   * statement?
1703
   * If so, there's nothing to optimize.
1704
   */
1705
196k
  if (JT(ep->succ) == 0)
1706
82.2k
    return;
1707
1708
  /*
1709
   * Does this edge go to a block that goes, in turn, to
1710
   * the same block regardless of whether the test at the
1711
   * end succeeds or fails?
1712
   */
1713
114k
  if (JT(ep->succ) == JF(ep->succ)) {
1714
    /*
1715
     * Common branch targets can be eliminated, provided
1716
     * there is no data dependency.
1717
     *
1718
     * Check whether any register used on exit from the
1719
     * block to which the successor of this edge goes
1720
     * has a value at that point that's different from
1721
     * the value it has on exit from the predecessor of
1722
     * this edge.  If not, the predecessor of this edge
1723
     * can just go to the block to which the successor
1724
     * of this edge goes, bypassing the successor of this
1725
     * edge, as the successor of this edge isn't doing
1726
     * any calculations whose results are different
1727
     * from what the blocks before it did and isn't
1728
     * doing any tests the results of which matter.
1729
     */
1730
15.8k
    if (!use_conflict(ep->pred, JT(ep->succ))) {
1731
      /*
1732
       * No, there isn't.
1733
       * Make this edge go to the block to
1734
       * which the successor of that edge
1735
       * goes.
1736
       *
1737
       * XXX - optimizer loop detection.
1738
       */
1739
15.8k
      opt_state->non_branch_movement_performed = 1;
1740
15.8k
      opt_state->done = 0;
1741
15.8k
      ep->succ = JT(ep->succ);
1742
15.8k
    }
1743
15.8k
  }
1744
  /*
1745
   * For each edge dominator that matches the successor of this
1746
   * edge, promote the edge successor to the its grandchild.
1747
   *
1748
   * XXX We violate the set abstraction here in favor a reasonably
1749
   * efficient loop.
1750
   */
1751
146k
 top:
1752
584k
  for (i = 0; i < opt_state->edgewords; ++i) {
1753
    /* i'th word in the bitset of dominators */
1754
485k
    register bpf_u_int32 x = ep->edom[i];
1755
1756
770k
    while (x != 0) {
1757
      /* Find the next dominator in that word and mark it as found */
1758
332k
      k = lowest_set_bit(x);
1759
332k
      x &=~ ((bpf_u_int32)1 << k);
1760
332k
      k += i * BITS_PER_WORD;
1761
1762
332k
      target = fold_edge(ep->succ, opt_state->edges[k]);
1763
      /*
1764
       * We have a candidate to replace the successor
1765
       * of ep.
1766
       *
1767
       * Check that there is no data dependency between
1768
       * nodes that will be violated if we move the edge;
1769
       * i.e., if any register used on exit from the
1770
       * candidate has a value at that point different
1771
       * from the value it has when we exit the
1772
       * predecessor of that edge, there's a data
1773
       * dependency that will be violated.
1774
       */
1775
332k
      if (target != 0 && !use_conflict(ep->pred, target)) {
1776
        /*
1777
         * It's safe to replace the successor of
1778
         * ep; do so, and note that we've made
1779
         * at least one change.
1780
         *
1781
         * XXX - this is one of the operations that
1782
         * happens when the optimizer gets into
1783
         * one of those infinite loops.
1784
         */
1785
48.1k
        opt_state->done = 0;
1786
48.1k
        ep->succ = target;
1787
48.1k
        if (JT(target) != 0)
1788
          /*
1789
           * Start over unless we hit a leaf.
1790
           */
1791
32.1k
          goto top;
1792
15.9k
        return;
1793
48.1k
      }
1794
332k
    }
1795
485k
  }
1796
146k
}
1797
1798
/*
1799
 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800
 * "Predicate Assertion Propagation" in the BPF+ paper?
1801
 *
1802
 * Note that this looks at block dominators, not edge dominators.
1803
 * Don't think so.
1804
 *
1805
 * "A or B" compiles into
1806
 *
1807
 *          A
1808
 *       t / \ f
1809
 *        /   B
1810
 *       / t / \ f
1811
 *      \   /
1812
 *       \ /
1813
 *        X
1814
 *
1815
 *
1816
 */
1817
static void
1818
or_pullup(opt_state_t *opt_state, struct block *b)
1819
98.3k
{
1820
98.3k
  bpf_u_int32 val;
1821
98.3k
  int at_top;
1822
98.3k
  struct block *pull;
1823
98.3k
  struct block **diffp, **samep;
1824
98.3k
  struct edge *ep;
1825
1826
98.3k
  ep = b->in_edges;
1827
98.3k
  if (ep == 0)
1828
39.8k
    return;
1829
1830
  /*
1831
   * Make sure each predecessor loads the same value.
1832
   * XXX why?
1833
   */
1834
58.4k
  val = ep->pred->val[A_ATOM];
1835
63.7k
  for (ep = ep->next; ep != 0; ep = ep->next)
1836
18.3k
    if (val != ep->pred->val[A_ATOM])
1837
13.0k
      return;
1838
1839
  /*
1840
   * For the first edge in the list of edges coming into this block,
1841
   * see whether the predecessor of that edge comes here via a true
1842
   * branch or a false branch.
1843
   */
1844
45.3k
  if (JT(b->in_edges->pred) == b)
1845
26.5k
    diffp = &JT(b->in_edges->pred); /* jt */
1846
18.8k
  else
1847
18.8k
    diffp = &JF(b->in_edges->pred);  /* jf */
1848
1849
  /*
1850
   * diffp is a pointer to a pointer to the block.
1851
   *
1852
   * Go down the false chain looking as far as you can,
1853
   * making sure that each jump-compare is doing the
1854
   * same as the original block.
1855
   *
1856
   * If you reach the bottom before you reach a
1857
   * different jump-compare, just exit.  There's nothing
1858
   * to do here.  XXX - no, this version is checking for
1859
   * the value leaving the block; that's from the BPF+
1860
   * pullup routine.
1861
   */
1862
45.3k
  at_top = 1;
1863
61.3k
  for (;;) {
1864
    /*
1865
     * Done if that's not going anywhere XXX
1866
     */
1867
61.3k
    if (*diffp == 0)
1868
0
      return;
1869
1870
    /*
1871
     * Done if that predecessor blah blah blah isn't
1872
     * going the same place we're going XXX
1873
     *
1874
     * Does the true edge of this block point to the same
1875
     * location as the true edge of b?
1876
     */
1877
61.3k
    if (JT(*diffp) != JT(b))
1878
11.0k
      return;
1879
1880
    /*
1881
     * Done if this node isn't a dominator of that
1882
     * node blah blah blah XXX
1883
     *
1884
     * Does b dominate diffp?
1885
     */
1886
50.3k
    if (!SET_MEMBER((*diffp)->dom, b->id))
1887
91
      return;
1888
1889
    /*
1890
     * Break out of the loop if that node's value of A
1891
     * isn't the value of A above XXX
1892
     */
1893
50.2k
    if ((*diffp)->val[A_ATOM] != val)
1894
34.2k
      break;
1895
1896
    /*
1897
     * Get the JF for that node XXX
1898
     * Go down the false path.
1899
     */
1900
16.0k
    diffp = &JF(*diffp);
1901
16.0k
    at_top = 0;
1902
16.0k
  }
1903
1904
  /*
1905
   * Now that we've found a different jump-compare in a chain
1906
   * below b, search further down until we find another
1907
   * jump-compare that looks at the original value.  This
1908
   * jump-compare should get pulled up.  XXX again we're
1909
   * comparing values not jump-compares.
1910
   */
1911
34.2k
  samep = &JF(*diffp);
1912
42.3k
  for (;;) {
1913
    /*
1914
     * Done if that's not going anywhere XXX
1915
     */
1916
42.3k
    if (*samep == 0)
1917
0
      return;
1918
1919
    /*
1920
     * Done if that predecessor blah blah blah isn't
1921
     * going the same place we're going XXX
1922
     */
1923
42.3k
    if (JT(*samep) != JT(b))
1924
32.2k
      return;
1925
1926
    /*
1927
     * Done if this node isn't a dominator of that
1928
     * node blah blah blah XXX
1929
     *
1930
     * Does b dominate samep?
1931
     */
1932
10.1k
    if (!SET_MEMBER((*samep)->dom, b->id))
1933
1.95k
      return;
1934
1935
    /*
1936
     * Break out of the loop if that node's value of A
1937
     * is the value of A above XXX
1938
     */
1939
8.22k
    if ((*samep)->val[A_ATOM] == val)
1940
118
      break;
1941
1942
    /* XXX Need to check that there are no data dependencies
1943
       between dp0 and dp1.  Currently, the code generator
1944
       will not produce such dependencies. */
1945
8.10k
    samep = &JF(*samep);
1946
8.10k
  }
1947
#ifdef notdef
1948
  /* XXX This doesn't cover everything. */
1949
  for (i = 0; i < N_ATOMS; ++i)
1950
    if ((*samep)->val[i] != pred->val[i])
1951
      return;
1952
#endif
1953
  /* Pull up the node. */
1954
118
  pull = *samep;
1955
118
  *samep = JF(pull);
1956
118
  JF(pull) = *diffp;
1957
1958
  /*
1959
   * At the top of the chain, each predecessor needs to point at the
1960
   * pulled up node.  Inside the chain, there is only one predecessor
1961
   * to worry about.
1962
   */
1963
118
  if (at_top) {
1964
242
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965
125
      if (JT(ep->pred) == b)
1966
18
        JT(ep->pred) = pull;
1967
107
      else
1968
107
        JF(ep->pred) = pull;
1969
125
    }
1970
117
  }
1971
1
  else
1972
1
    *diffp = pull;
1973
1974
  /*
1975
   * XXX - this is one of the operations that happens when the
1976
   * optimizer gets into one of those infinite loops.
1977
   */
1978
118
  opt_state->done = 0;
1979
118
}
1980
1981
static void
1982
and_pullup(opt_state_t *opt_state, struct block *b)
1983
98.3k
{
1984
98.3k
  bpf_u_int32 val;
1985
98.3k
  int at_top;
1986
98.3k
  struct block *pull;
1987
98.3k
  struct block **diffp, **samep;
1988
98.3k
  struct edge *ep;
1989
1990
98.3k
  ep = b->in_edges;
1991
98.3k
  if (ep == 0)
1992
39.8k
    return;
1993
1994
  /*
1995
   * Make sure each predecessor loads the same value.
1996
   */
1997
58.4k
  val = ep->pred->val[A_ATOM];
1998
63.7k
  for (ep = ep->next; ep != 0; ep = ep->next)
1999
18.3k
    if (val != ep->pred->val[A_ATOM])
2000
13.0k
      return;
2001
2002
45.3k
  if (JT(b->in_edges->pred) == b)
2003
26.4k
    diffp = &JT(b->in_edges->pred);
2004
18.8k
  else
2005
18.8k
    diffp = &JF(b->in_edges->pred);
2006
2007
45.3k
  at_top = 1;
2008
56.7k
  for (;;) {
2009
56.7k
    if (*diffp == 0)
2010
0
      return;
2011
2012
56.7k
    if (JF(*diffp) != JF(b))
2013
8.77k
      return;
2014
2015
47.9k
    if (!SET_MEMBER((*diffp)->dom, b->id))
2016
1.14k
      return;
2017
2018
46.8k
    if ((*diffp)->val[A_ATOM] != val)
2019
35.4k
      break;
2020
2021
11.3k
    diffp = &JT(*diffp);
2022
11.3k
    at_top = 0;
2023
11.3k
  }
2024
35.4k
  samep = &JT(*diffp);
2025
44.9k
  for (;;) {
2026
44.9k
    if (*samep == 0)
2027
0
      return;
2028
2029
44.9k
    if (JF(*samep) != JF(b))
2030
34.7k
      return;
2031
2032
10.1k
    if (!SET_MEMBER((*samep)->dom, b->id))
2033
425
      return;
2034
2035
9.75k
    if ((*samep)->val[A_ATOM] == val)
2036
303
      break;
2037
2038
    /* XXX Need to check that there are no data dependencies
2039
       between diffp and samep.  Currently, the code generator
2040
       will not produce such dependencies. */
2041
9.45k
    samep = &JT(*samep);
2042
9.45k
  }
2043
#ifdef notdef
2044
  /* XXX This doesn't cover everything. */
2045
  for (i = 0; i < N_ATOMS; ++i)
2046
    if ((*samep)->val[i] != pred->val[i])
2047
      return;
2048
#endif
2049
  /* Pull up the node. */
2050
303
  pull = *samep;
2051
303
  *samep = JT(pull);
2052
303
  JT(pull) = *diffp;
2053
2054
  /*
2055
   * At the top of the chain, each predecessor needs to point at the
2056
   * pulled up node.  Inside the chain, there is only one predecessor
2057
   * to worry about.
2058
   */
2059
303
  if (at_top) {
2060
611
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061
309
      if (JT(ep->pred) == b)
2062
93
        JT(ep->pred) = pull;
2063
216
      else
2064
216
        JF(ep->pred) = pull;
2065
309
    }
2066
302
  }
2067
1
  else
2068
1
    *diffp = pull;
2069
2070
  /*
2071
   * XXX - this is one of the operations that happens when the
2072
   * optimizer gets into one of those infinite loops.
2073
   */
2074
303
  opt_state->done = 0;
2075
303
}
2076
2077
static void
2078
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079
36.6k
{
2080
36.6k
  int i, maxlevel;
2081
36.6k
  struct block *p;
2082
2083
36.6k
  init_val(opt_state);
2084
36.6k
  maxlevel = ic->root->level;
2085
2086
36.6k
  find_inedges(opt_state, ic->root);
2087
200k
  for (i = maxlevel; i >= 0; --i)
2088
357k
    for (p = opt_state->levels[i]; p; p = p->link)
2089
193k
      opt_blk(opt_state, p, do_stmts);
2090
2091
36.6k
  if (do_stmts)
2092
    /*
2093
     * No point trying to move branches; it can't possibly
2094
     * make a difference at this point.
2095
     *
2096
     * XXX - this might be after we detect a loop where
2097
     * we were just looping infinitely moving branches
2098
     * in such a fashion that we went through two or more
2099
     * versions of the machine code, eventually returning
2100
     * to the first version.  (We're really not doing a
2101
     * full loop detection, we're just testing for two
2102
     * passes in a row where we do nothing but
2103
     * move branches.)
2104
     */
2105
15.9k
    return;
2106
2107
  /*
2108
   * Is this what the BPF+ paper describes in sections 6.1.1,
2109
   * 6.1.2, and 6.1.3?
2110
   */
2111
113k
  for (i = 1; i <= maxlevel; ++i) {
2112
191k
    for (p = opt_state->levels[i]; p; p = p->link) {
2113
98.3k
      opt_j(opt_state, &p->et);
2114
98.3k
      opt_j(opt_state, &p->ef);
2115
98.3k
    }
2116
93.2k
  }
2117
2118
20.7k
  find_inedges(opt_state, ic->root);
2119
113k
  for (i = 1; i <= maxlevel; ++i) {
2120
191k
    for (p = opt_state->levels[i]; p; p = p->link) {
2121
98.3k
      or_pullup(opt_state, p);
2122
98.3k
      and_pullup(opt_state, p);
2123
98.3k
    }
2124
93.2k
  }
2125
20.7k
}
2126
2127
static inline void
2128
link_inedge(struct edge *parent, struct block *child)
2129
465k
{
2130
465k
  parent->next = child->in_edges;
2131
465k
  child->in_edges = parent;
2132
465k
}
2133
2134
static void
2135
find_inedges(opt_state_t *opt_state, struct block *root)
2136
57.1k
{
2137
57.1k
  u_int i;
2138
57.1k
  int level;
2139
57.1k
  struct block *b;
2140
2141
533k
  for (i = 0; i < opt_state->n_blocks; ++i)
2142
476k
    opt_state->blocks[i]->in_edges = 0;
2143
2144
  /*
2145
   * Traverse the graph, adding each edge to the predecessor
2146
   * list of its successors.  Skip the leaves (i.e. level 0).
2147
   */
2148
277k
  for (level = root->level; level > 0; --level) {
2149
453k
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150
232k
      link_inedge(&b->et, JT(b));
2151
232k
      link_inedge(&b->ef, JF(b));
2152
232k
    }
2153
220k
  }
2154
57.1k
}
2155
2156
static void
2157
opt_root(struct block **b)
2158
9.49k
{
2159
9.49k
  struct slist *tmp, *s;
2160
2161
9.49k
  s = (*b)->stmts;
2162
9.49k
  (*b)->stmts = 0;
2163
13.0k
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164
3.60k
    *b = JT(*b);
2165
2166
9.49k
  tmp = (*b)->stmts;
2167
9.49k
  if (tmp != 0)
2168
128
    sappend(s, tmp);
2169
9.49k
  (*b)->stmts = s;
2170
2171
  /*
2172
   * If the root node is a return, then there is no
2173
   * point executing any statements (since the bpf machine
2174
   * has no side effects).
2175
   */
2176
9.49k
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177
5.66k
    (*b)->stmts = 0;
2178
9.49k
}
2179
2180
static void
2181
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182
19.4k
{
2183
2184
#ifdef BDEBUG
2185
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186
    printf("opt_loop(root, %d) begin\n", do_stmts);
2187
    opt_dump(opt_state, ic);
2188
  }
2189
#endif
2190
2191
  /*
2192
   * XXX - optimizer loop detection.
2193
   */
2194
19.4k
  int loop_count = 0;
2195
36.6k
  for (;;) {
2196
36.6k
    opt_state->done = 1;
2197
    /*
2198
     * XXX - optimizer loop detection.
2199
     */
2200
36.6k
    opt_state->non_branch_movement_performed = 0;
2201
36.6k
    find_levels(opt_state, ic);
2202
36.6k
    find_dom(opt_state, ic->root);
2203
36.6k
    find_closure(opt_state, ic->root);
2204
36.6k
    find_ud(opt_state, ic->root);
2205
36.6k
    find_edom(opt_state, ic->root);
2206
36.6k
    opt_blks(opt_state, ic, do_stmts);
2207
#ifdef BDEBUG
2208
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210
      opt_dump(opt_state, ic);
2211
    }
2212
#endif
2213
2214
    /*
2215
     * Was anything done in this optimizer pass?
2216
     */
2217
36.6k
    if (opt_state->done) {
2218
      /*
2219
       * No, so we've reached a fixed point.
2220
       * We're done.
2221
       */
2222
19.2k
      break;
2223
19.2k
    }
2224
2225
    /*
2226
     * XXX - was anything done other than branch movement
2227
     * in this pass?
2228
     */
2229
17.4k
    if (opt_state->non_branch_movement_performed) {
2230
      /*
2231
       * Yes.  Clear any loop-detection counter;
2232
       * we're making some form of progress (assuming
2233
       * we can't get into a cycle doing *other*
2234
       * optimizations...).
2235
       */
2236
15.5k
      loop_count = 0;
2237
15.5k
    } else {
2238
      /*
2239
       * No - increment the counter, and quit if
2240
       * it's up to 100.
2241
       */
2242
1.91k
      loop_count++;
2243
1.91k
      if (loop_count >= 100) {
2244
        /*
2245
         * We've done nothing but branch movement
2246
         * for 100 passes; we're probably
2247
         * in a cycle and will never reach a
2248
         * fixed point.
2249
         *
2250
         * XXX - yes, we really need a non-
2251
         * heuristic way of detecting a cycle.
2252
         */
2253
0
        opt_state->done = 1;
2254
0
        break;
2255
0
      }
2256
1.91k
    }
2257
17.4k
  }
2258
19.4k
}
2259
2260
/*
2261
 * Optimize the filter code in its dag representation.
2262
 * Return 0 on success, -1 on error.
2263
 */
2264
int
2265
bpf_optimize(struct icode *ic, char *errbuf)
2266
9.71k
{
2267
9.71k
  opt_state_t opt_state;
2268
2269
9.71k
  memset(&opt_state, 0, sizeof(opt_state));
2270
9.71k
  opt_state.errbuf = errbuf;
2271
9.71k
  opt_state.non_branch_movement_performed = 0;
2272
9.71k
  if (setjmp(opt_state.top_ctx)) {
2273
229
    opt_cleanup(&opt_state);
2274
229
    return -1;
2275
229
  }
2276
9.49k
  opt_init(&opt_state, ic);
2277
9.49k
  opt_loop(&opt_state, ic, 0);
2278
9.49k
  opt_loop(&opt_state, ic, 1);
2279
9.49k
  intern_blocks(&opt_state, ic);
2280
#ifdef BDEBUG
2281
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282
    printf("after intern_blocks()\n");
2283
    opt_dump(&opt_state, ic);
2284
  }
2285
#endif
2286
9.49k
  opt_root(&ic->root);
2287
#ifdef BDEBUG
2288
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289
    printf("after opt_root()\n");
2290
    opt_dump(&opt_state, ic);
2291
  }
2292
#endif
2293
9.49k
  opt_cleanup(&opt_state);
2294
9.49k
  return 0;
2295
9.71k
}
2296
2297
static void
2298
make_marks(struct icode *ic, struct block *p)
2299
115k
{
2300
115k
  if (!isMarked(ic, p)) {
2301
66.7k
    Mark(ic, p);
2302
66.7k
    if (BPF_CLASS(p->s.code) != BPF_RET) {
2303
52.5k
      make_marks(ic, JT(p));
2304
52.5k
      make_marks(ic, JF(p));
2305
52.5k
    }
2306
66.7k
  }
2307
115k
}
2308
2309
/*
2310
 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311
 * only for nodes that are alive.
2312
 */
2313
static void
2314
mark_code(struct icode *ic)
2315
10.2k
{
2316
10.2k
  ic->cur_mark += 1;
2317
10.2k
  make_marks(ic, ic->root);
2318
10.2k
}
2319
2320
/*
2321
 * True iff the two stmt lists load the same value from the packet into
2322
 * the accumulator.
2323
 */
2324
static int
2325
eq_slist(struct slist *x, struct slist *y)
2326
1.97k
{
2327
3.24k
  for (;;) {
2328
3.32k
    while (x && x->s.code == NOP)
2329
75
      x = x->next;
2330
3.36k
    while (y && y->s.code == NOP)
2331
120
      y = y->next;
2332
3.24k
    if (x == 0)
2333
785
      return y == 0;
2334
2.46k
    if (y == 0)
2335
0
      return x == 0;
2336
2.46k
    if (x->s.code != y->s.code || x->s.k != y->s.k)
2337
1.19k
      return 0;
2338
1.27k
    x = x->next;
2339
1.27k
    y = y->next;
2340
1.27k
  }
2341
1.97k
}
2342
2343
static inline int
2344
eq_blk(struct block *b0, struct block *b1)
2345
1.18M
{
2346
1.18M
  if (b0->s.code == b1->s.code &&
2347
1.18M
      b0->s.k == b1->s.k &&
2348
1.18M
      b0->et.succ == b1->et.succ &&
2349
1.18M
      b0->ef.succ == b1->ef.succ)
2350
1.97k
    return eq_slist(b0->stmts, b1->stmts);
2351
1.18M
  return 0;
2352
1.18M
}
2353
2354
static void
2355
intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356
9.49k
{
2357
9.49k
  struct block *p;
2358
9.49k
  u_int i, j;
2359
9.49k
  int done1; /* don't shadow global */
2360
10.2k
 top:
2361
10.2k
  done1 = 1;
2362
136k
  for (i = 0; i < opt_state->n_blocks; ++i)
2363
126k
    opt_state->blocks[i]->link = 0;
2364
2365
10.2k
  mark_code(ic);
2366
2367
126k
  for (i = opt_state->n_blocks - 1; i != 0; ) {
2368
116k
    --i;
2369
116k
    if (!isMarked(ic, opt_state->blocks[i]))
2370
58.3k
      continue;
2371
2.03M
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372
1.97M
      if (!isMarked(ic, opt_state->blocks[j]))
2373
792k
        continue;
2374
1.18M
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375
780
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376
764
          opt_state->blocks[j]->link : opt_state->blocks[j];
2377
780
        break;
2378
780
      }
2379
1.18M
    }
2380
58.1k
  }
2381
136k
  for (i = 0; i < opt_state->n_blocks; ++i) {
2382
126k
    p = opt_state->blocks[i];
2383
126k
    if (JT(p) == 0)
2384
17.8k
      continue;
2385
108k
    if (JT(p)->link) {
2386
1.18k
      done1 = 0;
2387
1.18k
      JT(p) = JT(p)->link;
2388
1.18k
    }
2389
108k
    if (JF(p)->link) {
2390
467
      done1 = 0;
2391
467
      JF(p) = JF(p)->link;
2392
467
    }
2393
108k
  }
2394
10.2k
  if (!done1)
2395
719
    goto top;
2396
10.2k
}
2397
2398
static void
2399
opt_cleanup(opt_state_t *opt_state)
2400
9.71k
{
2401
9.71k
  free((void *)opt_state->vnode_base);
2402
9.71k
  free((void *)opt_state->vmap);
2403
9.71k
  free((void *)opt_state->edges);
2404
9.71k
  free((void *)opt_state->space);
2405
9.71k
  free((void *)opt_state->levels);
2406
9.71k
  free((void *)opt_state->blocks);
2407
9.71k
}
2408
2409
/*
2410
 * For optimizer errors.
2411
 */
2412
static void PCAP_NORETURN
2413
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414
229
{
2415
229
  va_list ap;
2416
2417
229
  if (opt_state->errbuf != NULL) {
2418
229
    va_start(ap, fmt);
2419
229
    (void)vsnprintf(opt_state->errbuf,
2420
229
        PCAP_ERRBUF_SIZE, fmt, ap);
2421
229
    va_end(ap);
2422
229
  }
2423
229
  longjmp(opt_state->top_ctx, 1);
2424
  /* NOTREACHED */
2425
#ifdef _AIX
2426
  PCAP_UNREACHABLE
2427
#endif /* _AIX */
2428
229
}
2429
2430
/*
2431
 * Return the number of stmts in 's'.
2432
 */
2433
static u_int
2434
slength(struct slist *s)
2435
246k
{
2436
246k
  u_int n = 0;
2437
2438
906k
  for (; s; s = s->next)
2439
659k
    if (s->s.code != NOP)
2440
565k
      ++n;
2441
246k
  return n;
2442
246k
}
2443
2444
/*
2445
 * Return the number of nodes reachable by 'p'.
2446
 * All nodes should be initially unmarked.
2447
 */
2448
static int
2449
count_blocks(struct icode *ic, struct block *p)
2450
153k
{
2451
153k
  if (p == 0 || isMarked(ic, p))
2452
81.5k
    return 0;
2453
71.8k
  Mark(ic, p);
2454
71.8k
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455
153k
}
2456
2457
/*
2458
 * Do a depth first search on the flow graph, numbering the
2459
 * the basic blocks, and entering them into the 'blocks' array.`
2460
 */
2461
static void
2462
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463
153k
{
2464
153k
  u_int n;
2465
2466
153k
  if (p == 0 || isMarked(ic, p))
2467
81.5k
    return;
2468
2469
71.8k
  Mark(ic, p);
2470
71.8k
  n = opt_state->n_blocks++;
2471
71.8k
  if (opt_state->n_blocks == 0) {
2472
    /*
2473
     * Overflow.
2474
     */
2475
0
    opt_error(opt_state, "filter is too complex to optimize");
2476
0
  }
2477
71.8k
  p->id = n;
2478
71.8k
  opt_state->blocks[n] = p;
2479
2480
71.8k
  number_blks_r(opt_state, ic, JT(p));
2481
71.8k
  number_blks_r(opt_state, ic, JF(p));
2482
71.8k
}
2483
2484
/*
2485
 * Return the number of stmts in the flowgraph reachable by 'p'.
2486
 * The nodes should be unmarked before calling.
2487
 *
2488
 * Note that "stmts" means "instructions", and that this includes
2489
 *
2490
 *  side-effect statements in 'p' (slength(p->stmts));
2491
 *
2492
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2493
 *
2494
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2495
 *
2496
 *  the conditional jump itself (1);
2497
 *
2498
 *  an extra long jump if the true branch requires it (p->longjt);
2499
 *
2500
 *  an extra long jump if the false branch requires it (p->longjf).
2501
 */
2502
static u_int
2503
count_stmts(struct icode *ic, struct block *p)
2504
191k
{
2505
191k
  u_int n;
2506
2507
191k
  if (p == 0 || isMarked(ic, p))
2508
100k
    return 0;
2509
90.8k
  Mark(ic, p);
2510
90.8k
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511
90.8k
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512
191k
}
2513
2514
/*
2515
 * Allocate memory.  All allocation is done before optimization
2516
 * is begun.  A linear bound on the size of all data structures is computed
2517
 * from the total number of blocks and/or statements.
2518
 */
2519
static void
2520
opt_init(opt_state_t *opt_state, struct icode *ic)
2521
9.71k
{
2522
9.71k
  bpf_u_int32 *p;
2523
9.71k
  int i, n, max_stmts;
2524
9.71k
  u_int product;
2525
9.71k
  size_t block_memsize, edge_memsize;
2526
2527
  /*
2528
   * First, count the blocks, so we can malloc an array to map
2529
   * block number to block.  Then, put the blocks into the array.
2530
   */
2531
9.71k
  unMarkAll(ic);
2532
9.71k
  n = count_blocks(ic, ic->root);
2533
9.71k
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534
9.71k
  if (opt_state->blocks == NULL)
2535
0
    opt_error(opt_state, "malloc");
2536
9.71k
  unMarkAll(ic);
2537
9.71k
  opt_state->n_blocks = 0;
2538
9.71k
  number_blks_r(opt_state, ic, ic->root);
2539
2540
  /*
2541
   * This "should not happen".
2542
   */
2543
9.71k
  if (opt_state->n_blocks == 0)
2544
0
    opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546
9.71k
  opt_state->n_edges = 2 * opt_state->n_blocks;
2547
9.71k
  if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548
    /*
2549
     * Overflow.
2550
     */
2551
0
    opt_error(opt_state, "filter is too complex to optimize");
2552
0
  }
2553
9.71k
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554
9.71k
  if (opt_state->edges == NULL) {
2555
0
    opt_error(opt_state, "malloc");
2556
0
  }
2557
2558
  /*
2559
   * The number of levels is bounded by the number of nodes.
2560
   */
2561
9.71k
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562
9.71k
  if (opt_state->levels == NULL) {
2563
0
    opt_error(opt_state, "malloc");
2564
0
  }
2565
2566
9.71k
  opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567
9.71k
  opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569
  /*
2570
   * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571
   * in a u_int; we use it as a u_int number-of-iterations
2572
   * value.
2573
   */
2574
9.71k
  product = opt_state->n_blocks * opt_state->nodewords;
2575
9.71k
  if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576
    /*
2577
     * XXX - just punt and don't try to optimize?
2578
     * In practice, this is unlikely to happen with
2579
     * a normal filter.
2580
     */
2581
0
    opt_error(opt_state, "filter is too complex to optimize");
2582
0
  }
2583
2584
  /*
2585
   * Make sure the total memory required for that doesn't
2586
   * overflow.
2587
   */
2588
9.71k
  block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589
9.71k
  if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590
0
    opt_error(opt_state, "filter is too complex to optimize");
2591
0
  }
2592
2593
  /*
2594
   * Make sure opt_state->n_edges * opt_state->edgewords fits
2595
   * in a u_int; we use it as a u_int number-of-iterations
2596
   * value.
2597
   */
2598
9.71k
  product = opt_state->n_edges * opt_state->edgewords;
2599
9.71k
  if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600
0
    opt_error(opt_state, "filter is too complex to optimize");
2601
0
  }
2602
2603
  /*
2604
   * Make sure the total memory required for that doesn't
2605
   * overflow.
2606
   */
2607
9.71k
  edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608
9.71k
  if (edge_memsize / product != sizeof(*opt_state->space)) {
2609
0
    opt_error(opt_state, "filter is too complex to optimize");
2610
0
  }
2611
2612
  /*
2613
   * Make sure the total memory required for both of them doesn't
2614
   * overflow.
2615
   */
2616
9.71k
  if (block_memsize > SIZE_MAX - edge_memsize) {
2617
0
    opt_error(opt_state, "filter is too complex to optimize");
2618
0
  }
2619
2620
  /* XXX */
2621
9.71k
  opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622
9.71k
  if (opt_state->space == NULL) {
2623
0
    opt_error(opt_state, "malloc");
2624
0
  }
2625
9.71k
  p = opt_state->space;
2626
9.71k
  opt_state->all_dom_sets = p;
2627
81.5k
  for (i = 0; i < n; ++i) {
2628
71.8k
    opt_state->blocks[i]->dom = p;
2629
71.8k
    p += opt_state->nodewords;
2630
71.8k
  }
2631
9.71k
  opt_state->all_closure_sets = p;
2632
81.5k
  for (i = 0; i < n; ++i) {
2633
71.8k
    opt_state->blocks[i]->closure = p;
2634
71.8k
    p += opt_state->nodewords;
2635
71.8k
  }
2636
9.71k
  opt_state->all_edge_sets = p;
2637
81.5k
  for (i = 0; i < n; ++i) {
2638
71.8k
    register struct block *b = opt_state->blocks[i];
2639
2640
71.8k
    b->et.edom = p;
2641
71.8k
    p += opt_state->edgewords;
2642
71.8k
    b->ef.edom = p;
2643
71.8k
    p += opt_state->edgewords;
2644
71.8k
    b->et.id = i;
2645
71.8k
    opt_state->edges[i] = &b->et;
2646
71.8k
    b->ef.id = opt_state->n_blocks + i;
2647
71.8k
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648
71.8k
    b->et.pred = b;
2649
71.8k
    b->ef.pred = b;
2650
71.8k
  }
2651
9.71k
  max_stmts = 0;
2652
81.5k
  for (i = 0; i < n; ++i)
2653
71.8k
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654
  /*
2655
   * We allocate at most 3 value numbers per statement,
2656
   * so this is an upper bound on the number of valnodes
2657
   * we'll need.
2658
   */
2659
9.71k
  opt_state->maxval = 3 * max_stmts;
2660
9.71k
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661
9.71k
  if (opt_state->vmap == NULL) {
2662
0
    opt_error(opt_state, "malloc");
2663
0
  }
2664
9.71k
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665
9.71k
  if (opt_state->vnode_base == NULL) {
2666
0
    opt_error(opt_state, "malloc");
2667
0
  }
2668
9.71k
}
2669
2670
/*
2671
 * This is only used when supporting optimizer debugging.  It is
2672
 * global state, so do *not* do more than one compile in parallel
2673
 * and expect it to provide meaningful information.
2674
 */
2675
#ifdef BDEBUG
2676
int bids[NBIDS];
2677
#endif
2678
2679
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680
    PCAP_PRINTFLIKE(2, 3);
2681
2682
/*
2683
 * Returns true if successful.  Returns false if a branch has
2684
 * an offset that is too large.  If so, we have marked that
2685
 * branch so that on a subsequent iteration, it will be treated
2686
 * properly.
2687
 */
2688
static int
2689
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690
181k
{
2691
181k
  struct bpf_insn *dst;
2692
181k
  struct slist *src;
2693
181k
  u_int slen;
2694
181k
  u_int off;
2695
181k
  struct slist **offset = NULL;
2696
2697
181k
  if (p == 0 || isMarked(ic, p))
2698
94.2k
    return (1);
2699
87.6k
  Mark(ic, p);
2700
2701
87.6k
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702
3.29k
    return (0);
2703
84.3k
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704
798
    return (0);
2705
2706
83.5k
  slen = slength(p->stmts);
2707
83.5k
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708
    /* inflate length by any extra jumps */
2709
2710
83.5k
  p->offset = (int)(dst - conv_state->fstart);
2711
2712
  /* generate offset[] for convenience  */
2713
83.5k
  if (slen) {
2714
63.2k
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715
63.2k
    if (!offset) {
2716
0
      conv_error(conv_state, "not enough core");
2717
      /*NOTREACHED*/
2718
0
    }
2719
63.2k
  }
2720
83.5k
  src = p->stmts;
2721
246k
  for (off = 0; off < slen && src; off++) {
2722
#if 0
2723
    printf("off=%d src=%x\n", off, src);
2724
#endif
2725
162k
    offset[off] = src;
2726
162k
    src = src->next;
2727
162k
  }
2728
2729
83.5k
  off = 0;
2730
293k
  for (src = p->stmts; src; src = src->next) {
2731
210k
    if (src->s.code == NOP)
2732
47.2k
      continue;
2733
162k
    dst->code = (u_short)src->s.code;
2734
162k
    dst->k = src->s.k;
2735
2736
    /* fill block-local relative jump */
2737
162k
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738
#if 0
2739
      if (src->s.jt || src->s.jf) {
2740
        free(offset);
2741
        conv_error(conv_state, "illegal jmp destination");
2742
        /*NOTREACHED*/
2743
      }
2744
#endif
2745
158k
      goto filled;
2746
158k
    }
2747
4.46k
    if (off == slen - 2)  /*???*/
2748
0
      goto filled;
2749
2750
4.46k
      {
2751
4.46k
    u_int i;
2752
4.46k
    int jt, jf;
2753
4.46k
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755
#if 0
2756
    printf("code=%x off=%d %x %x\n", src->s.code,
2757
      off, src->s.jt, src->s.jf);
2758
#endif
2759
2760
4.46k
    if (!src->s.jt || !src->s.jf) {
2761
0
      free(offset);
2762
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2763
      /*NOTREACHED*/
2764
0
    }
2765
2766
4.46k
    jt = jf = 0;
2767
115k
    for (i = 0; i < slen; i++) {
2768
110k
      if (offset[i] == src->s.jt) {
2769
4.46k
        if (jt) {
2770
0
          free(offset);
2771
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2772
          /*NOTREACHED*/
2773
0
        }
2774
2775
4.46k
        if (i - off - 1 >= 256) {
2776
0
          free(offset);
2777
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2778
          /*NOTREACHED*/
2779
0
        }
2780
4.46k
        dst->jt = (u_char)(i - off - 1);
2781
4.46k
        jt++;
2782
4.46k
      }
2783
110k
      if (offset[i] == src->s.jf) {
2784
4.46k
        if (jf) {
2785
0
          free(offset);
2786
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2787
          /*NOTREACHED*/
2788
0
        }
2789
4.46k
        if (i - off - 1 >= 256) {
2790
0
          free(offset);
2791
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2792
          /*NOTREACHED*/
2793
0
        }
2794
4.46k
        dst->jf = (u_char)(i - off - 1);
2795
4.46k
        jf++;
2796
4.46k
      }
2797
110k
    }
2798
4.46k
    if (!jt || !jf) {
2799
0
      free(offset);
2800
0
      conv_error(conv_state, ljerr, "no destination found", off);
2801
      /*NOTREACHED*/
2802
0
    }
2803
4.46k
      }
2804
162k
filled:
2805
162k
    ++dst;
2806
162k
    ++off;
2807
162k
  }
2808
83.5k
  if (offset)
2809
63.2k
    free(offset);
2810
2811
#ifdef BDEBUG
2812
  if (dst - conv_state->fstart < NBIDS)
2813
    bids[dst - conv_state->fstart] = p->id + 1;
2814
#endif
2815
83.5k
  dst->code = (u_short)p->s.code;
2816
83.5k
  dst->k = p->s.k;
2817
83.5k
  if (JT(p)) {
2818
    /* number of extra jumps inserted */
2819
68.0k
    u_char extrajmps = 0;
2820
68.0k
    off = JT(p)->offset - (p->offset + slen) - 1;
2821
68.0k
    if (off >= 256) {
2822
        /* offset too large for branch, must add a jump */
2823
1.16k
        if (p->longjt == 0) {
2824
      /* mark this instruction and retry */
2825
215
      p->longjt++;
2826
215
      return(0);
2827
215
        }
2828
948
        dst->jt = extrajmps;
2829
948
        extrajmps++;
2830
948
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2831
948
        dst[extrajmps].k = off - extrajmps;
2832
948
    }
2833
66.9k
    else
2834
66.9k
        dst->jt = (u_char)off;
2835
67.8k
    off = JF(p)->offset - (p->offset + slen) - 1;
2836
67.8k
    if (off >= 256) {
2837
        /* offset too large for branch, must add a jump */
2838
964
        if (p->longjf == 0) {
2839
      /* mark this instruction and retry */
2840
89
      p->longjf++;
2841
89
      return(0);
2842
89
        }
2843
        /* branch if F to following jump */
2844
        /* if two jumps are inserted, F goes to second one */
2845
875
        dst->jf = extrajmps;
2846
875
        extrajmps++;
2847
875
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2848
875
        dst[extrajmps].k = off - extrajmps;
2849
875
    }
2850
66.9k
    else
2851
66.9k
        dst->jf = (u_char)off;
2852
67.8k
  }
2853
83.2k
  return (1);
2854
83.5k
}
2855
2856
2857
/*
2858
 * Convert flowgraph intermediate representation to the
2859
 * BPF array representation.  Set *lenp to the number of instructions.
2860
 *
2861
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862
 * not* do free(fp) before returning fp; doing so would make no sense,
2863
 * as the BPF array pointed to by the return value of icode_to_fcode()
2864
 * must be valid - it's being returned for use in a bpf_program structure.
2865
 *
2866
 * If it appears that icode_to_fcode() is leaking, the problem is that
2867
 * the program using pcap_compile() is failing to free the memory in
2868
 * the BPF program when it's done - the leak is in the program, not in
2869
 * the routine that happens to be allocating the memory.  (By analogy, if
2870
 * a program calls fopen() without ever calling fclose() on the FILE *,
2871
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872
 * the program.)  Change the program to use pcap_freecode() when it's
2873
 * done with the filter program.  See the pcap man page.
2874
 */
2875
struct bpf_insn *
2876
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877
    char *errbuf)
2878
9.60k
{
2879
9.60k
  u_int n;
2880
9.60k
  struct bpf_insn *fp;
2881
9.60k
  conv_state_t conv_state;
2882
2883
9.60k
  conv_state.fstart = NULL;
2884
9.60k
  conv_state.errbuf = errbuf;
2885
9.60k
  if (setjmp(conv_state.top_ctx) != 0) {
2886
0
    free(conv_state.fstart);
2887
0
    return NULL;
2888
0
  }
2889
2890
  /*
2891
   * Loop doing convert_code_r() until no branches remain
2892
   * with too-large offsets.
2893
   */
2894
9.90k
  for (;;) {
2895
9.90k
      unMarkAll(ic);
2896
9.90k
      n = *lenp = count_stmts(ic, root);
2897
2898
9.90k
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899
9.90k
      if (fp == NULL) {
2900
0
    (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901
0
        "malloc");
2902
0
    return NULL;
2903
0
      }
2904
9.90k
      memset((char *)fp, 0, sizeof(*fp) * n);
2905
9.90k
      conv_state.fstart = fp;
2906
9.90k
      conv_state.ftail = fp + n;
2907
2908
9.90k
      unMarkAll(ic);
2909
9.90k
      if (convert_code_r(&conv_state, ic, root))
2910
9.60k
    break;
2911
304
      free(fp);
2912
304
  }
2913
2914
9.60k
  return fp;
2915
9.60k
}
2916
2917
/*
2918
 * For iconv_to_fconv() errors.
2919
 */
2920
static void PCAP_NORETURN
2921
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922
0
{
2923
0
  va_list ap;
2924
2925
0
  va_start(ap, fmt);
2926
0
  (void)vsnprintf(conv_state->errbuf,
2927
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2928
0
  va_end(ap);
2929
0
  longjmp(conv_state->top_ctx, 1);
2930
  /* NOTREACHED */
2931
#ifdef _AIX
2932
  PCAP_UNREACHABLE
2933
#endif /* _AIX */
2934
0
}
2935
2936
/*
2937
 * Make a copy of a BPF program and put it in the "fcode" member of
2938
 * a "pcap_t".
2939
 *
2940
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941
 * member of the "pcap_t" with an error message, and return -1;
2942
 * otherwise, return 0.
2943
 */
2944
int
2945
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946
0
{
2947
0
  size_t prog_size;
2948
2949
  /*
2950
   * Validate the program.
2951
   */
2952
0
  if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953
0
    snprintf(p->errbuf, sizeof(p->errbuf),
2954
0
      "BPF program is not valid");
2955
0
    return (-1);
2956
0
  }
2957
2958
  /*
2959
   * Free up any already installed program.
2960
   */
2961
0
  pcap_freecode(&p->fcode);
2962
2963
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964
0
  p->fcode.bf_len = fp->bf_len;
2965
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966
0
  if (p->fcode.bf_insns == NULL) {
2967
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968
0
        errno, "malloc");
2969
0
    return (-1);
2970
0
  }
2971
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972
0
  return (0);
2973
0
}
2974
2975
#ifdef BDEBUG
2976
static void
2977
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978
    FILE *out)
2979
{
2980
  int icount, noffset;
2981
  int i;
2982
2983
  if (block == NULL || isMarked(ic, block))
2984
    return;
2985
  Mark(ic, block);
2986
2987
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988
  noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990
  fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991
  for (i = block->offset; i < noffset; i++) {
2992
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993
  }
2994
  fprintf(out, "\" tooltip=\"");
2995
  for (i = 0; i < BPF_MEMWORDS; i++)
2996
    if (block->val[i] != VAL_UNKNOWN)
2997
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000
  fprintf(out, "\"");
3001
  if (JT(block) == NULL)
3002
    fprintf(out, ", peripheries=2");
3003
  fprintf(out, "];\n");
3004
3005
  dot_dump_node(ic, JT(block), prog, out);
3006
  dot_dump_node(ic, JF(block), prog, out);
3007
}
3008
3009
static void
3010
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011
{
3012
  if (block == NULL || isMarked(ic, block))
3013
    return;
3014
  Mark(ic, block);
3015
3016
  if (JT(block)) {
3017
    fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018
        block->id, JT(block)->id);
3019
    fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020
         block->id, JF(block)->id);
3021
  }
3022
  dot_dump_edge(ic, JT(block), out);
3023
  dot_dump_edge(ic, JF(block), out);
3024
}
3025
3026
/* Output the block CFG using graphviz/DOT language
3027
 * In the CFG, block's code, value index for each registers at EXIT,
3028
 * and the jump relationship is show.
3029
 *
3030
 * example DOT for BPF `ip src host 1.1.1.1' is:
3031
    digraph BPF {
3032
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
3033
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
3034
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036
      "block0":se -> "block1":n [label="T"];
3037
      "block0":sw -> "block3":n [label="F"];
3038
      "block1":se -> "block2":n [label="T"];
3039
      "block1":sw -> "block3":n [label="F"];
3040
    }
3041
 *
3042
 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044
 */
3045
static int
3046
dot_dump(struct icode *ic, char *errbuf)
3047
{
3048
  struct bpf_program f;
3049
  FILE *out = stdout;
3050
3051
  memset(bids, 0, sizeof bids);
3052
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053
  if (f.bf_insns == NULL)
3054
    return -1;
3055
3056
  fprintf(out, "digraph BPF {\n");
3057
  unMarkAll(ic);
3058
  dot_dump_node(ic, ic->root, &f, out);
3059
  unMarkAll(ic);
3060
  dot_dump_edge(ic, ic->root, out);
3061
  fprintf(out, "}\n");
3062
3063
  free((char *)f.bf_insns);
3064
  return 0;
3065
}
3066
3067
static int
3068
plain_dump(struct icode *ic, char *errbuf)
3069
{
3070
  struct bpf_program f;
3071
3072
  memset(bids, 0, sizeof bids);
3073
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074
  if (f.bf_insns == NULL)
3075
    return -1;
3076
  bpf_dump(&f, 1);
3077
  putchar('\n');
3078
  free((char *)f.bf_insns);
3079
  return 0;
3080
}
3081
3082
static void
3083
opt_dump(opt_state_t *opt_state, struct icode *ic)
3084
{
3085
  int status;
3086
  char errbuf[PCAP_ERRBUF_SIZE];
3087
3088
  /*
3089
   * If the CFG, in DOT format, is requested, output it rather than
3090
   * the code that would be generated from that graph.
3091
   */
3092
  if (pcap_print_dot_graph)
3093
    status = dot_dump(ic, errbuf);
3094
  else
3095
    status = plain_dump(ic, errbuf);
3096
  if (status == -1)
3097
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098
}
3099
#endif