Coverage Report

Created: 2024-08-27 12:11

/src/libjpeg-turbo.main/jchuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jchuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2014-2016, 2018-2024, D. R. Commander.
10
 * Copyright (C) 2015, Matthieu Darbois.
11
 * Copyright (C) 2018, Matthias Räncker.
12
 * Copyright (C) 2020, Arm Limited.
13
 * Copyright (C) 2022, Felix Hanau.
14
 * For conditions of distribution and use, see the accompanying README.ijg
15
 * file.
16
 *
17
 * This file contains Huffman entropy encoding routines.
18
 *
19
 * Much of the complexity here has to do with supporting output suspension.
20
 * If the data destination module demands suspension, we want to be able to
21
 * back up to the start of the current MCU.  To do this, we copy state
22
 * variables into local working storage, and update them back to the
23
 * permanent JPEG objects only upon successful completion of an MCU.
24
 *
25
 * NOTE: All referenced figures are from
26
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
27
 */
28
29
#define JPEG_INTERNALS
30
#include "jinclude.h"
31
#include "jpeglib.h"
32
#ifdef WITH_SIMD
33
#include "jsimd.h"
34
#else
35
#include "jchuff.h"             /* Declarations shared with jc*huff.c */
36
#endif
37
#include <limits.h>
38
#include "jpeg_nbits.h"
39
40
41
/* Expanded entropy encoder object for Huffman encoding.
42
 *
43
 * The savable_state subrecord contains fields that change within an MCU,
44
 * but must not be updated permanently until we complete the MCU.
45
 */
46
47
#if defined(__x86_64__) && defined(__ILP32__)
48
typedef unsigned long long bit_buf_type;
49
#else
50
typedef size_t bit_buf_type;
51
#endif
52
53
/* NOTE: The more optimal Huffman encoding algorithm is only used by the
54
 * intrinsics implementation of the Arm Neon SIMD extensions, which is why we
55
 * retain the old Huffman encoder behavior when using the GAS implementation.
56
 */
57
#if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \
58
                            defined(_M_ARM) || defined(_M_ARM64))
59
typedef unsigned long long simd_bit_buf_type;
60
#else
61
typedef bit_buf_type simd_bit_buf_type;
62
#endif
63
64
#if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \
65
    (defined(__x86_64__) && defined(__ILP32__))
66
0
#define BIT_BUF_SIZE  64
67
#elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32)
68
#define BIT_BUF_SIZE  32
69
#else
70
#error Cannot determine word size
71
#endif
72
0
#define SIMD_BIT_BUF_SIZE  (sizeof(simd_bit_buf_type) * 8)
73
74
typedef struct {
75
  union {
76
    bit_buf_type c;
77
#ifdef WITH_SIMD
78
    simd_bit_buf_type simd;
79
#endif
80
  } put_buffer;                         /* current bit accumulation buffer */
81
  int free_bits;                        /* # of bits available in it */
82
                                        /* (Neon GAS: # of bits now in it) */
83
  int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
84
} savable_state;
85
86
typedef struct {
87
  struct jpeg_entropy_encoder pub; /* public fields */
88
89
  savable_state saved;          /* Bit buffer & DC state at start of MCU */
90
91
  /* These fields are NOT loaded into local working state. */
92
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
93
  int next_restart_num;         /* next restart number to write (0-7) */
94
95
  /* Pointers to derived tables (these workspaces have image lifespan) */
96
  c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
97
  c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
98
99
#ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
100
  long *dc_count_ptrs[NUM_HUFF_TBLS];
101
  long *ac_count_ptrs[NUM_HUFF_TBLS];
102
#endif
103
104
#ifdef WITH_SIMD
105
  int simd;
106
#endif
107
} huff_entropy_encoder;
108
109
typedef huff_entropy_encoder *huff_entropy_ptr;
110
111
/* Working state while writing an MCU.
112
 * This struct contains all the fields that are needed by subroutines.
113
 */
114
115
typedef struct {
116
  JOCTET *next_output_byte;     /* => next byte to write in buffer */
117
  size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
118
  savable_state cur;            /* Current bit buffer & DC state */
119
  j_compress_ptr cinfo;         /* dump_buffer needs access to this */
120
#ifdef WITH_SIMD
121
  int simd;
122
#endif
123
} working_state;
124
125
126
/* Forward declarations */
127
METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data);
128
METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
129
#ifdef ENTROPY_OPT_SUPPORTED
130
METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo,
131
                                     JBLOCKROW *MCU_data);
132
METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
133
#endif
134
135
136
/*
137
 * Initialize for a Huffman-compressed scan.
138
 * If gather_statistics is TRUE, we do not output anything during the scan,
139
 * just count the Huffman symbols used and generate Huffman code tables.
140
 */
141
142
METHODDEF(void)
143
start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
144
0
{
145
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
146
0
  int ci, dctbl, actbl;
147
0
  jpeg_component_info *compptr;
148
149
0
  if (gather_statistics) {
150
0
#ifdef ENTROPY_OPT_SUPPORTED
151
0
    entropy->pub.encode_mcu = encode_mcu_gather;
152
0
    entropy->pub.finish_pass = finish_pass_gather;
153
#else
154
    ERREXIT(cinfo, JERR_NOT_COMPILED);
155
#endif
156
0
  } else {
157
0
    entropy->pub.encode_mcu = encode_mcu_huff;
158
0
    entropy->pub.finish_pass = finish_pass_huff;
159
0
  }
160
161
0
#ifdef WITH_SIMD
162
0
  entropy->simd = jsimd_can_huff_encode_one_block();
163
0
#endif
164
165
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
166
0
    compptr = cinfo->cur_comp_info[ci];
167
0
    dctbl = compptr->dc_tbl_no;
168
0
    actbl = compptr->ac_tbl_no;
169
0
    if (gather_statistics) {
170
0
#ifdef ENTROPY_OPT_SUPPORTED
171
      /* Check for invalid table indexes */
172
      /* (make_c_derived_tbl does this in the other path) */
173
0
      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
174
0
        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
175
0
      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
176
0
        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
177
      /* Allocate and zero the statistics tables */
178
      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
179
0
      if (entropy->dc_count_ptrs[dctbl] == NULL)
180
0
        entropy->dc_count_ptrs[dctbl] = (long *)
181
0
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
182
0
                                      257 * sizeof(long));
183
0
      memset(entropy->dc_count_ptrs[dctbl], 0, 257 * sizeof(long));
184
0
      if (entropy->ac_count_ptrs[actbl] == NULL)
185
0
        entropy->ac_count_ptrs[actbl] = (long *)
186
0
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
187
0
                                      257 * sizeof(long));
188
0
      memset(entropy->ac_count_ptrs[actbl], 0, 257 * sizeof(long));
189
0
#endif
190
0
    } else {
191
      /* Compute derived values for Huffman tables */
192
      /* We may do this more than once for a table, but it's not expensive */
193
0
      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
194
0
                              &entropy->dc_derived_tbls[dctbl]);
195
0
      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
196
0
                              &entropy->ac_derived_tbls[actbl]);
197
0
    }
198
    /* Initialize DC predictions to 0 */
199
0
    entropy->saved.last_dc_val[ci] = 0;
200
0
  }
201
202
  /* Initialize bit buffer to empty */
203
0
#ifdef WITH_SIMD
204
0
  if (entropy->simd) {
205
0
    entropy->saved.put_buffer.simd = 0;
206
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
207
    entropy->saved.free_bits = 0;
208
#else
209
0
    entropy->saved.free_bits = SIMD_BIT_BUF_SIZE;
210
0
#endif
211
0
  } else
212
0
#endif
213
0
  {
214
0
    entropy->saved.put_buffer.c = 0;
215
0
    entropy->saved.free_bits = BIT_BUF_SIZE;
216
0
  }
217
218
  /* Initialize restart stuff */
219
0
  entropy->restarts_to_go = cinfo->restart_interval;
220
0
  entropy->next_restart_num = 0;
221
0
}
222
223
224
/*
225
 * Compute the derived values for a Huffman table.
226
 * This routine also performs some validation checks on the table.
227
 *
228
 * Note this is also used by jcphuff.c and jclhuff.c.
229
 */
230
231
GLOBAL(void)
232
jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
233
                        c_derived_tbl **pdtbl)
234
0
{
235
0
  JHUFF_TBL *htbl;
236
0
  c_derived_tbl *dtbl;
237
0
  int p, i, l, lastp, si, maxsymbol;
238
0
  char huffsize[257];
239
0
  unsigned int huffcode[257];
240
0
  unsigned int code;
241
242
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
243
   * paralleling the order of the symbols themselves in htbl->huffval[].
244
   */
245
246
  /* Find the input Huffman table */
247
0
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
248
0
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
249
0
  htbl =
250
0
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
251
0
  if (htbl == NULL)
252
0
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
253
254
  /* Allocate a workspace if we haven't already done so. */
255
0
  if (*pdtbl == NULL)
256
0
    *pdtbl = (c_derived_tbl *)
257
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
258
0
                                  sizeof(c_derived_tbl));
259
0
  dtbl = *pdtbl;
260
261
  /* Figure C.1: make table of Huffman code length for each symbol */
262
263
0
  p = 0;
264
0
  for (l = 1; l <= 16; l++) {
265
0
    i = (int)htbl->bits[l];
266
0
    if (i < 0 || p + i > 256)   /* protect against table overrun */
267
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
268
0
    while (i--)
269
0
      huffsize[p++] = (char)l;
270
0
  }
271
0
  huffsize[p] = 0;
272
0
  lastp = p;
273
274
  /* Figure C.2: generate the codes themselves */
275
  /* We also validate that the counts represent a legal Huffman code tree. */
276
277
0
  code = 0;
278
0
  si = huffsize[0];
279
0
  p = 0;
280
0
  while (huffsize[p]) {
281
0
    while (((int)huffsize[p]) == si) {
282
0
      huffcode[p++] = code;
283
0
      code++;
284
0
    }
285
    /* code is now 1 more than the last code used for codelength si; but
286
     * it must still fit in si bits, since no code is allowed to be all ones.
287
     */
288
0
    if (((JLONG)code) >= (((JLONG)1) << si))
289
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
290
0
    code <<= 1;
291
0
    si++;
292
0
  }
293
294
  /* Figure C.3: generate encoding tables */
295
  /* These are code and size indexed by symbol value */
296
297
  /* Set all codeless symbols to have code length 0;
298
   * this lets us detect duplicate VAL entries here, and later
299
   * allows emit_bits to detect any attempt to emit such symbols.
300
   */
301
0
  memset(dtbl->ehufco, 0, sizeof(dtbl->ehufco));
302
0
  memset(dtbl->ehufsi, 0, sizeof(dtbl->ehufsi));
303
304
  /* This is also a convenient place to check for out-of-range and duplicated
305
   * VAL entries.  We allow 0..255 for AC symbols but only 0..15 for DC in
306
   * lossy mode and 0..16 for DC in lossless mode.  (We could constrain them
307
   * further based on data depth and mode, but this seems enough.)
308
   */
309
0
  maxsymbol = isDC ? (cinfo->master->lossless ? 16 : 15) : 255;
310
311
0
  for (p = 0; p < lastp; p++) {
312
0
    i = htbl->huffval[p];
313
0
    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
314
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
315
0
    dtbl->ehufco[i] = huffcode[p];
316
0
    dtbl->ehufsi[i] = huffsize[p];
317
0
  }
318
0
}
319
320
321
/* Outputting bytes to the file */
322
323
/* Emit a byte, taking 'action' if must suspend. */
324
0
#define emit_byte(state, val, action) { \
325
0
  *(state)->next_output_byte++ = (JOCTET)(val); \
326
0
  if (--(state)->free_in_buffer == 0) \
327
0
    if (!dump_buffer(state)) \
328
0
      { action; } \
329
0
}
330
331
332
LOCAL(boolean)
333
dump_buffer(working_state *state)
334
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
335
0
{
336
0
  struct jpeg_destination_mgr *dest = state->cinfo->dest;
337
338
0
  if (!(*dest->empty_output_buffer) (state->cinfo))
339
0
    return FALSE;
340
  /* After a successful buffer dump, must reset buffer pointers */
341
0
  state->next_output_byte = dest->next_output_byte;
342
0
  state->free_in_buffer = dest->free_in_buffer;
343
0
  return TRUE;
344
0
}
345
346
347
/* Outputting bits to the file */
348
349
/* Output byte b and, speculatively, an additional 0 byte.  0xFF must be
350
 * encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the
351
 * byte is 0xFF.  Otherwise, the output buffer pointer is advanced by 1, and
352
 * the speculative 0 byte will be overwritten by the next byte.
353
 */
354
0
#define EMIT_BYTE(b) { \
355
0
  buffer[0] = (JOCTET)(b); \
356
0
  buffer[1] = 0; \
357
0
  buffer -= -2 + ((JOCTET)(b) < 0xFF); \
358
0
}
359
360
/* Output the entire bit buffer.  If there are no 0xFF bytes in it, then write
361
 * directly to the output buffer.  Otherwise, use the EMIT_BYTE() macro to
362
 * encode 0xFF as 0xFF 0x00.
363
 */
364
#if BIT_BUF_SIZE == 64
365
366
0
#define FLUSH() { \
367
0
  if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \
368
0
    EMIT_BYTE(put_buffer >> 56) \
369
0
    EMIT_BYTE(put_buffer >> 48) \
370
0
    EMIT_BYTE(put_buffer >> 40) \
371
0
    EMIT_BYTE(put_buffer >> 32) \
372
0
    EMIT_BYTE(put_buffer >> 24) \
373
0
    EMIT_BYTE(put_buffer >> 16) \
374
0
    EMIT_BYTE(put_buffer >>  8) \
375
0
    EMIT_BYTE(put_buffer      ) \
376
0
  } else { \
377
0
    buffer[0] = (JOCTET)(put_buffer >> 56); \
378
0
    buffer[1] = (JOCTET)(put_buffer >> 48); \
379
0
    buffer[2] = (JOCTET)(put_buffer >> 40); \
380
0
    buffer[3] = (JOCTET)(put_buffer >> 32); \
381
0
    buffer[4] = (JOCTET)(put_buffer >> 24); \
382
0
    buffer[5] = (JOCTET)(put_buffer >> 16); \
383
0
    buffer[6] = (JOCTET)(put_buffer >> 8); \
384
0
    buffer[7] = (JOCTET)(put_buffer); \
385
0
    buffer += 8; \
386
0
  } \
387
0
}
388
389
#else
390
391
#define FLUSH() { \
392
  if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \
393
    EMIT_BYTE(put_buffer >> 24) \
394
    EMIT_BYTE(put_buffer >> 16) \
395
    EMIT_BYTE(put_buffer >>  8) \
396
    EMIT_BYTE(put_buffer      ) \
397
  } else { \
398
    buffer[0] = (JOCTET)(put_buffer >> 24); \
399
    buffer[1] = (JOCTET)(put_buffer >> 16); \
400
    buffer[2] = (JOCTET)(put_buffer >> 8); \
401
    buffer[3] = (JOCTET)(put_buffer); \
402
    buffer += 4; \
403
  } \
404
}
405
406
#endif
407
408
/* Fill the bit buffer to capacity with the leading bits from code, then output
409
 * the bit buffer and put the remaining bits from code into the bit buffer.
410
 */
411
0
#define PUT_AND_FLUSH(code, size) { \
412
0
  put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \
413
0
  FLUSH() \
414
0
  free_bits += BIT_BUF_SIZE; \
415
0
  put_buffer = code; \
416
0
}
417
418
/* Insert code into the bit buffer and output the bit buffer if needed.
419
 * NOTE: We can't flush with free_bits == 0, since the left shift in
420
 * PUT_AND_FLUSH() would have undefined behavior.
421
 */
422
0
#define PUT_BITS(code, size) { \
423
0
  free_bits -= size; \
424
0
  if (free_bits < 0) \
425
0
    PUT_AND_FLUSH(code, size) \
426
0
  else \
427
0
    put_buffer = (put_buffer << size) | code; \
428
0
}
429
430
0
#define PUT_CODE(code, size) { \
431
0
  temp &= (((JLONG)1) << nbits) - 1; \
432
0
  temp |= code << nbits; \
433
0
  nbits += size; \
434
0
  PUT_BITS(temp, nbits) \
435
0
}
436
437
438
/* Although it is exceedingly rare, it is possible for a Huffman-encoded
439
 * coefficient block to be larger than the 128-byte unencoded block.  For each
440
 * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
441
 * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
442
 * encoded block.)  If, for instance, one artificially sets the AC
443
 * coefficients to alternating values of 32767 and -32768 (using the JPEG
444
 * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
445
 * larger than 200 bytes.
446
 */
447
0
#define BUFSIZE  (DCTSIZE2 * 8)
448
449
0
#define LOAD_BUFFER() { \
450
0
  if (state->free_in_buffer < BUFSIZE) { \
451
0
    localbuf = 1; \
452
0
    buffer = _buffer; \
453
0
  } else \
454
0
    buffer = state->next_output_byte; \
455
0
}
456
457
0
#define STORE_BUFFER() { \
458
0
  if (localbuf) { \
459
0
    size_t bytes, bytestocopy; \
460
0
    bytes = buffer - _buffer; \
461
0
    buffer = _buffer; \
462
0
    while (bytes > 0) { \
463
0
      bytestocopy = MIN(bytes, state->free_in_buffer); \
464
0
      memcpy(state->next_output_byte, buffer, bytestocopy); \
465
0
      state->next_output_byte += bytestocopy; \
466
0
      buffer += bytestocopy; \
467
0
      state->free_in_buffer -= bytestocopy; \
468
0
      if (state->free_in_buffer == 0) \
469
0
        if (!dump_buffer(state)) return FALSE; \
470
0
      bytes -= bytestocopy; \
471
0
    } \
472
0
  } else { \
473
0
    state->free_in_buffer -= (buffer - state->next_output_byte); \
474
0
    state->next_output_byte = buffer; \
475
0
  } \
476
0
}
477
478
479
LOCAL(boolean)
480
flush_bits(working_state *state)
481
0
{
482
0
  JOCTET _buffer[BUFSIZE], *buffer, temp;
483
0
  simd_bit_buf_type put_buffer;  int put_bits;
484
0
  int localbuf = 0;
485
486
0
#ifdef WITH_SIMD
487
0
  if (state->simd) {
488
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
489
    put_bits = state->cur.free_bits;
490
#else
491
0
    put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits;
492
0
#endif
493
0
    put_buffer = state->cur.put_buffer.simd;
494
0
  } else
495
0
#endif
496
0
  {
497
0
    put_bits = BIT_BUF_SIZE - state->cur.free_bits;
498
0
    put_buffer = state->cur.put_buffer.c;
499
0
  }
500
501
0
  LOAD_BUFFER()
502
503
0
  while (put_bits >= 8) {
504
0
    put_bits -= 8;
505
0
    temp = (JOCTET)(put_buffer >> put_bits);
506
0
    EMIT_BYTE(temp)
507
0
  }
508
0
  if (put_bits) {
509
    /* fill partial byte with ones */
510
0
    temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits));
511
0
    EMIT_BYTE(temp)
512
0
  }
513
514
0
#ifdef WITH_SIMD
515
0
  if (state->simd) {                    /* and reset bit buffer to empty */
516
0
    state->cur.put_buffer.simd = 0;
517
#if defined(__aarch64__) && !defined(NEON_INTRINSICS)
518
    state->cur.free_bits = 0;
519
#else
520
0
    state->cur.free_bits = SIMD_BIT_BUF_SIZE;
521
0
#endif
522
0
  } else
523
0
#endif
524
0
  {
525
0
    state->cur.put_buffer.c = 0;
526
0
    state->cur.free_bits = BIT_BUF_SIZE;
527
0
  }
528
0
  STORE_BUFFER()
529
530
0
  return TRUE;
531
0
}
532
533
534
#ifdef WITH_SIMD
535
536
/* Encode a single block's worth of coefficients */
537
538
LOCAL(boolean)
539
encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
540
                      c_derived_tbl *dctbl, c_derived_tbl *actbl)
541
0
{
542
0
  JOCTET _buffer[BUFSIZE], *buffer;
543
0
  int localbuf = 0;
544
545
0
  LOAD_BUFFER()
546
547
0
  buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
548
0
                                       dctbl, actbl);
549
550
0
  STORE_BUFFER()
551
552
0
  return TRUE;
553
0
}
554
555
#endif
556
557
LOCAL(boolean)
558
encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
559
                 c_derived_tbl *dctbl, c_derived_tbl *actbl)
560
0
{
561
0
  int temp, nbits, free_bits;
562
0
  bit_buf_type put_buffer;
563
0
  JOCTET _buffer[BUFSIZE], *buffer;
564
0
  int localbuf = 0;
565
0
  int max_coef_bits = state->cinfo->data_precision + 2;
566
567
0
  free_bits = state->cur.free_bits;
568
0
  put_buffer = state->cur.put_buffer.c;
569
0
  LOAD_BUFFER()
570
571
  /* Encode the DC coefficient difference per section F.1.2.1 */
572
573
0
  temp = block[0] - last_dc_val;
574
575
  /* This is a well-known technique for obtaining the absolute value without a
576
   * branch.  It is derived from an assembly language technique presented in
577
   * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
578
   * Agner Fog.  This code assumes we are on a two's complement machine.
579
   */
580
0
  nbits = temp >> (CHAR_BIT * sizeof(int) - 1);
581
0
  temp += nbits;
582
0
  nbits ^= temp;
583
584
  /* Find the number of bits needed for the magnitude of the coefficient */
585
0
  nbits = JPEG_NBITS(nbits);
586
  /* Check for out-of-range coefficient values.
587
   * Since we're encoding a difference, the range limit is twice as much.
588
   */
589
0
  if (nbits > max_coef_bits + 1)
590
0
    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
591
592
  /* Emit the Huffman-coded symbol for the number of bits.
593
   * Emit that number of bits of the value, if positive,
594
   * or the complement of its magnitude, if negative.
595
   */
596
0
  PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits])
597
598
  /* Encode the AC coefficients per section F.1.2.2 */
599
600
0
  {
601
0
    int r = 0;                  /* r = run length of zeros */
602
603
/* Manually unroll the k loop to eliminate the counter variable.  This
604
 * improves performance greatly on systems with a limited number of
605
 * registers (such as x86.)
606
 */
607
0
#define kloop(jpeg_natural_order_of_k) { \
608
0
  if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
609
0
    r += 16; \
610
0
  } else { \
611
    /* Branch-less absolute value, bitwise complement, etc., same as above */ \
612
0
    nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \
613
0
    temp += nbits; \
614
0
    nbits ^= temp; \
615
0
    nbits = JPEG_NBITS_NONZERO(nbits); \
616
    /* Check for out-of-range coefficient values */ \
617
0
    if (nbits > max_coef_bits) \
618
0
      ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); \
619
    /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
620
0
    while (r >= 16 * 16) { \
621
0
      r -= 16 * 16; \
622
0
      PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \
623
0
    } \
624
    /* Emit Huffman symbol for run length / number of bits */ \
625
0
    r += nbits; \
626
0
    PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \
627
0
    r = 0; \
628
0
  } \
629
0
}
630
631
    /* One iteration for each value in jpeg_natural_order[] */
632
0
    kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
633
0
    kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
634
0
    kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
635
0
    kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
636
0
    kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
637
0
    kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
638
0
    kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
639
0
    kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
640
0
    kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
641
0
    kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
642
0
    kloop(55);  kloop(62);  kloop(63);
643
644
    /* If the last coef(s) were zero, emit an end-of-block code */
645
0
    if (r > 0) {
646
0
      PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
647
0
    }
648
0
  }
649
650
0
  state->cur.put_buffer.c = put_buffer;
651
0
  state->cur.free_bits = free_bits;
652
0
  STORE_BUFFER()
653
654
0
  return TRUE;
655
0
}
656
657
658
/*
659
 * Emit a restart marker & resynchronize predictions.
660
 */
661
662
LOCAL(boolean)
663
emit_restart(working_state *state, int restart_num)
664
0
{
665
0
  int ci;
666
667
0
  if (!flush_bits(state))
668
0
    return FALSE;
669
670
0
  emit_byte(state, 0xFF, return FALSE);
671
0
  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
672
673
  /* Re-initialize DC predictions to 0 */
674
0
  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
675
0
    state->cur.last_dc_val[ci] = 0;
676
677
  /* The restart counter is not updated until we successfully write the MCU. */
678
679
0
  return TRUE;
680
0
}
681
682
683
/*
684
 * Encode and output one MCU's worth of Huffman-compressed coefficients.
685
 */
686
687
METHODDEF(boolean)
688
encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
689
0
{
690
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
691
0
  working_state state;
692
0
  int blkn, ci;
693
0
  jpeg_component_info *compptr;
694
695
  /* Load up working state */
696
0
  state.next_output_byte = cinfo->dest->next_output_byte;
697
0
  state.free_in_buffer = cinfo->dest->free_in_buffer;
698
0
  state.cur = entropy->saved;
699
0
  state.cinfo = cinfo;
700
0
#ifdef WITH_SIMD
701
0
  state.simd = entropy->simd;
702
0
#endif
703
704
  /* Emit restart marker if needed */
705
0
  if (cinfo->restart_interval) {
706
0
    if (entropy->restarts_to_go == 0)
707
0
      if (!emit_restart(&state, entropy->next_restart_num))
708
0
        return FALSE;
709
0
  }
710
711
  /* Encode the MCU data blocks */
712
0
#ifdef WITH_SIMD
713
0
  if (entropy->simd) {
714
0
    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
715
0
      ci = cinfo->MCU_membership[blkn];
716
0
      compptr = cinfo->cur_comp_info[ci];
717
0
      if (!encode_one_block_simd(&state,
718
0
                                 MCU_data[blkn][0], state.cur.last_dc_val[ci],
719
0
                                 entropy->dc_derived_tbls[compptr->dc_tbl_no],
720
0
                                 entropy->ac_derived_tbls[compptr->ac_tbl_no]))
721
0
        return FALSE;
722
      /* Update last_dc_val */
723
0
      state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
724
0
    }
725
0
  } else
726
0
#endif
727
0
  {
728
0
    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
729
0
      ci = cinfo->MCU_membership[blkn];
730
0
      compptr = cinfo->cur_comp_info[ci];
731
0
      if (!encode_one_block(&state,
732
0
                            MCU_data[blkn][0], state.cur.last_dc_val[ci],
733
0
                            entropy->dc_derived_tbls[compptr->dc_tbl_no],
734
0
                            entropy->ac_derived_tbls[compptr->ac_tbl_no]))
735
0
        return FALSE;
736
      /* Update last_dc_val */
737
0
      state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
738
0
    }
739
0
  }
740
741
  /* Completed MCU, so update state */
742
0
  cinfo->dest->next_output_byte = state.next_output_byte;
743
0
  cinfo->dest->free_in_buffer = state.free_in_buffer;
744
0
  entropy->saved = state.cur;
745
746
  /* Update restart-interval state too */
747
0
  if (cinfo->restart_interval) {
748
0
    if (entropy->restarts_to_go == 0) {
749
0
      entropy->restarts_to_go = cinfo->restart_interval;
750
0
      entropy->next_restart_num++;
751
0
      entropy->next_restart_num &= 7;
752
0
    }
753
0
    entropy->restarts_to_go--;
754
0
  }
755
756
0
  return TRUE;
757
0
}
758
759
760
/*
761
 * Finish up at the end of a Huffman-compressed scan.
762
 */
763
764
METHODDEF(void)
765
finish_pass_huff(j_compress_ptr cinfo)
766
0
{
767
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
768
0
  working_state state;
769
770
  /* Load up working state ... flush_bits needs it */
771
0
  state.next_output_byte = cinfo->dest->next_output_byte;
772
0
  state.free_in_buffer = cinfo->dest->free_in_buffer;
773
0
  state.cur = entropy->saved;
774
0
  state.cinfo = cinfo;
775
0
#ifdef WITH_SIMD
776
0
  state.simd = entropy->simd;
777
0
#endif
778
779
  /* Flush out the last data */
780
0
  if (!flush_bits(&state))
781
0
    ERREXIT(cinfo, JERR_CANT_SUSPEND);
782
783
  /* Update state */
784
0
  cinfo->dest->next_output_byte = state.next_output_byte;
785
0
  cinfo->dest->free_in_buffer = state.free_in_buffer;
786
0
  entropy->saved = state.cur;
787
0
}
788
789
790
/*
791
 * Huffman coding optimization.
792
 *
793
 * We first scan the supplied data and count the number of uses of each symbol
794
 * that is to be Huffman-coded. (This process MUST agree with the code above.)
795
 * Then we build a Huffman coding tree for the observed counts.
796
 * Symbols which are not needed at all for the particular image are not
797
 * assigned any code, which saves space in the DHT marker as well as in
798
 * the compressed data.
799
 */
800
801
#ifdef ENTROPY_OPT_SUPPORTED
802
803
804
/* Process a single block's worth of coefficients */
805
806
LOCAL(void)
807
htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
808
                long dc_counts[], long ac_counts[])
809
0
{
810
0
  register int temp;
811
0
  register int nbits;
812
0
  register int k, r;
813
0
  int max_coef_bits = cinfo->data_precision + 2;
814
815
  /* Encode the DC coefficient difference per section F.1.2.1 */
816
817
0
  temp = block[0] - last_dc_val;
818
0
  if (temp < 0)
819
0
    temp = -temp;
820
821
  /* Find the number of bits needed for the magnitude of the coefficient */
822
0
  nbits = 0;
823
0
  while (temp) {
824
0
    nbits++;
825
0
    temp >>= 1;
826
0
  }
827
  /* Check for out-of-range coefficient values.
828
   * Since we're encoding a difference, the range limit is twice as much.
829
   */
830
0
  if (nbits > max_coef_bits + 1)
831
0
    ERREXIT(cinfo, JERR_BAD_DCT_COEF);
832
833
  /* Count the Huffman symbol for the number of bits */
834
0
  dc_counts[nbits]++;
835
836
  /* Encode the AC coefficients per section F.1.2.2 */
837
838
0
  r = 0;                        /* r = run length of zeros */
839
840
0
  for (k = 1; k < DCTSIZE2; k++) {
841
0
    if ((temp = block[jpeg_natural_order[k]]) == 0) {
842
0
      r++;
843
0
    } else {
844
      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
845
0
      while (r > 15) {
846
0
        ac_counts[0xF0]++;
847
0
        r -= 16;
848
0
      }
849
850
      /* Find the number of bits needed for the magnitude of the coefficient */
851
0
      if (temp < 0)
852
0
        temp = -temp;
853
854
      /* Find the number of bits needed for the magnitude of the coefficient */
855
0
      nbits = 1;                /* there must be at least one 1 bit */
856
0
      while ((temp >>= 1))
857
0
        nbits++;
858
      /* Check for out-of-range coefficient values */
859
0
      if (nbits > max_coef_bits)
860
0
        ERREXIT(cinfo, JERR_BAD_DCT_COEF);
861
862
      /* Count Huffman symbol for run length / number of bits */
863
0
      ac_counts[(r << 4) + nbits]++;
864
865
0
      r = 0;
866
0
    }
867
0
  }
868
869
  /* If the last coef(s) were zero, emit an end-of-block code */
870
0
  if (r > 0)
871
0
    ac_counts[0]++;
872
0
}
873
874
875
/*
876
 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
877
 * No data is actually output, so no suspension return is possible.
878
 */
879
880
METHODDEF(boolean)
881
encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
882
0
{
883
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
884
0
  int blkn, ci;
885
0
  jpeg_component_info *compptr;
886
887
  /* Take care of restart intervals if needed */
888
0
  if (cinfo->restart_interval) {
889
0
    if (entropy->restarts_to_go == 0) {
890
      /* Re-initialize DC predictions to 0 */
891
0
      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
892
0
        entropy->saved.last_dc_val[ci] = 0;
893
      /* Update restart state */
894
0
      entropy->restarts_to_go = cinfo->restart_interval;
895
0
    }
896
0
    entropy->restarts_to_go--;
897
0
  }
898
899
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
900
0
    ci = cinfo->MCU_membership[blkn];
901
0
    compptr = cinfo->cur_comp_info[ci];
902
0
    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
903
0
                    entropy->dc_count_ptrs[compptr->dc_tbl_no],
904
0
                    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
905
0
    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
906
0
  }
907
908
0
  return TRUE;
909
0
}
910
911
912
/*
913
 * Generate the best Huffman code table for the given counts, fill htbl.
914
 * Note this is also used by jcphuff.c and jclhuff.c.
915
 *
916
 * The JPEG standard requires that no symbol be assigned a codeword of all
917
 * one bits (so that padding bits added at the end of a compressed segment
918
 * can't look like a valid code).  Because of the canonical ordering of
919
 * codewords, this just means that there must be an unused slot in the
920
 * longest codeword length category.  Annex K (Clause K.2) of
921
 * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
922
 * by pretending that symbol 256 is a valid symbol with count 1.  In theory
923
 * that's not optimal; giving it count zero but including it in the symbol set
924
 * anyway should give a better Huffman code.  But the theoretically better code
925
 * actually seems to come out worse in practice, because it produces more
926
 * all-ones bytes (which incur stuffed zero bytes in the final file).  In any
927
 * case the difference is tiny.
928
 *
929
 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
930
 * If some symbols have a very small but nonzero probability, the Huffman tree
931
 * must be adjusted to meet the code length restriction.  We currently use
932
 * the adjustment method suggested in JPEG section K.2.  This method is *not*
933
 * optimal; it may not choose the best possible limited-length code.  But
934
 * typically only very-low-frequency symbols will be given less-than-optimal
935
 * lengths, so the code is almost optimal.  Experimental comparisons against
936
 * an optimal limited-length-code algorithm indicate that the difference is
937
 * microscopic --- usually less than a hundredth of a percent of total size.
938
 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
939
 */
940
941
GLOBAL(void)
942
jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
943
0
{
944
0
#define MAX_CLEN  32            /* assumed maximum initial code length */
945
0
  UINT8 bits[MAX_CLEN + 1];     /* bits[k] = # of symbols with code length k */
946
0
  int bit_pos[MAX_CLEN + 1];    /* # of symbols with smaller code length */
947
0
  int codesize[257];            /* codesize[k] = code length of symbol k */
948
0
  int nz_index[257];            /* index of nonzero symbol in the original freq
949
                                   array */
950
0
  int others[257];              /* next symbol in current branch of tree */
951
0
  int c1, c2;
952
0
  int p, i, j;
953
0
  int num_nz_symbols;
954
0
  long v, v2;
955
956
  /* This algorithm is explained in section K.2 of the JPEG standard */
957
958
0
  memset(bits, 0, sizeof(bits));
959
0
  memset(codesize, 0, sizeof(codesize));
960
0
  for (i = 0; i < 257; i++)
961
0
    others[i] = -1;             /* init links to empty */
962
963
0
  freq[256] = 1;                /* make sure 256 has a nonzero count */
964
  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
965
   * that no real symbol is given code-value of all ones, because 256
966
   * will be placed last in the largest codeword category.
967
   */
968
969
  /* Group nonzero frequencies together so we can more easily find the
970
   * smallest.
971
   */
972
0
  num_nz_symbols = 0;
973
0
  for (i = 0; i < 257; i++) {
974
0
    if (freq[i]) {
975
0
      nz_index[num_nz_symbols] = i;
976
0
      freq[num_nz_symbols] = freq[i];
977
0
      num_nz_symbols++;
978
0
    }
979
0
  }
980
981
  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
982
983
0
  for (;;) {
984
    /* Find the two smallest nonzero frequencies; set c1, c2 = their symbols */
985
    /* In case of ties, take the larger symbol number.  Since we have grouped
986
     * the nonzero symbols together, checking for zero symbols is not
987
     * necessary.
988
     */
989
0
    c1 = -1;
990
0
    c2 = -1;
991
0
    v = 1000000000L;
992
0
    v2 = 1000000000L;
993
0
    for (i = 0; i < num_nz_symbols; i++) {
994
0
      if (freq[i] <= v2) {
995
0
        if (freq[i] <= v) {
996
0
          c2 = c1;
997
0
          v2 = v;
998
0
          v = freq[i];
999
0
          c1 = i;
1000
0
        } else {
1001
0
          v2 = freq[i];
1002
0
          c2 = i;
1003
0
        }
1004
0
      }
1005
0
    }
1006
1007
    /* Done if we've merged everything into one frequency */
1008
0
    if (c2 < 0)
1009
0
      break;
1010
1011
    /* Else merge the two counts/trees */
1012
0
    freq[c1] += freq[c2];
1013
    /* Set the frequency to a very high value instead of zero, so we don't have
1014
     * to check for zero values.
1015
     */
1016
0
    freq[c2] = 1000000001L;
1017
1018
    /* Increment the codesize of everything in c1's tree branch */
1019
0
    codesize[c1]++;
1020
0
    while (others[c1] >= 0) {
1021
0
      c1 = others[c1];
1022
0
      codesize[c1]++;
1023
0
    }
1024
1025
0
    others[c1] = c2;            /* chain c2 onto c1's tree branch */
1026
1027
    /* Increment the codesize of everything in c2's tree branch */
1028
0
    codesize[c2]++;
1029
0
    while (others[c2] >= 0) {
1030
0
      c2 = others[c2];
1031
0
      codesize[c2]++;
1032
0
    }
1033
0
  }
1034
1035
  /* Now count the number of symbols of each code length */
1036
0
  for (i = 0; i < num_nz_symbols; i++) {
1037
    /* The JPEG standard seems to think that this can't happen, */
1038
    /* but I'm paranoid... */
1039
0
    if (codesize[i] > MAX_CLEN)
1040
0
      ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
1041
1042
0
    bits[codesize[i]]++;
1043
0
  }
1044
1045
  /* Count the number of symbols with a length smaller than i bits, so we can
1046
   * construct the symbol table more efficiently.  Note that this includes the
1047
   * pseudo-symbol 256, but since it is the last symbol, it will not affect the
1048
   * table.
1049
   */
1050
0
  p = 0;
1051
0
  for (i = 1; i <= MAX_CLEN; i++) {
1052
0
    bit_pos[i] = p;
1053
0
    p += bits[i];
1054
0
  }
1055
1056
  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
1057
   * Huffman procedure assigned any such lengths, we must adjust the coding.
1058
   * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
1059
   * bit works: Since symbols are paired for the longest Huffman code, the
1060
   * symbols are removed from this length category two at a time.  The prefix
1061
   * for the pair (which is one bit shorter) is allocated to one of the pair;
1062
   * then, skipping the BITS entry for that prefix length, a code word from the
1063
   * next shortest nonzero BITS entry is converted into a prefix for two code
1064
   * words one bit longer.
1065
   */
1066
1067
0
  for (i = MAX_CLEN; i > 16; i--) {
1068
0
    while (bits[i] > 0) {
1069
0
      j = i - 2;                /* find length of new prefix to be used */
1070
0
      while (bits[j] == 0)
1071
0
        j--;
1072
1073
0
      bits[i] -= 2;             /* remove two symbols */
1074
0
      bits[i - 1]++;            /* one goes in this length */
1075
0
      bits[j + 1] += 2;         /* two new symbols in this length */
1076
0
      bits[j]--;                /* symbol of this length is now a prefix */
1077
0
    }
1078
0
  }
1079
1080
  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1081
0
  while (bits[i] == 0)          /* find largest codelength still in use */
1082
0
    i--;
1083
0
  bits[i]--;
1084
1085
  /* Return final symbol counts (only for lengths 0..16) */
1086
0
  memcpy(htbl->bits, bits, sizeof(htbl->bits));
1087
1088
  /* Return a list of the symbols sorted by code length */
1089
  /* It's not real clear to me why we don't need to consider the codelength
1090
   * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
1091
   * this works.
1092
   */
1093
0
  for (i = 0; i < num_nz_symbols - 1; i++) {
1094
0
    htbl->huffval[bit_pos[codesize[i]]] = (UINT8)nz_index[i];
1095
0
    bit_pos[codesize[i]]++;
1096
0
  }
1097
1098
  /* Set sent_table FALSE so updated table will be written to JPEG file. */
1099
0
  htbl->sent_table = FALSE;
1100
0
}
1101
1102
1103
/*
1104
 * Finish up a statistics-gathering pass and create the new Huffman tables.
1105
 */
1106
1107
METHODDEF(void)
1108
finish_pass_gather(j_compress_ptr cinfo)
1109
0
{
1110
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
1111
0
  int ci, dctbl, actbl;
1112
0
  jpeg_component_info *compptr;
1113
0
  JHUFF_TBL **htblptr;
1114
0
  boolean did_dc[NUM_HUFF_TBLS];
1115
0
  boolean did_ac[NUM_HUFF_TBLS];
1116
1117
  /* It's important not to apply jpeg_gen_optimal_table more than once
1118
   * per table, because it clobbers the input frequency counts!
1119
   */
1120
0
  memset(did_dc, 0, sizeof(did_dc));
1121
0
  memset(did_ac, 0, sizeof(did_ac));
1122
1123
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1124
0
    compptr = cinfo->cur_comp_info[ci];
1125
0
    dctbl = compptr->dc_tbl_no;
1126
0
    actbl = compptr->ac_tbl_no;
1127
0
    if (!did_dc[dctbl]) {
1128
0
      htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
1129
0
      if (*htblptr == NULL)
1130
0
        *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1131
0
      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1132
0
      did_dc[dctbl] = TRUE;
1133
0
    }
1134
0
    if (!did_ac[actbl]) {
1135
0
      htblptr = &cinfo->ac_huff_tbl_ptrs[actbl];
1136
0
      if (*htblptr == NULL)
1137
0
        *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1138
0
      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1139
0
      did_ac[actbl] = TRUE;
1140
0
    }
1141
0
  }
1142
0
}
1143
1144
1145
#endif /* ENTROPY_OPT_SUPPORTED */
1146
1147
1148
/*
1149
 * Module initialization routine for Huffman entropy encoding.
1150
 */
1151
1152
GLOBAL(void)
1153
jinit_huff_encoder(j_compress_ptr cinfo)
1154
0
{
1155
0
  huff_entropy_ptr entropy;
1156
0
  int i;
1157
1158
0
  entropy = (huff_entropy_ptr)
1159
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1160
0
                                sizeof(huff_entropy_encoder));
1161
0
  cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
1162
0
  entropy->pub.start_pass = start_pass_huff;
1163
1164
  /* Mark tables unallocated */
1165
0
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
1166
0
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1167
0
#ifdef ENTROPY_OPT_SUPPORTED
1168
0
    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1169
0
#endif
1170
0
  }
1171
0
}