a
\color{red}{a}
b
\color{red}{b}
c
\color{red}{c}
β
\color{blue}{\beta}
α
\color{blue}{\alpha}
α
+
β
=
90
°
\alpha + \beta = 90°
a
2
+
b
2
=
c
2
a^2 + b^2 = c^2
cos
(
α
)
=
sin
(
β
)
=
b
c
{\cos(\alpha)} = {\sin(\beta)} = \frac{b}{c}
cos
(
β
)
=
sin
(
α
)
=
a
c
{\cos(\beta)} = {\sin(\alpha)} = \frac{a}{c}
tan
(
α
)
=
sin
(
α
)
cos
(
α
)
=
cot
(
β
)
=
cos
(
β
)
sin
(
β
)
=
a
b
{\tan(\alpha)} = \frac{\sin(\alpha)}{\cos(\alpha)} = {\cot(\beta)} = \frac{\cos(\beta)}{\sin(\beta)} = \frac{a}{b}
tan
(
β
)
=
sin
(
β
)
cos
(
β
)
=
cot
(
α
)
=
cos
(
α
)
sin
(
α
)
=
b
a
{\tan(\beta)} = \frac{\sin(\beta)}{\cos(\beta)} = {\cot(\alpha)} = \frac{\cos(\alpha)}{\sin(\alpha)} = \frac{b}{a}