Coverage Report

Created: 2024-01-23 06:30

/src/mbedtls/library/bignum.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  Multi-precision integer library
3
 *
4
 *  Copyright The Mbed TLS Contributors
5
 *  SPDX-License-Identifier: Apache-2.0
6
 *
7
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8
 *  not use this file except in compliance with the License.
9
 *  You may obtain a copy of the License at
10
 *
11
 *  http://www.apache.org/licenses/LICENSE-2.0
12
 *
13
 *  Unless required by applicable law or agreed to in writing, software
14
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
 *  See the License for the specific language governing permissions and
17
 *  limitations under the License.
18
 */
19
20
/*
21
 *  The following sources were referenced in the design of this Multi-precision
22
 *  Integer library:
23
 *
24
 *  [1] Handbook of Applied Cryptography - 1997
25
 *      Menezes, van Oorschot and Vanstone
26
 *
27
 *  [2] Multi-Precision Math
28
 *      Tom St Denis
29
 *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30
 *
31
 *  [3] GNU Multi-Precision Arithmetic Library
32
 *      https://gmplib.org/manual/index.html
33
 *
34
 */
35
36
#include "common.h"
37
38
#if defined(MBEDTLS_BIGNUM_C)
39
40
#include "mbedtls/bignum.h"
41
#include "bignum_core.h"
42
#include "bn_mul.h"
43
#include "mbedtls/platform_util.h"
44
#include "mbedtls/error.h"
45
#include "constant_time_internal.h"
46
47
#include <limits.h>
48
#include <string.h>
49
50
#include "mbedtls/platform.h"
51
52
#define MPI_VALIDATE_RET(cond)                                       \
53
15.4M
    MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54
#define MPI_VALIDATE(cond)                                           \
55
747k
    MBEDTLS_INTERNAL_VALIDATE(cond)
56
57
0
#define MPI_SIZE_T_MAX  ((size_t) -1)   /* SIZE_T_MAX is not standard */
58
59
/* Implementation that should never be optimized out by the compiler */
60
static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
61
394k
{
62
394k
    mbedtls_platform_zeroize(v, ciL * n);
63
394k
}
64
65
/*
66
 * Initialize one MPI
67
 */
68
void mbedtls_mpi_init(mbedtls_mpi *X)
69
747k
{
70
747k
    MPI_VALIDATE(X != NULL);
71
72
747k
    X->s = 1;
73
747k
    X->n = 0;
74
747k
    X->p = NULL;
75
747k
}
76
77
/*
78
 * Unallocate one MPI
79
 */
80
void mbedtls_mpi_free(mbedtls_mpi *X)
81
3.69M
{
82
3.69M
    if (X == NULL) {
83
0
        return;
84
0
    }
85
86
3.69M
    if (X->p != NULL) {
87
351k
        mbedtls_mpi_zeroize(X->p, X->n);
88
351k
        mbedtls_free(X->p);
89
351k
    }
90
91
3.69M
    X->s = 1;
92
3.69M
    X->n = 0;
93
3.69M
    X->p = NULL;
94
3.69M
}
95
96
/*
97
 * Enlarge to the specified number of limbs
98
 */
99
int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
100
3.19M
{
101
3.19M
    mbedtls_mpi_uint *p;
102
3.19M
    MPI_VALIDATE_RET(X != NULL);
103
104
3.19M
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
105
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
106
0
    }
107
108
3.19M
    if (X->n < nblimbs) {
109
404k
        if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
110
0
            return MBEDTLS_ERR_MPI_ALLOC_FAILED;
111
0
        }
112
113
404k
        if (X->p != NULL) {
114
42.3k
            memcpy(p, X->p, X->n * ciL);
115
42.3k
            mbedtls_mpi_zeroize(X->p, X->n);
116
42.3k
            mbedtls_free(X->p);
117
42.3k
        }
118
119
404k
        X->n = nblimbs;
120
404k
        X->p = p;
121
404k
    }
122
123
3.19M
    return 0;
124
3.19M
}
125
126
/*
127
 * Resize down as much as possible,
128
 * while keeping at least the specified number of limbs
129
 */
130
int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
131
440
{
132
440
    mbedtls_mpi_uint *p;
133
440
    size_t i;
134
440
    MPI_VALIDATE_RET(X != NULL);
135
136
440
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
137
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
138
0
    }
139
140
    /* Actually resize up if there are currently fewer than nblimbs limbs. */
141
440
    if (X->n <= nblimbs) {
142
0
        return mbedtls_mpi_grow(X, nblimbs);
143
0
    }
144
    /* After this point, then X->n > nblimbs and in particular X->n > 0. */
145
146
3.52k
    for (i = X->n - 1; i > 0; i--) {
147
3.52k
        if (X->p[i] != 0) {
148
440
            break;
149
440
        }
150
3.52k
    }
151
440
    i++;
152
153
440
    if (i < nblimbs) {
154
0
        i = nblimbs;
155
0
    }
156
157
440
    if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
158
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
159
0
    }
160
161
440
    if (X->p != NULL) {
162
440
        memcpy(p, X->p, i * ciL);
163
440
        mbedtls_mpi_zeroize(X->p, X->n);
164
440
        mbedtls_free(X->p);
165
440
    }
166
167
440
    X->n = i;
168
440
    X->p = p;
169
170
440
    return 0;
171
440
}
172
173
/* Resize X to have exactly n limbs and set it to 0. */
174
static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
175
232k
{
176
232k
    if (limbs == 0) {
177
547
        mbedtls_mpi_free(X);
178
547
        return 0;
179
232k
    } else if (X->n == limbs) {
180
0
        memset(X->p, 0, limbs * ciL);
181
0
        X->s = 1;
182
0
        return 0;
183
232k
    } else {
184
232k
        mbedtls_mpi_free(X);
185
232k
        return mbedtls_mpi_grow(X, limbs);
186
232k
    }
187
232k
}
188
189
/*
190
 * Copy the contents of Y into X.
191
 *
192
 * This function is not constant-time. Leading zeros in Y may be removed.
193
 *
194
 * Ensure that X does not shrink. This is not guaranteed by the public API,
195
 * but some code in the bignum module relies on this property, for example
196
 * in mbedtls_mpi_exp_mod().
197
 */
198
int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
199
335k
{
200
335k
    int ret = 0;
201
335k
    size_t i;
202
335k
    MPI_VALIDATE_RET(X != NULL);
203
335k
    MPI_VALIDATE_RET(Y != NULL);
204
205
335k
    if (X == Y) {
206
133k
        return 0;
207
133k
    }
208
209
202k
    if (Y->n == 0) {
210
15
        if (X->n != 0) {
211
0
            X->s = 1;
212
0
            memset(X->p, 0, X->n * ciL);
213
0
        }
214
15
        return 0;
215
15
    }
216
217
3.72M
    for (i = Y->n - 1; i > 0; i--) {
218
3.72M
        if (Y->p[i] != 0) {
219
202k
            break;
220
202k
        }
221
3.72M
    }
222
202k
    i++;
223
224
202k
    X->s = Y->s;
225
226
202k
    if (X->n < i) {
227
57.9k
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
228
144k
    } else {
229
144k
        memset(X->p + i, 0, (X->n - i) * ciL);
230
144k
    }
231
232
202k
    memcpy(X->p, Y->p, i * ciL);
233
234
202k
cleanup:
235
236
202k
    return ret;
237
202k
}
238
239
/*
240
 * Swap the contents of X and Y
241
 */
242
void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
243
0
{
244
0
    mbedtls_mpi T;
245
0
    MPI_VALIDATE(X != NULL);
246
0
    MPI_VALIDATE(Y != NULL);
247
248
0
    memcpy(&T,  X, sizeof(mbedtls_mpi));
249
0
    memcpy(X,  Y, sizeof(mbedtls_mpi));
250
0
    memcpy(Y, &T, sizeof(mbedtls_mpi));
251
0
}
252
253
static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
254
1.75M
{
255
1.75M
    if (z >= 0) {
256
1.75M
        return z;
257
1.75M
    }
258
    /* Take care to handle the most negative value (-2^(biL-1)) correctly.
259
     * A naive -z would have undefined behavior.
260
     * Write this in a way that makes popular compilers happy (GCC, Clang,
261
     * MSVC). */
262
0
    return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
263
1.75M
}
264
265
/*
266
 * Set value from integer
267
 */
268
int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
269
328k
{
270
328k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
271
328k
    MPI_VALIDATE_RET(X != NULL);
272
273
328k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
274
328k
    memset(X->p, 0, X->n * ciL);
275
276
328k
    X->p[0] = mpi_sint_abs(z);
277
328k
    X->s    = (z < 0) ? -1 : 1;
278
279
328k
cleanup:
280
281
328k
    return ret;
282
328k
}
283
284
/*
285
 * Get a specific bit
286
 */
287
int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
288
307k
{
289
307k
    MPI_VALIDATE_RET(X != NULL);
290
291
307k
    if (X->n * biL <= pos) {
292
0
        return 0;
293
0
    }
294
295
307k
    return (X->p[pos / biL] >> (pos % biL)) & 0x01;
296
307k
}
297
298
/*
299
 * Set a bit to a specific value of 0 or 1
300
 */
301
int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
302
4
{
303
4
    int ret = 0;
304
4
    size_t off = pos / biL;
305
4
    size_t idx = pos % biL;
306
4
    MPI_VALIDATE_RET(X != NULL);
307
308
4
    if (val != 0 && val != 1) {
309
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
310
0
    }
311
312
4
    if (X->n * biL <= pos) {
313
0
        if (val == 0) {
314
0
            return 0;
315
0
        }
316
317
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
318
0
    }
319
320
4
    X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
321
4
    X->p[off] |= (mbedtls_mpi_uint) val << idx;
322
323
4
cleanup:
324
325
4
    return ret;
326
4
}
327
328
/*
329
 * Return the number of less significant zero-bits
330
 */
331
size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
332
47.7k
{
333
47.7k
    size_t i, j, count = 0;
334
47.7k
    MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
335
336
47.7k
    for (i = 0; i < X->n; i++) {
337
71.8k
        for (j = 0; j < biL; j++, count++) {
338
71.8k
            if (((X->p[i] >> j) & 1) != 0) {
339
47.7k
                return count;
340
47.7k
            }
341
71.8k
        }
342
47.7k
    }
343
344
0
    return 0;
345
47.7k
}
346
347
/*
348
 * Return the number of bits
349
 */
350
size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
351
848k
{
352
848k
    return mbedtls_mpi_core_bitlen(X->p, X->n);
353
848k
}
354
355
/*
356
 * Return the total size in bytes
357
 */
358
size_t mbedtls_mpi_size(const mbedtls_mpi *X)
359
310k
{
360
310k
    return (mbedtls_mpi_bitlen(X) + 7) >> 3;
361
310k
}
362
363
/*
364
 * Convert an ASCII character to digit value
365
 */
366
static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
367
0
{
368
0
    *d = 255;
369
370
0
    if (c >= 0x30 && c <= 0x39) {
371
0
        *d = c - 0x30;
372
0
    }
373
0
    if (c >= 0x41 && c <= 0x46) {
374
0
        *d = c - 0x37;
375
0
    }
376
0
    if (c >= 0x61 && c <= 0x66) {
377
0
        *d = c - 0x57;
378
0
    }
379
380
0
    if (*d >= (mbedtls_mpi_uint) radix) {
381
0
        return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
382
0
    }
383
384
0
    return 0;
385
0
}
386
387
/*
388
 * Import from an ASCII string
389
 */
390
int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
391
0
{
392
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
393
0
    size_t i, j, slen, n;
394
0
    int sign = 1;
395
0
    mbedtls_mpi_uint d;
396
0
    mbedtls_mpi T;
397
0
    MPI_VALIDATE_RET(X != NULL);
398
0
    MPI_VALIDATE_RET(s != NULL);
399
400
0
    if (radix < 2 || radix > 16) {
401
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
402
0
    }
403
404
0
    mbedtls_mpi_init(&T);
405
406
0
    if (s[0] == 0) {
407
0
        mbedtls_mpi_free(X);
408
0
        return 0;
409
0
    }
410
411
0
    if (s[0] == '-') {
412
0
        ++s;
413
0
        sign = -1;
414
0
    }
415
416
0
    slen = strlen(s);
417
418
0
    if (radix == 16) {
419
0
        if (slen > MPI_SIZE_T_MAX >> 2) {
420
0
            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
421
0
        }
422
423
0
        n = BITS_TO_LIMBS(slen << 2);
424
425
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
426
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
427
428
0
        for (i = slen, j = 0; i > 0; i--, j++) {
429
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
430
0
            X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
431
0
        }
432
0
    } else {
433
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
434
435
0
        for (i = 0; i < slen; i++) {
436
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
437
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
438
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
439
0
        }
440
0
    }
441
442
0
    if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
443
0
        X->s = -1;
444
0
    }
445
446
0
cleanup:
447
448
0
    mbedtls_mpi_free(&T);
449
450
0
    return ret;
451
0
}
452
453
/*
454
 * Helper to write the digits high-order first.
455
 */
456
static int mpi_write_hlp(mbedtls_mpi *X, int radix,
457
                         char **p, const size_t buflen)
458
0
{
459
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
460
0
    mbedtls_mpi_uint r;
461
0
    size_t length = 0;
462
0
    char *p_end = *p + buflen;
463
464
0
    do {
465
0
        if (length >= buflen) {
466
0
            return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
467
0
        }
468
469
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
470
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
471
        /*
472
         * Write the residue in the current position, as an ASCII character.
473
         */
474
0
        if (r < 0xA) {
475
0
            *(--p_end) = (char) ('0' + r);
476
0
        } else {
477
0
            *(--p_end) = (char) ('A' + (r - 0xA));
478
0
        }
479
480
0
        length++;
481
0
    } while (mbedtls_mpi_cmp_int(X, 0) != 0);
482
483
0
    memmove(*p, p_end, length);
484
0
    *p += length;
485
486
0
cleanup:
487
488
0
    return ret;
489
0
}
490
491
/*
492
 * Export into an ASCII string
493
 */
494
int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
495
                             char *buf, size_t buflen, size_t *olen)
496
0
{
497
0
    int ret = 0;
498
0
    size_t n;
499
0
    char *p;
500
0
    mbedtls_mpi T;
501
0
    MPI_VALIDATE_RET(X    != NULL);
502
0
    MPI_VALIDATE_RET(olen != NULL);
503
0
    MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
504
505
0
    if (radix < 2 || radix > 16) {
506
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
507
0
    }
508
509
0
    n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */
510
0
    if (radix >=  4) {
511
0
        n >>= 1;                 /* Number of 4-adic digits necessary to present
512
                                  * `n`. If radix > 4, this might be a strict
513
                                  * overapproximation of the number of
514
                                  * radix-adic digits needed to present `n`. */
515
0
    }
516
0
    if (radix >= 16) {
517
0
        n >>= 1;                 /* Number of hexadecimal digits necessary to
518
                                  * present `n`. */
519
520
0
    }
521
0
    n += 1; /* Terminating null byte */
522
0
    n += 1; /* Compensate for the divisions above, which round down `n`
523
             * in case it's not even. */
524
0
    n += 1; /* Potential '-'-sign. */
525
0
    n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,
526
                     * which always uses an even number of hex-digits. */
527
528
0
    if (buflen < n) {
529
0
        *olen = n;
530
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
531
0
    }
532
533
0
    p = buf;
534
0
    mbedtls_mpi_init(&T);
535
536
0
    if (X->s == -1) {
537
0
        *p++ = '-';
538
0
        buflen--;
539
0
    }
540
541
0
    if (radix == 16) {
542
0
        int c;
543
0
        size_t i, j, k;
544
545
0
        for (i = X->n, k = 0; i > 0; i--) {
546
0
            for (j = ciL; j > 0; j--) {
547
0
                c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
548
549
0
                if (c == 0 && k == 0 && (i + j) != 2) {
550
0
                    continue;
551
0
                }
552
553
0
                *(p++) = "0123456789ABCDEF" [c / 16];
554
0
                *(p++) = "0123456789ABCDEF" [c % 16];
555
0
                k = 1;
556
0
            }
557
0
        }
558
0
    } else {
559
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
560
561
0
        if (T.s == -1) {
562
0
            T.s = 1;
563
0
        }
564
565
0
        MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
566
0
    }
567
568
0
    *p++ = '\0';
569
0
    *olen = p - buf;
570
571
0
cleanup:
572
573
0
    mbedtls_mpi_free(&T);
574
575
0
    return ret;
576
0
}
577
578
#if defined(MBEDTLS_FS_IO)
579
/*
580
 * Read X from an opened file
581
 */
582
int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
583
0
{
584
0
    mbedtls_mpi_uint d;
585
0
    size_t slen;
586
0
    char *p;
587
    /*
588
     * Buffer should have space for (short) label and decimal formatted MPI,
589
     * newline characters and '\0'
590
     */
591
0
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
592
593
0
    MPI_VALIDATE_RET(X   != NULL);
594
0
    MPI_VALIDATE_RET(fin != NULL);
595
596
0
    if (radix < 2 || radix > 16) {
597
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
598
0
    }
599
600
0
    memset(s, 0, sizeof(s));
601
0
    if (fgets(s, sizeof(s) - 1, fin) == NULL) {
602
0
        return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
603
0
    }
604
605
0
    slen = strlen(s);
606
0
    if (slen == sizeof(s) - 2) {
607
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
608
0
    }
609
610
0
    if (slen > 0 && s[slen - 1] == '\n') {
611
0
        slen--; s[slen] = '\0';
612
0
    }
613
0
    if (slen > 0 && s[slen - 1] == '\r') {
614
0
        slen--; s[slen] = '\0';
615
0
    }
616
617
0
    p = s + slen;
618
0
    while (p-- > s) {
619
0
        if (mpi_get_digit(&d, radix, *p) != 0) {
620
0
            break;
621
0
        }
622
0
    }
623
624
0
    return mbedtls_mpi_read_string(X, radix, p + 1);
625
0
}
626
627
/*
628
 * Write X into an opened file (or stdout if fout == NULL)
629
 */
630
int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
631
0
{
632
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
633
0
    size_t n, slen, plen;
634
    /*
635
     * Buffer should have space for (short) label and decimal formatted MPI,
636
     * newline characters and '\0'
637
     */
638
0
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
639
0
    MPI_VALIDATE_RET(X != NULL);
640
641
0
    if (radix < 2 || radix > 16) {
642
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
643
0
    }
644
645
0
    memset(s, 0, sizeof(s));
646
647
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
648
649
0
    if (p == NULL) {
650
0
        p = "";
651
0
    }
652
653
0
    plen = strlen(p);
654
0
    slen = strlen(s);
655
0
    s[slen++] = '\r';
656
0
    s[slen++] = '\n';
657
658
0
    if (fout != NULL) {
659
0
        if (fwrite(p, 1, plen, fout) != plen ||
660
0
            fwrite(s, 1, slen, fout) != slen) {
661
0
            return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
662
0
        }
663
0
    } else {
664
0
        mbedtls_printf("%s%s", p, s);
665
0
    }
666
667
0
cleanup:
668
669
0
    return ret;
670
0
}
671
#endif /* MBEDTLS_FS_IO */
672
673
/*
674
 * Import X from unsigned binary data, little endian
675
 *
676
 * This function is guaranteed to return an MPI with exactly the necessary
677
 * number of limbs (in particular, it does not skip 0s in the input).
678
 */
679
int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
680
                               const unsigned char *buf, size_t buflen)
681
6
{
682
6
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
683
6
    const size_t limbs = CHARS_TO_LIMBS(buflen);
684
685
    /* Ensure that target MPI has exactly the necessary number of limbs */
686
6
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
687
688
6
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
689
690
6
cleanup:
691
692
    /*
693
     * This function is also used to import keys. However, wiping the buffers
694
     * upon failure is not necessary because failure only can happen before any
695
     * input is copied.
696
     */
697
6
    return ret;
698
6
}
699
700
/*
701
 * Import X from unsigned binary data, big endian
702
 *
703
 * This function is guaranteed to return an MPI with exactly the necessary
704
 * number of limbs (in particular, it does not skip 0s in the input).
705
 */
706
int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
707
232k
{
708
232k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
709
232k
    const size_t limbs = CHARS_TO_LIMBS(buflen);
710
711
232k
    MPI_VALIDATE_RET(X != NULL);
712
232k
    MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
713
714
    /* Ensure that target MPI has exactly the necessary number of limbs */
715
232k
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
716
717
232k
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
718
719
232k
cleanup:
720
721
    /*
722
     * This function is also used to import keys. However, wiping the buffers
723
     * upon failure is not necessary because failure only can happen before any
724
     * input is copied.
725
     */
726
232k
    return ret;
727
232k
}
728
729
/*
730
 * Export X into unsigned binary data, little endian
731
 */
732
int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
733
                                unsigned char *buf, size_t buflen)
734
0
{
735
0
    return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
736
0
}
737
738
/*
739
 * Export X into unsigned binary data, big endian
740
 */
741
int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
742
                             unsigned char *buf, size_t buflen)
743
2.36k
{
744
2.36k
    return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
745
2.36k
}
746
747
/*
748
 * Left-shift: X <<= count
749
 */
750
int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
751
132k
{
752
132k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
753
132k
    size_t i, v0, t1;
754
132k
    mbedtls_mpi_uint r0 = 0, r1;
755
132k
    MPI_VALIDATE_RET(X != NULL);
756
757
132k
    v0 = count / (biL);
758
132k
    t1 = count & (biL - 1);
759
760
132k
    i = mbedtls_mpi_bitlen(X) + count;
761
762
132k
    if (X->n * biL < i) {
763
7.01k
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
764
7.01k
    }
765
766
132k
    ret = 0;
767
768
    /*
769
     * shift by count / limb_size
770
     */
771
132k
    if (v0 > 0) {
772
4.12M
        for (i = X->n; i > v0; i--) {
773
4.04M
            X->p[i - 1] = X->p[i - v0 - 1];
774
4.04M
        }
775
776
1.61M
        for (; i > 0; i--) {
777
1.53M
            X->p[i - 1] = 0;
778
1.53M
        }
779
81.7k
    }
780
781
    /*
782
     * shift by count % limb_size
783
     */
784
132k
    if (t1 > 0) {
785
835k
        for (i = v0; i < X->n; i++) {
786
787k
            r1 = X->p[i] >> (biL - t1);
787
787k
            X->p[i] <<= t1;
788
787k
            X->p[i] |= r0;
789
787k
            r0 = r1;
790
787k
        }
791
48.0k
    }
792
793
132k
cleanup:
794
795
132k
    return ret;
796
132k
}
797
798
/*
799
 * Right-shift: X >>= count
800
 */
801
int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
802
219k
{
803
219k
    MPI_VALIDATE_RET(X != NULL);
804
219k
    if (X->n != 0) {
805
219k
        mbedtls_mpi_core_shift_r(X->p, X->n, count);
806
219k
    }
807
219k
    return 0;
808
219k
}
809
810
/*
811
 * Compare unsigned values
812
 */
813
int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
814
297k
{
815
297k
    size_t i, j;
816
297k
    MPI_VALIDATE_RET(X != NULL);
817
297k
    MPI_VALIDATE_RET(Y != NULL);
818
819
2.59M
    for (i = X->n; i > 0; i--) {
820
2.59M
        if (X->p[i - 1] != 0) {
821
296k
            break;
822
296k
        }
823
2.59M
    }
824
825
2.35M
    for (j = Y->n; j > 0; j--) {
826
2.35M
        if (Y->p[j - 1] != 0) {
827
296k
            break;
828
296k
        }
829
2.35M
    }
830
831
297k
    if (i == 0 && j == 0) {
832
0
        return 0;
833
0
    }
834
835
297k
    if (i > j) {
836
19.4k
        return 1;
837
19.4k
    }
838
277k
    if (j > i) {
839
596
        return -1;
840
596
    }
841
842
344k
    for (; i > 0; i--) {
843
343k
        if (X->p[i - 1] > Y->p[i - 1]) {
844
159k
            return 1;
845
159k
        }
846
184k
        if (X->p[i - 1] < Y->p[i - 1]) {
847
117k
            return -1;
848
117k
        }
849
184k
    }
850
851
228
    return 0;
852
277k
}
853
854
/*
855
 * Compare signed values
856
 */
857
int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
858
2.17M
{
859
2.17M
    size_t i, j;
860
2.17M
    MPI_VALIDATE_RET(X != NULL);
861
2.17M
    MPI_VALIDATE_RET(Y != NULL);
862
863
16.3M
    for (i = X->n; i > 0; i--) {
864
15.7M
        if (X->p[i - 1] != 0) {
865
1.59M
            break;
866
1.59M
        }
867
15.7M
    }
868
869
3.89M
    for (j = Y->n; j > 0; j--) {
870
2.49M
        if (Y->p[j - 1] != 0) {
871
779k
            break;
872
779k
        }
873
2.49M
    }
874
875
2.17M
    if (i == 0 && j == 0) {
876
578k
        return 0;
877
578k
    }
878
879
1.59M
    if (i > j) {
880
998k
        return X->s;
881
998k
    }
882
596k
    if (j > i) {
883
99.0k
        return -Y->s;
884
99.0k
    }
885
886
497k
    if (X->s > 0 && Y->s < 0) {
887
25
        return 1;
888
25
    }
889
497k
    if (Y->s > 0 && X->s < 0) {
890
0
        return -1;
891
0
    }
892
893
678k
    for (; i > 0; i--) {
894
650k
        if (X->p[i - 1] > Y->p[i - 1]) {
895
82.6k
            return X->s;
896
82.6k
        }
897
567k
        if (X->p[i - 1] < Y->p[i - 1]) {
898
387k
            return -X->s;
899
387k
        }
900
567k
    }
901
902
28.0k
    return 0;
903
497k
}
904
905
/*
906
 * Compare signed values
907
 */
908
int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
909
1.41M
{
910
1.41M
    mbedtls_mpi Y;
911
1.41M
    mbedtls_mpi_uint p[1];
912
1.41M
    MPI_VALIDATE_RET(X != NULL);
913
914
1.41M
    *p  = mpi_sint_abs(z);
915
1.41M
    Y.s = (z < 0) ? -1 : 1;
916
1.41M
    Y.n = 1;
917
1.41M
    Y.p = p;
918
919
1.41M
    return mbedtls_mpi_cmp_mpi(X, &Y);
920
1.41M
}
921
922
/*
923
 * Unsigned addition: X = |A| + |B|  (HAC 14.7)
924
 */
925
int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
926
68.8k
{
927
68.8k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
928
68.8k
    size_t j;
929
68.8k
    MPI_VALIDATE_RET(X != NULL);
930
68.8k
    MPI_VALIDATE_RET(A != NULL);
931
68.8k
    MPI_VALIDATE_RET(B != NULL);
932
933
68.8k
    if (X == B) {
934
0
        const mbedtls_mpi *T = A; A = X; B = T;
935
0
    }
936
937
68.8k
    if (X != A) {
938
9.98k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
939
9.98k
    }
940
941
    /*
942
     * X must always be positive as a result of unsigned additions.
943
     */
944
68.8k
    X->s = 1;
945
946
147k
    for (j = B->n; j > 0; j--) {
947
147k
        if (B->p[j - 1] != 0) {
948
68.7k
            break;
949
68.7k
        }
950
147k
    }
951
952
    /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
953
     * and B is 0 (of any size). */
954
68.8k
    if (j == 0) {
955
57
        return 0;
956
57
    }
957
958
68.7k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
959
960
    /* j is the number of non-zero limbs of B. Add those to X. */
961
962
68.7k
    mbedtls_mpi_uint *p = X->p;
963
964
68.7k
    mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j);
965
966
68.7k
    p += j;
967
968
    /* Now propagate any carry */
969
970
105k
    while (c != 0) {
971
36.2k
        if (j >= X->n) {
972
154
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
973
154
            p = X->p + j;
974
154
        }
975
976
36.2k
        *p += c; c = (*p < c); j++; p++;
977
36.2k
    }
978
979
68.7k
cleanup:
980
981
68.7k
    return ret;
982
68.7k
}
983
984
/*
985
 * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
986
 */
987
int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
988
499k
{
989
499k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
990
499k
    size_t n;
991
499k
    mbedtls_mpi_uint carry;
992
499k
    MPI_VALIDATE_RET(X != NULL);
993
499k
    MPI_VALIDATE_RET(A != NULL);
994
499k
    MPI_VALIDATE_RET(B != NULL);
995
996
2.93M
    for (n = B->n; n > 0; n--) {
997
2.93M
        if (B->p[n - 1] != 0) {
998
498k
            break;
999
498k
        }
1000
2.93M
    }
1001
499k
    if (n > A->n) {
1002
        /* B >= (2^ciL)^n > A */
1003
0
        ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1004
0
        goto cleanup;
1005
0
    }
1006
1007
499k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
1008
1009
    /* Set the high limbs of X to match A. Don't touch the lower limbs
1010
     * because X might be aliased to B, and we must not overwrite the
1011
     * significant digits of B. */
1012
499k
    if (A->n > n) {
1013
405k
        memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1014
405k
    }
1015
499k
    if (X->n > A->n) {
1016
63.0k
        memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1017
63.0k
    }
1018
1019
499k
    carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
1020
499k
    if (carry != 0) {
1021
        /* Propagate the carry through the rest of X. */
1022
182k
        carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
1023
1024
        /* If we have further carry/borrow, the result is negative. */
1025
182k
        if (carry != 0) {
1026
0
            ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1027
0
            goto cleanup;
1028
0
        }
1029
182k
    }
1030
1031
    /* X should always be positive as a result of unsigned subtractions. */
1032
499k
    X->s = 1;
1033
1034
499k
cleanup:
1035
499k
    return ret;
1036
499k
}
1037
1038
/* Common function for signed addition and subtraction.
1039
 * Calculate A + B * flip_B where flip_B is 1 or -1.
1040
 */
1041
static int add_sub_mpi(mbedtls_mpi *X,
1042
                       const mbedtls_mpi *A, const mbedtls_mpi *B,
1043
                       int flip_B)
1044
363k
{
1045
363k
    int ret, s;
1046
363k
    MPI_VALIDATE_RET(X != NULL);
1047
363k
    MPI_VALIDATE_RET(A != NULL);
1048
363k
    MPI_VALIDATE_RET(B != NULL);
1049
1050
363k
    s = A->s;
1051
363k
    if (A->s * B->s * flip_B < 0) {
1052
294k
        int cmp = mbedtls_mpi_cmp_abs(A, B);
1053
294k
        if (cmp >= 0) {
1054
176k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
1055
            /* If |A| = |B|, the result is 0 and we must set the sign bit
1056
             * to +1 regardless of which of A or B was negative. Otherwise,
1057
             * since |A| > |B|, the sign is the sign of A. */
1058
176k
            X->s = cmp == 0 ? 1 : s;
1059
176k
        } else {
1060
118k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
1061
            /* Since |A| < |B|, the sign is the opposite of A. */
1062
118k
            X->s = -s;
1063
118k
        }
1064
294k
    } else {
1065
68.7k
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
1066
68.7k
        X->s = s;
1067
68.7k
    }
1068
1069
363k
cleanup:
1070
1071
363k
    return ret;
1072
363k
}
1073
1074
/*
1075
 * Signed addition: X = A + B
1076
 */
1077
int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1078
96.9k
{
1079
96.9k
    return add_sub_mpi(X, A, B, 1);
1080
96.9k
}
1081
1082
/*
1083
 * Signed subtraction: X = A - B
1084
 */
1085
int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1086
266k
{
1087
266k
    return add_sub_mpi(X, A, B, -1);
1088
266k
}
1089
1090
/*
1091
 * Signed addition: X = A + b
1092
 */
1093
int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1094
129
{
1095
129
    mbedtls_mpi B;
1096
129
    mbedtls_mpi_uint p[1];
1097
129
    MPI_VALIDATE_RET(X != NULL);
1098
129
    MPI_VALIDATE_RET(A != NULL);
1099
1100
129
    p[0] = mpi_sint_abs(b);
1101
129
    B.s = (b < 0) ? -1 : 1;
1102
129
    B.n = 1;
1103
129
    B.p = p;
1104
1105
129
    return mbedtls_mpi_add_mpi(X, A, &B);
1106
129
}
1107
1108
/*
1109
 * Signed subtraction: X = A - b
1110
 */
1111
int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1112
15.3k
{
1113
15.3k
    mbedtls_mpi B;
1114
15.3k
    mbedtls_mpi_uint p[1];
1115
15.3k
    MPI_VALIDATE_RET(X != NULL);
1116
15.3k
    MPI_VALIDATE_RET(A != NULL);
1117
1118
15.3k
    p[0] = mpi_sint_abs(b);
1119
15.3k
    B.s = (b < 0) ? -1 : 1;
1120
15.3k
    B.n = 1;
1121
15.3k
    B.p = p;
1122
1123
15.3k
    return mbedtls_mpi_sub_mpi(X, A, &B);
1124
15.3k
}
1125
1126
/*
1127
 * Baseline multiplication: X = A * B  (HAC 14.12)
1128
 */
1129
int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1130
167k
{
1131
167k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1132
167k
    size_t i, j;
1133
167k
    mbedtls_mpi TA, TB;
1134
167k
    int result_is_zero = 0;
1135
167k
    MPI_VALIDATE_RET(X != NULL);
1136
167k
    MPI_VALIDATE_RET(A != NULL);
1137
167k
    MPI_VALIDATE_RET(B != NULL);
1138
1139
167k
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
1140
1141
167k
    if (X == A) {
1142
48.5k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1143
48.5k
    }
1144
167k
    if (X == B) {
1145
352
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1146
352
    }
1147
1148
569k
    for (i = A->n; i > 0; i--) {
1149
569k
        if (A->p[i - 1] != 0) {
1150
166k
            break;
1151
166k
        }
1152
569k
    }
1153
167k
    if (i == 0) {
1154
199
        result_is_zero = 1;
1155
199
    }
1156
1157
752k
    for (j = B->n; j > 0; j--) {
1158
751k
        if (B->p[j - 1] != 0) {
1159
166k
            break;
1160
166k
        }
1161
751k
    }
1162
167k
    if (j == 0) {
1163
268
        result_is_zero = 1;
1164
268
    }
1165
1166
167k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1167
167k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
1168
1169
1.16M
    for (size_t k = 0; k < j; k++) {
1170
        /* We know that there cannot be any carry-out since we're
1171
         * iterating from bottom to top. */
1172
996k
        (void) mbedtls_mpi_core_mla(X->p + k, i + 1,
1173
996k
                                    A->p, i,
1174
996k
                                    B->p[k]);
1175
996k
    }
1176
1177
    /* If the result is 0, we don't shortcut the operation, which reduces
1178
     * but does not eliminate side channels leaking the zero-ness. We do
1179
     * need to take care to set the sign bit properly since the library does
1180
     * not fully support an MPI object with a value of 0 and s == -1. */
1181
167k
    if (result_is_zero) {
1182
286
        X->s = 1;
1183
166k
    } else {
1184
166k
        X->s = A->s * B->s;
1185
166k
    }
1186
1187
167k
cleanup:
1188
1189
167k
    mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
1190
1191
167k
    return ret;
1192
167k
}
1193
1194
/*
1195
 * Baseline multiplication: X = A * b
1196
 */
1197
int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
1198
222k
{
1199
222k
    MPI_VALIDATE_RET(X != NULL);
1200
222k
    MPI_VALIDATE_RET(A != NULL);
1201
1202
222k
    size_t n = A->n;
1203
11.8M
    while (n > 0 && A->p[n - 1] == 0) {
1204
11.6M
        --n;
1205
11.6M
    }
1206
1207
    /* The general method below doesn't work if b==0. */
1208
222k
    if (b == 0 || n == 0) {
1209
376
        return mbedtls_mpi_lset(X, 0);
1210
376
    }
1211
1212
    /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
1213
222k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1214
    /* In general, A * b requires 1 limb more than b. If
1215
     * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1216
     * number of limbs as A and the call to grow() is not required since
1217
     * copy() will take care of the growth if needed. However, experimentally,
1218
     * making the call to grow() unconditional causes slightly fewer
1219
     * calls to calloc() in ECP code, presumably because it reuses the
1220
     * same mpi for a while and this way the mpi is more likely to directly
1221
     * grow to its final size.
1222
     *
1223
     * Note that calculating A*b as 0 + A*b doesn't work as-is because
1224
     * A,X can be the same. */
1225
222k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1226
222k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1227
222k
    mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
1228
1229
222k
cleanup:
1230
222k
    return ret;
1231
222k
}
1232
1233
/*
1234
 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1235
 * mbedtls_mpi_uint divisor, d
1236
 */
1237
static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1238
                                            mbedtls_mpi_uint u0,
1239
                                            mbedtls_mpi_uint d,
1240
                                            mbedtls_mpi_uint *r)
1241
79.3k
{
1242
79.3k
#if defined(MBEDTLS_HAVE_UDBL)
1243
79.3k
    mbedtls_t_udbl dividend, quotient;
1244
#else
1245
    const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1246
    const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
1247
    mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1248
    mbedtls_mpi_uint u0_msw, u0_lsw;
1249
    size_t s;
1250
#endif
1251
1252
    /*
1253
     * Check for overflow
1254
     */
1255
79.3k
    if (0 == d || u1 >= d) {
1256
0
        if (r != NULL) {
1257
0
            *r = ~(mbedtls_mpi_uint) 0u;
1258
0
        }
1259
1260
0
        return ~(mbedtls_mpi_uint) 0u;
1261
0
    }
1262
1263
79.3k
#if defined(MBEDTLS_HAVE_UDBL)
1264
79.3k
    dividend  = (mbedtls_t_udbl) u1 << biL;
1265
79.3k
    dividend |= (mbedtls_t_udbl) u0;
1266
79.3k
    quotient = dividend / d;
1267
79.3k
    if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1268
0
        quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1269
0
    }
1270
1271
79.3k
    if (r != NULL) {
1272
0
        *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1273
0
    }
1274
1275
79.3k
    return (mbedtls_mpi_uint) quotient;
1276
#else
1277
1278
    /*
1279
     * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1280
     *   Vol. 2 - Seminumerical Algorithms, Knuth
1281
     */
1282
1283
    /*
1284
     * Normalize the divisor, d, and dividend, u0, u1
1285
     */
1286
    s = mbedtls_mpi_core_clz(d);
1287
    d = d << s;
1288
1289
    u1 = u1 << s;
1290
    u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
1291
    u0 =  u0 << s;
1292
1293
    d1 = d >> biH;
1294
    d0 = d & uint_halfword_mask;
1295
1296
    u0_msw = u0 >> biH;
1297
    u0_lsw = u0 & uint_halfword_mask;
1298
1299
    /*
1300
     * Find the first quotient and remainder
1301
     */
1302
    q1 = u1 / d1;
1303
    r0 = u1 - d1 * q1;
1304
1305
    while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
1306
        q1 -= 1;
1307
        r0 += d1;
1308
1309
        if (r0 >= radix) {
1310
            break;
1311
        }
1312
    }
1313
1314
    rAX = (u1 * radix) + (u0_msw - q1 * d);
1315
    q0 = rAX / d1;
1316
    r0 = rAX - q0 * d1;
1317
1318
    while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
1319
        q0 -= 1;
1320
        r0 += d1;
1321
1322
        if (r0 >= radix) {
1323
            break;
1324
        }
1325
    }
1326
1327
    if (r != NULL) {
1328
        *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1329
    }
1330
1331
    quotient = q1 * radix + q0;
1332
1333
    return quotient;
1334
#endif
1335
79.3k
}
1336
1337
/*
1338
 * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
1339
 */
1340
int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1341
                        const mbedtls_mpi *B)
1342
2.60k
{
1343
2.60k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1344
2.60k
    size_t i, n, t, k;
1345
2.60k
    mbedtls_mpi X, Y, Z, T1, T2;
1346
2.60k
    mbedtls_mpi_uint TP2[3];
1347
2.60k
    MPI_VALIDATE_RET(A != NULL);
1348
2.60k
    MPI_VALIDATE_RET(B != NULL);
1349
1350
2.60k
    if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1351
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1352
0
    }
1353
1354
2.60k
    mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1355
2.60k
    mbedtls_mpi_init(&T1);
1356
    /*
1357
     * Avoid dynamic memory allocations for constant-size T2.
1358
     *
1359
     * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1360
     * so nobody increase the size of the MPI and we're safe to use an on-stack
1361
     * buffer.
1362
     */
1363
2.60k
    T2.s = 1;
1364
2.60k
    T2.n = sizeof(TP2) / sizeof(*TP2);
1365
2.60k
    T2.p = TP2;
1366
1367
2.60k
    if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1368
91
        if (Q != NULL) {
1369
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1370
0
        }
1371
91
        if (R != NULL) {
1372
91
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1373
91
        }
1374
91
        return 0;
1375
91
    }
1376
1377
2.51k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1378
2.51k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
1379
2.51k
    X.s = Y.s = 1;
1380
1381
2.51k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1382
2.51k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
1383
2.51k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
1384
1385
2.51k
    k = mbedtls_mpi_bitlen(&Y) % biL;
1386
2.51k
    if (k < biL - 1) {
1387
2.45k
        k = biL - 1 - k;
1388
2.45k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1389
2.45k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1390
2.45k
    } else {
1391
54
        k = 0;
1392
54
    }
1393
1394
2.51k
    n = X.n - 1;
1395
2.51k
    t = Y.n - 1;
1396
2.51k
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
1397
1398
4.44k
    while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
1399
1.92k
        Z.p[n - t]++;
1400
1.92k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
1401
1.92k
    }
1402
2.51k
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
1403
1404
81.8k
    for (i = n; i > t; i--) {
1405
79.3k
        if (X.p[i] >= Y.p[t]) {
1406
16
            Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1407
79.3k
        } else {
1408
79.3k
            Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1409
79.3k
                                                 Y.p[t], NULL);
1410
79.3k
        }
1411
1412
79.3k
        T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1413
79.3k
        T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
1414
79.3k
        T2.p[2] = X.p[i];
1415
1416
79.3k
        Z.p[i - t - 1]++;
1417
133k
        do {
1418
133k
            Z.p[i - t - 1]--;
1419
1420
133k
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1421
133k
            T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
1422
133k
            T1.p[1] = Y.p[t];
1423
133k
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1424
133k
        } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
1425
1426
79.3k
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1427
79.3k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
1428
79.3k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
1429
1430
79.3k
        if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1431
4
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1432
4
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1433
4
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
1434
4
            Z.p[i - t - 1]--;
1435
4
        }
1436
79.3k
    }
1437
1438
2.51k
    if (Q != NULL) {
1439
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
1440
0
        Q->s = A->s * B->s;
1441
0
    }
1442
1443
2.51k
    if (R != NULL) {
1444
2.51k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
1445
2.51k
        X.s = A->s;
1446
2.51k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
1447
1448
2.51k
        if (mbedtls_mpi_cmp_int(R, 0) == 0) {
1449
0
            R->s = 1;
1450
0
        }
1451
2.51k
    }
1452
1453
2.51k
cleanup:
1454
1455
2.51k
    mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1456
2.51k
    mbedtls_mpi_free(&T1);
1457
2.51k
    mbedtls_platform_zeroize(TP2, sizeof(TP2));
1458
1459
2.51k
    return ret;
1460
2.51k
}
1461
1462
/*
1463
 * Division by int: A = Q * b + R
1464
 */
1465
int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1466
                        const mbedtls_mpi *A,
1467
                        mbedtls_mpi_sint b)
1468
0
{
1469
0
    mbedtls_mpi B;
1470
0
    mbedtls_mpi_uint p[1];
1471
0
    MPI_VALIDATE_RET(A != NULL);
1472
1473
0
    p[0] = mpi_sint_abs(b);
1474
0
    B.s = (b < 0) ? -1 : 1;
1475
0
    B.n = 1;
1476
0
    B.p = p;
1477
1478
0
    return mbedtls_mpi_div_mpi(Q, R, A, &B);
1479
0
}
1480
1481
/*
1482
 * Modulo: R = A mod B
1483
 */
1484
int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
1485
2.60k
{
1486
2.60k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1487
2.60k
    MPI_VALIDATE_RET(R != NULL);
1488
2.60k
    MPI_VALIDATE_RET(A != NULL);
1489
2.60k
    MPI_VALIDATE_RET(B != NULL);
1490
1491
2.60k
    if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1492
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1493
0
    }
1494
1495
2.60k
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
1496
1497
2.60k
    while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1498
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1499
0
    }
1500
1501
2.60k
    while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1502
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1503
0
    }
1504
1505
2.60k
cleanup:
1506
1507
2.60k
    return ret;
1508
2.60k
}
1509
1510
/*
1511
 * Modulo: r = A mod b
1512
 */
1513
int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1514
0
{
1515
0
    size_t i;
1516
0
    mbedtls_mpi_uint x, y, z;
1517
0
    MPI_VALIDATE_RET(r != NULL);
1518
0
    MPI_VALIDATE_RET(A != NULL);
1519
1520
0
    if (b == 0) {
1521
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1522
0
    }
1523
1524
0
    if (b < 0) {
1525
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1526
0
    }
1527
1528
    /*
1529
     * handle trivial cases
1530
     */
1531
0
    if (b == 1 || A->n == 0) {
1532
0
        *r = 0;
1533
0
        return 0;
1534
0
    }
1535
1536
0
    if (b == 2) {
1537
0
        *r = A->p[0] & 1;
1538
0
        return 0;
1539
0
    }
1540
1541
    /*
1542
     * general case
1543
     */
1544
0
    for (i = A->n, y = 0; i > 0; i--) {
1545
0
        x  = A->p[i - 1];
1546
0
        y  = (y << biH) | (x >> biH);
1547
0
        z  = y / b;
1548
0
        y -= z * b;
1549
1550
0
        x <<= biH;
1551
0
        y  = (y << biH) | (x >> biH);
1552
0
        z  = y / b;
1553
0
        y -= z * b;
1554
0
    }
1555
1556
    /*
1557
     * If A is negative, then the current y represents a negative value.
1558
     * Flipping it to the positive side.
1559
     */
1560
0
    if (A->s < 0 && y != 0) {
1561
0
        y = b - y;
1562
0
    }
1563
1564
0
    *r = y;
1565
1566
0
    return 0;
1567
0
}
1568
1569
static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
1570
2.42k
{
1571
2.42k
    *mm = mbedtls_mpi_core_montmul_init(N->p);
1572
2.42k
}
1573
1574
/** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
1575
 *
1576
 * \param[in,out]   A   One of the numbers to multiply.
1577
 *                      It must have at least as many limbs as N
1578
 *                      (A->n >= N->n), and any limbs beyond n are ignored.
1579
 *                      On successful completion, A contains the result of
1580
 *                      the multiplication A * B * R^-1 mod N where
1581
 *                      R = (2^ciL)^n.
1582
 * \param[in]       B   One of the numbers to multiply.
1583
 *                      It must be nonzero and must not have more limbs than N
1584
 *                      (B->n <= N->n).
1585
 * \param[in]       N   The modulus. \p N must be odd.
1586
 * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`.
1587
 *                      This is -N^-1 mod 2^ciL.
1588
 * \param[in,out]   T   A bignum for temporary storage.
1589
 *                      It must be at least twice the limb size of N plus 1
1590
 *                      (T->n >= 2 * N->n + 1).
1591
 *                      Its initial content is unused and
1592
 *                      its final content is indeterminate.
1593
 *                      It does not get reallocated.
1594
 */
1595
static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1596
                        const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1597
                        mbedtls_mpi *T)
1598
94.2k
{
1599
94.2k
    mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
1600
94.2k
}
1601
1602
/*
1603
 * Montgomery reduction: A = A * R^-1 mod N
1604
 *
1605
 * See mpi_montmul() regarding constraints and guarantees on the parameters.
1606
 */
1607
static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1608
                        mbedtls_mpi_uint mm, mbedtls_mpi *T)
1609
4.85k
{
1610
4.85k
    mbedtls_mpi_uint z = 1;
1611
4.85k
    mbedtls_mpi U;
1612
1613
4.85k
    U.n = U.s = (int) z;
1614
4.85k
    U.p = &z;
1615
1616
4.85k
    mpi_montmul(A, &U, N, mm, T);
1617
4.85k
}
1618
1619
/**
1620
 * Select an MPI from a table without leaking the index.
1621
 *
1622
 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1623
 * reads the entire table in order to avoid leaking the value of idx to an
1624
 * attacker able to observe memory access patterns.
1625
 *
1626
 * \param[out] R        Where to write the selected MPI.
1627
 * \param[in] T         The table to read from.
1628
 * \param[in] T_size    The number of elements in the table.
1629
 * \param[in] idx       The index of the element to select;
1630
 *                      this must satisfy 0 <= idx < T_size.
1631
 *
1632
 * \return \c 0 on success, or a negative error code.
1633
 */
1634
static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
1635
83.6k
{
1636
83.6k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1637
1638
1.37M
    for (size_t i = 0; i < T_size; i++) {
1639
1.29M
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1640
1.29M
                                                     (unsigned char) mbedtls_ct_size_bool_eq(i,
1641
1.29M
                                                                                             idx)));
1642
1.29M
    }
1643
1644
83.6k
cleanup:
1645
83.6k
    return ret;
1646
83.6k
}
1647
1648
/*
1649
 * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
1650
 */
1651
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1652
                        const mbedtls_mpi *E, const mbedtls_mpi *N,
1653
                        mbedtls_mpi *prec_RR)
1654
2.42k
{
1655
2.42k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1656
2.42k
    size_t window_bitsize;
1657
2.42k
    size_t i, j, nblimbs;
1658
2.42k
    size_t bufsize, nbits;
1659
2.42k
    mbedtls_mpi_uint ei, mm, state;
1660
2.42k
    mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
1661
2.42k
    int neg;
1662
1663
2.42k
    MPI_VALIDATE_RET(X != NULL);
1664
2.42k
    MPI_VALIDATE_RET(A != NULL);
1665
2.42k
    MPI_VALIDATE_RET(E != NULL);
1666
2.42k
    MPI_VALIDATE_RET(N != NULL);
1667
1668
2.42k
    if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1669
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1670
0
    }
1671
1672
2.42k
    if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1673
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1674
0
    }
1675
1676
2.42k
    if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1677
2.42k
        mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1678
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1679
0
    }
1680
1681
    /*
1682
     * Init temps and window size
1683
     */
1684
2.42k
    mpi_montg_init(&mm, N);
1685
2.42k
    mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1686
2.42k
    mbedtls_mpi_init(&Apos);
1687
2.42k
    mbedtls_mpi_init(&WW);
1688
2.42k
    memset(W, 0, sizeof(W));
1689
1690
2.42k
    i = mbedtls_mpi_bitlen(E);
1691
1692
2.42k
    window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1693
2.42k
                     (i >  79) ? 4 : (i >  23) ? 3 : 1;
1694
1695
#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1696
    if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
1697
        window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
1698
    }
1699
#endif
1700
1701
2.42k
    const size_t w_table_used_size = (size_t) 1 << window_bitsize;
1702
1703
    /*
1704
     * This function is not constant-trace: its memory accesses depend on the
1705
     * exponent value. To defend against timing attacks, callers (such as RSA
1706
     * and DHM) should use exponent blinding. However this is not enough if the
1707
     * adversary can find the exponent in a single trace, so this function
1708
     * takes extra precautions against adversaries who can observe memory
1709
     * access patterns.
1710
     *
1711
     * This function performs a series of multiplications by table elements and
1712
     * squarings, and we want the prevent the adversary from finding out which
1713
     * table element was used, and from distinguishing between multiplications
1714
     * and squarings. Firstly, when multiplying by an element of the window
1715
     * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1716
     * squarings as having a different memory access patterns from other
1717
     * multiplications. So secondly, we put the accumulator X in the table as
1718
     * well, and also do a constant-trace table lookup to multiply by X.
1719
     *
1720
     * This way, all multiplications take the form of a lookup-and-multiply.
1721
     * The number of lookup-and-multiply operations inside each iteration of
1722
     * the main loop still depends on the bits of the exponent, but since the
1723
     * other operations in the loop don't have an easily recognizable memory
1724
     * trace, an adversary is unlikely to be able to observe the exact
1725
     * patterns.
1726
     *
1727
     * An adversary may still be able to recover the exponent if they can
1728
     * observe both memory accesses and branches. However, branch prediction
1729
     * exploitation typically requires many traces of execution over the same
1730
     * data, which is defeated by randomized blinding.
1731
     *
1732
     * To achieve this, we make a copy of X and we use the table entry in each
1733
     * calculation from this point on.
1734
     */
1735
2.42k
    const size_t x_index = 0;
1736
2.42k
    mbedtls_mpi_init(&W[x_index]);
1737
2.42k
    mbedtls_mpi_copy(&W[x_index], X);
1738
1739
2.42k
    j = N->n + 1;
1740
    /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
1741
     * and mpi_montred() calls later. Here we ensure that W[1] and X are
1742
     * large enough, and later we'll grow other W[i] to the same length.
1743
     * They must not be shrunk midway through this function!
1744
     */
1745
2.42k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1746
2.42k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1],  j));
1747
2.42k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
1748
1749
    /*
1750
     * Compensate for negative A (and correct at the end)
1751
     */
1752
2.42k
    neg = (A->s == -1);
1753
2.42k
    if (neg) {
1754
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
1755
0
        Apos.s = 1;
1756
0
        A = &Apos;
1757
0
    }
1758
1759
    /*
1760
     * If 1st call, pre-compute R^2 mod N
1761
     */
1762
2.42k
    if (prec_RR == NULL || prec_RR->p == NULL) {
1763
2.42k
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1764
2.42k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1765
2.42k
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
1766
1767
2.42k
        if (prec_RR != NULL) {
1768
2.29k
            memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1769
2.29k
        }
1770
2.42k
    } else {
1771
0
        memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
1772
0
    }
1773
1774
    /*
1775
     * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1776
     */
1777
2.42k
    if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1778
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
1779
        /* This should be a no-op because W[1] is already that large before
1780
         * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
1781
         * in mpi_montmul() below, so let's make sure. */
1782
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1783
2.42k
    } else {
1784
2.42k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
1785
2.42k
    }
1786
1787
    /* Note that this is safe because W[1] always has at least N->n limbs
1788
     * (it grew above and was preserved by mbedtls_mpi_copy()). */
1789
2.42k
    mpi_montmul(&W[1], &RR, N, mm, &T);
1790
1791
    /*
1792
     * W[x_index] = R^2 * R^-1 mod N = R mod N
1793
     */
1794
2.42k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1795
2.42k
    mpi_montred(&W[x_index], N, mm, &T);
1796
1797
1798
2.42k
    if (window_bitsize > 1) {
1799
        /*
1800
         * W[i] = W[1] ^ i
1801
         *
1802
         * The first bit of the sliding window is always 1 and therefore we
1803
         * only need to store the second half of the table.
1804
         *
1805
         * (There are two special elements in the table: W[0] for the
1806
         * accumulator/result and W[1] for A in Montgomery form. Both of these
1807
         * are already set at this point.)
1808
         */
1809
306
        j = w_table_used_size / 2;
1810
1811
306
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1812
306
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
1813
1814
1.17k
        for (i = 0; i < window_bitsize - 1; i++) {
1815
870
            mpi_montmul(&W[j], &W[j], N, mm, &T);
1816
870
        }
1817
1818
        /*
1819
         * W[i] = W[i - 1] * W[1]
1820
         */
1821
2.77k
        for (i = j + 1; i < w_table_used_size; i++) {
1822
2.46k
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1823
2.46k
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
1824
1825
2.46k
            mpi_montmul(&W[i], &W[1], N, mm, &T);
1826
2.46k
        }
1827
306
    }
1828
1829
2.42k
    nblimbs = E->n;
1830
2.42k
    bufsize = 0;
1831
2.42k
    nbits   = 0;
1832
2.42k
    size_t exponent_bits_in_window = 0;
1833
2.42k
    state   = 0;
1834
1835
183k
    while (1) {
1836
183k
        if (bufsize == 0) {
1837
5.25k
            if (nblimbs == 0) {
1838
2.42k
                break;
1839
2.42k
            }
1840
1841
2.82k
            nblimbs--;
1842
1843
2.82k
            bufsize = sizeof(mbedtls_mpi_uint) << 3;
1844
2.82k
        }
1845
1846
180k
        bufsize--;
1847
1848
180k
        ei = (E->p[nblimbs] >> bufsize) & 1;
1849
1850
        /*
1851
         * skip leading 0s
1852
         */
1853
180k
        if (ei == 0 && state == 0) {
1854
106k
            continue;
1855
106k
        }
1856
1857
73.9k
        if (ei == 0 && state == 1) {
1858
            /*
1859
             * out of window, square W[x_index]
1860
             */
1861
49.7k
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1862
49.7k
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1863
49.7k
            continue;
1864
49.7k
        }
1865
1866
        /*
1867
         * add ei to current window
1868
         */
1869
24.2k
        state = 2;
1870
1871
24.2k
        nbits++;
1872
24.2k
        exponent_bits_in_window |= (ei << (window_bitsize - nbits));
1873
1874
24.2k
        if (nbits == window_bitsize) {
1875
            /*
1876
             * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
1877
             */
1878
33.3k
            for (i = 0; i < window_bitsize; i++) {
1879
23.9k
                MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1880
23.9k
                                           x_index));
1881
23.9k
                mpi_montmul(&W[x_index], &WW, N, mm, &T);
1882
23.9k
            }
1883
1884
            /*
1885
             * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
1886
             */
1887
9.44k
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1888
9.44k
                                       exponent_bits_in_window));
1889
9.44k
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1890
1891
9.44k
            state--;
1892
9.44k
            nbits = 0;
1893
9.44k
            exponent_bits_in_window = 0;
1894
9.44k
        }
1895
24.2k
    }
1896
1897
    /*
1898
     * process the remaining bits
1899
     */
1900
2.70k
    for (i = 0; i < nbits; i++) {
1901
276
        MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1902
276
        mpi_montmul(&W[x_index], &WW, N, mm, &T);
1903
1904
276
        exponent_bits_in_window <<= 1;
1905
1906
276
        if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1907
242
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1908
242
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1909
242
        }
1910
276
    }
1911
1912
    /*
1913
     * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
1914
     */
1915
2.42k
    mpi_montred(&W[x_index], N, mm, &T);
1916
1917
2.42k
    if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
1918
0
        W[x_index].s = -1;
1919
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
1920
0
    }
1921
1922
    /*
1923
     * Load the result in the output variable.
1924
     */
1925
2.42k
    mbedtls_mpi_copy(X, &W[x_index]);
1926
1927
2.42k
cleanup:
1928
1929
    /* The first bit of the sliding window is always 1 and therefore the first
1930
     * half of the table was unused. */
1931
7.32k
    for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1932
4.89k
        mbedtls_mpi_free(&W[i]);
1933
4.89k
    }
1934
1935
2.42k
    mbedtls_mpi_free(&W[x_index]);
1936
2.42k
    mbedtls_mpi_free(&W[1]);
1937
2.42k
    mbedtls_mpi_free(&T);
1938
2.42k
    mbedtls_mpi_free(&Apos);
1939
2.42k
    mbedtls_mpi_free(&WW);
1940
1941
2.42k
    if (prec_RR == NULL || prec_RR->p == NULL) {
1942
129
        mbedtls_mpi_free(&RR);
1943
129
    }
1944
1945
2.42k
    return ret;
1946
2.42k
}
1947
1948
/*
1949
 * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
1950
 */
1951
int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
1952
88
{
1953
88
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1954
88
    size_t lz, lzt;
1955
88
    mbedtls_mpi TA, TB;
1956
1957
88
    MPI_VALIDATE_RET(G != NULL);
1958
88
    MPI_VALIDATE_RET(A != NULL);
1959
88
    MPI_VALIDATE_RET(B != NULL);
1960
1961
88
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
1962
1963
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1964
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
1965
1966
88
    lz = mbedtls_mpi_lsb(&TA);
1967
88
    lzt = mbedtls_mpi_lsb(&TB);
1968
1969
    /* The loop below gives the correct result when A==0 but not when B==0.
1970
     * So have a special case for B==0. Leverage the fact that we just
1971
     * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1972
     * slightly more efficient than cmp_int(). */
1973
88
    if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1974
0
        ret = mbedtls_mpi_copy(G, A);
1975
0
        goto cleanup;
1976
0
    }
1977
1978
88
    if (lzt < lz) {
1979
22
        lz = lzt;
1980
22
    }
1981
1982
88
    TA.s = TB.s = 1;
1983
1984
    /* We mostly follow the procedure described in HAC 14.54, but with some
1985
     * minor differences:
1986
     * - Sequences of multiplications or divisions by 2 are grouped into a
1987
     *   single shift operation.
1988
     * - The procedure in HAC assumes that 0 < TB <= TA.
1989
     *     - The condition TB <= TA is not actually necessary for correctness.
1990
     *       TA and TB have symmetric roles except for the loop termination
1991
     *       condition, and the shifts at the beginning of the loop body
1992
     *       remove any significance from the ordering of TA vs TB before
1993
     *       the shifts.
1994
     *     - If TA = 0, the loop goes through 0 iterations and the result is
1995
     *       correctly TB.
1996
     *     - The case TB = 0 was short-circuited above.
1997
     *
1998
     * For the correctness proof below, decompose the original values of
1999
     * A and B as
2000
     *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2001
     *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2002
     * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2003
     * and gcd(A',B') is odd or 0.
2004
     *
2005
     * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2006
     * The code maintains the following invariant:
2007
     *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
2008
     */
2009
2010
    /* Proof that the loop terminates:
2011
     * At each iteration, either the right-shift by 1 is made on a nonzero
2012
     * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2013
     * by at least 1, or the right-shift by 1 is made on zero and then
2014
     * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2015
     * since in that case TB is calculated from TB-TA with the condition TB>TA).
2016
     */
2017
23.8k
    while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
2018
        /* Divisions by 2 preserve the invariant (I). */
2019
23.8k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
2020
23.8k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
2021
2022
        /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2023
         * TA-TB is even so the division by 2 has an integer result.
2024
         * Invariant (I) is preserved since any odd divisor of both TA and TB
2025
         * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
2026
         * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
2027
         * divides TA.
2028
         */
2029
23.8k
        if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2030
12.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2031
12.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2032
12.4k
        } else {
2033
11.3k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2034
11.3k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
2035
11.3k
        }
2036
        /* Note that one of TA or TB is still odd. */
2037
23.8k
    }
2038
2039
    /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2040
     * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2041
     * - If there was at least one loop iteration, then one of TA or TB is odd,
2042
     *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2043
     *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2044
     * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
2045
     *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
2046
     */
2047
2048
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2049
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
2050
2051
88
cleanup:
2052
2053
88
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
2054
2055
88
    return ret;
2056
88
}
2057
2058
/*
2059
 * Fill X with size bytes of random.
2060
 * The bytes returned from the RNG are used in a specific order which
2061
 * is suitable for deterministic ECDSA (see the specification of
2062
 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
2063
 */
2064
int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2065
                            int (*f_rng)(void *, unsigned char *, size_t),
2066
                            void *p_rng)
2067
0
{
2068
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2069
0
    const size_t limbs = CHARS_TO_LIMBS(size);
2070
2071
0
    MPI_VALIDATE_RET(X     != NULL);
2072
0
    MPI_VALIDATE_RET(f_rng != NULL);
2073
2074
    /* Ensure that target MPI has exactly the necessary number of limbs */
2075
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2076
0
    if (size == 0) {
2077
0
        return 0;
2078
0
    }
2079
2080
0
    ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
2081
2082
0
cleanup:
2083
0
    return ret;
2084
0
}
2085
2086
int mbedtls_mpi_random(mbedtls_mpi *X,
2087
                       mbedtls_mpi_sint min,
2088
                       const mbedtls_mpi *N,
2089
                       int (*f_rng)(void *, unsigned char *, size_t),
2090
                       void *p_rng)
2091
110
{
2092
110
    if (min < 0) {
2093
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2094
0
    }
2095
110
    if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2096
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2097
0
    }
2098
2099
    /* Ensure that target MPI has exactly the same number of limbs
2100
     * as the upper bound, even if the upper bound has leading zeros.
2101
     * This is necessary for mbedtls_mpi_core_random. */
2102
110
    int ret = mbedtls_mpi_resize_clear(X, N->n);
2103
110
    if (ret != 0) {
2104
0
        return ret;
2105
0
    }
2106
2107
110
    return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
2108
110
}
2109
2110
/*
2111
 * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
2112
 */
2113
int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
2114
88
{
2115
88
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2116
88
    mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
2117
88
    MPI_VALIDATE_RET(X != NULL);
2118
88
    MPI_VALIDATE_RET(A != NULL);
2119
88
    MPI_VALIDATE_RET(N != NULL);
2120
2121
88
    if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2122
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2123
0
    }
2124
2125
88
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2126
88
    mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2127
88
    mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
2128
2129
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
2130
2131
88
    if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
2132
0
        ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2133
0
        goto cleanup;
2134
0
    }
2135
2136
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2137
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2138
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2139
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
2140
2141
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2142
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2143
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2144
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
2145
2146
23.8k
    do {
2147
48.2k
        while ((TU.p[0] & 1) == 0) {
2148
24.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
2149
2150
24.4k
            if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2151
11.6k
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2152
11.6k
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
2153
11.6k
            }
2154
2155
24.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2156
24.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
2157
24.4k
        }
2158
2159
47.0k
        while ((TV.p[0] & 1) == 0) {
2160
23.2k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
2161
2162
23.2k
            if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2163
11.7k
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2164
11.7k
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
2165
11.7k
            }
2166
2167
23.2k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2168
23.2k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
2169
23.2k
        }
2170
2171
23.8k
        if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2172
12.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2173
12.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2174
12.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2175
12.4k
        } else {
2176
11.3k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2177
11.3k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2178
11.3k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
2179
11.3k
        }
2180
23.8k
    } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2181
2182
110
    while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2183
22
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
2184
22
    }
2185
2186
88
    while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2187
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2188
0
    }
2189
2190
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
2191
2192
88
cleanup:
2193
2194
88
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2195
88
    mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2196
88
    mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
2197
2198
88
    return ret;
2199
88
}
2200
2201
#if defined(MBEDTLS_GENPRIME)
2202
2203
static const int small_prime[] =
2204
{
2205
    3,    5,    7,   11,   13,   17,   19,   23,
2206
    29,   31,   37,   41,   43,   47,   53,   59,
2207
    61,   67,   71,   73,   79,   83,   89,   97,
2208
    101,  103,  107,  109,  113,  127,  131,  137,
2209
    139,  149,  151,  157,  163,  167,  173,  179,
2210
    181,  191,  193,  197,  199,  211,  223,  227,
2211
    229,  233,  239,  241,  251,  257,  263,  269,
2212
    271,  277,  281,  283,  293,  307,  311,  313,
2213
    317,  331,  337,  347,  349,  353,  359,  367,
2214
    373,  379,  383,  389,  397,  401,  409,  419,
2215
    421,  431,  433,  439,  443,  449,  457,  461,
2216
    463,  467,  479,  487,  491,  499,  503,  509,
2217
    521,  523,  541,  547,  557,  563,  569,  571,
2218
    577,  587,  593,  599,  601,  607,  613,  617,
2219
    619,  631,  641,  643,  647,  653,  659,  661,
2220
    673,  677,  683,  691,  701,  709,  719,  727,
2221
    733,  739,  743,  751,  757,  761,  769,  773,
2222
    787,  797,  809,  811,  821,  823,  827,  829,
2223
    839,  853,  857,  859,  863,  877,  881,  883,
2224
    887,  907,  911,  919,  929,  937,  941,  947,
2225
    953,  967,  971,  977,  983,  991,  997, -103
2226
};
2227
2228
/*
2229
 * Small divisors test (X must be positive)
2230
 *
2231
 * Return values:
2232
 * 0: no small factor (possible prime, more tests needed)
2233
 * 1: certain prime
2234
 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
2235
 * other negative: error
2236
 */
2237
static int mpi_check_small_factors(const mbedtls_mpi *X)
2238
0
{
2239
0
    int ret = 0;
2240
0
    size_t i;
2241
0
    mbedtls_mpi_uint r;
2242
2243
0
    if ((X->p[0] & 1) == 0) {
2244
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2245
0
    }
2246
2247
0
    for (i = 0; small_prime[i] > 0; i++) {
2248
0
        if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2249
0
            return 1;
2250
0
        }
2251
2252
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
2253
2254
0
        if (r == 0) {
2255
0
            return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2256
0
        }
2257
0
    }
2258
2259
0
cleanup:
2260
0
    return ret;
2261
0
}
2262
2263
/*
2264
 * Miller-Rabin pseudo-primality test  (HAC 4.24)
2265
 */
2266
static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2267
                            int (*f_rng)(void *, unsigned char *, size_t),
2268
                            void *p_rng)
2269
0
{
2270
0
    int ret, count;
2271
0
    size_t i, j, k, s;
2272
0
    mbedtls_mpi W, R, T, A, RR;
2273
2274
0
    MPI_VALIDATE_RET(X     != NULL);
2275
0
    MPI_VALIDATE_RET(f_rng != NULL);
2276
2277
0
    mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2278
0
    mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2279
0
    mbedtls_mpi_init(&RR);
2280
2281
    /*
2282
     * W = |X| - 1
2283
     * R = W >> lsb( W )
2284
     */
2285
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2286
0
    s = mbedtls_mpi_lsb(&W);
2287
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2288
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
2289
2290
0
    for (i = 0; i < rounds; i++) {
2291
        /*
2292
         * pick a random A, 1 < A < |X| - 1
2293
         */
2294
0
        count = 0;
2295
0
        do {
2296
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
2297
2298
0
            j = mbedtls_mpi_bitlen(&A);
2299
0
            k = mbedtls_mpi_bitlen(&W);
2300
0
            if (j > k) {
2301
0
                A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
2302
0
            }
2303
2304
0
            if (count++ > 30) {
2305
0
                ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2306
0
                goto cleanup;
2307
0
            }
2308
2309
0
        } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2310
0
                 mbedtls_mpi_cmp_int(&A, 1)  <= 0);
2311
2312
        /*
2313
         * A = A^R mod |X|
2314
         */
2315
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
2316
2317
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2318
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2319
0
            continue;
2320
0
        }
2321
2322
0
        j = 1;
2323
0
        while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
2324
            /*
2325
             * A = A * A mod |X|
2326
             */
2327
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2328
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
2329
2330
0
            if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
2331
0
                break;
2332
0
            }
2333
2334
0
            j++;
2335
0
        }
2336
2337
        /*
2338
         * not prime if A != |X| - 1 or A == 1
2339
         */
2340
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2341
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2342
0
            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2343
0
            break;
2344
0
        }
2345
0
    }
2346
2347
0
cleanup:
2348
0
    mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2349
0
    mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2350
0
    mbedtls_mpi_free(&RR);
2351
2352
0
    return ret;
2353
0
}
2354
2355
/*
2356
 * Pseudo-primality test: small factors, then Miller-Rabin
2357
 */
2358
int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2359
                             int (*f_rng)(void *, unsigned char *, size_t),
2360
                             void *p_rng)
2361
0
{
2362
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2363
0
    mbedtls_mpi XX;
2364
0
    MPI_VALIDATE_RET(X     != NULL);
2365
0
    MPI_VALIDATE_RET(f_rng != NULL);
2366
2367
0
    XX.s = 1;
2368
0
    XX.n = X->n;
2369
0
    XX.p = X->p;
2370
2371
0
    if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2372
0
        mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2373
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2374
0
    }
2375
2376
0
    if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2377
0
        return 0;
2378
0
    }
2379
2380
0
    if ((ret = mpi_check_small_factors(&XX)) != 0) {
2381
0
        if (ret == 1) {
2382
0
            return 0;
2383
0
        }
2384
2385
0
        return ret;
2386
0
    }
2387
2388
0
    return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
2389
0
}
2390
2391
/*
2392
 * Prime number generation
2393
 *
2394
 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2395
 * be either 1024 bits or 1536 bits long, and flags must contain
2396
 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
2397
 */
2398
int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2399
                          int (*f_rng)(void *, unsigned char *, size_t),
2400
                          void *p_rng)
2401
0
{
2402
0
#ifdef MBEDTLS_HAVE_INT64
2403
// ceil(2^63.5)
2404
0
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2405
#else
2406
// ceil(2^31.5)
2407
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2408
#endif
2409
0
    int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2410
0
    size_t k, n;
2411
0
    int rounds;
2412
0
    mbedtls_mpi_uint r;
2413
0
    mbedtls_mpi Y;
2414
2415
0
    MPI_VALIDATE_RET(X     != NULL);
2416
0
    MPI_VALIDATE_RET(f_rng != NULL);
2417
2418
0
    if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2419
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2420
0
    }
2421
2422
0
    mbedtls_mpi_init(&Y);
2423
2424
0
    n = BITS_TO_LIMBS(nbits);
2425
2426
0
    if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
2427
        /*
2428
         * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2429
         */
2430
0
        rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :
2431
0
                  (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :
2432
0
                  (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);
2433
0
    } else {
2434
        /*
2435
         * 2^-100 error probability, number of rounds computed based on HAC,
2436
         * fact 4.48
2437
         */
2438
0
        rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :
2439
0
                  (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :
2440
0
                  (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :
2441
0
                  (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);
2442
0
    }
2443
2444
0
    while (1) {
2445
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
2446
        /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2447
0
        if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2448
0
            continue;
2449
0
        }
2450
2451
0
        k = n * biL;
2452
0
        if (k > nbits) {
2453
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2454
0
        }
2455
0
        X->p[0] |= 1;
2456
2457
0
        if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2458
0
            ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
2459
2460
0
            if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2461
0
                goto cleanup;
2462
0
            }
2463
0
        } else {
2464
            /*
2465
             * A necessary condition for Y and X = 2Y + 1 to be prime
2466
             * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2467
             * Make sure it is satisfied, while keeping X = 3 mod 4
2468
             */
2469
2470
0
            X->p[0] |= 2;
2471
2472
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2473
0
            if (r == 0) {
2474
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2475
0
            } else if (r == 1) {
2476
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2477
0
            }
2478
2479
            /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2480
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2481
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
2482
2483
0
            while (1) {
2484
                /*
2485
                 * First, check small factors for X and Y
2486
                 * before doing Miller-Rabin on any of them
2487
                 */
2488
0
                if ((ret = mpi_check_small_factors(X)) == 0 &&
2489
0
                    (ret = mpi_check_small_factors(&Y)) == 0 &&
2490
0
                    (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2491
0
                    == 0 &&
2492
0
                    (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2493
0
                    == 0) {
2494
0
                    goto cleanup;
2495
0
                }
2496
2497
0
                if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2498
0
                    goto cleanup;
2499
0
                }
2500
2501
                /*
2502
                 * Next candidates. We want to preserve Y = (X-1) / 2 and
2503
                 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2504
                 * so up Y by 6 and X by 12.
2505
                 */
2506
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
2507
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
2508
0
            }
2509
0
        }
2510
0
    }
2511
2512
0
cleanup:
2513
2514
0
    mbedtls_mpi_free(&Y);
2515
2516
0
    return ret;
2517
0
}
2518
2519
#endif /* MBEDTLS_GENPRIME */
2520
2521
#if defined(MBEDTLS_SELF_TEST)
2522
2523
0
#define GCD_PAIR_COUNT  3
2524
2525
static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2526
{
2527
    { 693, 609, 21 },
2528
    { 1764, 868, 28 },
2529
    { 768454923, 542167814, 1 }
2530
};
2531
2532
/*
2533
 * Checkup routine
2534
 */
2535
int mbedtls_mpi_self_test(int verbose)
2536
0
{
2537
0
    int ret, i;
2538
0
    mbedtls_mpi A, E, N, X, Y, U, V;
2539
2540
0
    mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2541
0
    mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
2542
2543
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2544
0
                                            "EFE021C2645FD1DC586E69184AF4A31E" \
2545
0
                                            "D5F53E93B5F123FA41680867BA110131" \
2546
0
                                            "944FE7952E2517337780CB0DB80E61AA" \
2547
0
                                            "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
2548
2549
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2550
0
                                            "B2E7EFD37075B9F03FF989C7C5051C20" \
2551
0
                                            "34D2A323810251127E7BF8625A4F49A5" \
2552
0
                                            "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2553
0
                                            "5B5C25763222FEFCCFC38B832366C29E"));
2554
2555
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2556
0
                                            "0066A198186C18C10B2F5ED9B522752A" \
2557
0
                                            "9830B69916E535C8F047518A889A43A5" \
2558
0
                                            "94B6BED27A168D31D4A52F88925AA8F5"));
2559
2560
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
2561
2562
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2563
0
                                            "602AB7ECA597A3D6B56FF9829A5E8B85" \
2564
0
                                            "9E857EA95A03512E2BAE7391688D264A" \
2565
0
                                            "A5663B0341DB9CCFD2C4C5F421FEC814" \
2566
0
                                            "8001B72E848A38CAE1C65F78E56ABDEF" \
2567
0
                                            "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2568
0
                                            "ECF677152EF804370C1A305CAF3B5BF1" \
2569
0
                                            "30879B56C61DE584A0F53A2447A51E"));
2570
2571
0
    if (verbose != 0) {
2572
0
        mbedtls_printf("  MPI test #1 (mul_mpi): ");
2573
0
    }
2574
2575
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2576
0
        if (verbose != 0) {
2577
0
            mbedtls_printf("failed\n");
2578
0
        }
2579
2580
0
        ret = 1;
2581
0
        goto cleanup;
2582
0
    }
2583
2584
0
    if (verbose != 0) {
2585
0
        mbedtls_printf("passed\n");
2586
0
    }
2587
2588
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
2589
2590
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2591
0
                                            "256567336059E52CAE22925474705F39A94"));
2592
2593
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2594
0
                                            "6613F26162223DF488E9CD48CC132C7A" \
2595
0
                                            "0AC93C701B001B092E4E5B9F73BCD27B" \
2596
0
                                            "9EE50D0657C77F374E903CDFA4C642"));
2597
2598
0
    if (verbose != 0) {
2599
0
        mbedtls_printf("  MPI test #2 (div_mpi): ");
2600
0
    }
2601
2602
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2603
0
        mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2604
0
        if (verbose != 0) {
2605
0
            mbedtls_printf("failed\n");
2606
0
        }
2607
2608
0
        ret = 1;
2609
0
        goto cleanup;
2610
0
    }
2611
2612
0
    if (verbose != 0) {
2613
0
        mbedtls_printf("passed\n");
2614
0
    }
2615
2616
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
2617
2618
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2619
0
                                            "36E139AEA55215609D2816998ED020BB" \
2620
0
                                            "BD96C37890F65171D948E9BC7CBAA4D9" \
2621
0
                                            "325D24D6A3C12710F10A09FA08AB87"));
2622
2623
0
    if (verbose != 0) {
2624
0
        mbedtls_printf("  MPI test #3 (exp_mod): ");
2625
0
    }
2626
2627
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2628
0
        if (verbose != 0) {
2629
0
            mbedtls_printf("failed\n");
2630
0
        }
2631
2632
0
        ret = 1;
2633
0
        goto cleanup;
2634
0
    }
2635
2636
0
    if (verbose != 0) {
2637
0
        mbedtls_printf("passed\n");
2638
0
    }
2639
2640
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
2641
2642
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2643
0
                                            "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2644
0
                                            "C3DBA76456363A10869622EAC2DD84EC" \
2645
0
                                            "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
2646
2647
0
    if (verbose != 0) {
2648
0
        mbedtls_printf("  MPI test #4 (inv_mod): ");
2649
0
    }
2650
2651
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2652
0
        if (verbose != 0) {
2653
0
            mbedtls_printf("failed\n");
2654
0
        }
2655
2656
0
        ret = 1;
2657
0
        goto cleanup;
2658
0
    }
2659
2660
0
    if (verbose != 0) {
2661
0
        mbedtls_printf("passed\n");
2662
0
    }
2663
2664
0
    if (verbose != 0) {
2665
0
        mbedtls_printf("  MPI test #5 (simple gcd): ");
2666
0
    }
2667
2668
0
    for (i = 0; i < GCD_PAIR_COUNT; i++) {
2669
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2670
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
2671
2672
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
2673
2674
0
        if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2675
0
            if (verbose != 0) {
2676
0
                mbedtls_printf("failed at %d\n", i);
2677
0
            }
2678
2679
0
            ret = 1;
2680
0
            goto cleanup;
2681
0
        }
2682
0
    }
2683
2684
0
    if (verbose != 0) {
2685
0
        mbedtls_printf("passed\n");
2686
0
    }
2687
2688
0
cleanup:
2689
2690
0
    if (ret != 0 && verbose != 0) {
2691
0
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2692
0
    }
2693
2694
0
    mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2695
0
    mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
2696
2697
0
    if (verbose != 0) {
2698
0
        mbedtls_printf("\n");
2699
0
    }
2700
2701
0
    return ret;
2702
0
}
2703
2704
#endif /* MBEDTLS_SELF_TEST */
2705
2706
#endif /* MBEDTLS_BIGNUM_C */