Coverage Report

Created: 2025-03-12 04:15

/src/libpcap/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
#include <limits.h> /* for SIZE_MAX */
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
#include "diag-control.h"
43
44
#ifdef HAVE_OS_PROTO_H
45
#include "os-proto.h"
46
#endif
47
48
#ifdef BDEBUG
49
/*
50
 * The internal "debug printout" flag for the filter expression optimizer.
51
 * The code to print that stuff is present only if BDEBUG is defined, so
52
 * the flag, and the routine to set it, are defined only if BDEBUG is
53
 * defined.
54
 */
55
static int pcap_optimizer_debug;
56
57
/*
58
 * Routine to set that flag.
59
 *
60
 * This is intended for libpcap developers, not for general use.
61
 * If you want to set these in a program, you'll have to declare this
62
 * routine yourself, with the appropriate DLL import attribute on Windows;
63
 * it's not declared in any header file, and won't be declared in any
64
 * header file provided by libpcap.
65
 */
66
PCAP_API void pcap_set_optimizer_debug(int value);
67
68
PCAP_API_DEF void
69
pcap_set_optimizer_debug(int value)
70
{
71
  pcap_optimizer_debug = value;
72
}
73
74
/*
75
 * The internal "print dot graph" flag for the filter expression optimizer.
76
 * The code to print that stuff is present only if BDEBUG is defined, so
77
 * the flag, and the routine to set it, are defined only if BDEBUG is
78
 * defined.
79
 */
80
static int pcap_print_dot_graph;
81
82
/*
83
 * Routine to set that flag.
84
 *
85
 * This is intended for libpcap developers, not for general use.
86
 * If you want to set these in a program, you'll have to declare this
87
 * routine yourself, with the appropriate DLL import attribute on Windows;
88
 * it's not declared in any header file, and won't be declared in any
89
 * header file provided by libpcap.
90
 */
91
PCAP_API void pcap_set_print_dot_graph(int value);
92
93
PCAP_API_DEF void
94
pcap_set_print_dot_graph(int value)
95
{
96
  pcap_print_dot_graph = value;
97
}
98
99
#endif
100
101
/*
102
 * lowest_set_bit().
103
 *
104
 * Takes a 32-bit integer as an argument.
105
 *
106
 * If handed a non-zero value, returns the index of the lowest set bit,
107
 * counting upwards from zero.
108
 *
109
 * If handed zero, the results are platform- and compiler-dependent.
110
 * Keep it out of the light, don't give it any water, don't feed it
111
 * after midnight, and don't pass zero to it.
112
 *
113
 * This is the same as the count of trailing zeroes in the word.
114
 */
115
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116
  /*
117
   * GCC 3.4 and later; we have __builtin_ctz().
118
   */
119
108k
  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120
#elif defined(_MSC_VER)
121
  /*
122
   * Visual Studio; we support only 2005 and later, so use
123
   * _BitScanForward().
124
   */
125
#include <intrin.h>
126
127
#ifndef __clang__
128
#pragma intrinsic(_BitScanForward)
129
#endif
130
131
static __forceinline u_int
132
lowest_set_bit(int mask)
133
{
134
  unsigned long bit;
135
136
  /*
137
   * Don't sign-extend mask if long is longer than int.
138
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139
   */
140
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141
    abort();  /* mask is zero */
142
  return (u_int)bit;
143
}
144
#elif defined(MSDOS) && defined(__DJGPP__)
145
  /*
146
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147
   * we've already included.
148
   */
149
  #define lowest_set_bit(mask)  ((u_int)(ffs((mask)) - 1))
150
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151
  /*
152
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153
   * or some other platform (UN*X conforming to a sufficient recent version
154
   * of the Single UNIX Specification).
155
   */
156
  #include <strings.h>
157
  #define lowest_set_bit(mask)  (u_int)((ffs((mask)) - 1))
158
#else
159
/*
160
 * None of the above.
161
 * Use a perfect-hash-function-based function.
162
 */
163
static u_int
164
lowest_set_bit(int mask)
165
{
166
  unsigned int v = (unsigned int)mask;
167
168
  static const u_int MultiplyDeBruijnBitPosition[32] = {
169
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171
  };
172
173
  /*
174
   * We strip off all but the lowermost set bit (v & ~v),
175
   * and perform a minimal perfect hash on it to look up the
176
   * number of low-order zero bits in a table.
177
   *
178
   * See:
179
   *
180
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181
   *
182
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
183
   */
184
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185
}
186
#endif
187
188
/*
189
 * Represents a deleted instruction.
190
 */
191
3.34M
#define NOP -1
192
193
/*
194
 * Register numbers for use-def values.
195
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196
 * location.  A_ATOM is the accumulator and X_ATOM is the index
197
 * register.
198
 */
199
1.46M
#define A_ATOM BPF_MEMWORDS
200
320k
#define X_ATOM (BPF_MEMWORDS+1)
201
202
/*
203
 * This define is used to represent *both* the accumulator and
204
 * x register in use-def computations.
205
 * Currently, the use-def code assumes only one definition per instruction.
206
 */
207
576k
#define AX_ATOM N_ATOMS
208
209
/*
210
 * These data structures are used in a Cocke and Shwarz style
211
 * value numbering scheme.  Since the flowgraph is acyclic,
212
 * exit values can be propagated from a node's predecessors
213
 * provided it is uniquely defined.
214
 */
215
struct valnode {
216
  int code;
217
  bpf_u_int32 v0, v1;
218
  int val;    /* the value number */
219
  struct valnode *next;
220
};
221
222
/* Integer constants mapped with the load immediate opcode. */
223
148k
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225
struct vmapinfo {
226
  int is_const;
227
  bpf_u_int32 const_val;
228
};
229
230
typedef struct {
231
  /*
232
   * Place to longjmp to on an error.
233
   */
234
  jmp_buf top_ctx;
235
236
  /*
237
   * The buffer into which to put error message.
238
   */
239
  char *errbuf;
240
241
  /*
242
   * A flag to indicate that further optimization is needed.
243
   * Iterative passes are continued until a given pass yields no
244
   * code simplification or branch movement.
245
   */
246
  int done;
247
248
  /*
249
   * XXX - detect loops that do nothing but repeated AND/OR pullups
250
   * and edge moves.
251
   * If 100 passes in a row do nothing but that, treat that as a
252
   * sign that we're in a loop that just shuffles in a cycle in
253
   * which each pass just shuffles the code and we eventually
254
   * get back to the original configuration.
255
   *
256
   * XXX - we need a non-heuristic way of detecting, or preventing,
257
   * such a cycle.
258
   */
259
  int non_branch_movement_performed;
260
261
  u_int n_blocks;   /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262
  struct block **blocks;
263
  u_int n_edges;    /* twice n_blocks, so guaranteed to be > 0 */
264
  struct edge **edges;
265
266
  /*
267
   * A bit vector set representation of the dominators.
268
   * We round up the set size to the next power of two.
269
   */
270
  u_int nodewords;  /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271
  u_int edgewords;  /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272
  struct block **levels;
273
  bpf_u_int32 *space;
274
275
724k
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276
/*
277
 * True if a is in uset {p}
278
 */
279
38.5k
#define SET_MEMBER(p, a) \
280
38.5k
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282
/*
283
 * Add 'a' to uset p.
284
 */
285
266k
#define SET_INSERT(p, a) \
286
266k
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288
/*
289
 * Delete 'a' from uset p.
290
 */
291
#define SET_DELETE(p, a) \
292
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294
/*
295
 * a := a intersect b
296
 * n must be guaranteed to be > 0
297
 */
298
257k
#define SET_INTERSECT(a, b, n)\
299
257k
{\
300
257k
  register bpf_u_int32 *_x = a, *_y = b;\
301
257k
  register u_int _n = n;\
302
327k
  do *_x++ &= *_y++; while (--_n != 0);\
303
257k
}
304
305
/*
306
 * a := a - b
307
 * n must be guaranteed to be > 0
308
 */
309
#define SET_SUBTRACT(a, b, n)\
310
{\
311
  register bpf_u_int32 *_x = a, *_y = b;\
312
  register u_int _n = n;\
313
  do *_x++ &=~ *_y++; while (--_n != 0);\
314
}
315
316
/*
317
 * a := a union b
318
 * n must be guaranteed to be > 0
319
 */
320
85.6k
#define SET_UNION(a, b, n)\
321
85.6k
{\
322
85.6k
  register bpf_u_int32 *_x = a, *_y = b;\
323
85.6k
  register u_int _n = n;\
324
88.7k
  do *_x++ |= *_y++; while (--_n != 0);\
325
85.6k
}
326
327
  uset all_dom_sets;
328
  uset all_closure_sets;
329
  uset all_edge_sets;
330
331
218k
#define MODULUS 213
332
  struct valnode *hashtbl[MODULUS];
333
  bpf_u_int32 curval;
334
  bpf_u_int32 maxval;
335
336
  struct vmapinfo *vmap;
337
  struct valnode *vnode_base;
338
  struct valnode *next_vnode;
339
} opt_state_t;
340
341
typedef struct {
342
  /*
343
   * Place to longjmp to on an error.
344
   */
345
  jmp_buf top_ctx;
346
347
  /*
348
   * The buffer into which to put error message.
349
   */
350
  char *errbuf;
351
352
  /*
353
   * Some pointers used to convert the basic block form of the code,
354
   * into the array form that BPF requires.  'fstart' will point to
355
   * the malloc'd array while 'ftail' is used during the recursive
356
   * traversal.
357
   */
358
  struct bpf_insn *fstart;
359
  struct bpf_insn *ftail;
360
} conv_state_t;
361
362
static void opt_init(opt_state_t *, struct icode *);
363
static void opt_cleanup(opt_state_t *);
364
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365
    PCAP_PRINTFLIKE(2, 3);
366
367
static void intern_blocks(opt_state_t *, struct icode *);
368
369
static void find_inedges(opt_state_t *, struct block *);
370
#ifdef BDEBUG
371
static void opt_dump(opt_state_t *, struct icode *);
372
#endif
373
374
#ifndef MAX
375
42.8k
#define MAX(a,b) ((a)>(b)?(a):(b))
376
#endif
377
378
static void
379
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380
100k
{
381
100k
  int level;
382
383
100k
  if (isMarked(ic, b))
384
33.6k
    return;
385
386
66.5k
  Mark(ic, b);
387
66.5k
  b->link = 0;
388
389
66.5k
  if (JT(b)) {
390
42.8k
    find_levels_r(opt_state, ic, JT(b));
391
42.8k
    find_levels_r(opt_state, ic, JF(b));
392
42.8k
    level = MAX(JT(b)->level, JF(b)->level) + 1;
393
42.8k
  } else
394
23.6k
    level = 0;
395
66.5k
  b->level = level;
396
66.5k
  b->link = opt_state->levels[level];
397
66.5k
  opt_state->levels[level] = b;
398
66.5k
}
399
400
/*
401
 * Level graph.  The levels go from 0 at the leaves to
402
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403
 * first node of the level list, whose elements are linked
404
 * with the 'link' field of the struct block.
405
 */
406
static void
407
find_levels(opt_state_t *opt_state, struct icode *ic)
408
14.4k
{
409
14.4k
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410
14.4k
  unMarkAll(ic);
411
14.4k
  find_levels_r(opt_state, ic, ic->root);
412
14.4k
}
413
414
/*
415
 * Find dominator relationships.
416
 * Assumes graph has been leveled.
417
 */
418
static void
419
find_dom(opt_state_t *opt_state, struct block *root)
420
14.4k
{
421
14.4k
  u_int i;
422
14.4k
  int level;
423
14.4k
  struct block *b;
424
14.4k
  bpf_u_int32 *x;
425
426
  /*
427
   * Initialize sets to contain all nodes.
428
   */
429
14.4k
  x = opt_state->all_dom_sets;
430
  /*
431
   * In opt_init(), we've made sure the product doesn't overflow.
432
   */
433
14.4k
  i = opt_state->n_blocks * opt_state->nodewords;
434
128k
  while (i != 0) {
435
113k
    --i;
436
113k
    *x++ = 0xFFFFFFFFU;
437
113k
  }
438
  /* Root starts off empty. */
439
29.0k
  for (i = opt_state->nodewords; i != 0;) {
440
14.6k
    --i;
441
14.6k
    root->dom[i] = 0;
442
14.6k
  }
443
444
  /* root->level is the highest level no found. */
445
71.7k
  for (level = root->level; level >= 0; --level) {
446
123k
    for (b = opt_state->levels[level]; b; b = b->link) {
447
66.5k
      SET_INSERT(b->dom, b->id);
448
66.5k
      if (JT(b) == 0)
449
23.6k
        continue;
450
42.8k
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451
42.8k
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452
42.8k
    }
453
57.2k
  }
454
14.4k
}
455
456
static void
457
propedom(opt_state_t *opt_state, struct edge *ep)
458
133k
{
459
133k
  SET_INSERT(ep->edom, ep->id);
460
133k
  if (ep->succ) {
461
85.6k
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462
85.6k
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463
85.6k
  }
464
133k
}
465
466
/*
467
 * Compute edge dominators.
468
 * Assumes graph has been leveled and predecessors established.
469
 */
470
static void
471
find_edom(opt_state_t *opt_state, struct block *root)
472
14.4k
{
473
14.4k
  u_int i;
474
14.4k
  uset x;
475
14.4k
  int level;
476
14.4k
  struct block *b;
477
478
14.4k
  x = opt_state->all_edge_sets;
479
  /*
480
   * In opt_init(), we've made sure the product doesn't overflow.
481
   */
482
333k
  for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483
319k
    --i;
484
319k
    x[i] = 0xFFFFFFFFU;
485
319k
  }
486
487
  /* root->level is the highest level no found. */
488
14.4k
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489
14.4k
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490
71.7k
  for (level = root->level; level >= 0; --level) {
491
123k
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
492
66.5k
      propedom(opt_state, &b->et);
493
66.5k
      propedom(opt_state, &b->ef);
494
66.5k
    }
495
57.2k
  }
496
14.4k
}
497
498
/*
499
 * Find the backwards transitive closure of the flow graph.  These sets
500
 * are backwards in the sense that we find the set of nodes that reach
501
 * a given node, not the set of nodes that can be reached by a node.
502
 *
503
 * Assumes graph has been leveled.
504
 */
505
static void
506
find_closure(opt_state_t *opt_state, struct block *root)
507
14.4k
{
508
14.4k
  int level;
509
14.4k
  struct block *b;
510
511
  /*
512
   * Initialize sets to contain no nodes.
513
   */
514
14.4k
  memset((char *)opt_state->all_closure_sets, 0,
515
14.4k
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517
  /* root->level is the highest level no found. */
518
71.7k
  for (level = root->level; level >= 0; --level) {
519
123k
    for (b = opt_state->levels[level]; b; b = b->link) {
520
66.5k
      SET_INSERT(b->closure, b->id);
521
66.5k
      if (JT(b) == 0)
522
23.6k
        continue;
523
42.8k
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524
42.8k
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525
42.8k
    }
526
57.2k
  }
527
14.4k
}
528
529
/*
530
 * Return the register number that is used by s.
531
 *
532
 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533
 * are used, the scratch memory location's number if a scratch memory
534
 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535
 *
536
 * The implementation should probably change to an array access.
537
 */
538
static int
539
atomuse(struct stmt *s)
540
906k
{
541
906k
  register int c = s->code;
542
543
906k
  if (c == NOP)
544
182k
    return -1;
545
546
723k
  switch (BPF_CLASS(c)) {
547
548
14.2k
  case BPF_RET:
549
14.2k
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550
14.2k
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552
283k
  case BPF_LD:
553
326k
  case BPF_LDX:
554
    /*
555
     * As there are fewer than 2^31 memory locations,
556
     * s->k should be convertible to int without problems.
557
     */
558
326k
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559
326k
      (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561
149k
  case BPF_ST:
562
149k
    return A_ATOM;
563
564
0
  case BPF_STX:
565
0
    return X_ATOM;
566
567
84.6k
  case BPF_JMP:
568
186k
  case BPF_ALU:
569
186k
    if (BPF_SRC(c) == BPF_X)
570
66.6k
      return AX_ATOM;
571
119k
    return A_ATOM;
572
573
46.9k
  case BPF_MISC:
574
46.9k
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575
723k
  }
576
0
  abort();
577
  /* NOTREACHED */
578
723k
}
579
580
/*
581
 * Return the register number that is defined by 's'.  We assume that
582
 * a single stmt cannot define more than one register.  If no register
583
 * is defined, return -1.
584
 *
585
 * The implementation should probably change to an array access.
586
 */
587
static int
588
atomdef(struct stmt *s)
589
863k
{
590
863k
  if (s->code == NOP)
591
182k
    return -1;
592
593
681k
  switch (BPF_CLASS(s->code)) {
594
595
283k
  case BPF_LD:
596
385k
  case BPF_ALU:
597
385k
    return A_ATOM;
598
599
43.3k
  case BPF_LDX:
600
43.3k
    return X_ATOM;
601
602
149k
  case BPF_ST:
603
149k
  case BPF_STX:
604
149k
    return s->k;
605
606
46.9k
  case BPF_MISC:
607
46.9k
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608
681k
  }
609
56.0k
  return -1;
610
681k
}
611
612
/*
613
 * Compute the sets of registers used, defined, and killed by 'b'.
614
 *
615
 * "Used" means that a statement in 'b' uses the register before any
616
 * statement in 'b' defines it, i.e. it uses the value left in
617
 * that register by a predecessor block of this block.
618
 * "Defined" means that a statement in 'b' defines it.
619
 * "Killed" means that a statement in 'b' defines it before any
620
 * statement in 'b' uses it, i.e. it kills the value left in that
621
 * register by a predecessor block of this block.
622
 */
623
static void
624
compute_local_ud(struct block *b)
625
66.5k
{
626
66.5k
  struct slist *s;
627
66.5k
  atomset def = 0, use = 0, killed = 0;
628
66.5k
  int atom;
629
630
559k
  for (s = b->stmts; s; s = s->next) {
631
492k
    if (s->s.code == NOP)
632
167k
      continue;
633
325k
    atom = atomuse(&s->s);
634
325k
    if (atom >= 0) {
635
230k
      if (atom == AX_ATOM) {
636
33.0k
        if (!ATOMELEM(def, X_ATOM))
637
0
          use |= ATOMMASK(X_ATOM);
638
33.0k
        if (!ATOMELEM(def, A_ATOM))
639
0
          use |= ATOMMASK(A_ATOM);
640
33.0k
      }
641
197k
      else if (atom < N_ATOMS) {
642
197k
        if (!ATOMELEM(def, atom))
643
449
          use |= ATOMMASK(atom);
644
197k
      }
645
0
      else
646
0
        abort();
647
230k
    }
648
325k
    atom = atomdef(&s->s);
649
325k
    if (atom >= 0) {
650
325k
      if (!ATOMELEM(use, atom))
651
325k
        killed |= ATOMMASK(atom);
652
325k
      def |= ATOMMASK(atom);
653
325k
    }
654
325k
  }
655
66.5k
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
656
    /*
657
     * XXX - what about RET?
658
     */
659
42.8k
    atom = atomuse(&b->s);
660
42.8k
    if (atom >= 0) {
661
42.8k
      if (atom == AX_ATOM) {
662
5.77k
        if (!ATOMELEM(def, X_ATOM))
663
123
          use |= ATOMMASK(X_ATOM);
664
5.77k
        if (!ATOMELEM(def, A_ATOM))
665
123
          use |= ATOMMASK(A_ATOM);
666
5.77k
      }
667
37.0k
      else if (atom < N_ATOMS) {
668
37.0k
        if (!ATOMELEM(def, atom))
669
445
          use |= ATOMMASK(atom);
670
37.0k
      }
671
0
      else
672
0
        abort();
673
42.8k
    }
674
42.8k
  }
675
676
66.5k
  b->def = def;
677
66.5k
  b->kill = killed;
678
66.5k
  b->in_use = use;
679
66.5k
}
680
681
/*
682
 * Assume graph is already leveled.
683
 */
684
static void
685
find_ud(opt_state_t *opt_state, struct block *root)
686
14.4k
{
687
14.4k
  int i, maxlevel;
688
14.4k
  struct block *p;
689
690
  /*
691
   * root->level is the highest level no found;
692
   * count down from there.
693
   */
694
14.4k
  maxlevel = root->level;
695
71.7k
  for (i = maxlevel; i >= 0; --i)
696
123k
    for (p = opt_state->levels[i]; p; p = p->link) {
697
66.5k
      compute_local_ud(p);
698
66.5k
      p->out_use = 0;
699
66.5k
    }
700
701
57.2k
  for (i = 1; i <= maxlevel; ++i) {
702
85.6k
    for (p = opt_state->levels[i]; p; p = p->link) {
703
42.8k
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
704
42.8k
      p->in_use |= p->out_use &~ p->kill;
705
42.8k
    }
706
42.7k
  }
707
14.4k
}
708
static void
709
init_val(opt_state_t *opt_state)
710
14.4k
{
711
14.4k
  opt_state->curval = 0;
712
14.4k
  opt_state->next_vnode = opt_state->vnode_base;
713
14.4k
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714
14.4k
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715
14.4k
}
716
717
/*
718
 * Because we really don't have an IR, this stuff is a little messy.
719
 *
720
 * This routine looks in the table of existing value number for a value
721
 * with generated from an operation with the specified opcode and
722
 * the specified values.  If it finds it, it returns its value number,
723
 * otherwise it makes a new entry in the table and returns the
724
 * value number of that entry.
725
 */
726
static bpf_u_int32
727
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728
218k
{
729
218k
  u_int hash;
730
218k
  bpf_u_int32 val;
731
218k
  struct valnode *p;
732
733
218k
  hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734
218k
  hash %= MODULUS;
735
736
226k
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
737
86.3k
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
738
78.2k
      return p->val;
739
740
  /*
741
   * Not found.  Allocate a new value, and assign it a new
742
   * value number.
743
   *
744
   * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745
   * increment it before using it as the new value number, which
746
   * means we never assign VAL_UNKNOWN.
747
   *
748
   * XXX - unless we overflow, but we probably won't have 2^32-1
749
   * values; we treat 32 bits as effectively infinite.
750
   */
751
140k
  val = ++opt_state->curval;
752
140k
  if (BPF_MODE(code) == BPF_IMM &&
753
140k
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754
86.1k
    opt_state->vmap[val].const_val = v0;
755
86.1k
    opt_state->vmap[val].is_const = 1;
756
86.1k
  }
757
140k
  p = opt_state->next_vnode++;
758
140k
  p->val = val;
759
140k
  p->code = code;
760
140k
  p->v0 = v0;
761
140k
  p->v1 = v1;
762
140k
  p->next = opt_state->hashtbl[hash];
763
140k
  opt_state->hashtbl[hash] = p;
764
765
140k
  return val;
766
218k
}
767
768
static inline void
769
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770
266k
{
771
266k
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
772
18.8k
    s->code = NOP;
773
247k
  else
774
247k
    *valp = newval;
775
266k
}
776
777
/*
778
 * Do constant-folding on binary operators.
779
 * (Unary operators are handled elsewhere.)
780
 */
781
static void
782
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783
7.32k
{
784
7.32k
  bpf_u_int32 a, b;
785
786
7.32k
  a = opt_state->vmap[v0].const_val;
787
7.32k
  b = opt_state->vmap[v1].const_val;
788
789
7.32k
  switch (BPF_OP(s->code)) {
790
807
  case BPF_ADD:
791
807
    a += b;
792
807
    break;
793
794
298
  case BPF_SUB:
795
298
    a -= b;
796
298
    break;
797
798
537
  case BPF_MUL:
799
537
    a *= b;
800
537
    break;
801
802
369
  case BPF_DIV:
803
369
    if (b == 0)
804
11
      opt_error(opt_state, "division by zero");
805
358
    a /= b;
806
358
    break;
807
808
1.32k
  case BPF_MOD:
809
1.32k
    if (b == 0)
810
100
      opt_error(opt_state, "modulus by zero");
811
1.22k
    a %= b;
812
1.22k
    break;
813
814
3.07k
  case BPF_AND:
815
3.07k
    a &= b;
816
3.07k
    break;
817
818
764
  case BPF_OR:
819
764
    a |= b;
820
764
    break;
821
822
102
  case BPF_XOR:
823
102
    a ^= b;
824
102
    break;
825
826
29
  case BPF_LSH:
827
    /*
828
     * A left shift of more than the width of the type
829
     * is undefined in C; we'll just treat it as shifting
830
     * all the bits out.
831
     *
832
     * XXX - the BPF interpreter doesn't check for this,
833
     * so its behavior is dependent on the behavior of
834
     * the processor on which it's running.  There are
835
     * processors on which it shifts all the bits out
836
     * and processors on which it does no shift.
837
     */
838
29
    if (b < 32)
839
29
      a <<= b;
840
0
    else
841
0
      a = 0;
842
29
    break;
843
844
21
  case BPF_RSH:
845
    /*
846
     * A right shift of more than the width of the type
847
     * is undefined in C; we'll just treat it as shifting
848
     * all the bits out.
849
     *
850
     * XXX - the BPF interpreter doesn't check for this,
851
     * so its behavior is dependent on the behavior of
852
     * the processor on which it's running.  There are
853
     * processors on which it shifts all the bits out
854
     * and processors on which it does no shift.
855
     */
856
21
    if (b < 32)
857
21
      a >>= b;
858
0
    else
859
0
      a = 0;
860
21
    break;
861
862
0
  default:
863
0
    abort();
864
7.32k
  }
865
7.21k
  s->k = a;
866
7.21k
  s->code = BPF_LD|BPF_IMM;
867
  /*
868
   * XXX - optimizer loop detection.
869
   */
870
7.21k
  opt_state->non_branch_movement_performed = 1;
871
7.21k
  opt_state->done = 0;
872
7.21k
}
873
874
static inline struct slist *
875
this_op(struct slist *s)
876
603k
{
877
784k
  while (s != 0 && s->s.code == NOP)
878
181k
    s = s->next;
879
603k
  return s;
880
603k
}
881
882
static void
883
opt_not(struct block *b)
884
0
{
885
0
  struct block *tmp = JT(b);
886
887
0
  JT(b) = JF(b);
888
0
  JF(b) = tmp;
889
0
}
890
891
static void
892
opt_peep(opt_state_t *opt_state, struct block *b)
893
56.0k
{
894
56.0k
  struct slist *s;
895
56.0k
  struct slist *next, *last;
896
56.0k
  bpf_u_int32 val;
897
898
56.0k
  s = b->stmts;
899
56.0k
  if (s == 0)
900
14.5k
    return;
901
902
41.4k
  last = s;
903
302k
  for (/*empty*/; /*empty*/; s = next) {
904
    /*
905
     * Skip over nops.
906
     */
907
302k
    s = this_op(s);
908
302k
    if (s == 0)
909
991
      break;  /* nothing left in the block */
910
911
    /*
912
     * Find the next real instruction after that one
913
     * (skipping nops).
914
     */
915
301k
    next = this_op(s->next);
916
301k
    if (next == 0)
917
40.4k
      break;  /* no next instruction */
918
260k
    last = next;
919
920
    /*
921
     * st  M[k] --> st  M[k]
922
     * ldx M[k]   tax
923
     */
924
260k
    if (s->s.code == BPF_ST &&
925
260k
        next->s.code == (BPF_LDX|BPF_MEM) &&
926
260k
        s->s.k == next->s.k) {
927
      /*
928
       * XXX - optimizer loop detection.
929
       */
930
11.1k
      opt_state->non_branch_movement_performed = 1;
931
11.1k
      opt_state->done = 0;
932
11.1k
      next->s.code = BPF_MISC|BPF_TAX;
933
11.1k
    }
934
    /*
935
     * ld  #k --> ldx  #k
936
     * tax      txa
937
     */
938
260k
    if (s->s.code == (BPF_LD|BPF_IMM) &&
939
260k
        next->s.code == (BPF_MISC|BPF_TAX)) {
940
7.59k
      s->s.code = BPF_LDX|BPF_IMM;
941
7.59k
      next->s.code = BPF_MISC|BPF_TXA;
942
      /*
943
       * XXX - optimizer loop detection.
944
       */
945
7.59k
      opt_state->non_branch_movement_performed = 1;
946
7.59k
      opt_state->done = 0;
947
7.59k
    }
948
    /*
949
     * This is an ugly special case, but it happens
950
     * when you say tcp[k] or udp[k] where k is a constant.
951
     */
952
260k
    if (s->s.code == (BPF_LD|BPF_IMM)) {
953
56.1k
      struct slist *add, *tax, *ild;
954
955
      /*
956
       * Check that X isn't used on exit from this
957
       * block (which the optimizer might cause).
958
       * We know the code generator won't generate
959
       * any local dependencies.
960
       */
961
56.1k
      if (ATOMELEM(b->out_use, X_ATOM))
962
158
        continue;
963
964
      /*
965
       * Check that the instruction following the ldi
966
       * is an addx, or it's an ldxms with an addx
967
       * following it (with 0 or more nops between the
968
       * ldxms and addx).
969
       */
970
55.9k
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971
55.9k
        add = next;
972
0
      else
973
0
        add = this_op(next->next);
974
55.9k
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975
55.9k
        continue;
976
977
      /*
978
       * Check that a tax follows that (with 0 or more
979
       * nops between them).
980
       */
981
0
      tax = this_op(add->next);
982
0
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983
0
        continue;
984
985
      /*
986
       * Check that an ild follows that (with 0 or more
987
       * nops between them).
988
       */
989
0
      ild = this_op(tax->next);
990
0
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991
0
          BPF_MODE(ild->s.code) != BPF_IND)
992
0
        continue;
993
      /*
994
       * We want to turn this sequence:
995
       *
996
       * (004) ldi     #0x2   {s}
997
       * (005) ldxms   [14]   {next}  -- optional
998
       * (006) addx     {add}
999
       * (007) tax      {tax}
1000
       * (008) ild     [x+0]    {ild}
1001
       *
1002
       * into this sequence:
1003
       *
1004
       * (004) nop
1005
       * (005) ldxms   [14]
1006
       * (006) nop
1007
       * (007) nop
1008
       * (008) ild     [x+2]
1009
       *
1010
       * XXX We need to check that X is not
1011
       * subsequently used, because we want to change
1012
       * what'll be in it after this sequence.
1013
       *
1014
       * We know we can eliminate the accumulator
1015
       * modifications earlier in the sequence since
1016
       * it is defined by the last stmt of this sequence
1017
       * (i.e., the last statement of the sequence loads
1018
       * a value into the accumulator, so we can eliminate
1019
       * earlier operations on the accumulator).
1020
       */
1021
0
      ild->s.k += s->s.k;
1022
0
      s->s.code = NOP;
1023
0
      add->s.code = NOP;
1024
0
      tax->s.code = NOP;
1025
      /*
1026
       * XXX - optimizer loop detection.
1027
       */
1028
0
      opt_state->non_branch_movement_performed = 1;
1029
0
      opt_state->done = 0;
1030
0
    }
1031
260k
  }
1032
  /*
1033
   * If the comparison at the end of a block is an equality
1034
   * comparison against a constant, and nobody uses the value
1035
   * we leave in the A register at the end of a block, and
1036
   * the operation preceding the comparison is an arithmetic
1037
   * operation, we can sometime optimize it away.
1038
   */
1039
41.4k
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040
41.4k
      !ATOMELEM(b->out_use, A_ATOM)) {
1041
    /*
1042
     * We can optimize away certain subtractions of the
1043
     * X register.
1044
     */
1045
30.9k
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046
1.76k
      val = b->val[X_ATOM];
1047
1.76k
      if (opt_state->vmap[val].is_const) {
1048
        /*
1049
         * If we have a subtract to do a comparison,
1050
         * and the X register is a known constant,
1051
         * we can merge this value into the
1052
         * comparison:
1053
         *
1054
         * sub x  ->  nop
1055
         * jeq #y jeq #(x+y)
1056
         */
1057
1.30k
        b->s.k += opt_state->vmap[val].const_val;
1058
1.30k
        last->s.code = NOP;
1059
        /*
1060
         * XXX - optimizer loop detection.
1061
         */
1062
1.30k
        opt_state->non_branch_movement_performed = 1;
1063
1.30k
        opt_state->done = 0;
1064
1.30k
      } else if (b->s.k == 0) {
1065
        /*
1066
         * If the X register isn't a constant,
1067
         * and the comparison in the test is
1068
         * against 0, we can compare with the
1069
         * X register, instead:
1070
         *
1071
         * sub x  ->  nop
1072
         * jeq #0 jeq x
1073
         */
1074
457
        last->s.code = NOP;
1075
457
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076
        /*
1077
         * XXX - optimizer loop detection.
1078
         */
1079
457
        opt_state->non_branch_movement_performed = 1;
1080
457
        opt_state->done = 0;
1081
457
      }
1082
1.76k
    }
1083
    /*
1084
     * Likewise, a constant subtract can be simplified:
1085
     *
1086
     * sub #x ->  nop
1087
     * jeq #y ->  jeq #(x+y)
1088
     */
1089
29.1k
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090
0
      last->s.code = NOP;
1091
0
      b->s.k += last->s.k;
1092
      /*
1093
       * XXX - optimizer loop detection.
1094
       */
1095
0
      opt_state->non_branch_movement_performed = 1;
1096
0
      opt_state->done = 0;
1097
0
    }
1098
    /*
1099
     * And, similarly, a constant AND can be simplified
1100
     * if we're testing against 0, i.e.:
1101
     *
1102
     * and #k nop
1103
     * jeq #0  -> jset #k
1104
     */
1105
29.1k
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106
29.1k
        b->s.k == 0) {
1107
0
      b->s.k = last->s.k;
1108
0
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109
0
      last->s.code = NOP;
1110
      /*
1111
       * XXX - optimizer loop detection.
1112
       */
1113
0
      opt_state->non_branch_movement_performed = 1;
1114
0
      opt_state->done = 0;
1115
0
      opt_not(b);
1116
0
    }
1117
30.9k
  }
1118
  /*
1119
   * jset #0        ->   never
1120
   * jset #ffffffff ->   always
1121
   */
1122
41.4k
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123
0
    if (b->s.k == 0)
1124
0
      JT(b) = JF(b);
1125
0
    if (b->s.k == 0xffffffffU)
1126
0
      JF(b) = JT(b);
1127
0
  }
1128
  /*
1129
   * If we're comparing against the index register, and the index
1130
   * register is a known constant, we can just compare against that
1131
   * constant.
1132
   */
1133
41.4k
  val = b->val[X_ATOM];
1134
41.4k
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135
1.94k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1136
1.94k
    b->s.code &= ~BPF_X;
1137
1.94k
    b->s.k = v;
1138
1.94k
  }
1139
  /*
1140
   * If the accumulator is a known constant, we can compute the
1141
   * comparison result.
1142
   */
1143
41.4k
  val = b->val[A_ATOM];
1144
41.4k
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145
8.76k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1146
8.76k
    switch (BPF_OP(b->s.code)) {
1147
1148
4.78k
    case BPF_JEQ:
1149
4.78k
      v = v == b->s.k;
1150
4.78k
      break;
1151
1152
1.66k
    case BPF_JGT:
1153
1.66k
      v = v > b->s.k;
1154
1.66k
      break;
1155
1156
2.31k
    case BPF_JGE:
1157
2.31k
      v = v >= b->s.k;
1158
2.31k
      break;
1159
1160
0
    case BPF_JSET:
1161
0
      v &= b->s.k;
1162
0
      break;
1163
1164
0
    default:
1165
0
      abort();
1166
8.76k
    }
1167
8.76k
    if (JF(b) != JT(b)) {
1168
      /*
1169
       * XXX - optimizer loop detection.
1170
       */
1171
3.55k
      opt_state->non_branch_movement_performed = 1;
1172
3.55k
      opt_state->done = 0;
1173
3.55k
    }
1174
8.76k
    if (v)
1175
2.44k
      JF(b) = JT(b);
1176
6.31k
    else
1177
6.31k
      JT(b) = JF(b);
1178
8.76k
  }
1179
41.4k
}
1180
1181
/*
1182
 * Compute the symbolic value of expression of 's', and update
1183
 * anything it defines in the value table 'val'.  If 'alter' is true,
1184
 * do various optimizations.  This code would be cleaner if symbolic
1185
 * evaluation and code transformations weren't folded together.
1186
 */
1187
static void
1188
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189
490k
{
1190
490k
  int op;
1191
490k
  bpf_u_int32 v;
1192
1193
490k
  switch (s->code) {
1194
1195
4.72k
  case BPF_LD|BPF_ABS|BPF_W:
1196
9.05k
  case BPF_LD|BPF_ABS|BPF_H:
1197
24.7k
  case BPF_LD|BPF_ABS|BPF_B:
1198
24.7k
    v = F(opt_state, s->code, s->k, 0L);
1199
24.7k
    vstore(s, &val[A_ATOM], v, alter);
1200
24.7k
    break;
1201
1202
0
  case BPF_LD|BPF_IND|BPF_W:
1203
0
  case BPF_LD|BPF_IND|BPF_H:
1204
448
  case BPF_LD|BPF_IND|BPF_B:
1205
448
    v = val[X_ATOM];
1206
448
    if (alter && opt_state->vmap[v].is_const) {
1207
0
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208
0
      s->k += opt_state->vmap[v].const_val;
1209
0
      v = F(opt_state, s->code, s->k, 0L);
1210
      /*
1211
       * XXX - optimizer loop detection.
1212
       */
1213
0
      opt_state->non_branch_movement_performed = 1;
1214
0
      opt_state->done = 0;
1215
0
    }
1216
448
    else
1217
448
      v = F(opt_state, s->code, s->k, v);
1218
448
    vstore(s, &val[A_ATOM], v, alter);
1219
448
    break;
1220
1221
0
  case BPF_LD|BPF_LEN:
1222
0
    v = F(opt_state, s->code, 0L, 0L);
1223
0
    vstore(s, &val[A_ATOM], v, alter);
1224
0
    break;
1225
1226
57.9k
  case BPF_LD|BPF_IMM:
1227
57.9k
    v = K(s->k);
1228
57.9k
    vstore(s, &val[A_ATOM], v, alter);
1229
57.9k
    break;
1230
1231
12.4k
  case BPF_LDX|BPF_IMM:
1232
12.4k
    v = K(s->k);
1233
12.4k
    vstore(s, &val[X_ATOM], v, alter);
1234
12.4k
    break;
1235
1236
0
  case BPF_LDX|BPF_MSH|BPF_B:
1237
0
    v = F(opt_state, s->code, s->k, 0L);
1238
0
    vstore(s, &val[X_ATOM], v, alter);
1239
0
    break;
1240
1241
21.7k
  case BPF_ALU|BPF_NEG:
1242
21.7k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243
5.49k
      s->code = BPF_LD|BPF_IMM;
1244
      /*
1245
       * Do this negation as unsigned arithmetic; that's
1246
       * what modern BPF engines do, and it guarantees
1247
       * that all possible values can be negated.  (Yeah,
1248
       * negating 0x80000000, the minimum signed 32-bit
1249
       * two's-complement value, results in 0x80000000,
1250
       * so it's still negative, but we *should* be doing
1251
       * all unsigned arithmetic here, to match what
1252
       * modern BPF engines do.)
1253
       *
1254
       * Express it as 0U - (unsigned value) so that we
1255
       * don't get compiler warnings about negating an
1256
       * unsigned value and don't get UBSan warnings
1257
       * about the result of negating 0x80000000 being
1258
       * undefined.
1259
       */
1260
5.49k
      s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261
5.49k
      val[A_ATOM] = K(s->k);
1262
5.49k
    }
1263
16.2k
    else
1264
16.2k
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265
21.7k
    break;
1266
1267
372
  case BPF_ALU|BPF_ADD|BPF_K:
1268
372
  case BPF_ALU|BPF_SUB|BPF_K:
1269
372
  case BPF_ALU|BPF_MUL|BPF_K:
1270
372
  case BPF_ALU|BPF_DIV|BPF_K:
1271
372
  case BPF_ALU|BPF_MOD|BPF_K:
1272
3.44k
  case BPF_ALU|BPF_AND|BPF_K:
1273
3.44k
  case BPF_ALU|BPF_OR|BPF_K:
1274
3.44k
  case BPF_ALU|BPF_XOR|BPF_K:
1275
3.44k
  case BPF_ALU|BPF_LSH|BPF_K:
1276
3.44k
  case BPF_ALU|BPF_RSH|BPF_K:
1277
3.44k
    op = BPF_OP(s->code);
1278
3.44k
    if (alter) {
1279
643
      if (s->k == 0) {
1280
        /*
1281
         * Optimize operations where the constant
1282
         * is zero.
1283
         *
1284
         * Don't optimize away "sub #0"
1285
         * as it may be needed later to
1286
         * fixup the generated math code.
1287
         *
1288
         * Fail if we're dividing by zero or taking
1289
         * a modulus by zero.
1290
         */
1291
0
        if (op == BPF_ADD ||
1292
0
            op == BPF_LSH || op == BPF_RSH ||
1293
0
            op == BPF_OR || op == BPF_XOR) {
1294
0
          s->code = NOP;
1295
0
          break;
1296
0
        }
1297
0
        if (op == BPF_MUL || op == BPF_AND) {
1298
0
          s->code = BPF_LD|BPF_IMM;
1299
0
          val[A_ATOM] = K(s->k);
1300
0
          break;
1301
0
        }
1302
0
        if (op == BPF_DIV)
1303
0
          opt_error(opt_state,
1304
0
              "division by zero");
1305
0
        if (op == BPF_MOD)
1306
0
          opt_error(opt_state,
1307
0
              "modulus by zero");
1308
0
      }
1309
643
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1310
0
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311
0
        val[A_ATOM] = K(s->k);
1312
0
        break;
1313
0
      }
1314
643
    }
1315
3.44k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316
3.44k
    break;
1317
1318
3.59k
  case BPF_ALU|BPF_ADD|BPF_X:
1319
6.57k
  case BPF_ALU|BPF_SUB|BPF_X:
1320
8.74k
  case BPF_ALU|BPF_MUL|BPF_X:
1321
10.1k
  case BPF_ALU|BPF_DIV|BPF_X:
1322
15.8k
  case BPF_ALU|BPF_MOD|BPF_X:
1323
29.0k
  case BPF_ALU|BPF_AND|BPF_X:
1324
32.1k
  case BPF_ALU|BPF_OR|BPF_X:
1325
32.5k
  case BPF_ALU|BPF_XOR|BPF_X:
1326
32.6k
  case BPF_ALU|BPF_LSH|BPF_X:
1327
32.7k
  case BPF_ALU|BPF_RSH|BPF_X:
1328
32.7k
    op = BPF_OP(s->code);
1329
32.7k
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330
7.32k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1331
7.32k
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332
7.32k
        val[A_ATOM] = K(s->k);
1333
7.32k
      }
1334
0
      else {
1335
0
        s->code = BPF_ALU|BPF_K|op;
1336
0
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337
0
        if ((op == BPF_LSH || op == BPF_RSH) &&
1338
0
            s->k > 31)
1339
0
          opt_error(opt_state,
1340
0
              "shift by more than 31 bits");
1341
        /*
1342
         * XXX - optimizer loop detection.
1343
         */
1344
0
        opt_state->non_branch_movement_performed = 1;
1345
0
        opt_state->done = 0;
1346
0
        val[A_ATOM] =
1347
0
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1348
0
      }
1349
7.32k
      break;
1350
7.32k
    }
1351
    /*
1352
     * Check if we're doing something to an accumulator
1353
     * that is 0, and simplify.  This may not seem like
1354
     * much of a simplification but it could open up further
1355
     * optimizations.
1356
     * XXX We could also check for mul by 1, etc.
1357
     */
1358
25.4k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359
25.4k
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360
0
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361
0
        s->code = BPF_MISC|BPF_TXA;
1362
0
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363
0
        break;
1364
0
      }
1365
0
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366
0
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367
0
        s->code = BPF_LD|BPF_IMM;
1368
0
        s->k = 0;
1369
0
        vstore(s, &val[A_ATOM], K(s->k), alter);
1370
0
        break;
1371
0
      }
1372
0
      else if (op == BPF_NEG) {
1373
0
        s->code = NOP;
1374
0
        break;
1375
0
      }
1376
0
    }
1377
25.4k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378
25.4k
    break;
1379
1380
312
  case BPF_MISC|BPF_TXA:
1381
312
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382
312
    break;
1383
1384
64.6k
  case BPF_LD|BPF_MEM:
1385
64.6k
    v = val[s->k];
1386
64.6k
    if (alter && opt_state->vmap[v].is_const) {
1387
15.4k
      s->code = BPF_LD|BPF_IMM;
1388
15.4k
      s->k = opt_state->vmap[v].const_val;
1389
      /*
1390
       * XXX - optimizer loop detection.
1391
       */
1392
15.4k
      opt_state->non_branch_movement_performed = 1;
1393
15.4k
      opt_state->done = 0;
1394
15.4k
    }
1395
64.6k
    vstore(s, &val[A_ATOM], v, alter);
1396
64.6k
    break;
1397
1398
18.0k
  case BPF_MISC|BPF_TAX:
1399
18.0k
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400
18.0k
    break;
1401
1402
11.6k
  case BPF_LDX|BPF_MEM:
1403
11.6k
    v = val[s->k];
1404
11.6k
    if (alter && opt_state->vmap[v].is_const) {
1405
0
      s->code = BPF_LDX|BPF_IMM;
1406
0
      s->k = opt_state->vmap[v].const_val;
1407
      /*
1408
       * XXX - optimizer loop detection.
1409
       */
1410
0
      opt_state->non_branch_movement_performed = 1;
1411
0
      opt_state->done = 0;
1412
0
    }
1413
11.6k
    vstore(s, &val[X_ATOM], v, alter);
1414
11.6k
    break;
1415
1416
76.2k
  case BPF_ST:
1417
76.2k
    vstore(s, &val[s->k], val[A_ATOM], alter);
1418
76.2k
    break;
1419
1420
0
  case BPF_STX:
1421
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1422
0
    break;
1423
490k
  }
1424
490k
}
1425
1426
static void
1427
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428
538k
{
1429
538k
  register int atom;
1430
1431
538k
  atom = atomuse(s);
1432
538k
  if (atom >= 0) {
1433
236k
    if (atom == AX_ATOM) {
1434
27.7k
      last[X_ATOM] = 0;
1435
27.7k
      last[A_ATOM] = 0;
1436
27.7k
    }
1437
209k
    else
1438
209k
      last[atom] = 0;
1439
236k
  }
1440
538k
  atom = atomdef(s);
1441
538k
  if (atom >= 0) {
1442
299k
    if (last[atom]) {
1443
      /*
1444
       * XXX - optimizer loop detection.
1445
       */
1446
37.4k
      opt_state->non_branch_movement_performed = 1;
1447
37.4k
      opt_state->done = 0;
1448
37.4k
      last[atom]->code = NOP;
1449
37.4k
    }
1450
299k
    last[atom] = s;
1451
299k
  }
1452
538k
}
1453
1454
static void
1455
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456
56.0k
{
1457
56.0k
  register struct slist *s;
1458
56.0k
  register int atom;
1459
56.0k
  struct stmt *last[N_ATOMS];
1460
1461
56.0k
  memset((char *)last, 0, sizeof last);
1462
1463
538k
  for (s = b->stmts; s != 0; s = s->next)
1464
482k
    deadstmt(opt_state, &s->s, last);
1465
56.0k
  deadstmt(opt_state, &b->s, last);
1466
1467
1.06M
  for (atom = 0; atom < N_ATOMS; ++atom)
1468
1.00M
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469
16.6k
      last[atom]->code = NOP;
1470
      /*
1471
       * XXX - optimizer loop detection.
1472
       */
1473
16.6k
      opt_state->non_branch_movement_performed = 1;
1474
16.6k
      opt_state->done = 0;
1475
16.6k
    }
1476
56.0k
}
1477
1478
static void
1479
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480
66.3k
{
1481
66.3k
  struct slist *s;
1482
66.3k
  struct edge *p;
1483
66.3k
  int i;
1484
66.3k
  bpf_u_int32 aval, xval;
1485
1486
#if 0
1487
  for (s = b->stmts; s && s->next; s = s->next)
1488
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489
      do_stmts = 0;
1490
      break;
1491
    }
1492
#endif
1493
1494
  /*
1495
   * Initialize the atom values.
1496
   */
1497
66.3k
  p = b->in_edges;
1498
66.3k
  if (p == 0) {
1499
    /*
1500
     * We have no predecessors, so everything is undefined
1501
     * upon entry to this block.
1502
     */
1503
14.4k
    memset((char *)b->val, 0, sizeof(b->val));
1504
51.8k
  } else {
1505
    /*
1506
     * Inherit values from our predecessors.
1507
     *
1508
     * First, get the values from the predecessor along the
1509
     * first edge leading to this node.
1510
     */
1511
51.8k
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512
    /*
1513
     * Now look at all the other nodes leading to this node.
1514
     * If, for the predecessor along that edge, a register
1515
     * has a different value from the one we have (i.e.,
1516
     * control paths are merging, and the merging paths
1517
     * assign different values to that register), give the
1518
     * register the undefined value of 0.
1519
     */
1520
85.4k
    while ((p = p->next) != NULL) {
1521
638k
      for (i = 0; i < N_ATOMS; ++i)
1522
604k
        if (b->val[i] != p->pred->val[i])
1523
45.5k
          b->val[i] = 0;
1524
33.5k
    }
1525
51.8k
  }
1526
66.3k
  aval = b->val[A_ATOM];
1527
66.3k
  xval = b->val[X_ATOM];
1528
557k
  for (s = b->stmts; s; s = s->next)
1529
490k
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531
  /*
1532
   * This is a special case: if we don't use anything from this
1533
   * block, and we load the accumulator or index register with a
1534
   * value that is already there, or if this block is a return,
1535
   * eliminate all the statements.
1536
   *
1537
   * XXX - what if it does a store?  Presumably that falls under
1538
   * the heading of "if we don't use anything from this block",
1539
   * i.e., if we use any memory location set to a different
1540
   * value by this block, then we use something from this block.
1541
   *
1542
   * XXX - why does it matter whether we use anything from this
1543
   * block?  If the accumulator or index register doesn't change
1544
   * its value, isn't that OK even if we use that value?
1545
   *
1546
   * XXX - if we load the accumulator with a different value,
1547
   * and the block ends with a conditional branch, we obviously
1548
   * can't eliminate it, as the branch depends on that value.
1549
   * For the index register, the conditional branch only depends
1550
   * on the index register value if the test is against the index
1551
   * register value rather than a constant; if nothing uses the
1552
   * value we put into the index register, and we're not testing
1553
   * against the index register's value, and there aren't any
1554
   * other problems that would keep us from eliminating this
1555
   * block, can we eliminate it?
1556
   */
1557
66.3k
  if (do_stmts &&
1558
66.3k
      ((b->out_use == 0 &&
1559
22.7k
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560
22.7k
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561
22.7k
       BPF_CLASS(b->s.code) == BPF_RET)) {
1562
10.1k
    if (b->stmts != 0) {
1563
790
      b->stmts = 0;
1564
      /*
1565
       * XXX - optimizer loop detection.
1566
       */
1567
790
      opt_state->non_branch_movement_performed = 1;
1568
790
      opt_state->done = 0;
1569
790
    }
1570
56.1k
  } else {
1571
56.1k
    opt_peep(opt_state, b);
1572
56.1k
    opt_deadstores(opt_state, b);
1573
56.1k
  }
1574
  /*
1575
   * Set up values for branch optimizer.
1576
   */
1577
66.3k
  if (BPF_SRC(b->s.code) == BPF_K)
1578
61.9k
    b->oval = K(b->s.k);
1579
4.35k
  else
1580
4.35k
    b->oval = b->val[X_ATOM];
1581
66.3k
  b->et.code = b->s.code;
1582
66.3k
  b->ef.code = -b->s.code;
1583
66.3k
}
1584
1585
/*
1586
 * Return true if any register that is used on exit from 'succ', has
1587
 * an exit value that is different from the corresponding exit value
1588
 * from 'b'.
1589
 */
1590
static int
1591
use_conflict(struct block *b, struct block *succ)
1592
15.7k
{
1593
15.7k
  int atom;
1594
15.7k
  atomset use = succ->out_use;
1595
1596
15.7k
  if (use == 0)
1597
15.7k
    return 0;
1598
1599
0
  for (atom = 0; atom < N_ATOMS; ++atom)
1600
0
    if (ATOMELEM(use, atom))
1601
0
      if (b->val[atom] != succ->val[atom])
1602
0
        return 1;
1603
0
  return 0;
1604
0
}
1605
1606
/*
1607
 * Given a block that is the successor of an edge, and an edge that
1608
 * dominates that edge, return either a pointer to a child of that
1609
 * block (a block to which that block jumps) if that block is a
1610
 * candidate to replace the successor of the latter edge or NULL
1611
 * if neither of the children of the first block are candidates.
1612
 */
1613
static struct block *
1614
fold_edge(struct block *child, struct edge *ep)
1615
108k
{
1616
108k
  int sense;
1617
108k
  bpf_u_int32 aval0, aval1, oval0, oval1;
1618
108k
  int code = ep->code;
1619
1620
108k
  if (code < 0) {
1621
    /*
1622
     * This edge is a "branch if false" edge.
1623
     */
1624
22.1k
    code = -code;
1625
22.1k
    sense = 0;
1626
86.5k
  } else {
1627
    /*
1628
     * This edge is a "branch if true" edge.
1629
     */
1630
86.5k
    sense = 1;
1631
86.5k
  }
1632
1633
  /*
1634
   * If the opcode for the branch at the end of the block we
1635
   * were handed isn't the same as the opcode for the branch
1636
   * to which the edge we were handed corresponds, the tests
1637
   * for those branches aren't testing the same conditions,
1638
   * so the blocks to which the first block branches aren't
1639
   * candidates to replace the successor of the edge.
1640
   */
1641
108k
  if (child->s.code != code)
1642
24.3k
    return 0;
1643
1644
84.3k
  aval0 = child->val[A_ATOM];
1645
84.3k
  oval0 = child->oval;
1646
84.3k
  aval1 = ep->pred->val[A_ATOM];
1647
84.3k
  oval1 = ep->pred->oval;
1648
1649
  /*
1650
   * If the A register value on exit from the successor block
1651
   * isn't the same as the A register value on exit from the
1652
   * predecessor of the edge, the blocks to which the first
1653
   * block branches aren't candidates to replace the successor
1654
   * of the edge.
1655
   */
1656
84.3k
  if (aval0 != aval1)
1657
65.2k
    return 0;
1658
1659
19.0k
  if (oval0 == oval1)
1660
    /*
1661
     * The operands of the branch instructions are
1662
     * identical, so the branches are testing the
1663
     * same condition, and the result is true if a true
1664
     * branch was taken to get here, otherwise false.
1665
     */
1666
11.8k
    return sense ? JT(child) : JF(child);
1667
1668
7.25k
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669
    /*
1670
     * At this point, we only know the comparison if we
1671
     * came down the true branch, and it was an equality
1672
     * comparison with a constant.
1673
     *
1674
     * I.e., if we came down the true branch, and the branch
1675
     * was an equality comparison with a constant, we know the
1676
     * accumulator contains that constant.  If we came down
1677
     * the false branch, or the comparison wasn't with a
1678
     * constant, we don't know what was in the accumulator.
1679
     *
1680
     * We rely on the fact that distinct constants have distinct
1681
     * value numbers.
1682
     */
1683
454
    return JF(child);
1684
1685
6.79k
  return 0;
1686
7.25k
}
1687
1688
/*
1689
 * If we can make this edge go directly to a child of the edge's current
1690
 * successor, do so.
1691
 */
1692
static void
1693
opt_j(opt_state_t *opt_state, struct edge *ep)
1694
58.3k
{
1695
58.3k
  register u_int i, k;
1696
58.3k
  register struct block *target;
1697
1698
  /*
1699
   * Does this edge go to a block where, if the test
1700
   * at the end of it succeeds, it goes to a block
1701
   * that's a leaf node of the DAG, i.e. a return
1702
   * statement?
1703
   * If so, there's nothing to optimize.
1704
   */
1705
58.3k
  if (JT(ep->succ) == 0)
1706
30.7k
    return;
1707
1708
  /*
1709
   * Does this edge go to a block that goes, in turn, to
1710
   * the same block regardless of whether the test at the
1711
   * end succeeds or fails?
1712
   */
1713
27.6k
  if (JT(ep->succ) == JF(ep->succ)) {
1714
    /*
1715
     * Common branch targets can be eliminated, provided
1716
     * there is no data dependency.
1717
     *
1718
     * Check whether any register used on exit from the
1719
     * block to which the successor of this edge goes
1720
     * has a value at that point that's different from
1721
     * the value it has on exit from the predecessor of
1722
     * this edge.  If not, the predecessor of this edge
1723
     * can just go to the block to which the successor
1724
     * of this edge goes, bypassing the successor of this
1725
     * edge, as the successor of this edge isn't doing
1726
     * any calculations whose results are different
1727
     * from what the blocks before it did and isn't
1728
     * doing any tests the results of which matter.
1729
     */
1730
3.42k
    if (!use_conflict(ep->pred, JT(ep->succ))) {
1731
      /*
1732
       * No, there isn't.
1733
       * Make this edge go to the block to
1734
       * which the successor of that edge
1735
       * goes.
1736
       *
1737
       * XXX - optimizer loop detection.
1738
       */
1739
3.42k
      opt_state->non_branch_movement_performed = 1;
1740
3.42k
      opt_state->done = 0;
1741
3.42k
      ep->succ = JT(ep->succ);
1742
3.42k
    }
1743
3.42k
  }
1744
  /*
1745
   * For each edge dominator that matches the successor of this
1746
   * edge, promote the edge successor to the its grandchild.
1747
   *
1748
   * XXX We violate the set abstraction here in favor a reasonably
1749
   * efficient loop.
1750
   */
1751
35.8k
 top:
1752
75.0k
  for (i = 0; i < opt_state->edgewords; ++i) {
1753
    /* i'th word in the bitset of dominators */
1754
51.4k
    register bpf_u_int32 x = ep->edom[i];
1755
1756
147k
    while (x != 0) {
1757
      /* Find the next dominator in that word and mark it as found */
1758
108k
      k = lowest_set_bit(x);
1759
108k
      x &=~ ((bpf_u_int32)1 << k);
1760
108k
      k += i * BITS_PER_WORD;
1761
1762
108k
      target = fold_edge(ep->succ, opt_state->edges[k]);
1763
      /*
1764
       * We have a candidate to replace the successor
1765
       * of ep.
1766
       *
1767
       * Check that there is no data dependency between
1768
       * nodes that will be violated if we move the edge;
1769
       * i.e., if any register used on exit from the
1770
       * candidate has a value at that point different
1771
       * from the value it has when we exit the
1772
       * predecessor of that edge, there's a data
1773
       * dependency that will be violated.
1774
       */
1775
108k
      if (target != 0 && !use_conflict(ep->pred, target)) {
1776
        /*
1777
         * It's safe to replace the successor of
1778
         * ep; do so, and note that we've made
1779
         * at least one change.
1780
         *
1781
         * XXX - this is one of the operations that
1782
         * happens when the optimizer gets into
1783
         * one of those infinite loops.
1784
         */
1785
12.2k
        opt_state->done = 0;
1786
12.2k
        ep->succ = target;
1787
12.2k
        if (JT(target) != 0)
1788
          /*
1789
           * Start over unless we hit a leaf.
1790
           */
1791
8.21k
          goto top;
1792
4.06k
        return;
1793
12.2k
      }
1794
108k
    }
1795
51.4k
  }
1796
35.8k
}
1797
1798
/*
1799
 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800
 * "Predicate Assertion Propagation" in the BPF+ paper?
1801
 *
1802
 * Note that this looks at block dominators, not edge dominators.
1803
 * Don't think so.
1804
 *
1805
 * "A or B" compiles into
1806
 *
1807
 *          A
1808
 *       t / \ f
1809
 *        /   B
1810
 *       / t / \ f
1811
 *      \   /
1812
 *       \ /
1813
 *        X
1814
 *
1815
 *
1816
 */
1817
static void
1818
or_pullup(opt_state_t *opt_state, struct block *b)
1819
29.1k
{
1820
29.1k
  bpf_u_int32 val;
1821
29.1k
  int at_top;
1822
29.1k
  struct block *pull;
1823
29.1k
  struct block **diffp, **samep;
1824
29.1k
  struct edge *ep;
1825
1826
29.1k
  ep = b->in_edges;
1827
29.1k
  if (ep == 0)
1828
12.7k
    return;
1829
1830
  /*
1831
   * Make sure each predecessor loads the same value.
1832
   * XXX why?
1833
   */
1834
16.4k
  val = ep->pred->val[A_ATOM];
1835
17.1k
  for (ep = ep->next; ep != 0; ep = ep->next)
1836
3.03k
    if (val != ep->pred->val[A_ATOM])
1837
2.25k
      return;
1838
1839
  /*
1840
   * For the first edge in the list of edges coming into this block,
1841
   * see whether the predecessor of that edge comes here via a true
1842
   * branch or a false branch.
1843
   */
1844
14.1k
  if (JT(b->in_edges->pred) == b)
1845
9.95k
    diffp = &JT(b->in_edges->pred); /* jt */
1846
4.19k
  else
1847
4.19k
    diffp = &JF(b->in_edges->pred);  /* jf */
1848
1849
  /*
1850
   * diffp is a pointer to a pointer to the block.
1851
   *
1852
   * Go down the false chain looking as far as you can,
1853
   * making sure that each jump-compare is doing the
1854
   * same as the original block.
1855
   *
1856
   * If you reach the bottom before you reach a
1857
   * different jump-compare, just exit.  There's nothing
1858
   * to do here.  XXX - no, this version is checking for
1859
   * the value leaving the block; that's from the BPF+
1860
   * pullup routine.
1861
   */
1862
14.1k
  at_top = 1;
1863
19.1k
  for (;;) {
1864
    /*
1865
     * Done if that's not going anywhere XXX
1866
     */
1867
19.1k
    if (*diffp == 0)
1868
0
      return;
1869
1870
    /*
1871
     * Done if that predecessor blah blah blah isn't
1872
     * going the same place we're going XXX
1873
     *
1874
     * Does the true edge of this block point to the same
1875
     * location as the true edge of b?
1876
     */
1877
19.1k
    if (JT(*diffp) != JT(b))
1878
2.72k
      return;
1879
1880
    /*
1881
     * Done if this node isn't a dominator of that
1882
     * node blah blah blah XXX
1883
     *
1884
     * Does b dominate diffp?
1885
     */
1886
16.4k
    if (!SET_MEMBER((*diffp)->dom, b->id))
1887
14
      return;
1888
1889
    /*
1890
     * Break out of the loop if that node's value of A
1891
     * isn't the value of A above XXX
1892
     */
1893
16.3k
    if ((*diffp)->val[A_ATOM] != val)
1894
11.4k
      break;
1895
1896
    /*
1897
     * Get the JF for that node XXX
1898
     * Go down the false path.
1899
     */
1900
4.98k
    diffp = &JF(*diffp);
1901
4.98k
    at_top = 0;
1902
4.98k
  }
1903
1904
  /*
1905
   * Now that we've found a different jump-compare in a chain
1906
   * below b, search further down until we find another
1907
   * jump-compare that looks at the original value.  This
1908
   * jump-compare should get pulled up.  XXX again we're
1909
   * comparing values not jump-compares.
1910
   */
1911
11.4k
  samep = &JF(*diffp);
1912
13.9k
  for (;;) {
1913
    /*
1914
     * Done if that's not going anywhere XXX
1915
     */
1916
13.9k
    if (*samep == 0)
1917
0
      return;
1918
1919
    /*
1920
     * Done if that predecessor blah blah blah isn't
1921
     * going the same place we're going XXX
1922
     */
1923
13.9k
    if (JT(*samep) != JT(b))
1924
10.6k
      return;
1925
1926
    /*
1927
     * Done if this node isn't a dominator of that
1928
     * node blah blah blah XXX
1929
     *
1930
     * Does b dominate samep?
1931
     */
1932
3.29k
    if (!SET_MEMBER((*samep)->dom, b->id))
1933
711
      return;
1934
1935
    /*
1936
     * Break out of the loop if that node's value of A
1937
     * is the value of A above XXX
1938
     */
1939
2.58k
    if ((*samep)->val[A_ATOM] == val)
1940
26
      break;
1941
1942
    /* XXX Need to check that there are no data dependencies
1943
       between dp0 and dp1.  Currently, the code generator
1944
       will not produce such dependencies. */
1945
2.55k
    samep = &JF(*samep);
1946
2.55k
  }
1947
#ifdef notdef
1948
  /* XXX This doesn't cover everything. */
1949
  for (i = 0; i < N_ATOMS; ++i)
1950
    if ((*samep)->val[i] != pred->val[i])
1951
      return;
1952
#endif
1953
  /* Pull up the node. */
1954
26
  pull = *samep;
1955
26
  *samep = JF(pull);
1956
26
  JF(pull) = *diffp;
1957
1958
  /*
1959
   * At the top of the chain, each predecessor needs to point at the
1960
   * pulled up node.  Inside the chain, there is only one predecessor
1961
   * to worry about.
1962
   */
1963
26
  if (at_top) {
1964
57
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965
31
      if (JT(ep->pred) == b)
1966
8
        JT(ep->pred) = pull;
1967
23
      else
1968
23
        JF(ep->pred) = pull;
1969
31
    }
1970
26
  }
1971
0
  else
1972
0
    *diffp = pull;
1973
1974
  /*
1975
   * XXX - this is one of the operations that happens when the
1976
   * optimizer gets into one of those infinite loops.
1977
   */
1978
26
  opt_state->done = 0;
1979
26
}
1980
1981
static void
1982
and_pullup(opt_state_t *opt_state, struct block *b)
1983
29.1k
{
1984
29.1k
  bpf_u_int32 val;
1985
29.1k
  int at_top;
1986
29.1k
  struct block *pull;
1987
29.1k
  struct block **diffp, **samep;
1988
29.1k
  struct edge *ep;
1989
1990
29.1k
  ep = b->in_edges;
1991
29.1k
  if (ep == 0)
1992
12.7k
    return;
1993
1994
  /*
1995
   * Make sure each predecessor loads the same value.
1996
   */
1997
16.4k
  val = ep->pred->val[A_ATOM];
1998
17.1k
  for (ep = ep->next; ep != 0; ep = ep->next)
1999
3.03k
    if (val != ep->pred->val[A_ATOM])
2000
2.25k
      return;
2001
2002
14.1k
  if (JT(b->in_edges->pred) == b)
2003
9.94k
    diffp = &JT(b->in_edges->pred);
2004
4.20k
  else
2005
4.20k
    diffp = &JF(b->in_edges->pred);
2006
2007
14.1k
  at_top = 1;
2008
17.0k
  for (;;) {
2009
17.0k
    if (*diffp == 0)
2010
0
      return;
2011
2012
17.0k
    if (JF(*diffp) != JF(b))
2013
2.65k
      return;
2014
2015
14.3k
    if (!SET_MEMBER((*diffp)->dom, b->id))
2016
105
      return;
2017
2018
14.2k
    if ((*diffp)->val[A_ATOM] != val)
2019
11.3k
      break;
2020
2021
2.89k
    diffp = &JT(*diffp);
2022
2.89k
    at_top = 0;
2023
2.89k
  }
2024
11.3k
  samep = &JT(*diffp);
2025
15.7k
  for (;;) {
2026
15.7k
    if (*samep == 0)
2027
0
      return;
2028
2029
15.7k
    if (JF(*samep) != JF(b))
2030
11.2k
      return;
2031
2032
4.46k
    if (!SET_MEMBER((*samep)->dom, b->id))
2033
97
      return;
2034
2035
4.36k
    if ((*samep)->val[A_ATOM] == val)
2036
22
      break;
2037
2038
    /* XXX Need to check that there are no data dependencies
2039
       between diffp and samep.  Currently, the code generator
2040
       will not produce such dependencies. */
2041
4.34k
    samep = &JT(*samep);
2042
4.34k
  }
2043
#ifdef notdef
2044
  /* XXX This doesn't cover everything. */
2045
  for (i = 0; i < N_ATOMS; ++i)
2046
    if ((*samep)->val[i] != pred->val[i])
2047
      return;
2048
#endif
2049
  /* Pull up the node. */
2050
22
  pull = *samep;
2051
22
  *samep = JT(pull);
2052
22
  JT(pull) = *diffp;
2053
2054
  /*
2055
   * At the top of the chain, each predecessor needs to point at the
2056
   * pulled up node.  Inside the chain, there is only one predecessor
2057
   * to worry about.
2058
   */
2059
22
  if (at_top) {
2060
51
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061
29
      if (JT(ep->pred) == b)
2062
22
        JT(ep->pred) = pull;
2063
7
      else
2064
7
        JF(ep->pred) = pull;
2065
29
    }
2066
22
  }
2067
0
  else
2068
0
    *diffp = pull;
2069
2070
  /*
2071
   * XXX - this is one of the operations that happens when the
2072
   * optimizer gets into one of those infinite loops.
2073
   */
2074
22
  opt_state->done = 0;
2075
22
}
2076
2077
static void
2078
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079
14.4k
{
2080
14.4k
  int i, maxlevel;
2081
14.4k
  struct block *p;
2082
2083
14.4k
  init_val(opt_state);
2084
14.4k
  maxlevel = ic->root->level;
2085
2086
14.4k
  find_inedges(opt_state, ic->root);
2087
71.6k
  for (i = maxlevel; i >= 0; --i)
2088
123k
    for (p = opt_state->levels[i]; p; p = p->link)
2089
66.3k
      opt_blk(opt_state, p, do_stmts);
2090
2091
14.4k
  if (do_stmts)
2092
    /*
2093
     * No point trying to move branches; it can't possibly
2094
     * make a difference at this point.
2095
     *
2096
     * XXX - this might be after we detect a loop where
2097
     * we were just looping infinitely moving branches
2098
     * in such a fashion that we went through two or more
2099
     * versions of the machine code, eventually returning
2100
     * to the first version.  (We're really not doing a
2101
     * full loop detection, we're just testing for two
2102
     * passes in a row where we do nothing but
2103
     * move branches.)
2104
     */
2105
6.52k
    return;
2106
2107
  /*
2108
   * Is this what the BPF+ paper describes in sections 6.1.1,
2109
   * 6.1.2, and 6.1.3?
2110
   */
2111
37.1k
  for (i = 1; i <= maxlevel; ++i) {
2112
58.3k
    for (p = opt_state->levels[i]; p; p = p->link) {
2113
29.1k
      opt_j(opt_state, &p->et);
2114
29.1k
      opt_j(opt_state, &p->ef);
2115
29.1k
    }
2116
29.1k
  }
2117
2118
7.94k
  find_inedges(opt_state, ic->root);
2119
37.1k
  for (i = 1; i <= maxlevel; ++i) {
2120
58.3k
    for (p = opt_state->levels[i]; p; p = p->link) {
2121
29.1k
      or_pullup(opt_state, p);
2122
29.1k
      and_pullup(opt_state, p);
2123
29.1k
    }
2124
29.1k
  }
2125
7.94k
}
2126
2127
static inline void
2128
link_inedge(struct edge *parent, struct block *child)
2129
144k
{
2130
144k
  parent->next = child->in_edges;
2131
144k
  child->in_edges = parent;
2132
144k
}
2133
2134
static void
2135
find_inedges(opt_state_t *opt_state, struct block *root)
2136
22.3k
{
2137
22.3k
  u_int i;
2138
22.3k
  int level;
2139
22.3k
  struct block *b;
2140
2141
190k
  for (i = 0; i < opt_state->n_blocks; ++i)
2142
168k
    opt_state->blocks[i]->in_edges = 0;
2143
2144
  /*
2145
   * Traverse the graph, adding each edge to the predecessor
2146
   * list of its successors.  Skip the leaves (i.e. level 0).
2147
   */
2148
94.2k
  for (level = root->level; level > 0; --level) {
2149
144k
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150
72.0k
      link_inedge(&b->et, JT(b));
2151
72.0k
      link_inedge(&b->ef, JF(b));
2152
72.0k
    }
2153
71.9k
  }
2154
22.3k
}
2155
2156
static void
2157
opt_root(struct block **b)
2158
3.17k
{
2159
3.17k
  struct slist *tmp, *s;
2160
2161
3.17k
  s = (*b)->stmts;
2162
3.17k
  (*b)->stmts = 0;
2163
5.12k
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164
1.95k
    *b = JT(*b);
2165
2166
3.17k
  tmp = (*b)->stmts;
2167
3.17k
  if (tmp != 0)
2168
81
    sappend(s, tmp);
2169
3.17k
  (*b)->stmts = s;
2170
2171
  /*
2172
   * If the root node is a return, then there is no
2173
   * point executing any statements (since the bpf machine
2174
   * has no side effects).
2175
   */
2176
3.17k
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177
1.88k
    (*b)->stmts = 0;
2178
3.17k
}
2179
2180
static void
2181
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182
6.56k
{
2183
2184
#ifdef BDEBUG
2185
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186
    printf("opt_loop(root, %d) begin\n", do_stmts);
2187
    opt_dump(opt_state, ic);
2188
  }
2189
#endif
2190
2191
  /*
2192
   * XXX - optimizer loop detection.
2193
   */
2194
6.56k
  int loop_count = 0;
2195
14.4k
  for (;;) {
2196
14.4k
    opt_state->done = 1;
2197
    /*
2198
     * XXX - optimizer loop detection.
2199
     */
2200
14.4k
    opt_state->non_branch_movement_performed = 0;
2201
14.4k
    find_levels(opt_state, ic);
2202
14.4k
    find_dom(opt_state, ic->root);
2203
14.4k
    find_closure(opt_state, ic->root);
2204
14.4k
    find_ud(opt_state, ic->root);
2205
14.4k
    find_edom(opt_state, ic->root);
2206
14.4k
    opt_blks(opt_state, ic, do_stmts);
2207
#ifdef BDEBUG
2208
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210
      opt_dump(opt_state, ic);
2211
    }
2212
#endif
2213
2214
    /*
2215
     * Was anything done in this optimizer pass?
2216
     */
2217
14.4k
    if (opt_state->done) {
2218
      /*
2219
       * No, so we've reached a fixed point.
2220
       * We're done.
2221
       */
2222
6.45k
      break;
2223
6.45k
    }
2224
2225
    /*
2226
     * XXX - was anything done other than branch movement
2227
     * in this pass?
2228
     */
2229
8.02k
    if (opt_state->non_branch_movement_performed) {
2230
      /*
2231
       * Yes.  Clear any loop-detection counter;
2232
       * we're making some form of progress (assuming
2233
       * we can't get into a cycle doing *other*
2234
       * optimizations...).
2235
       */
2236
7.53k
      loop_count = 0;
2237
7.53k
    } else {
2238
      /*
2239
       * No - increment the counter, and quit if
2240
       * it's up to 100.
2241
       */
2242
490
      loop_count++;
2243
490
      if (loop_count >= 100) {
2244
        /*
2245
         * We've done nothing but branch movement
2246
         * for 100 passes; we're probably
2247
         * in a cycle and will never reach a
2248
         * fixed point.
2249
         *
2250
         * XXX - yes, we really need a non-
2251
         * heuristic way of detecting a cycle.
2252
         */
2253
0
        opt_state->done = 1;
2254
0
        break;
2255
0
      }
2256
490
    }
2257
8.02k
  }
2258
6.56k
}
2259
2260
/*
2261
 * Optimize the filter code in its dag representation.
2262
 * Return 0 on success, -1 on error.
2263
 */
2264
int
2265
bpf_optimize(struct icode *ic, char *errbuf)
2266
3.28k
{
2267
3.28k
  opt_state_t opt_state;
2268
2269
3.28k
  memset(&opt_state, 0, sizeof(opt_state));
2270
3.28k
  opt_state.errbuf = errbuf;
2271
3.28k
  opt_state.non_branch_movement_performed = 0;
2272
3.28k
  if (setjmp(opt_state.top_ctx)) {
2273
111
    opt_cleanup(&opt_state);
2274
111
    return -1;
2275
111
  }
2276
3.17k
  opt_init(&opt_state, ic);
2277
3.17k
  opt_loop(&opt_state, ic, 0);
2278
3.17k
  opt_loop(&opt_state, ic, 1);
2279
3.17k
  intern_blocks(&opt_state, ic);
2280
#ifdef BDEBUG
2281
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282
    printf("after intern_blocks()\n");
2283
    opt_dump(&opt_state, ic);
2284
  }
2285
#endif
2286
3.17k
  opt_root(&ic->root);
2287
#ifdef BDEBUG
2288
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289
    printf("after opt_root()\n");
2290
    opt_dump(&opt_state, ic);
2291
  }
2292
#endif
2293
3.17k
  opt_cleanup(&opt_state);
2294
3.17k
  return 0;
2295
3.28k
}
2296
2297
static void
2298
make_marks(struct icode *ic, struct block *p)
2299
15.5k
{
2300
15.5k
  if (!isMarked(ic, p)) {
2301
10.3k
    Mark(ic, p);
2302
10.3k
    if (BPF_CLASS(p->s.code) != BPF_RET) {
2303
6.16k
      make_marks(ic, JT(p));
2304
6.16k
      make_marks(ic, JF(p));
2305
6.16k
    }
2306
10.3k
  }
2307
15.5k
}
2308
2309
/*
2310
 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311
 * only for nodes that are alive.
2312
 */
2313
static void
2314
mark_code(struct icode *ic)
2315
3.17k
{
2316
3.17k
  ic->cur_mark += 1;
2317
3.17k
  make_marks(ic, ic->root);
2318
3.17k
}
2319
2320
/*
2321
 * True iff the two stmt lists load the same value from the packet into
2322
 * the accumulator.
2323
 */
2324
static int
2325
eq_slist(struct slist *x, struct slist *y)
2326
20
{
2327
20
  for (;;) {
2328
20
    while (x && x->s.code == NOP)
2329
0
      x = x->next;
2330
22
    while (y && y->s.code == NOP)
2331
2
      y = y->next;
2332
20
    if (x == 0)
2333
0
      return y == 0;
2334
20
    if (y == 0)
2335
0
      return x == 0;
2336
20
    if (x->s.code != y->s.code || x->s.k != y->s.k)
2337
20
      return 0;
2338
0
    x = x->next;
2339
0
    y = y->next;
2340
0
  }
2341
20
}
2342
2343
static inline int
2344
eq_blk(struct block *b0, struct block *b1)
2345
19.1k
{
2346
19.1k
  if (b0->s.code == b1->s.code &&
2347
19.1k
      b0->s.k == b1->s.k &&
2348
19.1k
      b0->et.succ == b1->et.succ &&
2349
19.1k
      b0->ef.succ == b1->ef.succ)
2350
20
    return eq_slist(b0->stmts, b1->stmts);
2351
19.0k
  return 0;
2352
19.1k
}
2353
2354
static void
2355
intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356
3.17k
{
2357
3.17k
  struct block *p;
2358
3.17k
  u_int i, j;
2359
3.17k
  int done1; /* don't shadow global */
2360
3.17k
 top:
2361
3.17k
  done1 = 1;
2362
25.5k
  for (i = 0; i < opt_state->n_blocks; ++i)
2363
22.4k
    opt_state->blocks[i]->link = 0;
2364
2365
3.17k
  mark_code(ic);
2366
2367
22.4k
  for (i = opt_state->n_blocks - 1; i != 0; ) {
2368
19.2k
    --i;
2369
19.2k
    if (!isMarked(ic, opt_state->blocks[i]))
2370
11.3k
      continue;
2371
53.5k
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372
45.6k
      if (!isMarked(ic, opt_state->blocks[j]))
2373
26.5k
        continue;
2374
19.1k
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375
0
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376
0
          opt_state->blocks[j]->link : opt_state->blocks[j];
2377
0
        break;
2378
0
      }
2379
19.1k
    }
2380
7.91k
  }
2381
25.5k
  for (i = 0; i < opt_state->n_blocks; ++i) {
2382
22.4k
    p = opt_state->blocks[i];
2383
22.4k
    if (JT(p) == 0)
2384
5.98k
      continue;
2385
16.4k
    if (JT(p)->link) {
2386
0
      done1 = 0;
2387
0
      JT(p) = JT(p)->link;
2388
0
    }
2389
16.4k
    if (JF(p)->link) {
2390
0
      done1 = 0;
2391
0
      JF(p) = JF(p)->link;
2392
0
    }
2393
16.4k
  }
2394
3.17k
  if (!done1)
2395
0
    goto top;
2396
3.17k
}
2397
2398
static void
2399
opt_cleanup(opt_state_t *opt_state)
2400
3.28k
{
2401
3.28k
  free((void *)opt_state->vnode_base);
2402
3.28k
  free((void *)opt_state->vmap);
2403
3.28k
  free((void *)opt_state->edges);
2404
3.28k
  free((void *)opt_state->space);
2405
3.28k
  free((void *)opt_state->levels);
2406
3.28k
  free((void *)opt_state->blocks);
2407
3.28k
}
2408
2409
/*
2410
 * For optimizer errors.
2411
 */
2412
static void PCAP_NORETURN
2413
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414
111
{
2415
111
  va_list ap;
2416
2417
111
  if (opt_state->errbuf != NULL) {
2418
111
    va_start(ap, fmt);
2419
111
    (void)vsnprintf(opt_state->errbuf,
2420
111
        PCAP_ERRBUF_SIZE, fmt, ap);
2421
111
    va_end(ap);
2422
111
  }
2423
111
  longjmp(opt_state->top_ctx, 1);
2424
  /* NOTREACHED */
2425
#ifdef _AIX
2426
  PCAP_UNREACHABLE
2427
#endif /* _AIX */
2428
111
}
2429
2430
/*
2431
 * Return the number of stmts in 's'.
2432
 */
2433
static u_int
2434
slength(struct slist *s)
2435
46.8k
{
2436
46.8k
  u_int n = 0;
2437
2438
254k
  for (; s; s = s->next)
2439
207k
    if (s->s.code != NOP)
2440
163k
      ++n;
2441
46.8k
  return n;
2442
46.8k
}
2443
2444
/*
2445
 * Return the number of nodes reachable by 'p'.
2446
 * All nodes should be initially unmarked.
2447
 */
2448
static int
2449
count_blocks(struct icode *ic, struct block *p)
2450
48.9k
{
2451
48.9k
  if (p == 0 || isMarked(ic, p))
2452
26.0k
    return 0;
2453
22.8k
  Mark(ic, p);
2454
22.8k
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455
48.9k
}
2456
2457
/*
2458
 * Do a depth first search on the flow graph, numbering the
2459
 * the basic blocks, and entering them into the 'blocks' array.`
2460
 */
2461
static void
2462
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463
48.9k
{
2464
48.9k
  u_int n;
2465
2466
48.9k
  if (p == 0 || isMarked(ic, p))
2467
26.0k
    return;
2468
2469
22.8k
  Mark(ic, p);
2470
22.8k
  n = opt_state->n_blocks++;
2471
22.8k
  if (opt_state->n_blocks == 0) {
2472
    /*
2473
     * Overflow.
2474
     */
2475
0
    opt_error(opt_state, "filter is too complex to optimize");
2476
0
  }
2477
22.8k
  p->id = n;
2478
22.8k
  opt_state->blocks[n] = p;
2479
2480
22.8k
  number_blks_r(opt_state, ic, JT(p));
2481
22.8k
  number_blks_r(opt_state, ic, JF(p));
2482
22.8k
}
2483
2484
/*
2485
 * Return the number of stmts in the flowgraph reachable by 'p'.
2486
 * The nodes should be unmarked before calling.
2487
 *
2488
 * Note that "stmts" means "instructions", and that this includes
2489
 *
2490
 *  side-effect statements in 'p' (slength(p->stmts));
2491
 *
2492
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2493
 *
2494
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2495
 *
2496
 *  the conditional jump itself (1);
2497
 *
2498
 *  an extra long jump if the true branch requires it (p->longjt);
2499
 *
2500
 *  an extra long jump if the false branch requires it (p->longjf).
2501
 */
2502
static u_int
2503
count_stmts(struct icode *ic, struct block *p)
2504
26.5k
{
2505
26.5k
  u_int n;
2506
2507
26.5k
  if (p == 0 || isMarked(ic, p))
2508
14.5k
    return 0;
2509
12.0k
  Mark(ic, p);
2510
12.0k
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511
12.0k
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512
26.5k
}
2513
2514
/*
2515
 * Allocate memory.  All allocation is done before optimization
2516
 * is begun.  A linear bound on the size of all data structures is computed
2517
 * from the total number of blocks and/or statements.
2518
 */
2519
static void
2520
opt_init(opt_state_t *opt_state, struct icode *ic)
2521
3.28k
{
2522
3.28k
  bpf_u_int32 *p;
2523
3.28k
  int i, n, max_stmts;
2524
3.28k
  u_int product;
2525
3.28k
  size_t block_memsize, edge_memsize;
2526
2527
  /*
2528
   * First, count the blocks, so we can malloc an array to map
2529
   * block number to block.  Then, put the blocks into the array.
2530
   */
2531
3.28k
  unMarkAll(ic);
2532
3.28k
  n = count_blocks(ic, ic->root);
2533
3.28k
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534
3.28k
  if (opt_state->blocks == NULL)
2535
0
    opt_error(opt_state, "malloc");
2536
3.28k
  unMarkAll(ic);
2537
3.28k
  opt_state->n_blocks = 0;
2538
3.28k
  number_blks_r(opt_state, ic, ic->root);
2539
2540
  /*
2541
   * This "should not happen".
2542
   */
2543
3.28k
  if (opt_state->n_blocks == 0)
2544
0
    opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546
3.28k
  opt_state->n_edges = 2 * opt_state->n_blocks;
2547
3.28k
  if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548
    /*
2549
     * Overflow.
2550
     */
2551
0
    opt_error(opt_state, "filter is too complex to optimize");
2552
0
  }
2553
3.28k
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554
3.28k
  if (opt_state->edges == NULL) {
2555
0
    opt_error(opt_state, "malloc");
2556
0
  }
2557
2558
  /*
2559
   * The number of levels is bounded by the number of nodes.
2560
   */
2561
3.28k
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562
3.28k
  if (opt_state->levels == NULL) {
2563
0
    opt_error(opt_state, "malloc");
2564
0
  }
2565
2566
3.28k
  opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567
3.28k
  opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569
  /*
2570
   * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571
   * in a u_int; we use it as a u_int number-of-iterations
2572
   * value.
2573
   */
2574
3.28k
  product = opt_state->n_blocks * opt_state->nodewords;
2575
3.28k
  if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576
    /*
2577
     * XXX - just punt and don't try to optimize?
2578
     * In practice, this is unlikely to happen with
2579
     * a normal filter.
2580
     */
2581
0
    opt_error(opt_state, "filter is too complex to optimize");
2582
0
  }
2583
2584
  /*
2585
   * Make sure the total memory required for that doesn't
2586
   * overflow.
2587
   */
2588
3.28k
  block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589
3.28k
  if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590
0
    opt_error(opt_state, "filter is too complex to optimize");
2591
0
  }
2592
2593
  /*
2594
   * Make sure opt_state->n_edges * opt_state->edgewords fits
2595
   * in a u_int; we use it as a u_int number-of-iterations
2596
   * value.
2597
   */
2598
3.28k
  product = opt_state->n_edges * opt_state->edgewords;
2599
3.28k
  if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600
0
    opt_error(opt_state, "filter is too complex to optimize");
2601
0
  }
2602
2603
  /*
2604
   * Make sure the total memory required for that doesn't
2605
   * overflow.
2606
   */
2607
3.28k
  edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608
3.28k
  if (edge_memsize / product != sizeof(*opt_state->space)) {
2609
0
    opt_error(opt_state, "filter is too complex to optimize");
2610
0
  }
2611
2612
  /*
2613
   * Make sure the total memory required for both of them doesn't
2614
   * overflow.
2615
   */
2616
3.28k
  if (block_memsize > SIZE_MAX - edge_memsize) {
2617
0
    opt_error(opt_state, "filter is too complex to optimize");
2618
0
  }
2619
2620
  /* XXX */
2621
3.28k
  opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622
3.28k
  if (opt_state->space == NULL) {
2623
0
    opt_error(opt_state, "malloc");
2624
0
  }
2625
3.28k
  p = opt_state->space;
2626
3.28k
  opt_state->all_dom_sets = p;
2627
26.0k
  for (i = 0; i < n; ++i) {
2628
22.8k
    opt_state->blocks[i]->dom = p;
2629
22.8k
    p += opt_state->nodewords;
2630
22.8k
  }
2631
3.28k
  opt_state->all_closure_sets = p;
2632
26.0k
  for (i = 0; i < n; ++i) {
2633
22.8k
    opt_state->blocks[i]->closure = p;
2634
22.8k
    p += opt_state->nodewords;
2635
22.8k
  }
2636
3.28k
  opt_state->all_edge_sets = p;
2637
26.0k
  for (i = 0; i < n; ++i) {
2638
22.8k
    register struct block *b = opt_state->blocks[i];
2639
2640
22.8k
    b->et.edom = p;
2641
22.8k
    p += opt_state->edgewords;
2642
22.8k
    b->ef.edom = p;
2643
22.8k
    p += opt_state->edgewords;
2644
22.8k
    b->et.id = i;
2645
22.8k
    opt_state->edges[i] = &b->et;
2646
22.8k
    b->ef.id = opt_state->n_blocks + i;
2647
22.8k
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648
22.8k
    b->et.pred = b;
2649
22.8k
    b->ef.pred = b;
2650
22.8k
  }
2651
3.28k
  max_stmts = 0;
2652
26.0k
  for (i = 0; i < n; ++i)
2653
22.8k
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654
  /*
2655
   * We allocate at most 3 value numbers per statement,
2656
   * so this is an upper bound on the number of valnodes
2657
   * we'll need.
2658
   */
2659
3.28k
  opt_state->maxval = 3 * max_stmts;
2660
3.28k
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661
3.28k
  if (opt_state->vmap == NULL) {
2662
0
    opt_error(opt_state, "malloc");
2663
0
  }
2664
3.28k
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665
3.28k
  if (opt_state->vnode_base == NULL) {
2666
0
    opt_error(opt_state, "malloc");
2667
0
  }
2668
3.28k
}
2669
2670
/*
2671
 * This is only used when supporting optimizer debugging.  It is
2672
 * global state, so do *not* do more than one compile in parallel
2673
 * and expect it to provide meaningful information.
2674
 */
2675
#ifdef BDEBUG
2676
int bids[NBIDS];
2677
#endif
2678
2679
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680
    PCAP_PRINTFLIKE(2, 3);
2681
2682
/*
2683
 * Returns true if successful.  Returns false if a branch has
2684
 * an offset that is too large.  If so, we have marked that
2685
 * branch so that on a subsequent iteration, it will be treated
2686
 * properly.
2687
 */
2688
static int
2689
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690
26.5k
{
2691
26.5k
  struct bpf_insn *dst;
2692
26.5k
  struct slist *src;
2693
26.5k
  u_int slen;
2694
26.5k
  u_int off;
2695
26.5k
  struct slist **offset = NULL;
2696
2697
26.5k
  if (p == 0 || isMarked(ic, p))
2698
14.5k
    return (1);
2699
12.0k
  Mark(ic, p);
2700
2701
12.0k
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702
0
    return (0);
2703
12.0k
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704
0
    return (0);
2705
2706
12.0k
  slen = slength(p->stmts);
2707
12.0k
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708
    /* inflate length by any extra jumps */
2709
2710
12.0k
  p->offset = (int)(dst - conv_state->fstart);
2711
2712
  /* generate offset[] for convenience  */
2713
12.0k
  if (slen) {
2714
6.79k
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715
6.79k
    if (!offset) {
2716
0
      conv_error(conv_state, "not enough core");
2717
      /*NOTREACHED*/
2718
0
    }
2719
6.79k
  }
2720
12.0k
  src = p->stmts;
2721
42.9k
  for (off = 0; off < slen && src; off++) {
2722
#if 0
2723
    printf("off=%d src=%x\n", off, src);
2724
#endif
2725
30.8k
    offset[off] = src;
2726
30.8k
    src = src->next;
2727
30.8k
  }
2728
2729
12.0k
  off = 0;
2730
65.0k
  for (src = p->stmts; src; src = src->next) {
2731
53.0k
    if (src->s.code == NOP)
2732
22.1k
      continue;
2733
30.8k
    dst->code = (u_short)src->s.code;
2734
30.8k
    dst->k = src->s.k;
2735
2736
    /* fill block-local relative jump */
2737
30.8k
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738
#if 0
2739
      if (src->s.jt || src->s.jf) {
2740
        free(offset);
2741
        conv_error(conv_state, "illegal jmp destination");
2742
        /*NOTREACHED*/
2743
      }
2744
#endif
2745
29.1k
      goto filled;
2746
29.1k
    }
2747
1.71k
    if (off == slen - 2)  /*???*/
2748
0
      goto filled;
2749
2750
1.71k
      {
2751
1.71k
    u_int i;
2752
1.71k
    int jt, jf;
2753
1.71k
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755
#if 0
2756
    printf("code=%x off=%d %x %x\n", src->s.code,
2757
      off, src->s.jt, src->s.jf);
2758
#endif
2759
2760
1.71k
    if (!src->s.jt || !src->s.jf) {
2761
0
      free(offset);
2762
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2763
      /*NOTREACHED*/
2764
0
    }
2765
2766
1.71k
    jt = jf = 0;
2767
74.9k
    for (i = 0; i < slen; i++) {
2768
73.2k
      if (offset[i] == src->s.jt) {
2769
1.71k
        if (jt) {
2770
0
          free(offset);
2771
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2772
          /*NOTREACHED*/
2773
0
        }
2774
2775
1.71k
        if (i - off - 1 >= 256) {
2776
0
          free(offset);
2777
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2778
          /*NOTREACHED*/
2779
0
        }
2780
1.71k
        dst->jt = (u_char)(i - off - 1);
2781
1.71k
        jt++;
2782
1.71k
      }
2783
73.2k
      if (offset[i] == src->s.jf) {
2784
1.71k
        if (jf) {
2785
0
          free(offset);
2786
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2787
          /*NOTREACHED*/
2788
0
        }
2789
1.71k
        if (i - off - 1 >= 256) {
2790
0
          free(offset);
2791
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2792
          /*NOTREACHED*/
2793
0
        }
2794
1.71k
        dst->jf = (u_char)(i - off - 1);
2795
1.71k
        jf++;
2796
1.71k
      }
2797
73.2k
    }
2798
1.71k
    if (!jt || !jf) {
2799
0
      free(offset);
2800
0
      conv_error(conv_state, ljerr, "no destination found", off);
2801
      /*NOTREACHED*/
2802
0
    }
2803
1.71k
      }
2804
30.8k
filled:
2805
30.8k
    ++dst;
2806
30.8k
    ++off;
2807
30.8k
  }
2808
12.0k
  if (offset)
2809
6.79k
    free(offset);
2810
2811
#ifdef BDEBUG
2812
  if (dst - conv_state->fstart < NBIDS)
2813
    bids[dst - conv_state->fstart] = p->id + 1;
2814
#endif
2815
12.0k
  dst->code = (u_short)p->s.code;
2816
12.0k
  dst->k = p->s.k;
2817
12.0k
  if (JT(p)) {
2818
    /* number of extra jumps inserted */
2819
7.85k
    u_char extrajmps = 0;
2820
7.85k
    off = JT(p)->offset - (p->offset + slen) - 1;
2821
7.85k
    if (off >= 256) {
2822
        /* offset too large for branch, must add a jump */
2823
0
        if (p->longjt == 0) {
2824
      /* mark this instruction and retry */
2825
0
      p->longjt++;
2826
0
      return(0);
2827
0
        }
2828
0
        dst->jt = extrajmps;
2829
0
        extrajmps++;
2830
0
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2831
0
        dst[extrajmps].k = off - extrajmps;
2832
0
    }
2833
7.85k
    else
2834
7.85k
        dst->jt = (u_char)off;
2835
7.85k
    off = JF(p)->offset - (p->offset + slen) - 1;
2836
7.85k
    if (off >= 256) {
2837
        /* offset too large for branch, must add a jump */
2838
0
        if (p->longjf == 0) {
2839
      /* mark this instruction and retry */
2840
0
      p->longjf++;
2841
0
      return(0);
2842
0
        }
2843
        /* branch if F to following jump */
2844
        /* if two jumps are inserted, F goes to second one */
2845
0
        dst->jf = extrajmps;
2846
0
        extrajmps++;
2847
0
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2848
0
        dst[extrajmps].k = off - extrajmps;
2849
0
    }
2850
7.85k
    else
2851
7.85k
        dst->jf = (u_char)off;
2852
7.85k
  }
2853
12.0k
  return (1);
2854
12.0k
}
2855
2856
2857
/*
2858
 * Convert flowgraph intermediate representation to the
2859
 * BPF array representation.  Set *lenp to the number of instructions.
2860
 *
2861
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862
 * not* do free(fp) before returning fp; doing so would make no sense,
2863
 * as the BPF array pointed to by the return value of icode_to_fcode()
2864
 * must be valid - it's being returned for use in a bpf_program structure.
2865
 *
2866
 * If it appears that icode_to_fcode() is leaking, the problem is that
2867
 * the program using pcap_compile() is failing to free the memory in
2868
 * the BPF program when it's done - the leak is in the program, not in
2869
 * the routine that happens to be allocating the memory.  (By analogy, if
2870
 * a program calls fopen() without ever calling fclose() on the FILE *,
2871
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872
 * the program.)  Change the program to use pcap_freecode() when it's
2873
 * done with the filter program.  See the pcap man page.
2874
 */
2875
struct bpf_insn *
2876
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877
    char *errbuf)
2878
2.51k
{
2879
2.51k
  u_int n;
2880
2.51k
  struct bpf_insn *fp;
2881
2.51k
  conv_state_t conv_state;
2882
2883
2.51k
  conv_state.fstart = NULL;
2884
2.51k
  conv_state.errbuf = errbuf;
2885
2.51k
  if (setjmp(conv_state.top_ctx) != 0) {
2886
0
    free(conv_state.fstart);
2887
0
    return NULL;
2888
0
  }
2889
2890
  /*
2891
   * Loop doing convert_code_r() until no branches remain
2892
   * with too-large offsets.
2893
   */
2894
2.51k
  for (;;) {
2895
2.51k
      unMarkAll(ic);
2896
2.51k
      n = *lenp = count_stmts(ic, root);
2897
2898
2.51k
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899
2.51k
      if (fp == NULL) {
2900
0
    (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901
0
        "malloc");
2902
0
    return NULL;
2903
0
      }
2904
2.51k
      memset((char *)fp, 0, sizeof(*fp) * n);
2905
2.51k
      conv_state.fstart = fp;
2906
2.51k
      conv_state.ftail = fp + n;
2907
2908
2.51k
      unMarkAll(ic);
2909
2.51k
      if (convert_code_r(&conv_state, ic, root))
2910
2.51k
    break;
2911
0
      free(fp);
2912
0
  }
2913
2914
2.51k
  return fp;
2915
2.51k
}
2916
2917
/*
2918
 * For iconv_to_fconv() errors.
2919
 */
2920
static void PCAP_NORETURN
2921
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922
0
{
2923
0
  va_list ap;
2924
2925
0
  va_start(ap, fmt);
2926
0
  (void)vsnprintf(conv_state->errbuf,
2927
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2928
0
  va_end(ap);
2929
0
  longjmp(conv_state->top_ctx, 1);
2930
  /* NOTREACHED */
2931
#ifdef _AIX
2932
  PCAP_UNREACHABLE
2933
#endif /* _AIX */
2934
0
}
2935
2936
/*
2937
 * Make a copy of a BPF program and put it in the "fcode" member of
2938
 * a "pcap_t".
2939
 *
2940
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941
 * member of the "pcap_t" with an error message, and return -1;
2942
 * otherwise, return 0.
2943
 */
2944
int
2945
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946
0
{
2947
0
  size_t prog_size;
2948
2949
  /*
2950
   * Validate the program.
2951
   */
2952
0
  if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953
0
    snprintf(p->errbuf, sizeof(p->errbuf),
2954
0
      "BPF program is not valid");
2955
0
    return (-1);
2956
0
  }
2957
2958
  /*
2959
   * Free up any already installed program.
2960
   */
2961
0
  pcap_freecode(&p->fcode);
2962
2963
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964
0
  p->fcode.bf_len = fp->bf_len;
2965
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966
0
  if (p->fcode.bf_insns == NULL) {
2967
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968
0
        errno, "malloc");
2969
0
    return (-1);
2970
0
  }
2971
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972
0
  return (0);
2973
0
}
2974
2975
#ifdef BDEBUG
2976
static void
2977
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978
    FILE *out)
2979
{
2980
  int icount, noffset;
2981
  int i;
2982
2983
  if (block == NULL || isMarked(ic, block))
2984
    return;
2985
  Mark(ic, block);
2986
2987
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988
  noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990
  fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991
  for (i = block->offset; i < noffset; i++) {
2992
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993
  }
2994
  fprintf(out, "\" tooltip=\"");
2995
  for (i = 0; i < BPF_MEMWORDS; i++)
2996
    if (block->val[i] != VAL_UNKNOWN)
2997
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000
  fprintf(out, "\"");
3001
  if (JT(block) == NULL)
3002
    fprintf(out, ", peripheries=2");
3003
  fprintf(out, "];\n");
3004
3005
  dot_dump_node(ic, JT(block), prog, out);
3006
  dot_dump_node(ic, JF(block), prog, out);
3007
}
3008
3009
static void
3010
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011
{
3012
  if (block == NULL || isMarked(ic, block))
3013
    return;
3014
  Mark(ic, block);
3015
3016
  if (JT(block)) {
3017
    fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018
        block->id, JT(block)->id);
3019
    fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020
         block->id, JF(block)->id);
3021
  }
3022
  dot_dump_edge(ic, JT(block), out);
3023
  dot_dump_edge(ic, JF(block), out);
3024
}
3025
3026
/* Output the block CFG using graphviz/DOT language
3027
 * In the CFG, block's code, value index for each registers at EXIT,
3028
 * and the jump relationship is show.
3029
 *
3030
 * example DOT for BPF `ip src host 1.1.1.1' is:
3031
    digraph BPF {
3032
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
3033
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
3034
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036
      "block0":se -> "block1":n [label="T"];
3037
      "block0":sw -> "block3":n [label="F"];
3038
      "block1":se -> "block2":n [label="T"];
3039
      "block1":sw -> "block3":n [label="F"];
3040
    }
3041
 *
3042
 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044
 */
3045
static int
3046
dot_dump(struct icode *ic, char *errbuf)
3047
{
3048
  struct bpf_program f;
3049
  FILE *out = stdout;
3050
3051
  memset(bids, 0, sizeof bids);
3052
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053
  if (f.bf_insns == NULL)
3054
    return -1;
3055
3056
  fprintf(out, "digraph BPF {\n");
3057
  unMarkAll(ic);
3058
  dot_dump_node(ic, ic->root, &f, out);
3059
  unMarkAll(ic);
3060
  dot_dump_edge(ic, ic->root, out);
3061
  fprintf(out, "}\n");
3062
3063
  free((char *)f.bf_insns);
3064
  return 0;
3065
}
3066
3067
static int
3068
plain_dump(struct icode *ic, char *errbuf)
3069
{
3070
  struct bpf_program f;
3071
3072
  memset(bids, 0, sizeof bids);
3073
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074
  if (f.bf_insns == NULL)
3075
    return -1;
3076
  bpf_dump(&f, 1);
3077
  putchar('\n');
3078
  free((char *)f.bf_insns);
3079
  return 0;
3080
}
3081
3082
static void
3083
opt_dump(opt_state_t *opt_state, struct icode *ic)
3084
{
3085
  int status;
3086
  char errbuf[PCAP_ERRBUF_SIZE];
3087
3088
  /*
3089
   * If the CFG, in DOT format, is requested, output it rather than
3090
   * the code that would be generated from that graph.
3091
   */
3092
  if (pcap_print_dot_graph)
3093
    status = dot_dump(ic, errbuf);
3094
  else
3095
    status = plain_dump(ic, errbuf);
3096
  if (status == -1)
3097
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098
}
3099
#endif