Coverage Report

Created: 2024-01-21 06:57

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
120k
{
81
120k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
120k
  int ci, blkn, dctbl, actbl;
83
120k
  d_derived_tbl **pdtbl;
84
120k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
120k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
120k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
101k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
309k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
188k
    compptr = cinfo->cur_comp_info[ci];
96
188k
    dctbl = compptr->dc_tbl_no;
97
188k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
188k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
188k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
188k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
188k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
188k
    entropy->saved.last_dc_val[ci] = 0;
106
188k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
440k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
320k
    ci = cinfo->MCU_membership[blkn];
111
320k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
320k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
320k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
320k
    if (compptr->component_needed) {
117
313k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
313k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
313k
    } else {
121
6.42k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
6.42k
    }
123
320k
  }
124
125
  /* Initialize bitread state variables */
126
120k
  entropy->bitstate.bits_left = 0;
127
120k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
120k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
120k
  entropy->restarts_to_go = cinfo->restart_interval;
132
120k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
523k
{
146
523k
  JHUFF_TBL *htbl;
147
523k
  d_derived_tbl *dtbl;
148
523k
  int p, i, l, si, numsymbols;
149
523k
  int lookbits, ctr;
150
523k
  char huffsize[257];
151
523k
  unsigned int huffcode[257];
152
523k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
523k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
388
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
523k
  htbl =
162
523k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
523k
  if (htbl == NULL)
164
106
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
523k
  if (*pdtbl == NULL)
168
110k
    *pdtbl = (d_derived_tbl *)
169
110k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
110k
                                  sizeof(d_derived_tbl));
171
523k
  dtbl = *pdtbl;
172
523k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
523k
  p = 0;
177
8.89M
  for (l = 1; l <= 16; l++) {
178
8.37M
    i = (int)htbl->bits[l];
179
8.37M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
15.4M
    while (i--)
182
7.05M
      huffsize[p++] = (char)l;
183
8.37M
  }
184
523k
  huffsize[p] = 0;
185
523k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
523k
  code = 0;
191
523k
  si = huffsize[0];
192
523k
  p = 0;
193
3.69M
  while (huffsize[p]) {
194
10.2M
    while (((int)huffsize[p]) == si) {
195
7.05M
      huffcode[p++] = code;
196
7.05M
      code++;
197
7.05M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
3.16M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
80
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
3.16M
    code <<= 1;
204
3.16M
    si++;
205
3.16M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
523k
  p = 0;
210
8.89M
  for (l = 1; l <= 16; l++) {
211
8.37M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
2.74M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
2.74M
      p += htbl->bits[l];
217
2.74M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
5.62M
    } else {
219
5.62M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
5.62M
    }
221
8.37M
  }
222
523k
  dtbl->valoffset[17] = 0;
223
523k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
134M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
133M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
523k
  p = 0;
236
4.70M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
8.83M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
4.64M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
128M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
123M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
123M
        lookbits++;
244
123M
      }
245
4.64M
    }
246
4.18M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
523k
  if (isDC) {
255
2.13M
    for (i = 0; i < numsymbols; i++) {
256
1.82M
      int sym = htbl->huffval[i];
257
1.82M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
317
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
1.82M
    }
260
305k
  }
261
523k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
185M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
25.8M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
25.8M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
25.8M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
25.8M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
25.8M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
182M
    while (bits_left < MIN_GET_BITS) {
303
160M
      register int c;
304
305
      /* Attempt to read a byte */
306
160M
      if (bytes_in_buffer == 0) {
307
5.68k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
5.68k
        next_input_byte = cinfo->src->next_input_byte;
310
5.68k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
5.68k
      }
312
160M
      bytes_in_buffer--;
313
160M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
160M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
736k
        do {
323
736k
          if (bytes_in_buffer == 0) {
324
123
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
123
            next_input_byte = cinfo->src->next_input_byte;
327
123
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
123
          }
329
736k
          bytes_in_buffer--;
330
736k
          c = *next_input_byte++;
331
736k
        } while (c == 0xFF);
332
333
688k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
531k
          c = 0xFF;
336
531k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
156k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
156k
          goto no_more_bytes;
348
156k
        }
349
688k
      }
350
351
      /* OK, load c into get_buffer */
352
160M
      get_buffer = (get_buffer << 8) | c;
353
160M
      bits_left += 8;
354
160M
    } /* end while */
355
22.8M
  } else {
356
3.16M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
3.16M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
1.23M
      if (!cinfo->entropy->insufficient_data) {
368
166k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
166k
        cinfo->entropy->insufficient_data = TRUE;
370
166k
      }
371
      /* Fill the buffer with zero bits */
372
1.23M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
1.23M
      bits_left = MIN_GET_BITS;
374
1.23M
    }
375
3.16M
  }
376
377
  /* Unload the local registers */
378
25.8M
  state->next_input_byte = next_input_byte;
379
25.8M
  state->bytes_in_buffer = bytes_in_buffer;
380
25.8M
  state->get_buffer = get_buffer;
381
25.8M
  state->bits_left = bits_left;
382
383
25.8M
  return TRUE;
384
25.8M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
39.9M
#define GET_BYTE { \
392
39.9M
  register int c0, c1; \
393
39.9M
  c0 = *buffer++; \
394
39.9M
  c1 = *buffer; \
395
39.9M
  /* Pre-execute most common case */ \
396
39.9M
  get_buffer = (get_buffer << 8) | c0; \
397
39.9M
  bits_left += 8; \
398
39.9M
  if (c0 == 0xFF) { \
399
1.33M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
1.33M
    buffer++; \
401
1.33M
    if (c1 != 0) { \
402
1.19M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
1.19M
      cinfo->unread_marker = c1; \
404
1.19M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
1.19M
      buffer -= 2; \
406
1.19M
      get_buffer &= ~0xFF; \
407
1.19M
    } \
408
1.33M
  } \
409
39.9M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
82.3M
  if (bits_left <= 16) { \
416
6.66M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
6.66M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
2.68M
{
440
2.68M
  register int l = min_bits;
441
2.68M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
2.68M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
2.68M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
8.27M
  while (code > htbl->maxcode[l]) {
453
5.59M
    code <<= 1;
454
5.59M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
5.59M
    code |= GET_BITS(1);
456
5.59M
    l++;
457
5.59M
  }
458
459
  /* Unload the local registers */
460
2.68M
  state->get_buffer = get_buffer;
461
2.68M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
2.68M
  if (l > 16) {
466
506k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
506k
    return 0;                   /* fake a zero as the safest result */
468
506k
  }
469
470
2.17M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
2.68M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
56.3M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
56.3M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.89M
{
514
1.89M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.89M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.89M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.89M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.89M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
3.87M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
1.98M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.89M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.89M
  if (cinfo->unread_marker == 0)
539
4.04k
    entropy->pub.insufficient_data = FALSE;
540
541
1.89M
  return TRUE;
542
1.89M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
309k
{
554
309k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
309k
  BITREAD_STATE_VARS;
556
309k
  int blkn;
557
309k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
309k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
309k
  state = entropy->saved;
563
564
1.40M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.09M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.09M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.09M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.09M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.09M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.09M
    if (s) {
575
757k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
757k
      r = GET_BITS(s);
577
757k
      s = HUFF_EXTEND(r, s);
578
757k
    }
579
580
1.09M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.06M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.06M
      s += state.last_dc_val[ci];
592
1.06M
      state.last_dc_val[ci] = s;
593
1.06M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.06M
        (*block)[0] = (JCOEF)s;
596
1.06M
      }
597
1.06M
    }
598
599
1.09M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
18.7M
      for (k = 1; k < DCTSIZE2; k++) {
604
18.4M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
18.4M
        r = s >> 4;
607
18.4M
        s &= 15;
608
609
18.4M
        if (s) {
610
17.5M
          k += r;
611
17.5M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
17.5M
          r = GET_BITS(s);
613
17.5M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
17.5M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
17.5M
        } else {
620
946k
          if (r != 15)
621
751k
            break;
622
194k
          k += 15;
623
194k
        }
624
18.4M
      }
625
626
1.06M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
629k
      for (k = 1; k < DCTSIZE2; k++) {
631
618k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
618k
        r = s >> 4;
634
618k
        s &= 15;
635
636
618k
        if (s) {
637
602k
          k += r;
638
602k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
602k
          DROP_BITS(s);
640
602k
        } else {
641
15.6k
          if (r != 15)
642
14.5k
            break;
643
1.08k
          k += 15;
644
1.08k
        }
645
618k
      }
646
25.8k
    }
647
1.09M
  }
648
649
  /* Completed MCU, so update state */
650
309k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
309k
  entropy->saved = state;
652
309k
  return TRUE;
653
309k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
920k
{
665
920k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
920k
  BITREAD_STATE_VARS;
667
920k
  JOCTET *buffer;
668
920k
  int blkn;
669
920k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
920k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
920k
  buffer = (JOCTET *)br_state.next_input_byte;
675
920k
  state = entropy->saved;
676
677
4.20M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
3.28M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
3.28M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
3.28M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
3.28M
    register int s, k, r, l;
682
683
3.28M
    HUFF_DECODE_FAST(s, l, dctbl);
684
3.28M
    if (s) {
685
2.06M
      FILL_BIT_BUFFER_FAST
686
2.06M
      r = GET_BITS(s);
687
2.06M
      s = HUFF_EXTEND(r, s);
688
2.06M
    }
689
690
3.28M
    if (entropy->dc_needed[blkn]) {
691
2.96M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
2.96M
      s += state.last_dc_val[ci];
696
2.96M
      state.last_dc_val[ci] = s;
697
2.96M
      if (block)
698
2.96M
        (*block)[0] = (JCOEF)s;
699
2.96M
    }
700
701
3.28M
    if (entropy->ac_needed[blkn] && block) {
702
703
39.2M
      for (k = 1; k < DCTSIZE2; k++) {
704
38.3M
        HUFF_DECODE_FAST(s, l, actbl);
705
38.3M
        r = s >> 4;
706
38.3M
        s &= 15;
707
708
38.3M
        if (s) {
709
36.0M
          k += r;
710
36.0M
          FILL_BIT_BUFFER_FAST
711
36.0M
          r = GET_BITS(s);
712
36.0M
          s = HUFF_EXTEND(r, s);
713
36.0M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
36.0M
        } else {
715
2.33M
          if (r != 15) break;
716
251k
          k += 15;
717
251k
        }
718
38.3M
      }
719
720
2.96M
    } else {
721
722
1.44M
      for (k = 1; k < DCTSIZE2; k++) {
723
1.40M
        HUFF_DECODE_FAST(s, l, actbl);
724
1.40M
        r = s >> 4;
725
1.40M
        s &= 15;
726
727
1.40M
        if (s) {
728
1.12M
          k += r;
729
1.12M
          FILL_BIT_BUFFER_FAST
730
1.12M
          DROP_BITS(s);
731
1.12M
        } else {
732
281k
          if (r != 15) break;
733
3.44k
          k += 15;
734
3.44k
        }
735
1.40M
      }
736
319k
    }
737
3.28M
  }
738
739
920k
  if (cinfo->unread_marker != 0) {
740
50.3k
    cinfo->unread_marker = 0;
741
50.3k
    return FALSE;
742
50.3k
  }
743
744
870k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
870k
  br_state.next_input_byte = buffer;
746
870k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
870k
  entropy->saved = state;
748
870k
  return TRUE;
749
920k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
11.6M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
11.6M
{
772
11.6M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
11.6M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
11.6M
  if (cinfo->restart_interval) {
777
2.82M
    if (entropy->restarts_to_go == 0)
778
1.89M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
2.82M
    usefast = 0;
781
2.82M
  }
782
783
11.6M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
11.6M
      cinfo->unread_marker != 0)
785
10.6M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
11.6M
  if (!entropy->pub.insufficient_data) {
791
792
1.17M
    if (usefast) {
793
920k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
920k
    } else {
795
309k
use_slow:
796
309k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
309k
    }
798
799
1.17M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
11.6M
  if (cinfo->restart_interval)
803
2.82M
    entropy->restarts_to_go--;
804
805
11.6M
  return TRUE;
806
11.6M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
24.3k
{
816
24.3k
  huff_entropy_ptr entropy;
817
24.3k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
24.3k
  std_huff_tables((j_common_ptr)cinfo);
824
825
24.3k
  entropy = (huff_entropy_ptr)
826
24.3k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
24.3k
                                sizeof(huff_entropy_decoder));
828
24.3k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
24.3k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
24.3k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
121k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
97.5k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
97.5k
  }
836
24.3k
}