meill CII

A geometric description of the sets of palindromic and alternating pencils with bounded rank

Fernando De Terán

Departamento de Matemáticas
Universidad Carlos III de Madrid
(Spain)

Outline

(1) Introduction
(2) Low-rank pencils
(3) Orbits and irreducible components.

4 The main result

Outline

(9) Introduction
(2) Low-rank pencils
(3) Orbits and irreducible components.

4 The main result

Basic definitions

We consider matrix pencils $A_{0}+\lambda A_{1}$, with $A_{0}, A_{1} \in \mathbb{C}^{n \times n}$.

Structure set \mathbb{S}	Definition	Notation
T-palindromic	$A_{0}+\lambda A_{1} \in \mathbb{S}$	$\left\{A_{0}+\lambda A_{1} \in \mathbb{S}: \operatorname{rank}\left(A_{0}+\lambda A_{1}\right) \leq r\right\}$
T-anti-palindromic	$A_{1}^{\top}=A_{0}$	Pal_{r}
T-even	$A_{1}^{\top}=-A_{0}$	Apal $_{r}$
T-odd	$A_{0}^{\top}=A_{0}, A_{1}^{\top}=-A_{1}$	Even $_{r}$

Basic definitions

We consider matrix pencils $A_{0}+\lambda A_{1}$, with $A_{0}, A_{1} \in \mathbb{C}^{n \times n}$.

Structure set \mathbb{S}	Definition	Notation
T-palindromic	$A_{0}+\lambda A_{1} \in \mathbb{S}$	$\left\{A_{0}+\lambda A_{1} \in \mathbb{S}: \operatorname{rank}\left(A_{0}+\lambda A_{1}\right) \leq r\right\}$
T-anti-palindromic	$A_{1}^{\top}=A_{0}$	$\operatorname{Pal}_{1}=-A_{0}$
T-even	$A_{0}^{\top}=A_{0}, A_{1}^{\top}=-A_{1}$	Apal_{r}
T-odd	$A_{0}^{\top}=-A_{0}, A_{1}^{\top}=A_{1}$	Even $_{r}$

Basic definitions

We consider matrix pencils $A_{0}+\lambda A_{1}$, with $A_{0}, A_{1} \in \mathbb{C}^{n \times n}$.

Structure set \mathbb{S}	Definition	Notation
T-palindromic	$A_{0}+\lambda A_{1} \in \mathbb{S}$	$\left\{A_{0}+\lambda A_{1} \in \mathbb{S}: \operatorname{rank}\left(A_{0}+\lambda A_{1}\right) \leq r\right\}$
T-anti-palindromic	$A_{1}^{\top}=A_{0}$	Pal $_{r}$
T-even	$A_{0}^{\top}=A_{0}, A_{1}^{\top}=-A_{1}$	Apal $_{r}$
T-odd	$A_{0}^{\top}=-A_{0}, A_{1}^{\top}=A_{1}$	Even $_{r}$

$\operatorname{rank}\left(A_{0}+\lambda A_{1}\right)$: size of the largest non-identically zero minor.

Basic definitions

We consider matrix pencils $A_{0}+\lambda A_{1}$, with $A_{0}, A_{1} \in \mathbb{C}^{n \times n}$.

Structure set \mathbb{S}	Definition	Notation
T-palindromic	$A_{0}+\lambda A_{1} \in \mathbb{S}$	$\left\{A_{0}+\lambda A_{1} \in \mathbb{S}: \operatorname{rank}\left(A_{0}+\lambda A_{1}\right) \leq r\right\}$
T-anti-palindromic	$A_{1}^{\top}=A_{0}$	Pal $_{r}$
T-even	$A_{1}^{\top}=-A_{0}$	Apal $_{r}$
T-odd	$A_{0}^{\top}, A_{1}^{\top}=-A_{1}$	Even $_{r}, A_{1}^{\top}=A_{1}$

$\operatorname{rank}\left(A_{0}+\lambda A_{1}\right)$: size of the largest non-identically zero minor.
Def'n: Reversal of $A_{0}+\lambda A_{1}: \operatorname{rev}\left(A_{0}+\lambda A_{1}\right)=A_{1}+\lambda A_{0}$.

Basic definitions

We consider matrix pencils $A_{0}+\lambda A_{1}$, with $A_{0}, A_{1} \in \mathbb{C}^{n \times n}$.

Structure set \mathbb{S}	Definition	Notation
T-palindromic	$A_{0}+\lambda A_{1} \in \mathbb{S}$	$\left\{A_{0}+\lambda A_{1} \in \mathbb{S}: \operatorname{rank}\left(A_{0}+\lambda A_{1}\right) \leq r\right\}$
T-anti-palindromic	$A_{1}^{\top}=A_{0}$	Pal $_{r}$
T-even	$A_{1}^{\top}=-A_{0}$	Apal $_{r}$
T-odd	$A_{0}^{\top}=A_{0}, A_{1}^{\top}=-A_{1}$	Even $_{r}$

$\operatorname{rank}\left(A_{0}+\lambda A_{1}\right)$: size of the largest non-identically zero minor.
Def'n: Reversal of $A_{0}+\lambda A_{1}: \operatorname{rev}\left(A_{0}+\lambda A_{1}\right)=A_{1}+\lambda A_{0}$.
$\left(P(\lambda)\right.$ is $\left.\top-\mathrm{pal} \Leftrightarrow \operatorname{rev} P(\lambda)=P(\lambda)^{\top}\right)$.

Kronecker canonical form

Any pencil $A_{0}+\lambda A_{1}$ is strictly equivalent ($P\left(A_{0}+\lambda A_{1}\right) Q, P, Q$ nonsingular) to a direct sum of blocks:

Right singular block of order α	Left singular block of order α	Jordan block of order k associated with $\lambda_{0} \in \mathbb{C}$	Jordan block of order k associated with the infinite eigenvalue
$L_{\alpha}(\lambda)$	$L_{\alpha}(\lambda)^{\top}$	$J_{k}\left(\lambda-\lambda_{0}\right)$	$J_{k}^{\infty}(\lambda)$
$\left[\begin{array}{llll} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \end{array}\right]$	$\left[\begin{array}{ccc} \lambda & & \\ 1 & \ddots & \\ & \ddots & \lambda \\ & & 1 \end{array}\right]$	$\left[\begin{array}{cccc} \lambda-\lambda_{0} & 1 & & \\ & \ddots & \ddots & \\ & & \lambda-\lambda_{0} & 1 \\ & & & \\ & & \lambda-\lambda_{0} \end{array}\right]$	$\left[\begin{array}{cccc} 1 & \lambda & & \\ & \ddots & & \\ & \ddots & \ddots & \\ & & 1 & \lambda \\ & & & 1 \end{array}\right]$
$\alpha \times(\alpha+1)$	$(\alpha+1) \times \alpha$	$k \times k$	$k \times k$

The number and sizes of blocks of each type is uniquely determined (KCF).

Kronecker canonical form

Any pencil $A_{0}+\lambda A_{1}$ is strictly equivalent ($P\left(A_{0}+\lambda A_{1}\right) Q, P, Q$ nonsingular) to a direct sum of blocks:

Right singular block of order α	Left singular block of order α	Jordan block of order k associated with $\lambda_{0} \in \mathbb{C}$	Jordan block of order k associated with the infinite eigenvalue
$L_{\alpha}(\lambda)$	$L_{\alpha}(\lambda)^{\top}$	$J_{k}\left(\lambda-\lambda_{0}\right)$	$J_{k}^{\infty}(\lambda)$
$\left[\begin{array}{llll} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \end{array}\right]$	$\left[\begin{array}{ccc} \lambda & & \\ 1 & \ddots & \\ & \ddots & \lambda \\ & & 1 \end{array}\right]$	$\left[\begin{array}{cccc} \lambda-\lambda_{0} & 1 & & \\ & \ddots & \ddots & \\ & & \lambda-\lambda_{0} & 1 \\ & & & \\ & & \lambda-\lambda_{0} \end{array}\right]$	$\left[\begin{array}{cccc} 1 & \lambda & & \\ & \ddots & & \\ & & \ddots & \\ & & 1 & \lambda \\ & & & \\ & & & 1 \end{array}\right]$
$\alpha \times(\alpha+1)$	$(\alpha+1) \times \alpha$	$k \times k$	$k \times k$

The number and sizes of blocks of each type is uniquely determined (KCF).
${ }_{5}$ Strict equivalence destroys the (T-pal, T-anti-pal, T-alternating) structure.

T-palindromic canonical form (KCF-like)

Any T-palindromic pencil $A_{0}+\lambda A_{1}$ is congruent $\left(P\left(A_{0}+\lambda A_{1}\right) P^{\top}\right)$ to a direct sum of blocks:

The number and sizes of blocks of each type is uniquely determined (T-pal canonical form).

T-palindromic canonical form (KCF-like)

Any T-palindromic pencil $A_{0}+\lambda A_{1}$ is congruent $\left(P\left(A_{0}+\lambda A_{1}\right) P^{\top}\right)$ to a direct sum of blocks:

The number and sizes of blocks of each type is uniquely determined (T-pal canonical form).

Goal

Eigenstructure: Types and sizes of blocks in the canonical form.

Goal

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL

To identify the most likely (generic) eigenstructure in Pal_{r}.

Goal

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL

To identify the most likely (generic) eigenstructure in Pal_{r}.

Motivation: Allows us to better understand the set Pal_{r} (generic structured low-rank perturbations).

Goal

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL

To identify the most likely (generic) eigenstructure in Pal_{r}.

Motivation: Allows us to better understand the set Pal_{r} (generic structured low-rank perturbations).

Def'n: A property \mathfrak{p} is generic in a set A if \mathfrak{p} holds in A_{i}, with $A=\cup_{i=1}^{k} \bar{A}_{i}$ and A_{i} open.

Goal

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL

To identify the most likely (generic) eigenstructure in Pal_{r}.

Motivation: Allows us to better understand the set Pal_{r} (generic structured low-rank perturbations).

Def'n: A property \mathfrak{p} is generic in a set A if \mathfrak{p} holds in A_{i}, with $A=\cup_{i=1}^{k} \bar{A}_{i}$ and A_{i} open. (If A is algebraic, then \mathfrak{p} holds except in an proper algebraic subset of A. For instance, if \mathfrak{p} holds in any of the irreducible components of A).

Goal

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL

To identify the most likely (generic) eigenstructure in Pal_{r}.

Motivation: Allows us to better understand the set Pal_{r} (generic structured low-rank perturbations).

Def'n: A property \mathfrak{p} is generic in a set A if \mathfrak{p} holds in A_{i}, with $A=\cup_{i=1}^{k} \bar{A}_{i}$ and A_{i} open. (If A is algebraic, then \mathfrak{p} holds except in an proper algebraic subset of A. For instance, if \mathfrak{p} holds in any of the irreducible components of A).

图 We will see that Pal_{r} is an irreducible algebraic set with just one generic eigenstructure (different for r odd/even).

Outline

(1) Introduction
 (2) Low-rank pencils

(3) Orbits and irreducible components.

(4) The main result

Constructing low-rank T-palindromic pencils

Low-rank pencil: $\operatorname{rank}(A+\lambda B)=r$, for some fixed $r<n$.

- Attempt 1: Fix A with low rank. Then set: $A+\lambda A^{\top}$.

Constructing low-rank T-palindromic pencils

Low-rank pencil: $\operatorname{rank}(A+\lambda B)=r$, for some fixed $r<n$.

- Attempt 1: Fix A with low rank. Then set: $A+\lambda A^{\top}$.

$$
\operatorname{rank}\left(A+\lambda A^{\top}\right) \leq 2 \operatorname{rank} A .
$$

Constructing low-rank T-palindromic pencils

Low-rank pencil: $\operatorname{rank}(A+\lambda B)=r$, for some fixed $r<n$.

- Attempt 1: Fix A with low rank. Then set: $A+\lambda A^{\top}$.

$$
\operatorname{rank}\left(A+\lambda A^{\top}\right) \leq 2 \operatorname{rank} A .
$$

Wrong approach: For a fixed r, this does not provide all pencils $A+\lambda A^{\top}$ with $\operatorname{rank}\left(A+\lambda A^{\top}\right) \leq r: r$ must be even and, if $\operatorname{rank} A \leq r_{A}$, this construction does not provide all $A+\lambda A^{\top}$ with $\operatorname{rank}\left(A+\lambda A^{\top}\right) \leq 2 r_{A}$.

Example: $\left[\begin{array}{cc}0 & 1+\lambda \\ 1+\lambda & 0\end{array}\right]$ is not of the form $A+\lambda A^{\top}$, with $\operatorname{rank} A \leq 1$.

Constructing low-rank T-palindromic pencils

Low-rank pencil: $\operatorname{rank}(A+\lambda B)=r$, for some fixed $r<n$.

- Attempt 2: Write the pencil as a sum of r rank-1 pencils:

$$
A+\lambda B=v_{1} w_{1}^{\top}+\cdots+v_{r} w_{r}^{\top},
$$

Constructing low-rank T-palindromic pencils

Low-rank pencil: $\operatorname{rank}(A+\lambda B)=r$, for some fixed $r<n$.

- Attempt 2: Write the pencil as a sum of r rank-1 pencils:

$$
A+\lambda B=v_{1} w_{1}^{\top}+\cdots+v_{r} w_{r}^{\top},
$$

where:

- $\operatorname{deg} v_{i}, \operatorname{deg} w_{i} \leq 1$ (for all $i=1, \ldots, r$),
- either $\operatorname{deg} v_{i}=0$ or $\operatorname{deg} w_{i}=0$ (for each $1 \leq i \leq r$).

Constructing low-rank T-palindromic pencils

Low-rank pencil: $\operatorname{rank}(A+\lambda B)=r$, for some fixed $r<n$.

- Attempt 2: Write the pencil as a sum of r rank-1 pencils:

$$
A+\lambda B=v_{1} w_{1}^{\top}+\cdots+v_{r} w_{r}^{\top},
$$

where:

- $\operatorname{deg} v_{i}, \operatorname{deg} w_{i} \leq 1$ (for all $i=1, \ldots, r$),
- either $\operatorname{deg} v_{i}=0$ or $\operatorname{deg} w_{i}=0$ (for each $1 \leq i \leq r$).

Constructing low-rank T-palindromic pencils

Low-rank pencil: $\operatorname{rank}(A+\lambda B)=r$, for some fixed $r<n$.

- Attempt 2: Write the pencil as a sum of r rank-1 pencils:

$$
A+\lambda B=v_{1} w_{1}^{\top}+\cdots+v_{r} w_{r}^{\top},
$$

where:

- $\operatorname{deg} v_{i}, \operatorname{deg} w_{i} \leq 1$ (for all $i=1, \ldots, r$),
- either $\operatorname{deg} v_{i}=0$ or $\operatorname{deg} w_{i}=0$ (for each $1 \leq i \leq r$).

When $B=A^{\top}$, either

- $v_{i}=w_{i}\left(\operatorname{deg} v_{i}=0\right) \rightsquigarrow(1+\lambda) v v^{\top}$, or
- there is a couple $v_{i} w_{i}^{\top}+\left(\operatorname{rev} w_{i}\right) v_{i}^{\top}\left(\operatorname{deg} v_{i}=0\right)$.

Constructing low-rank T-palindromic pencils

Low-rank pencil: $\operatorname{rank}(A+\lambda B)=r$, for some fixed $r<n$.

- Attempt 2: Write the pencil as a sum of r rank-1 pencils:

$$
A+\lambda B=v_{1} w_{1}^{\top}+\cdots+v_{r} w_{r}^{\top},
$$

where:

- $\operatorname{deg} v_{i}, \operatorname{deg} w_{i} \leq 1$ (for all $i=1, \ldots, r$),
- either $\operatorname{deg} v_{i}=0$ or $\operatorname{deg} w_{i}=0$ (for each $1 \leq i \leq r$).

When $B=A^{\top}$, either

- $v_{i}=w_{i}\left(\operatorname{deg} v_{i}=0\right) \rightsquigarrow(1+\lambda) v v^{\top}$, or
- there is a couple $v_{i} w_{i}^{\top}+\left(\operatorname{rev} w_{i}\right) v_{i}^{\top}\left(\operatorname{deg} v_{i}=0\right)$.

Example: $M_{1}^{\sharp}(\lambda)=\left[\begin{array}{ll|l} & & \lambda \\ 1 & \lambda & \end{array}\right]=\underbrace{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]}_{V} \underbrace{\left[\begin{array}{lll}1 & \lambda & 0\end{array}\right]}_{w^{\top}}+\underbrace{\left[\begin{array}{c}\lambda \\ 1 \\ 0\end{array}\right]}_{\operatorname{rev} w} \underbrace{\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]}_{v^{\top}}$.

Rank-one expression of T-palindromic pencils

Theorem (rank-1 decomposition of T-pal pencils)

$A \in \mathbb{C}^{n \times n}$. If $\operatorname{rank}\left(A+\lambda A^{\top}\right)=r \leq n$, then

$$
A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \text { if } r \text { is even, } \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2)}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd, }\end{cases}
$$

where

- $u, v_{1}, \ldots, v_{\lfloor r / 2\rfloor} \in \mathbb{C}^{n}$,
- $w_{1}, \ldots, w_{[r / 2]} \in \mathbb{C}[\lambda]^{n}$,
- $\operatorname{deg} w_{i} \leq 1$, for $i=1, \ldots,\lfloor r / 2\rfloor$.

Rank-one expression of T-palindromic pencils

Theorem (rank-1 decomposition of T-pal pencils)

$A \in \mathbb{C}^{n \times n}$. If $\operatorname{rank}\left(A+\lambda A^{\top}\right)=r \leq n$, then

$$
A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2)}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd, }\end{cases}
$$

where

- $u, v_{1}, \ldots, v_{\lfloor r / 2\rfloor} \in \mathbb{C}^{n}$,
- $w_{1}, \ldots, w_{[r / 2]} \in \mathbb{C}[\lambda]^{n}$,
- $\operatorname{deg} w_{i} \leq 1$, for $i=1, \ldots,\lfloor r / 2\rfloor$.

Rank-one expression of T-palindromic pencils

Theorem (rank-1 decomposition of T-pal pencils)

$A \in \mathbb{C}^{n \times n}$. If $\operatorname{rank}\left(A+\lambda A^{\top}\right)=r \leq n$, then

$$
A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2)}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd, }\end{cases}
$$

where

- $u, v_{1}, \ldots, v_{\lfloor r / 2\rfloor} \in \mathbb{C}^{n}$,
- $w_{1}, \ldots, w_{[r / 2]} \in \mathbb{C}[\lambda]^{n}$,
- $\operatorname{deg} w_{i} \leq 1$, for $i=1, \ldots,\lfloor r / 2\rfloor$.

Rank-one expression of T-palindromic pencils

Theorem (rank-1 decomposition of T-pal pencils)

$A \in \mathbb{C}^{n \times n}$. If $\operatorname{rank}\left(A+\lambda A^{\top}\right)=r \leq n$, then

$$
A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \text { if } r \text { is even, } \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2)}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd, }\end{cases}
$$

where

- $u, v_{1}, \ldots, v_{\lfloor r / 2\rfloor} \in \mathbb{C}^{n}$,
- $w_{1}, \ldots, w_{[r / 2]} \in \mathbb{C}[\lambda]^{n}$,
- $\operatorname{deg} w_{i} \leq 1$, for $i=1, \ldots,\lfloor r / 2\rfloor$.

Proof. Through the T-pal canonical form. \square

Outline

(1) Introduction

(2) Low-rank pencils

(3) Orbits and irreducible components.

4 The main result

Congruence orbits and their closures

Congruence orbit of $A+\lambda A^{\top}$

 $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)=\left\{V\left(A+\lambda A^{\top}\right) V^{\top}: V\right.$ nonsingular $\}$
Congruence orbits and their closures

Congruence orbit of $A+\lambda A^{\top}$

 $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)=\left\{V\left(A+\lambda A^{\top}\right) V^{\top}: V\right.$ nonsingular $\}$趴 $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)$ contains all T-pal pencils with the same eigenstructure as $A+\lambda A^{\top}$

Congruence orbits and their closures

Congruence orbit of $A+\lambda A^{\top}$

 $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)=\left\{V\left(A+\lambda A^{\top}\right) V^{\top}: V\right.$ nonsingular $\}$趴 $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)$ contains all T-pal pencils with the same eigenstructure as $A+\lambda A^{\top}$ (i.e.: with the same T-pal canonical form.)

Congruence orbits and their closures

Congruence orbit of $A+\lambda A^{\top}$

$\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)=\left\{V\left(A+\lambda A^{\top}\right) V^{\top}: V\right.$ nonsingular $\}$
$\overline{\mathscr{O}}_{c}\left(A+\lambda A^{\top}\right)$: Closure of $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)$ (either in Zariski or Euclidean topology).

四 $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)$ contains all T-pal pencils with the same eigenstructure as $A+\lambda A^{\top}$ (i.e.: with the same T-pal canonical form.)

Congruence orbits and their closures

Congruence orbit of $A+\lambda A^{\top}$

$\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)=\left\{V\left(A+\lambda A^{\top}\right) V^{\top}: V\right.$ nonsingular $\}$
$\overline{\mathscr{O}}_{c}\left(A+\lambda A^{\top}\right)$: Closure of $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)$ (either in Zariski or Euclidean topology).

四 $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)$ contains all T-pal pencils with the same eigenstructure as $A+\lambda A^{\top}$ (i.e.: with the same T-pal canonical form.)

電 $B+\lambda B^{\top} \in \overline{\mathscr{O}}_{c}\left(A+\lambda A^{\top}\right) \Leftrightarrow$ There are arbitrarily nearby pencils to $B+\lambda B^{\top}$ having the same eigenstructure as $A+\lambda A^{\top}$

Congruence orbits and their closures

Congruence orbit of $A+\lambda A^{\top}$

$\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)=\left\{V\left(A+\lambda A^{\top}\right) V^{\top}: V\right.$ nonsingular $\}$
$\overline{\mathscr{O}}_{c}\left(A+\lambda A^{\top}\right)$: Closure of $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)$ (either in Zariski or Euclidean topology).

四 $\mathscr{O}_{c}\left(A+\lambda A^{\top}\right)$ contains all T-pal pencils with the same eigenstructure as $A+\lambda A^{\top}$ (i.e.: with the same T-pal canonical form.)

電 $B+\lambda B^{\top} \in \overline{\mathscr{O}}_{c}\left(A+\lambda A^{\top}\right) \Leftrightarrow$ There are arbitrarily nearby pencils to $B+\lambda B^{\top}$ having the same eigenstructure as $A+\lambda A^{\top} \Leftrightarrow$ The eigenstructure of $A+\lambda A^{\top}$ is "more likely" than that of $B+\lambda B^{\top}$.

Irreducible components

Pal_{r} is an algebraic set in $\mathbb{C}^{n^{2}}$

Is the set of common zeroes of $p_{k \ell}\left(x_{i j}\right), 1 \leq i, j \leq n$, with
$p_{k \ell}$: $\quad \ell$ th coefficient of the k th $(r+1) \times(r+1)$ minor of $\left[x_{i j}\right]+\lambda\left[x_{i j}\right]^{\top}$ (for $\ell=0,1, \ldots, r-1$).

Irreducible components

Pal_{r} is an algebraic set in $\mathbb{C}^{n^{2}}$

Is the set of common zeroes of $p_{k \ell}\left(x_{i j}\right), 1 \leq i, j \leq n$, with
$p_{k \ell}$: $\quad \ell$ th coefficient of the k th $(r+1) \times(r+1)$ minor of $\left[x_{i j}\right]+\lambda\left[x_{i j}\right]^{\top}$ (for $\ell=0,1, \ldots, r-1$).

Irreducible components of $A: A_{1}, \ldots, A_{k}$ (nonempty) algebraic subsets (i. e., closed in Zariski topology) such that $A=\cup_{i=1}^{k} A_{i}$.

Irreducible components

Pal_{r} is an algebraic set in $\mathbb{C}^{n^{2}}$

Is the set of common zeroes of $p_{k \ell}\left(x_{i j}\right), 1 \leq i, j \leq n$, with
$p_{k \ell}$: $\quad \ell$ th coefficient of the k th $(r+1) \times(r+1)$ minor of $\left[x_{i j}\right]+\lambda\left[x_{i j}\right]^{\top}$ (for $\ell=0,1, \ldots, r-1$).

Irreducible components of $A: A_{1}, \ldots, A_{k}$ (nonempty) algebraic subsets (i. e., closed in Zariski topology) such that $A=\cup_{i=1}^{k} A_{i}$.

Q: Which are the irreducible components of Pal_{r} ?

Outline

(4) Introduction

(2) Low-rank pencils
(3) Orbits and irreducible components.
(4) The main result

Geometric description of Pal_{r}

Theorem

Pal_{r} is an irreducible algebraic set with dimension

$$
\operatorname{dim} \mathrm{Pal}_{r}= \begin{cases}(3 n-r) r / 2, & \text { if } r \text { is even, } \\ (3 n-r)(r-1) / 2+n, & \text { if } r \text { is odd. }\end{cases}
$$

- If r is even, then $\mathrm{Pal}_{r}=\overline{\mathscr{O}}_{c}\left(K_{P}^{e}(\lambda)\right)$, with

$$
K_{P}^{e}(\lambda):=\operatorname{diag}(\overbrace{M_{\alpha+1}^{\sharp}(\lambda), \ldots, M_{\alpha+1}^{\sharp}(\lambda)}^{s}, \overbrace{M_{\alpha}^{\sharp}(\lambda), \ldots, M_{\alpha}^{\sharp}(\lambda)}^{n-r-s}),
$$

where $r / 2=(n-r) \alpha+s$ is the Euclidean division of $r / 2$ by $n-r$.

- If r is odd, then $\operatorname{Pal}_{r}=\overline{\mathscr{O}}_{c}\left(K_{P}^{O}(\lambda)\right)$, with

$$
K_{P}^{o}(\lambda):=\operatorname{diag}\left(1+\lambda, K_{P}^{e}(\lambda)\right),
$$

and $(r-1) / 2=(n-r) \alpha+s$ is the Euclidean division of $(r-1) / 2$ by $n-r$.

Geometric description of Pal_{r}

Theorem

Pal_{r} is an irreducible algebraic set with dimension

$$
\operatorname{dim} \mathrm{Pal}_{r}= \begin{cases}(3 n-r) r / 2, & \text { if } r \text { is even, } \\ (3 n-r)(r-1) / 2+n, & \text { if } r \text { is odd. }\end{cases}
$$

- If r is even, then $\mathrm{Pal}_{r}=\overline{\mathscr{O}}_{c}\left(K_{P}^{e}(\lambda)\right)$, with

$$
K_{P}^{e}(\lambda):=\operatorname{diag}(\overbrace{M_{\alpha+1}^{\sharp}(\lambda), \ldots, M_{\alpha+1}^{\sharp}(\lambda)}^{s}, \overbrace{M_{\alpha}^{\sharp}(\lambda), \ldots, M_{\alpha}^{\sharp}(\lambda)}^{n-r-s}),
$$

where $r / 2=(n-r) \alpha+s$ is the Euclidean division of $r / 2$ by $n-r$.

- If r is odd, then $\operatorname{Pal}_{r}=\overline{\mathscr{O}}_{c}\left(K_{P}^{O}(\lambda)\right)$, with

$$
K_{P}^{o}(\lambda):=\operatorname{diag}\left(1+\lambda, K_{P}^{e}(\lambda)\right),
$$

and $(r-1) / 2=(n-r) \alpha+s$ is the Euclidean division of $(r-1) / 2$ by $n-r$.

Why these blocks?

뭉ํ Small singular blocks $L_{\alpha}(\lambda)$ are non-generic.

Why these blocks?

㕷 Small singular blocks $L_{\alpha}(\lambda)$ are non-generic. r even

Right singular blocks
$L_{\alpha}(\lambda)$

Why these blocks?

Small singular blocks $L_{\alpha}(\lambda)$ are non-generic.

r even

Partition $r / 2$ into $n-r$ parts which are as close as possible to each other.

Why these blocks?

Small singular blocks $L_{\alpha}(\lambda)$ are non-generic.

r even

Right singular blocks
$L_{\alpha}(\lambda)$

Partition $r / 2$ into $n-r$ parts which are as close as possible to each other.
㕷 Divide: $r / 2=(n-r) \alpha+s$. Then:

$$
\frac{r}{2}=s \cdot(\alpha+1)+(n-r-s) \cdot \alpha
$$

Idea of the proof (I)

Recall that $\quad A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{\top}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd. }\end{cases}$
Set $w_{i}=w_{i 0}+\lambda w_{i 1}$ and define the polynomial map (for r even):

$$
\begin{array}{c:ccc}
\Phi: & \begin{array}{c}
\mathbb{C}^{\frac{3 r n}{2}} \\
\left(v_{1}, \ldots, v_{r / 2} ;\right.
\end{array} & & \begin{array}{c}
\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\
w_{10}, \ldots, w_{r / 2,0} ; \\
\left.w_{11}, \ldots, w_{r / 2,1}\right)
\end{array}
\end{array}
$$

Idea of the proof (I)

Recall that $\quad A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{\top}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd. }\end{cases}$
Set $w_{i}=w_{i 0}+\lambda w_{i 1}$ and define the polynomial map (for r odd):
ϕ

$$
\begin{gathered}
\mathbb{C}^{\frac{(3 r-1) n}{2}} \\
\left(u_{1}, \ldots, u_{n}\right. \\
v_{1}, \ldots, v_{\frac{r-1}{2}} \\
w_{10}, \ldots, w_{\frac{r-1}{2}, 0} \\
\left.w_{11}, \ldots, w_{\frac{r-1}{2}, 1}\right)
\end{gathered}
$$

$$
\longrightarrow
$$

$$
\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n}
$$

Idea of the proof (I)

Recall that $\quad A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{\top}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd. }\end{cases}$
Set $w_{i}=w_{i 0}+\lambda w_{i 1}$ and define the polynomial map (for r even):

$$
\begin{array}{c:ccc}
\Phi: & \begin{array}{c}
\mathbb{C}^{\frac{3 r n}{2}} \\
\left(v_{1}, \ldots, v_{r / 2} ;\right.
\end{array} & & \begin{array}{c}
\mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\
w_{10}, \ldots, w_{r / 2,0} ; \\
\left.w_{11}, \ldots, w_{r / 2,1}\right)
\end{array}
\end{array}
$$

Idea of the proof (I)

Recall that $\quad A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{\top}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd. }\end{cases}$
Set $w_{i}=w_{i 0}+\lambda w_{i 1}$ and define the polynomial map (for r even):

Note that $\Phi\left(\mathbb{C}^{\frac{3 r m}{2}}\right)=\mathrm{Pal}_{r}$.

Idea of the proof (I)

Recall that $\quad A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{\top}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd. }\end{cases}$
Set $w_{i}=w_{i 0}+\lambda w_{i 1}$ and define the polynomial map (for r even):

Note that $\Phi\left(\mathbb{C}^{\frac{3 r n}{2}}\right)=$ Pal $_{r}$. Then, prove:
(1) $\Phi\left(\mathbb{C}^{\frac{3 r m}{2}}\right)$ is irreducible (easy).
(3) $\operatorname{dim} \phi\left(\mathbb{C}^{\frac{3 n}{2}}\right) \leq \frac{r(3 n-r)}{2}=\operatorname{dim} \mathscr{\theta}_{c}\left(K_{p}^{e}\right)=\operatorname{dim} \overline{\mathscr{O}}_{c}\left(K_{P}^{e}\right)$.

Idea of the proof (I)

Recall that $\quad A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{\top}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd. }\end{cases}$
Set $w_{i}=w_{i 0}+\lambda w_{i 1}$ and define the polynomial map (for r even):

Note that $\Phi\left(\mathbb{C}^{\frac{3 r m}{2}}\right)=$ Pal $_{r}$. Then, prove:
(1) $\Phi\left(\mathbb{C}^{\frac{3 n}{2}}\right)$ is irreducible (easy).
(2) $\operatorname{dim} \Phi\left(\mathbb{C}^{\frac{3 r n}{2}}\right) \leq \frac{r(3 n-r)}{2}=\operatorname{dim} \mathscr{O}_{c}\left(K_{P}^{e}\right)=\operatorname{dim} \overline{\mathscr{O}}_{c}\left(K_{P}^{e}\right)$.

Idea of the proof (I)

Recall that $\quad A+\lambda A^{\top}= \begin{cases}v_{1} w_{1}^{\top}+\cdots+v_{r / 2} w_{r / 2}^{\top} & \text { if } r \text { is even, } \\ +\left(\operatorname{rev} w_{1}\right) v_{\top}^{\top}+\cdots+\left(\operatorname{rev} w_{r / 2}\right) v_{r / 2}^{\top}, & \\ (1+\lambda) u u^{\top}+v_{1} w_{1}^{\top}+\cdots+v_{(r-1) / 2} w_{(r-1) / 2}^{\top} \\ +\left(\operatorname{rev} w_{1}\right) v_{1}^{\top}+\cdots+\left(\operatorname{rev} w_{(r-1) / 2}\right) v_{(r-1) / 2}^{\top}, & \text { if } r \text { is odd. }\end{cases}$
Set $w_{i}=w_{i 0}+\lambda w_{i 1}$ and define the polynomial map (for r even):

Note that $\Phi\left(\mathbb{C}^{\frac{3 r m}{2}}\right)=$ Pal $_{r}$. Then, prove:
(1) $\Phi\left(\mathbb{C}^{\frac{3 r m}{2}}\right)$ is irreducible (easy).
(2) $\operatorname{dim} \Phi\left(\mathbb{C}^{\frac{3 r n}{2}}\right) \leq \frac{r(3 n-r)}{2}=\operatorname{dim} \mathscr{O}_{c}\left(K_{P}^{e}\right)=\operatorname{dim} \overline{\mathscr{O}}_{c}\left(K_{P}^{e}\right)$.

Now $\mathscr{O}_{c}\left(K_{P}^{e}\right) \subseteq \mathrm{Pal}_{r} \Rightarrow \overline{\mathscr{O}}_{c}\left(K_{P}^{e}\right) \subseteq \mathrm{Pal}_{r} \Rightarrow \overline{\mathscr{O}}_{c}\left(K_{P}^{e}\right)=\mathrm{Pal}_{r}$

Idea of the proof (II)

To prove claim (2):

- $\operatorname{dim} \mathscr{O}_{C}\left(K_{P}^{e}\right)=\operatorname{dim} T_{K_{P}^{e}}\left(\mathscr{O}_{C}\left(K_{P}^{e}\right)\right)$, with $\left(K_{P}^{e}(\lambda)=A+\lambda A^{\top}\right)$:

$$
T_{K_{P}^{e}}\left(\mathscr{O}_{C}\left(K_{P}^{e}\right)\right)=\left\{X: \quad A X+X^{\top} A=0\right\}
$$

tangent space of $\mathscr{O}_{c}\left(K_{P}^{e}\right)$ at $K_{P}^{e}(\lambda)$.

- $\operatorname{dim} \Phi\left(\mathbb{C}^{\frac{3 m}{2}}\right)$ can be bounded by identifying a set of generators of the columns of the Jacobian matrix.

Idea of the proof (II)

To prove claim (2):

- $\operatorname{dim} \mathscr{O}_{C}\left(K_{P}^{e}\right)=\operatorname{dim} T_{K_{P}^{e}}\left(\mathscr{O}_{C}\left(K_{P}^{e}\right)\right)$, with $\left(K_{P}^{e}(\lambda)=A+\lambda A^{\top}\right)$:

$$
T_{K_{P}^{e}}\left(\mathscr{O}_{C}\left(K_{P}^{e}\right)\right)=\left\{X: \quad A X+X^{\top} A=0\right\}
$$

tangent space of $\mathscr{O}_{c}\left(K_{P}^{e}\right)$ at $K_{P}^{e}(\lambda)$.

The dimension of the solution space can be computed using tools from [DT.-Dopico'11].

- $\operatorname{dim} \Phi\left(\mathbb{C}^{\frac{3 m}{2}}\right)$ can be bounded by identifying a set of generators of the columns of the Jacobian matrix.

Idea of the proof (II)

To prove claim (2):

- $\operatorname{dim} \mathscr{O}_{C}\left(K_{P}^{e}\right)=\operatorname{dim} T_{K_{P}^{e}}\left(\mathscr{O}_{C}\left(K_{P}^{e}\right)\right)$, with $\left(K_{P}^{e}(\lambda)=A+\lambda A^{\top}\right)$:

$$
T_{K_{P}^{e}}\left(\mathscr{O}_{C}\left(K_{P}^{e}\right)\right)=\left\{X: \quad A X+X^{\top} A=0\right\}
$$

tangent space of $\mathscr{O}_{C}\left(K_{P}^{e}\right)$ at $K_{P}^{e}(\lambda)$.

The dimension of the solution space can be computed using tools from [DT.-Dopico'11].

- $\operatorname{dim} \Phi\left(\mathbb{C}^{\frac{3 r m}{2}}\right)$ can be bounded by identifying a set of generators of the columns of the Jacobian matrix.

The remaining structures

We can get similar results for the remaining structures:

- For T-anti-palindromic: Use that $P(\lambda)$ is T-pal $\Leftrightarrow P(-\lambda)$ is T-anti-pal.
- For T-even and T-odd: Use Möbius transformations.

The remaining structures

We can get similar results for the remaining structures:

- For T-anti-palindromic: Use that $P(\lambda)$ is T-pal $\Leftrightarrow P(-\lambda)$ is T-anti-pal.
- For T-even and T-odd: Use Möbius transformations.

The remaining structures

We can get similar results for the remaining structures:

- For T-anti-palindromic: Use that $P(\lambda)$ is T-pal $\Leftrightarrow P(-\lambda)$ is T-anti-pal.
- For T-even and T-odd: Use Möbius transformations.

Comparison with other structures

- The set of $n \times n$ general (non-structured) pencils with rank at most r has $r+1$ generic eigenstructures (i. e., $r+1$ irreducible components) [Waterhouse'84].
- The set of $n \times n$ skew-symmetric pencils with rank at most r has just one generic eigenstructure (i. e., it is irreducible) [Dmytryshyn-Dopico'18].
- The set of $n \times n$ symmetric pencils with rank at most r has
generic eigenstructures (i. e., $\left\lfloor\frac{r}{2}\right\rfloor+1$ irreducible components) [DT.-Dopico-Dmytryshyn, in preparation].

Comparison with other structures

- The set of $n \times n$ general (non-structured) pencils with rank at most r has $r+1$ generic eigenstructures (i. e., $r+1$ irreducible components) [Waterhouse'84].
- The set of $n \times n$ skew-symmetric pencils with rank at most r has just one generic eigenstructure (i. e., it is irreducible) [Dmytryshyn-Dopico'18].
- The set of $n \times n$ symmetric pencils with rank at most r has eigenstructures (i. e., $\left\lfloor\frac{r}{2}\right\rfloor+1$ irreducible components) [DT.-Dopico-Dmytryshyn, in preparation].

Comparison with other structures

- The set of $n \times n$ general (non-structured) pencils with rank at most r has $r+1$ generic eigenstructures (i. e., $r+1$ irreducible components) [Waterhouse'84].
- The set of $n \times n$ skew-symmetric pencils with rank at most r has just one generic eigenstructure (i. e., it is irreducible) [Dmytryshyn-Dopico'18].
- The set of $n \times n$ symmetric pencils with rank at most r has $\left\lfloor\frac{r}{2}\right\rfloor+1$ generic eigenstructures (i. e., $\left\lfloor\frac{r}{2}\right\rfloor+1$ irreducible components) [DT.-Dopico-Dmytryshyn, in preparation].

Summary

- Pal_{r} has only one generic eigenstructure. We have described it.
- Pal_{r} is an irreducible algebraic set.
- We have obtained the dimension of Pal_{r}.
- Similar results for the sets of T-anti-palindromic and T-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

Summary

- Pal_{r} has only one generic eigenstructure. We have described it.
- Pal_{r} is an irreducible algebraic set.
- We have obtained the dimension of $\mathrm{Pal}_{\mathrm{r}}$.
- Similar results for the sets of T-anti-palindromic and T-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

Summary

- Pal_{r} has only one generic eigenstructure. We have described it.
- Pal_{r} is an irreducible algebraic set.
- We have obtained the dimension of Pal_{r}.
- Similar results for the sets of T-anti-palindromic and T-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

Summary

- Pal_{r} has only one generic eigenstructure. We have described it.
- Pal_{r} is an irreducible algebraic set.
- We have obtained the dimension of Pal_{r}.
- Similar results for the sets of T-anti-palindromic and T-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

Summary

- Pal_{r} has only one generic eigenstructure. We have described it.
- Pal_{r} is an irreducible algebraic set.
- We have obtained the dimension of Pal_{r}.
- Similar results for the sets of T-anti-palindromic and T-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

國 F．De Terán．
A geometric description of sets of structured matrix pencils with bounded rank．
To appear in SIMAX．
園 F．De Terán，F．M．Dopico．
The solution of the equation $X A+A X^{T}=0$ and its application to the theory of orbits．
LAA 434 （2011）44－67．
國 F．De Terán，F．M．Dopico，A．Dmytryshyn．
Generic symmetric matrix pencils with bounded rank．
In preparation．
䍰 A．Dmytryshyn，F．M．Dopico．
Generic skew－symmetric matrix polynomials with fixed rank and fixed odd grade
LAA 536 （2018）1－18．
國 W．C．Waterhouse．
The codimension of singular matrix pairs．
LAA 57 （1984）227－245．

