Coverage Report

Created: 2025-01-16 12:49

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
346k
{
79
346k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
346k
  int ci, blkn, dctbl, actbl;
81
346k
  d_derived_tbl **pdtbl;
82
346k
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
346k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
346k
      cinfo->Ah != 0 || cinfo->Al != 0)
90
340k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
709k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
363k
    compptr = cinfo->cur_comp_info[ci];
94
363k
    dctbl = compptr->dc_tbl_no;
95
363k
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
363k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
363k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
363k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
363k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
363k
    entropy->saved.last_dc_val[ci] = 0;
104
363k
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
742k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
395k
    ci = cinfo->MCU_membership[blkn];
109
395k
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
395k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
395k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
395k
    if (compptr->component_needed) {
115
274k
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
274k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
274k
    } else {
119
121k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
121k
    }
121
395k
  }
122
123
  /* Initialize bitread state variables */
124
346k
  entropy->bitstate.bits_left = 0;
125
346k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
346k
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
346k
  entropy->restarts_to_go = cinfo->restart_interval;
130
346k
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
879k
{
144
879k
  JHUFF_TBL *htbl;
145
879k
  d_derived_tbl *dtbl;
146
879k
  int p, i, l, si, numsymbols;
147
879k
  int lookbits, ctr;
148
879k
  char huffsize[257];
149
879k
  unsigned int huffcode[257];
150
879k
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
879k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
983
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
879k
  htbl =
160
879k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
879k
  if (htbl == NULL)
162
126
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
879k
  if (*pdtbl == NULL)
166
56.6k
    *pdtbl = (d_derived_tbl *)
167
56.6k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
56.6k
                                  sizeof(d_derived_tbl));
169
879k
  dtbl = *pdtbl;
170
879k
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
879k
  p = 0;
175
14.9M
  for (l = 1; l <= 16; l++) {
176
14.0M
    i = (int)htbl->bits[l];
177
14.0M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
27.4M
    while (i--)
180
13.3M
      huffsize[p++] = (char)l;
181
14.0M
  }
182
879k
  huffsize[p] = 0;
183
879k
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
879k
  code = 0;
189
879k
  si = huffsize[0];
190
879k
  p = 0;
191
6.31M
  while (huffsize[p]) {
192
18.7M
    while (((int)huffsize[p]) == si) {
193
13.3M
      huffcode[p++] = code;
194
13.3M
      code++;
195
13.3M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
5.43M
    if (((JLONG)code) >= (((JLONG)1) << si))
200
144
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
5.43M
    code <<= 1;
202
5.43M
    si++;
203
5.43M
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
879k
  p = 0;
208
14.9M
  for (l = 1; l <= 16; l++) {
209
14.0M
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
4.61M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
4.61M
      p += htbl->bits[l];
215
4.61M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
9.44M
    } else {
217
9.44M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
9.44M
    }
219
14.0M
  }
220
879k
  dtbl->valoffset[17] = 0;
221
879k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
225M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
224M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
879k
  p = 0;
234
7.90M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
18.1M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
11.1M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
207M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
196M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
196M
        lookbits++;
242
196M
      }
243
11.1M
    }
244
7.02M
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
879k
  if (isDC) {
253
2.96M
    for (i = 0; i < numsymbols; i++) {
254
2.55M
      int sym = htbl->huffval[i];
255
2.55M
      if (sym < 0 || sym > 15)
256
607
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
2.55M
    }
258
407k
  }
259
879k
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
23.2M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
7.38M
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
7.38M
  register const JOCTET *next_input_byte = state->next_input_byte;
292
7.38M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
7.38M
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
7.38M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
18.7M
    while (bits_left < MIN_GET_BITS) {
301
16.7M
      register int c;
302
303
      /* Attempt to read a byte */
304
16.7M
      if (bytes_in_buffer == 0) {
305
3.69k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
0
          return FALSE;
307
3.69k
        next_input_byte = cinfo->src->next_input_byte;
308
3.69k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
3.69k
      }
310
16.7M
      bytes_in_buffer--;
311
16.7M
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
16.7M
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
597k
        do {
321
597k
          if (bytes_in_buffer == 0) {
322
134
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
0
              return FALSE;
324
134
            next_input_byte = cinfo->src->next_input_byte;
325
134
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
134
          }
327
597k
          bytes_in_buffer--;
328
597k
          c = *next_input_byte++;
329
597k
        } while (c == 0xFF);
330
331
551k
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
18.5k
          c = 0xFF;
334
533k
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
533k
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
533k
          goto no_more_bytes;
346
533k
        }
347
551k
      }
348
349
      /* OK, load c into get_buffer */
350
16.2M
      get_buffer = (get_buffer << 8) | c;
351
16.2M
      bits_left += 8;
352
16.2M
    } /* end while */
353
4.88M
  } else {
354
5.41M
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
5.41M
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
2.23M
      if (!cinfo->entropy->insufficient_data) {
366
554k
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
554k
        cinfo->entropy->insufficient_data = TRUE;
368
554k
      }
369
      /* Fill the buffer with zero bits */
370
2.23M
      get_buffer <<= MIN_GET_BITS - bits_left;
371
2.23M
      bits_left = MIN_GET_BITS;
372
2.23M
    }
373
5.41M
  }
374
375
  /* Unload the local registers */
376
7.38M
  state->next_input_byte = next_input_byte;
377
7.38M
  state->bytes_in_buffer = bytes_in_buffer;
378
7.38M
  state->get_buffer = get_buffer;
379
7.38M
  state->bits_left = bits_left;
380
381
7.38M
  return TRUE;
382
7.38M
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
28.2M
#define GET_BYTE { \
390
28.2M
  register int c0, c1; \
391
28.2M
  c0 = *buffer++; \
392
28.2M
  c1 = *buffer; \
393
28.2M
  /* Pre-execute most common case */ \
394
28.2M
  get_buffer = (get_buffer << 8) | c0; \
395
28.2M
  bits_left += 8; \
396
28.2M
  if (c0 == 0xFF) { \
397
2.94M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
2.94M
    buffer++; \
399
2.94M
    if (c1 != 0) { \
400
2.77M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
2.77M
      cinfo->unread_marker = c1; \
402
2.77M
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
2.77M
      buffer -= 2; \
404
2.77M
      get_buffer &= ~0xFF; \
405
2.77M
    } \
406
2.94M
  } \
407
28.2M
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
77.2M
  if (bits_left <= 16) { \
414
4.70M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
4.70M
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
3.35M
{
438
3.35M
  register int l = min_bits;
439
3.35M
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
3.35M
  CHECK_BIT_BUFFER(*state, l, return -1);
445
3.35M
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
11.5M
  while (code > htbl->maxcode[l]) {
451
8.22M
    code <<= 1;
452
8.22M
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
8.22M
    code |= GET_BITS(1);
454
8.22M
    l++;
455
8.22M
  }
456
457
  /* Unload the local registers */
458
3.35M
  state->get_buffer = get_buffer;
459
3.35M
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
3.35M
  if (l > 16) {
464
565k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
565k
    return 0;                   /* fake a zero as the safest result */
466
565k
  }
467
468
2.79M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
3.35M
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
44.2M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
44.2M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
1.24M
{
512
1.24M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
1.24M
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
1.24M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
1.24M
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
1.24M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
0
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
2.53M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
1.28M
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
1.24M
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
1.24M
  if (cinfo->unread_marker == 0)
537
31.9k
    entropy->pub.insufficient_data = FALSE;
538
539
1.24M
  return TRUE;
540
1.24M
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
768k
{
552
768k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
768k
  BITREAD_STATE_VARS;
554
768k
  int blkn;
555
768k
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
768k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
768k
  state = entropy->saved;
561
562
1.86M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
1.09M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
1.09M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
1.09M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
1.09M
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
1.09M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
1.09M
    if (s) {
573
801k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
801k
      r = GET_BITS(s);
575
801k
      s = HUFF_EXTEND(r, s);
576
801k
    }
577
578
1.09M
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
809k
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
809k
      s += state.last_dc_val[ci];
590
809k
      state.last_dc_val[ci] = s;
591
809k
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
809k
        (*block)[0] = (JCOEF)s;
594
809k
      }
595
809k
    }
596
597
1.09M
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
16.7M
      for (k = 1; k < DCTSIZE2; k++) {
602
16.5M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
16.5M
        r = s >> 4;
605
16.5M
        s &= 15;
606
607
16.5M
        if (s) {
608
15.8M
          k += r;
609
15.8M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
15.8M
          r = GET_BITS(s);
611
15.8M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
15.8M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
15.8M
        } else {
618
673k
          if (r != 15)
619
537k
            break;
620
135k
          k += 15;
621
135k
        }
622
16.5M
      }
623
624
809k
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
6.92M
      for (k = 1; k < DCTSIZE2; k++) {
629
6.80M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
6.80M
        r = s >> 4;
632
6.80M
        s &= 15;
633
634
6.80M
        if (s) {
635
6.63M
          k += r;
636
6.63M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
6.63M
          DROP_BITS(s);
638
6.63M
        } else {
639
178k
          if (r != 15)
640
171k
            break;
641
6.93k
          k += 15;
642
6.93k
        }
643
6.80M
      }
644
284k
    }
645
1.09M
  }
646
647
  /* Completed MCU, so update state */
648
768k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
768k
  entropy->saved = state;
650
768k
  return TRUE;
651
768k
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
4.71M
{
663
4.71M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
4.71M
  BITREAD_STATE_VARS;
665
4.71M
  JOCTET *buffer;
666
4.71M
  int blkn;
667
4.71M
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
4.71M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
4.71M
  buffer = (JOCTET *)br_state.next_input_byte;
673
4.71M
  state = entropy->saved;
674
675
10.0M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
5.30M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
5.30M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
5.30M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
5.30M
    register int s, k, r, l;
680
681
5.30M
    HUFF_DECODE_FAST(s, l, dctbl);
682
5.30M
    if (s) {
683
3.98M
      FILL_BIT_BUFFER_FAST
684
3.98M
      r = GET_BITS(s);
685
3.98M
      s = HUFF_EXTEND(r, s);
686
3.98M
    }
687
688
5.30M
    if (entropy->dc_needed[blkn]) {
689
3.71M
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
3.71M
      s += state.last_dc_val[ci];
694
3.71M
      state.last_dc_val[ci] = s;
695
3.71M
      if (block)
696
3.71M
        (*block)[0] = (JCOEF)s;
697
3.71M
    }
698
699
5.30M
    if (entropy->ac_needed[blkn] && block) {
700
701
27.5M
      for (k = 1; k < DCTSIZE2; k++) {
702
26.8M
        HUFF_DECODE_FAST(s, l, actbl);
703
26.8M
        r = s >> 4;
704
26.8M
        s &= 15;
705
706
26.8M
        if (s) {
707
23.5M
          k += r;
708
23.5M
          FILL_BIT_BUFFER_FAST
709
23.5M
          r = GET_BITS(s);
710
23.5M
          s = HUFF_EXTEND(r, s);
711
23.5M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
23.5M
        } else {
713
3.29M
          if (r != 15) break;
714
220k
          k += 15;
715
220k
        }
716
26.8M
      }
717
718
3.71M
    } else {
719
720
9.69M
      for (k = 1; k < DCTSIZE2; k++) {
721
9.41M
        HUFF_DECODE_FAST(s, l, actbl);
722
9.41M
        r = s >> 4;
723
9.41M
        s &= 15;
724
725
9.41M
        if (s) {
726
8.07M
          k += r;
727
8.07M
          FILL_BIT_BUFFER_FAST
728
8.07M
          DROP_BITS(s);
729
8.07M
        } else {
730
1.33M
          if (r != 15) break;
731
32.9k
          k += 15;
732
32.9k
        }
733
9.41M
      }
734
1.58M
    }
735
5.30M
  }
736
737
4.71M
  if (cinfo->unread_marker != 0) {
738
225k
    cinfo->unread_marker = 0;
739
225k
    return FALSE;
740
225k
  }
741
742
4.48M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
4.48M
  br_state.next_input_byte = buffer;
744
4.48M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
4.48M
  entropy->saved = state;
746
4.48M
  return TRUE;
747
4.71M
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
21.3M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
21.3M
{
770
21.3M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
21.3M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
21.3M
  if (cinfo->restart_interval) {
775
4.28M
    if (entropy->restarts_to_go == 0)
776
1.24M
      if (!process_restart(cinfo))
777
0
        return FALSE;
778
4.28M
    usefast = 0;
779
4.28M
  }
780
781
21.3M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
21.3M
      cinfo->unread_marker != 0)
783
16.4M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
21.3M
  if (!entropy->pub.insufficient_data) {
789
790
5.25M
    if (usefast) {
791
4.71M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
4.71M
    } else {
793
768k
use_slow:
794
768k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
768k
    }
796
797
5.25M
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
21.3M
  if (cinfo->restart_interval)
801
4.28M
    entropy->restarts_to_go--;
802
803
21.3M
  return TRUE;
804
21.3M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
15.1k
{
814
15.1k
  huff_entropy_ptr entropy;
815
15.1k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
15.1k
  std_huff_tables((j_common_ptr)cinfo);
822
823
15.1k
  entropy = (huff_entropy_ptr)
824
15.1k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
15.1k
                                sizeof(huff_entropy_decoder));
826
15.1k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
15.1k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
15.1k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
75.5k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
60.4k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
60.4k
  }
834
15.1k
}