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Introduction

Basic definitions

We consider matrix pencils A0 + λA1, with A0,A1 ∈ Cn×n.

Structure set S Definition
A0 + λA1 ∈ S

Notation
{A0 + λA1 ∈ S : rank(A0 + λA1)≤ r}

>-palindromic A>1 = A0 Palr
>-anti-palindromic A>1 =−A0 Apalr
>-even A>0 = A0, A>1 =−A1 Evenr
>-odd A>0 =−A0, A>1 = A1 Oddr

rank(A0 + λA1): size of the largest non-identically zero minor.

Def’n: Reversal of A0 + λA1: rev(A0 + λA1) = A1 + λA0.
(P(λ ) is >-pal⇔ revP(λ ) = P(λ )>).
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Introduction

Kronecker canonical form

Any pencil A0 + λA1 is strictly equivalent (P(A0 + λA1)Q, P,Q nonsingular) to
a direct sum of blocks:

Right singular
block of order α

Left singular block
of order α

Jordan block of
order k associated

with λ0 ∈ C

Jordan block of
order k associated

with the infinite
eigenvalue

Lα (λ) Lα (λ)> Jk (λ −λ0) J∞

k (λ) λ 1
. . .

. . .

λ 1




λ

1
. . .

. . . λ

1




λ −λ0 1
. . .

. . .

λ −λ0 1
λ −λ0




1 λ

. . .
. . .

1 λ

1


α× (α + 1) (α + 1)×α k ×k k ×k

The number and sizes of blocks of each type is uniquely determined (KCF).

DStrict equivalence destroys the (>-pal, >-anti-pal, >-alternating) structure.
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Introduction

>-palindromic canonical form (KCF-like)
Any >-palindromic pencil A0 + λA1 is congruent (P(A0 + λA1)P>) to a direct sum of blocks:

Pair of left-right singular blocks M]
α (λ) :=

[
0 Lα (λ)

revLα (λ)> 0

]
(2α + 1)× (2α + 1)

Pair of Jordan-like blocks with
even size (λ0 =−1)

[
0 Jβ (λ + 1)

revJβ (λ + 1)> 0

]
(2β)× (2β), β even

Pair of Jordan-like blocks with
odd size (λ0 = 1)

[
0 Jγ (λ −1)

revJγ (λ −1)> 0

]
(2γ)× (2γ), γ odd

Pairs of Jordan-like blocks
(λ0,1/λ0, λ0 6=±1)

[
0 Jδ (λ −λ0)

revJδ (λ −λ0)> 0

]
(2δ)× (2δ)

Jordan-like blocks with even
size (λ0 = 1)



λ −1
λ −1 1

. .
.

. .
.

λ −1 1
1−λ λ + 1

1−λ λ

. .
.

. .
.

1−λ λ


(2ε)× (2ε)

Jordan-like blocks with odd
size (λ0 =−1)



λ + 1

. .
.

1

λ + 1 . .
.

λ + 1 1
1 + λ λ

. .
.

. .
.

1 + λ λ



(2η + 1)× (2η + 1)

−−→

Size
The number and sizes of blocks of each type is uniquely determined (>-pal canonical form).
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Introduction

Goal

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL
To identify the most likely (generic) eigenstructure in Palr .

Motivation: Allows us to better understand the set Palr (generic structured
low-rank perturbations).

Def’n: A property p is generic in a set A if p holds in Ai , with A = ∪k
i=1Ai and

Ai open. (If A is algebraic, then p holds except in an proper algebraic subset
of A. For instance, if p holds in any of the irreducible components of A).

�We will see that Palr is an irreducible algebraic set with just one generic
eigenstructure (different for r odd/even).
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Low-rank pencils

Constructing low-rank >-palindromic pencils

Low-rank pencil: rank(A + λB) = r , for some fixed r < n.

- Attempt 1: Fix A with low rank. Then set: A + λA>.

- Attempt 2: Write the pencil as a sum of r rank−1 pencils:

A + λB = v1w>1 + · · ·+ vr w>r ,
where:

degvi ,degwi ≤ 1 (for all i = 1, . . . , r ),
either degvi = 0 or degwi = 0 (for each 1≤ i ≤ r ).

When B = A>, either
vi = wi (degvi = 0) (1 + λ )vv>, or
there is a couple viw>i + (revwi )v>i (degvi = 0).

Example: M]
1(λ ) =

[
λ

1
1 λ

]
=

 0
0
1


︸ ︷︷ ︸

v

[
1 λ 0

]︸ ︷︷ ︸
w>

+

 λ

1
0


︸ ︷︷ ︸

revw

[
0 0 1

]︸ ︷︷ ︸
v>

.
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Logo-dpto

Low-rank pencils

Rank-one expression of >-palindromic pencils

Theorem (rank-1 decomposition of >-pal pencils)
A ∈ Cn×n. If rank(A + λA>) = r ≤ n, then
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Proof. Through the >-pal canonical form. �
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Orbits and irreducible components.

Outline

1 Introduction

2 Low-rank pencils

3 Orbits and irreducible components.

4 The main result
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Logo-dpto

Orbits and irreducible components.

Congruence orbits and their closures

Congruence orbit of A+λA>

Oc(A + λA>) = {V (A + λA>)V> : V nonsingular}

Oc(A + λA>): Closure of Oc(A + λA>) (either in Zariski or Euclidean
topology).

� Oc(A + λA>) contains all >-pal pencils with the same eigenstructure as
A + λA> (i.e.: with the same >-pal canonical form.)

� B + λB> ∈ Oc(A + λA>)⇔ There are arbitrarily nearby pencils to B + λB>

having the same eigenstructure as A + λA>⇔ The eigenstructure of A + λA>

is “more likely" than that of B + λB>.
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Logo-dpto

Orbits and irreducible components.

Irreducible components

Palr is an algebraic set in Cn2

Is the set of common zeroes of pk`(xij ), 1≤ i , j ≤ n, with

pk` : `th coefficient of the k th (r + 1)× (r + 1) minor of [xij ] + λ [xij ]
>

(for ` = 0,1, . . . , r −1).

Irreducible components of A: A1, . . . ,Ak (nonempty) algebraic subsets (i. e.,
closed in Zariski topology) such that A = ∪k

i=1Ai .

Q: Which are the irreducible components of Palr ?
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Logo-dpto

The main result

Geometric description of Palr

Theorem
Palr is an irreducible algebraic set with dimension

dimPalr =

{
(3n− r)r/2, if r is even,
(3n− r)(r −1)/2 + n, if r is odd.

I If r is even, then Palr = Oc(K e
P (λ )) , with

K e
P (λ ) := diag(

s︷ ︸︸ ︷
M]

α+1(λ ), . . . ,M]
α+1(λ ),

n−r−s︷ ︸︸ ︷
M]

α (λ ), . . . ,M]
α (λ )),

where r/2 = (n− r)α + s is the Euclidean division of r/2 by n− r .
I If r is odd, then Palr = Oc(K o

P (λ )) , with

K o
P (λ ) := diag(1 + λ ,K e

P (λ )),

and (r −1)/2 = (n− r)α + s is the Euclidean division of (r −1)/2 by n− r .
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Logo-dpto

The main result

Why these blocks?
� Small singular blocks Lα (λ ) are non-generic.

Partition r/2 into n− r parts which are as close as possible to each other.

� Divide: r/2 = (n− r)α + s. Then:
r
2 = s · (α + 1) + (n− r −s) ·α
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Logo-dpto

The main result

Idea of the proof (I)

Recall that A + λA> =


v1w>1 + · · ·+ vr/2w>r/2
+(revw1)v>1 + · · ·+ (revwr/2)v>r/2,

if r is even,

(1 + λ)uu>+ v1w>1 + · · ·+ v(r−1)/2w>(r−1)/2
+(revw1)v>1 + · · ·+ (revw(r−1)/2)v>(r−1)/2,

if r is odd.

Set wi = wi0 + λwi1 and define the polynomial map (for r even):

Φ : C
3rn
2 −→ Cn×n×Cn×n

(v1, . . . ,vr/2;
w10, . . . ,wr/2,0;
w11, . . . ,wr/2,1)

7→
(v1w>10 + · · ·+ vr/2w>r/2,0 + w11v>1 + · · ·+ wr/2,1v>r/2,

w10v>1 + · · ·+ wr/2,0v>r/2 + v1w>11 + · · ·+ vr/2w>r/2,1).

Note that Φ(C
3rn
2 ) = Palr . Then, prove:

1 Φ(C
3rn
2 ) is irreducible (easy).

2 dimΦ(C
3rn
2 )≤ r(3n−r)

2 = dimOc(K e
P ) = dimOc(K e

P ).

Now Oc(K e
P )⊆ Palr ⇒ Oc(K e

P )⊆ Palr ⇒ Oc(K e
P ) = Palr
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w10v>1 + · · ·+ wr/2,0v>r/2 + v1w>11 + · · ·+ vr/2w>r/2,1).

Note that Φ(C
3rn
2 ) = Palr .

Then, prove:

1 Φ(C
3rn
2 ) is irreducible (easy).

2 dimΦ(C
3rn
2 )≤ r(3n−r)

2 = dimOc(K e
P ) = dimOc(K e

P ).

Now Oc(K e
P )⊆ Palr ⇒ Oc(K e

P )⊆ Palr ⇒ Oc(K e
P ) = Palr
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The main result

Idea of the proof (II)

To prove claim :

dimOc(K e
P ) = dimTK e

P
(Oc(K e

P )), with (K e
P (λ ) = A + λA>):

TK e
P

(Oc(K e
P )) = {X : AX + X>A = 0} tangent space

of Oc(K e
P ) at K e

P (λ ).

The dimension of the solution space can be computed using tools from
[DT.-Dopico’11].

dimΦ(C
3rn
2 ) can be bounded by identifying a set of generators of the

columns of the Jacobian matrix.
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The main result

The remaining structures

We can get similar results for the remaining structures:

For >-anti-palindromic: Use that P(λ ) is >-pal⇔ P(−λ ) is >-anti-pal.

For >-even and >-odd: Use Möbius transformations.
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The main result

Comparison with other structures

The set of n×n general (non-structured) pencils with rank at most r has
r + 1 generic eigenstructures (i. e., r + 1 irreducible components)
[Waterhouse’84].

The set of n×n skew-symmetric pencils with rank at most r has just one
generic eigenstructure (i. e., it is irreducible) [Dmytryshyn-Dopico’18].

The set of n×n symmetric pencils with rank at most r has b r
2c+ 1 generic

eigenstructures (i. e., b r
2c+ 1 irreducible components)

[DT.-Dopico-Dmytryshyn, in preparation].
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The main result

Summary

Palr has only one generic eigenstructure. We have described it.

Palr is an irreducible algebraic set.

We have obtained the dimension of Palr .

Similar results for the sets of >-anti-palindromic and >-alternating pencils
with bounded rank.

Different behavior than other structures (general, skew-symmetric, or
symmetric pencils).
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