Coverage Report

Created: 2024-08-27 12:12

/src/openssl/crypto/lhash/lhash.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <string.h>
12
#include <stdlib.h>
13
#include <openssl/crypto.h>
14
#include <openssl/lhash.h>
15
#include <openssl/err.h>
16
#include "crypto/ctype.h"
17
#include "crypto/lhash.h"
18
#include "lhash_local.h"
19
20
/*
21
 * A hashing implementation that appears to be based on the linear hashing
22
 * algorithm:
23
 * https://en.wikipedia.org/wiki/Linear_hashing
24
 *
25
 * Litwin, Witold (1980), "Linear hashing: A new tool for file and table
26
 * addressing", Proc. 6th Conference on Very Large Databases: 212-223
27
 * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf
28
 *
29
 * From the Wikipedia article "Linear hashing is used in the BDB Berkeley
30
 * database system, which in turn is used by many software systems such as
31
 * OpenLDAP, using a C implementation derived from the CACM article and first
32
 * published on the Usenet in 1988 by Esmond Pitt."
33
 *
34
 * The CACM paper is available here:
35
 * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf
36
 */
37
38
#undef MIN_NODES
39
17.2k
#define MIN_NODES       16
40
5.76k
#define UP_LOAD         (2*LH_LOAD_MULT) /* load times 256 (default 2) */
41
5.76k
#define DOWN_LOAD       (LH_LOAD_MULT) /* load times 256 (default 1) */
42
43
static int expand(OPENSSL_LHASH *lh);
44
static void contract(OPENSSL_LHASH *lh);
45
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash);
46
47
OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c)
48
5.76k
{
49
5.76k
    OPENSSL_LHASH *ret;
50
51
5.76k
    if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
52
        /*
53
         * Do not set the error code, because the ERR code uses LHASH
54
         * and we want to avoid possible endless error loop.
55
         * CRYPTOerr(CRYPTO_F_OPENSSL_LH_NEW, ERR_R_MALLOC_FAILURE);
56
         */
57
0
        return NULL;
58
0
    }
59
5.76k
    if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL)
60
0
        goto err;
61
5.76k
    ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);
62
5.76k
    ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h);
63
5.76k
    ret->num_nodes = MIN_NODES / 2;
64
5.76k
    ret->num_alloc_nodes = MIN_NODES;
65
5.76k
    ret->pmax = MIN_NODES / 2;
66
5.76k
    ret->up_load = UP_LOAD;
67
5.76k
    ret->down_load = DOWN_LOAD;
68
5.76k
    return ret;
69
70
0
err:
71
0
    OPENSSL_free(ret->b);
72
0
    OPENSSL_free(ret);
73
0
    return NULL;
74
5.76k
}
75
76
void OPENSSL_LH_free(OPENSSL_LHASH *lh)
77
6.32k
{
78
6.32k
    if (lh == NULL)
79
1.58k
        return;
80
81
4.74k
    OPENSSL_LH_flush(lh);
82
4.74k
    OPENSSL_free(lh->b);
83
4.74k
    OPENSSL_free(lh);
84
4.74k
}
85
86
void OPENSSL_LH_flush(OPENSSL_LHASH *lh)
87
4.74k
{
88
4.74k
    unsigned int i;
89
4.74k
    OPENSSL_LH_NODE *n, *nn;
90
91
4.74k
    if (lh == NULL)
92
0
        return;
93
94
1.06M
    for (i = 0; i < lh->num_nodes; i++) {
95
1.05M
        n = lh->b[i];
96
3.13M
        while (n != NULL) {
97
2.08M
            nn = n->next;
98
2.08M
            OPENSSL_free(n);
99
2.08M
            n = nn;
100
2.08M
        }
101
1.05M
        lh->b[i] = NULL;
102
1.05M
    }
103
4.74k
}
104
105
void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data)
106
7.09M
{
107
7.09M
    unsigned long hash;
108
7.09M
    OPENSSL_LH_NODE *nn, **rn;
109
7.09M
    void *ret;
110
111
7.09M
    lh->error = 0;
112
7.09M
    if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh))
113
0
        return NULL;        /* 'lh->error++' already done in 'expand' */
114
115
7.09M
    rn = getrn(lh, data, &hash);
116
117
7.09M
    if (*rn == NULL) {
118
2.52M
        if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) {
119
0
            lh->error++;
120
0
            return NULL;
121
0
        }
122
2.52M
        nn->data = data;
123
2.52M
        nn->next = NULL;
124
2.52M
        nn->hash = hash;
125
2.52M
        *rn = nn;
126
2.52M
        ret = NULL;
127
2.52M
        lh->num_insert++;
128
2.52M
        lh->num_items++;
129
4.56M
    } else {                    /* replace same key */
130
4.56M
        ret = (*rn)->data;
131
4.56M
        (*rn)->data = data;
132
4.56M
        lh->num_replace++;
133
4.56M
    }
134
7.09M
    return ret;
135
7.09M
}
136
137
void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data)
138
0
{
139
0
    unsigned long hash;
140
0
    OPENSSL_LH_NODE *nn, **rn;
141
0
    void *ret;
142
143
0
    lh->error = 0;
144
0
    rn = getrn(lh, data, &hash);
145
146
0
    if (*rn == NULL) {
147
0
        lh->num_no_delete++;
148
0
        return NULL;
149
0
    } else {
150
0
        nn = *rn;
151
0
        *rn = nn->next;
152
0
        ret = nn->data;
153
0
        OPENSSL_free(nn);
154
0
        lh->num_delete++;
155
0
    }
156
157
0
    lh->num_items--;
158
0
    if ((lh->num_nodes > MIN_NODES) &&
159
0
        (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)))
160
0
        contract(lh);
161
162
0
    return ret;
163
0
}
164
165
void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data)
166
439k
{
167
439k
    unsigned long hash;
168
439k
    OPENSSL_LH_NODE **rn;
169
439k
    void *ret;
170
171
439k
    tsan_store((TSAN_QUALIFIER int *)&lh->error, 0);
172
173
439k
    rn = getrn(lh, data, &hash);
174
175
439k
    if (*rn == NULL) {
176
181k
        tsan_counter(&lh->num_retrieve_miss);
177
181k
        return NULL;
178
257k
    } else {
179
257k
        ret = (*rn)->data;
180
257k
        tsan_counter(&lh->num_retrieve);
181
257k
    }
182
183
257k
    return ret;
184
439k
}
185
186
static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg,
187
                          OPENSSL_LH_DOALL_FUNC func,
188
                          OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg)
189
3.16k
{
190
3.16k
    int i;
191
3.16k
    OPENSSL_LH_NODE *a, *n;
192
193
3.16k
    if (lh == NULL)
194
0
        return;
195
196
    /*
197
     * reverse the order so we search from 'top to bottom' We were having
198
     * memory leaks otherwise
199
     */
200
28.4k
    for (i = lh->num_nodes - 1; i >= 0; i--) {
201
25.2k
        a = lh->b[i];
202
41.1k
        while (a != NULL) {
203
15.8k
            n = a->next;
204
15.8k
            if (use_arg)
205
0
                func_arg(a->data, arg);
206
15.8k
            else
207
15.8k
                func(a->data);
208
15.8k
            a = n;
209
15.8k
        }
210
25.2k
    }
211
3.16k
}
212
213
void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func)
214
3.16k
{
215
3.16k
    doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL);
216
3.16k
}
217
218
void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg)
219
0
{
220
0
    doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg);
221
0
}
222
223
static int expand(OPENSSL_LHASH *lh)
224
1.23M
{
225
1.23M
    OPENSSL_LH_NODE **n, **n1, **n2, *np;
226
1.23M
    unsigned int p, pmax, nni, j;
227
1.23M
    unsigned long hash;
228
229
1.23M
    nni = lh->num_alloc_nodes;
230
1.23M
    p = lh->p;
231
1.23M
    pmax = lh->pmax;
232
1.23M
    if (p + 1 >= pmax) {
233
11.5k
        j = nni * 2;
234
11.5k
        n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j);
235
11.5k
        if (n == NULL) {
236
0
            lh->error++;
237
0
            return 0;
238
0
        }
239
11.5k
        lh->b = n;
240
11.5k
        memset(n + nni, 0, sizeof(*n) * (j - nni));
241
11.5k
        lh->pmax = nni;
242
11.5k
        lh->num_alloc_nodes = j;
243
11.5k
        lh->num_expand_reallocs++;
244
11.5k
        lh->p = 0;
245
1.22M
    } else {
246
1.22M
        lh->p++;
247
1.22M
    }
248
249
1.23M
    lh->num_nodes++;
250
1.23M
    lh->num_expands++;
251
1.23M
    n1 = &(lh->b[p]);
252
1.23M
    n2 = &(lh->b[p + pmax]);
253
1.23M
    *n2 = NULL;
254
255
5.38M
    for (np = *n1; np != NULL;) {
256
4.14M
        hash = np->hash;
257
4.14M
        if ((hash % nni) != p) { /* move it */
258
706k
            *n1 = (*n1)->next;
259
706k
            np->next = *n2;
260
706k
            *n2 = np;
261
706k
        } else
262
3.43M
            n1 = &((*n1)->next);
263
4.14M
        np = *n1;
264
4.14M
    }
265
266
1.23M
    return 1;
267
1.23M
}
268
269
static void contract(OPENSSL_LHASH *lh)
270
0
{
271
0
    OPENSSL_LH_NODE **n, *n1, *np;
272
273
0
    np = lh->b[lh->p + lh->pmax - 1];
274
0
    lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */
275
0
    if (lh->p == 0) {
276
0
        n = OPENSSL_realloc(lh->b,
277
0
                            (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax));
278
0
        if (n == NULL) {
279
            /* fputs("realloc error in lhash",stderr); */
280
0
            lh->error++;
281
0
            return;
282
0
        }
283
0
        lh->num_contract_reallocs++;
284
0
        lh->num_alloc_nodes /= 2;
285
0
        lh->pmax /= 2;
286
0
        lh->p = lh->pmax - 1;
287
0
        lh->b = n;
288
0
    } else
289
0
        lh->p--;
290
291
0
    lh->num_nodes--;
292
0
    lh->num_contracts++;
293
294
0
    n1 = lh->b[(int)lh->p];
295
0
    if (n1 == NULL)
296
0
        lh->b[(int)lh->p] = np;
297
0
    else {
298
0
        while (n1->next != NULL)
299
0
            n1 = n1->next;
300
0
        n1->next = np;
301
0
    }
302
0
}
303
304
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh,
305
                               const void *data, unsigned long *rhash)
306
7.53M
{
307
7.53M
    OPENSSL_LH_NODE **ret, *n1;
308
7.53M
    unsigned long hash, nn;
309
7.53M
    OPENSSL_LH_COMPFUNC cf;
310
311
7.53M
    hash = (*(lh->hash)) (data);
312
7.53M
    tsan_counter(&lh->num_hash_calls);
313
7.53M
    *rhash = hash;
314
315
7.53M
    nn = hash % lh->pmax;
316
7.53M
    if (nn < lh->p)
317
3.60M
        nn = hash % lh->num_alloc_nodes;
318
319
7.53M
    cf = lh->comp;
320
7.53M
    ret = &(lh->b[(int)nn]);
321
18.3M
    for (n1 = *ret; n1 != NULL; n1 = n1->next) {
322
15.6M
        tsan_counter(&lh->num_hash_comps);
323
15.6M
        if (n1->hash != hash) {
324
10.4M
            ret = &(n1->next);
325
10.4M
            continue;
326
10.4M
        }
327
15.6M
        tsan_counter(&lh->num_comp_calls);
328
5.13M
        if (cf(n1->data, data) == 0)
329
4.82M
            break;
330
314k
        ret = &(n1->next);
331
314k
    }
332
7.53M
    return ret;
333
7.53M
}
334
335
/*
336
 * The following hash seems to work very well on normal text strings no
337
 * collisions on /usr/dict/words and it distributes on %2^n quite well, not
338
 * as good as MD5, but still good.
339
 */
340
unsigned long OPENSSL_LH_strhash(const char *c)
341
38.4k
{
342
38.4k
    unsigned long ret = 0;
343
38.4k
    long n;
344
38.4k
    unsigned long v;
345
38.4k
    int r;
346
347
38.4k
    if ((c == NULL) || (*c == '\0'))
348
0
        return ret;
349
350
38.4k
    n = 0x100;
351
242k
    while (*c) {
352
203k
        v = n | (*c);
353
203k
        n += 0x100;
354
203k
        r = (int)((v >> 2) ^ v) & 0x0f;
355
203k
        ret = (ret << r) | (ret >> (32 - r));
356
203k
        ret &= 0xFFFFFFFFL;
357
203k
        ret ^= v * v;
358
203k
        c++;
359
203k
    }
360
38.4k
    return (ret >> 16) ^ ret;
361
38.4k
}
362
363
unsigned long openssl_lh_strcasehash(const char *c)
364
0
{
365
0
    unsigned long ret = 0;
366
0
    long n;
367
0
    unsigned long v;
368
0
    int r;
369
370
0
    if (c == NULL || *c == '\0')
371
0
        return ret;
372
373
0
    for (n = 0x100; *c != '\0'; n += 0x100) {
374
0
        v = n | ossl_tolower(*c);
375
0
        r = (int)((v >> 2) ^ v) & 0x0f;
376
0
        ret = (ret << r) | (ret >> (32 - r));
377
0
        ret &= 0xFFFFFFFFL;
378
0
        ret ^= v * v;
379
0
        c++;
380
0
    }
381
0
    return (ret >> 16) ^ ret;
382
0
}
383
384
unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh)
385
1.58k
{
386
1.58k
    return lh ? lh->num_items : 0;
387
1.58k
}
388
389
unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh)
390
0
{
391
0
    return lh->down_load;
392
0
}
393
394
void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load)
395
0
{
396
0
    lh->down_load = down_load;
397
0
}
398
399
int OPENSSL_LH_error(OPENSSL_LHASH *lh)
400
19.2k
{
401
19.2k
    return lh->error;
402
19.2k
}