Coverage Report

Created: 2024-01-21 06:58

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
297k
{
81
297k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
297k
  int ci, blkn, dctbl, actbl;
83
297k
  d_derived_tbl **pdtbl;
84
297k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
297k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
297k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
213k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
764k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
467k
    compptr = cinfo->cur_comp_info[ci];
96
467k
    dctbl = compptr->dc_tbl_no;
97
467k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
467k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
467k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
467k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
467k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
467k
    entropy->saved.last_dc_val[ci] = 0;
106
467k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
1.08M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
789k
    ci = cinfo->MCU_membership[blkn];
111
789k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
789k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
789k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
789k
    if (compptr->component_needed) {
117
771k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
771k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
771k
    } else {
121
18.1k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
18.1k
    }
123
789k
  }
124
125
  /* Initialize bitread state variables */
126
297k
  entropy->bitstate.bits_left = 0;
127
297k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
297k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
297k
  entropy->restarts_to_go = cinfo->restart_interval;
132
297k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
1.58M
{
146
1.58M
  JHUFF_TBL *htbl;
147
1.58M
  d_derived_tbl *dtbl;
148
1.58M
  int p, i, l, si, numsymbols;
149
1.58M
  int lookbits, ctr;
150
1.58M
  char huffsize[257];
151
1.58M
  unsigned int huffcode[257];
152
1.58M
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
1.58M
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
389
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
1.58M
  htbl =
162
1.58M
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
1.58M
  if (htbl == NULL)
164
591
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
1.58M
  if (*pdtbl == NULL)
168
333k
    *pdtbl = (d_derived_tbl *)
169
333k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
333k
                                  sizeof(d_derived_tbl));
171
1.58M
  dtbl = *pdtbl;
172
1.58M
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
1.58M
  p = 0;
177
26.8M
  for (l = 1; l <= 16; l++) {
178
25.3M
    i = (int)htbl->bits[l];
179
25.3M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
50.5M
    while (i--)
182
25.2M
      huffsize[p++] = (char)l;
183
25.3M
  }
184
1.58M
  huffsize[p] = 0;
185
1.58M
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
1.58M
  code = 0;
191
1.58M
  si = huffsize[0];
192
1.58M
  p = 0;
193
11.4M
  while (huffsize[p]) {
194
35.1M
    while (((int)huffsize[p]) == si) {
195
25.2M
      huffcode[p++] = code;
196
25.2M
      code++;
197
25.2M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
9.85M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
188
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
9.85M
    code <<= 1;
204
9.85M
    si++;
205
9.85M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
1.58M
  p = 0;
210
26.8M
  for (l = 1; l <= 16; l++) {
211
25.3M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
8.78M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
8.78M
      p += htbl->bits[l];
217
8.78M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
16.5M
    } else {
219
16.5M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
16.5M
    }
221
25.3M
  }
222
1.58M
  dtbl->valoffset[17] = 0;
223
1.58M
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
406M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
404M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
1.58M
  p = 0;
236
14.2M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
26.8M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
14.2M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
391M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
377M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
377M
        lookbits++;
244
377M
      }
245
14.2M
    }
246
12.6M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
1.58M
  if (isDC) {
255
6.76M
    for (i = 0; i < numsymbols; i++) {
256
5.78M
      int sym = htbl->huffval[i];
257
5.78M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
839
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
5.78M
    }
260
978k
  }
261
1.58M
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
496M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
129M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
129M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
129M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
129M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
129M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
410M
    while (bits_left < MIN_GET_BITS) {
303
359M
      register int c;
304
305
      /* Attempt to read a byte */
306
359M
      if (bytes_in_buffer == 0) {
307
12.4k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
12.4k
        next_input_byte = cinfo->src->next_input_byte;
310
12.4k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
12.4k
      }
312
359M
      bytes_in_buffer--;
313
359M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
359M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
10.0M
        do {
323
10.0M
          if (bytes_in_buffer == 0) {
324
3.49k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
3.49k
            next_input_byte = cinfo->src->next_input_byte;
327
3.49k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
3.49k
          }
329
10.0M
          bytes_in_buffer--;
330
10.0M
          c = *next_input_byte++;
331
10.0M
        } while (c == 0xFF);
332
333
1.85M
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
1.29M
          c = 0xFF;
336
1.29M
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
561k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
561k
          goto no_more_bytes;
348
561k
        }
349
1.85M
      }
350
351
      /* OK, load c into get_buffer */
352
359M
      get_buffer = (get_buffer << 8) | c;
353
359M
      bits_left += 8;
354
359M
    } /* end while */
355
78.2M
  } else {
356
78.8M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
78.8M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
43.3M
      if (!cinfo->entropy->insufficient_data) {
368
593k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
593k
        cinfo->entropy->insufficient_data = TRUE;
370
593k
      }
371
      /* Fill the buffer with zero bits */
372
43.3M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
43.3M
      bits_left = MIN_GET_BITS;
374
43.3M
    }
375
78.8M
  }
376
377
  /* Unload the local registers */
378
129M
  state->next_input_byte = next_input_byte;
379
129M
  state->bytes_in_buffer = bytes_in_buffer;
380
129M
  state->get_buffer = get_buffer;
381
129M
  state->bits_left = bits_left;
382
383
129M
  return TRUE;
384
129M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
284M
#define GET_BYTE { \
392
284M
  register int c0, c1; \
393
284M
  c0 = *buffer++; \
394
284M
  c1 = *buffer; \
395
284M
  /* Pre-execute most common case */ \
396
284M
  get_buffer = (get_buffer << 8) | c0; \
397
284M
  bits_left += 8; \
398
284M
  if (c0 == 0xFF) { \
399
4.68M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
4.68M
    buffer++; \
401
4.68M
    if (c1 != 0) { \
402
3.75M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
3.75M
      cinfo->unread_marker = c1; \
404
3.75M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
3.75M
      buffer -= 2; \
406
3.75M
      get_buffer &= ~0xFF; \
407
3.75M
    } \
408
4.68M
  } \
409
284M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
530M
  if (bits_left <= 16) { \
416
47.4M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
47.4M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
36.9M
{
440
36.9M
  register int l = min_bits;
441
36.9M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
36.9M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
36.9M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
59.9M
  while (code > htbl->maxcode[l]) {
453
22.9M
    code <<= 1;
454
22.9M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
22.9M
    code |= GET_BITS(1);
456
22.9M
    l++;
457
22.9M
  }
458
459
  /* Unload the local registers */
460
36.9M
  state->get_buffer = get_buffer;
461
36.9M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
36.9M
  if (l > 16) {
466
536k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
536k
    return 0;                   /* fake a zero as the safest result */
468
536k
  }
469
470
36.4M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
36.9M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
368M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
368M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.31M
{
514
1.31M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.31M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.31M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.31M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.31M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
2.80M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
1.48M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.31M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.31M
  if (cinfo->unread_marker == 0)
539
21.8k
    entropy->pub.insufficient_data = FALSE;
540
541
1.31M
  return TRUE;
542
1.31M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
961k
{
554
961k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
961k
  BITREAD_STATE_VARS;
556
961k
  int blkn;
557
961k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
961k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
961k
  state = entropy->saved;
563
564
4.47M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
3.51M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
3.51M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
3.51M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
3.51M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
3.51M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
3.51M
    if (s) {
575
2.63M
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
2.63M
      r = GET_BITS(s);
577
2.63M
      s = HUFF_EXTEND(r, s);
578
2.63M
    }
579
580
3.51M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
3.24M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
3.24M
      s += state.last_dc_val[ci];
592
3.24M
      state.last_dc_val[ci] = s;
593
3.24M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
3.24M
        (*block)[0] = (JCOEF)s;
596
3.24M
      }
597
3.24M
    }
598
599
3.51M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
116M
      for (k = 1; k < DCTSIZE2; k++) {
604
114M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
114M
        r = s >> 4;
607
114M
        s &= 15;
608
609
114M
        if (s) {
610
112M
          k += r;
611
112M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
112M
          r = GET_BITS(s);
613
112M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
112M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
112M
        } else {
620
1.57M
          if (r != 15)
621
1.44M
            break;
622
137k
          k += 15;
623
137k
        }
624
114M
      }
625
626
3.24M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
9.23M
      for (k = 1; k < DCTSIZE2; k++) {
631
9.09M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
9.09M
        r = s >> 4;
634
9.09M
        s &= 15;
635
636
9.09M
        if (s) {
637
8.95M
          k += r;
638
8.95M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
8.95M
          DROP_BITS(s);
640
8.95M
        } else {
641
134k
          if (r != 15)
642
127k
            break;
643
6.58k
          k += 15;
644
6.58k
        }
645
9.09M
      }
646
270k
    }
647
3.51M
  }
648
649
  /* Completed MCU, so update state */
650
961k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
961k
  entropy->saved = state;
652
961k
  return TRUE;
653
961k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
1.52M
{
665
1.52M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
1.52M
  BITREAD_STATE_VARS;
667
1.52M
  JOCTET *buffer;
668
1.52M
  int blkn;
669
1.52M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
1.52M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
1.52M
  buffer = (JOCTET *)br_state.next_input_byte;
675
1.52M
  state = entropy->saved;
676
677
7.27M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
5.74M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
5.74M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
5.74M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
5.74M
    register int s, k, r, l;
682
683
5.74M
    HUFF_DECODE_FAST(s, l, dctbl);
684
5.74M
    if (s) {
685
4.84M
      FILL_BIT_BUFFER_FAST
686
4.84M
      r = GET_BITS(s);
687
4.84M
      s = HUFF_EXTEND(r, s);
688
4.84M
    }
689
690
5.74M
    if (entropy->dc_needed[blkn]) {
691
5.46M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
5.46M
      s += state.last_dc_val[ci];
696
5.46M
      state.last_dc_val[ci] = s;
697
5.46M
      if (block)
698
5.46M
        (*block)[0] = (JCOEF)s;
699
5.46M
    }
700
701
5.74M
    if (entropy->ac_needed[blkn] && block) {
702
703
254M
      for (k = 1; k < DCTSIZE2; k++) {
704
250M
        HUFF_DECODE_FAST(s, l, actbl);
705
250M
        r = s >> 4;
706
250M
        s &= 15;
707
708
250M
        if (s) {
709
248M
          k += r;
710
248M
          FILL_BIT_BUFFER_FAST
711
248M
          r = GET_BITS(s);
712
248M
          s = HUFF_EXTEND(r, s);
713
248M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
248M
        } else {
715
1.55M
          if (r != 15) break;
716
128k
          k += 15;
717
128k
        }
718
250M
      }
719
720
5.46M
    } else {
721
722
10.9M
      for (k = 1; k < DCTSIZE2; k++) {
723
10.7M
        HUFF_DECODE_FAST(s, l, actbl);
724
10.7M
        r = s >> 4;
725
10.7M
        s &= 15;
726
727
10.7M
        if (s) {
728
10.6M
          k += r;
729
10.6M
          FILL_BIT_BUFFER_FAST
730
10.6M
          DROP_BITS(s);
731
10.6M
        } else {
732
115k
          if (r != 15) break;
733
1.67k
          k += 15;
734
1.67k
        }
735
10.7M
      }
736
281k
    }
737
5.74M
  }
738
739
1.52M
  if (cinfo->unread_marker != 0) {
740
122k
    cinfo->unread_marker = 0;
741
122k
    return FALSE;
742
122k
  }
743
744
1.40M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
1.40M
  br_state.next_input_byte = buffer;
746
1.40M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
1.40M
  entropy->saved = state;
748
1.40M
  return TRUE;
749
1.52M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
26.3M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
26.3M
{
772
26.3M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
26.3M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
26.3M
  if (cinfo->restart_interval) {
777
4.03M
    if (entropy->restarts_to_go == 0)
778
1.31M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
4.03M
    usefast = 0;
781
4.03M
  }
782
783
26.3M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
26.3M
      cinfo->unread_marker != 0)
785
24.6M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
26.3M
  if (!entropy->pub.insufficient_data) {
791
792
2.36M
    if (usefast) {
793
1.52M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
1.52M
    } else {
795
961k
use_slow:
796
961k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
961k
    }
798
799
2.36M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
26.3M
  if (cinfo->restart_interval)
803
4.03M
    entropy->restarts_to_go--;
804
805
26.3M
  return TRUE;
806
26.3M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
69.2k
{
816
69.2k
  huff_entropy_ptr entropy;
817
69.2k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
69.2k
  std_huff_tables((j_common_ptr)cinfo);
824
825
69.2k
  entropy = (huff_entropy_ptr)
826
69.2k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
69.2k
                                sizeof(huff_entropy_decoder));
828
69.2k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
69.2k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
69.2k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
346k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
276k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
276k
  }
836
69.2k
}