

A geometric description of the sets of palindromic and alternating pencils with bounded rank

Fernando De Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

SIAM-ALA'18

Hong-Kong, May 2018

Outline

- 2 Low-rank pencils
- 3 Orbits and irreducible components.
- The main result

Outline

- 2 Low-rank pencils
- Orbits and irreducible components.
- 4 The main result

We consider matrix pencils $A_0 + \lambda A_1$, with $A_0, A_1 \in \mathbb{C}^{n \times n}$.

Structure set S	Definition	Notation
	$A_0 + \lambda A_1 \in \mathbb{S}$	$\{A_0 + \lambda A_1 \in \mathbb{S}: \operatorname{rank}(A_0 + \lambda A_1) \leq r\}$
⊤-palindromic	$A_1^{ op} = A_0$	Pal _r
<i>⊤</i> -anti-palindromic	$A_1^{\top} = -A_0$	Apal _r
⊤-even	$A_{0}^{\top} = A_{0}, A_{1}^{\top} = -A_{1}$	Evenr
⊤-odd	$A_0^{\top} = -A_0, \ A_1^{\top} = A_1$	Odd _r

We consider matrix pencils $A_0 + \lambda A_1$, with $A_0, A_1 \in \mathbb{C}^{n \times n}$.

Structure set S	Definition	Notation
	$A_0 + \lambda A_1 \in \mathbb{S}$	$\{A_0 + \lambda A_1 \in \mathbb{S} : \operatorname{rank}(A_0 + \lambda A_1) \leq r\}$
	• • •	
op-palindromic	$A_{1}^{+} = A_{0}$	Pal _r
op-anti-palindromic	$A_1^{ op} = -A_0$	Apal _r
⊤-even	$A_{\underline{0}}^{\top} = A_{0}, A_{1}^{\top} = -A_{1}$	Even _r
⊤-odd	$A_0^{\top} = -A_0, \ A_1^{\top} = A_1$	Odd _r

We consider matrix pencils $A_0 + \lambda A_1$, with $A_0, A_1 \in \mathbb{C}^{n \times n}$.

Structure set S	Definition	Notation
	$\textit{A}_0 + \lambda\textit{A}_1 \in \mathbb{S}$	$\{A_0 + \lambda A_1 \in \mathbb{S} : rank(A_0 + \lambda A_1) \leq r\}$
	AT A	
⊤-palindromic	$A_1^{ op} = A_0$	Pal _r
⊤-anti-palindromic	$A_{1}^{\top} = -A_{0}$	Apal _r
⊤-even	$A_0^{\top} = A_0, A_1^{\top} = -A_1$	Even _r
⊤-odd	$A_0^{\top} = -A_0, \ A_1^{\top} = A_1$	Odd _r

 $rank(A_0 + \lambda A_1)$: size of the largest non-identically zero minor.

We consider matrix pencils $A_0 + \lambda A_1$, with $A_0, A_1 \in \mathbb{C}^{n \times n}$.

Structure set S	Definition	Notation
	$A_0 + \lambda A_1 \in \mathbb{S}$	$\{A_0 + \lambda A_1 \in \mathbb{S} : \operatorname{rank}(A_0 + \lambda A_1) \leq r\}$
⊤-palindromic	$A_{1}^{+} = A_{0}$	Pal _r
⊤-anti-palindromic	$A_1^{ op} = -A_0$	Apal _r
⊤-even	$A_0^{ op} = A_0, A_1^{ op} = -A_1$	Even _r
⊤-odd	$A_0^{\top} = -A_0, \ A_1^{\top} = A_1$	Odd _r

 $rank(A_0 + \lambda A_1)$: size of the largest non-identically zero minor.

Def'n: Reversal of $A_0 + \lambda A_1$: rev $(A_0 + \lambda A_1) = A_1 + \lambda A_0$.

We consider matrix pencils $A_0 + \lambda A_1$, with $A_0, A_1 \in \mathbb{C}^{n \times n}$.

Structure set S	Definition	Notation
	$A_0 + \lambda A_1 \in \mathbb{S}$	$\{A_0 + \lambda A_1 \in \mathbb{S} : \operatorname{rank}(A_0 + \lambda A_1) \leq r\}$
	•	
⊤-palindromic	$A_{1}^{+} = A_{0}$	Pal _r
⊤-anti-palindromic	$A_1^{ op} = -A_0$	Apal _r
⊤-even	$A_0^{\top} = A_0, A_1^{\top} = -A_1$	Even _r
⊤-odd	$A_0^{\top} = -A_0, \ A_1^{\top} = A_1$	Odd _r

 $rank(A_0 + \lambda A_1)$: size of the largest non-identically zero minor.

Def'n: Reversal of $A_0 + \lambda A_1$: rev $(A_0 + \lambda A_1) = A_1 + \lambda A_0$. $(P(\lambda) \text{ is } \top \text{-pal} \Leftrightarrow \text{rev } P(\lambda) = P(\lambda)^\top).$

Kronecker canonical form

Any pencil $A_0 + \lambda A_1$ is strictly equivalent ($P(A_0 + \lambda A_1)Q$, P, Q nonsingular) to a direct sum of blocks:

The number and sizes of blocks of each type is **uniquely determined** (KCF).

Kronecker canonical form

Any pencil $A_0 + \lambda A_1$ is strictly equivalent ($P(A_0 + \lambda A_1)Q$, P, Q nonsingular) to a direct sum of blocks:

Right singular block of order α	Left singular block of order α	Jordan block of order k associated with $\lambda_0 \in \mathbb{C}$	Jordan block of order k associated with the infinite eigenvalue
$L_{lpha}(\lambda)$	$L_{lpha}(\lambda)^{ op}$	$J_k(\lambda-\lambda_0)$	$J^{\infty}_k(\lambda)$
$\left[\begin{array}{c} \lambda \ 1 \\ \ddots \ddots \\ \lambda \ 1 \end{array}\right]$	$\begin{bmatrix} \lambda \\ 1 & \ddots \\ & \ddots & \lambda \\ & & 1 \end{bmatrix}$	$\begin{bmatrix} \lambda - \lambda_0 & 1 \\ & \ddots & \ddots \\ & & \lambda - \lambda_0 & 1 \\ & & \lambda - \lambda \end{bmatrix}$	$\begin{bmatrix} 1 \lambda \\ \ddots \ddots \\ 1 \lambda \\ 1 \end{bmatrix}$
$\alpha \times (\alpha + 1)$	$(\alpha+1)\times\alpha$	$k \times k$	$k \times k$

The number and sizes of blocks of each type is **uniquely determined** (KCF). Strict equivalence destroys the (\top -pal, \top -anti-pal, \top -alternating) structure.

= ~ Q Q

Introduction

\top -palindromic canonical form (KCF-like)

Any \top -palindromic pencil $A_0 + \lambda A_1$ is congruent ($P(A_0 + \lambda A_1)P^{\top}$) to a direct sum of blocks:

The number and sizes of blocks of each type is **uniquely determined** (⊤-pal canonical form).

Introduction

\top -palindromic canonical form (KCF-like)

Any \top -palindromic pencil $A_0 + \lambda A_1$ is congruent ($P(A_0 + \lambda A_1)P^{\top}$) to a direct sum of blocks:

The number and sizes of blocks of each type is **uniquely determined** (\top -pal canonical form).

Eigenstructure: Types and sizes of blocks in the canonical form.

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL

To identify the most likely (generic) eigenstructure in Pal_r.

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL To identify the most likely (generic) eigenstructure in Pal_r.

Motivation: Allows us to better understand the set Pal_r (generic structured low-rank perturbations).

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL To identify the most likely (generic) eigenstructure in Pal_r.

Motivation: Allows us to better understand the set Pal_r (generic structured low-rank perturbations).

Def'n: A property \mathfrak{p} is **generic** in a set *A* if \mathfrak{p} holds in A_i , with $A = \bigcup_{i=1}^k \overline{A_i}$ and A_i open.

Eigenstructure: Types and sizes of blocks in the canonical form.

Motivation: Allows us to better understand the set Pal_r (generic structured low-rank perturbations).

Def'n: A property \mathfrak{p} is **generic** in a set *A* if \mathfrak{p} holds in A_i , with $A = \bigcup_{i=1}^{k} \overline{A_i}$ and A_i open. (If *A* is **algebraic**, then \mathfrak{p} holds except in an proper algebraic subset of *A*. For instance, if \mathfrak{p} holds in any of the irreducible components of *A*).

Eigenstructure: Types and sizes of blocks in the canonical form.

GOAL To identify the most likely (generic) eigenstructure in Pal_r.

Motivation: Allows us to better understand the set Pal_r (generic structured low-rank perturbations).

Def'n: A property \mathfrak{p} is **generic** in a set *A* if \mathfrak{p} holds in A_i , with $A = \bigcup_{i=1}^{k} \overline{A_i}$ and A_i open. (If *A* is **algebraic**, then \mathfrak{p} holds except in an proper algebraic subset of *A*. For instance, if \mathfrak{p} holds in any of the irreducible components of *A*).

^{ISP} We will see that Pal_r is an irreducible algebraic set with just **one generic** eigenstructure (different for *r* odd/even).

Outline

Introduction

- 2 Low-rank pencils
 - 3 Orbits and irreducible components.
 - 4 The main result

Low-rank pencil: rank($A + \lambda B$) = r, for some fixed r < n.

- **Attempt 1**: Fix *A* with low rank. Then set: $A + \lambda A^{\top}$.

Low-rank pencil: rank($A + \lambda B$) = r, for some fixed r < n.

- **Attempt 1**: Fix *A* with low rank. Then set: $A + \lambda A^{\top}$.

 $\operatorname{rank}(\mathbf{A} + \lambda \mathbf{A}^{\top}) \leq 2 \operatorname{rank} \mathbf{A}.$

Low-rank pencil: rank($A + \lambda B$) = r, for some fixed r < n.

- **Attempt 1**: Fix *A* with low rank. Then set: $A + \lambda A^{\top}$.

 $\operatorname{rank}(\mathbf{A} + \lambda \mathbf{A}^{\top}) \leq 2 \operatorname{rank} \mathbf{A}.$

Wrong approach: For a fixed *r*, this does not provide all pencils $A + \lambda A^{\top}$ with rank $(A + \lambda A^{\top}) \leq r$: *r* must be even and, if rank $A \leq r_A$, this construction does not provide all $A + \lambda A^{\top}$ with rank $(A + \lambda A^{\top}) \leq 2r_A$.

Example:
$$\begin{bmatrix} 0 & 1+\lambda \\ 1+\lambda & 0 \end{bmatrix}$$
 is not of the form $A + \lambda A^{\top}$, with rank $A \leq 1$.

Low-rank pencil: rank($A + \lambda B$) = r, for some fixed r < n.

- Attempt 2: Write the pencil as a sum of *r* rank – 1 pencils:

 $A + \lambda B = v_1 w_1^\top + \cdots + v_r w_r^\top,$

Low-rank pencil: rank($A + \lambda B$) = r, for some fixed r < n.

- **Attempt 2**: Write the pencil as a sum of *r* rank – 1 pencils:

$$\mathbf{A} + \lambda \mathbf{B} = \mathbf{v}_1 \mathbf{w}_1^\top + \dots + \mathbf{v}_r \mathbf{w}_r^\top,$$

where:

• deg
$$v_i$$
, deg $w_i \leq 1$ (for all $i = 1, \ldots, r$),

• either deg $v_i = 0$ or deg $w_i = 0$ (for each $1 \le i \le r$).

Low-rank pencil: rank($A + \lambda B$) = r, for some fixed r < n.

- **Attempt 2**: Write the pencil as a sum of *r* rank – 1 pencils:

$$\boldsymbol{A} + \boldsymbol{\lambda} \boldsymbol{B} = \boldsymbol{v}_1 \boldsymbol{w}_1^\top + \cdots + \boldsymbol{v}_r \boldsymbol{w}_r^\top,$$

where:

- deg v_i , deg $w_i \leq 1$ (for all $i = 1, \ldots, r$),
- either deg $v_i = 0$ or deg $w_i = 0$ (for each $1 \le i \le r$).

Low-rank pencil: rank $(A + \lambda B) = r$, for some fixed r < n.

- Attempt 2: Write the pencil as a sum of *r* rank – 1 pencils:

$$A + \lambda B = v_1 w_1^\top + \dots + v_r w_r^\top,$$

where:

- deg v_i , deg $w_i \leq 1$ (for all $i = 1, \ldots, r$),
- either deg $v_i = 0$ or deg $w_i = 0$ (for each $1 \le i \le r$).

When $B = A^{\top}$, either

- $\mathbf{v}_i = \mathbf{w}_i \text{ (deg } \mathbf{v}_i = 0) \rightsquigarrow (1 + \lambda) \mathbf{v} \mathbf{v}^{\top}$, or
- there is a couple $v_i w_i^\top + (\operatorname{rev} w_i) v_i^\top$ (deg $v_i = 0$).

Low-rank pencil: rank $(A + \lambda B) = r$, for some fixed r < n.

- **Attempt 2**: Write the pencil as a sum of *r* rank – 1 pencils:

$$\mathbf{A} + \lambda \mathbf{B} = \mathbf{v}_1 \mathbf{w}_1^\top + \dots + \mathbf{v}_r \mathbf{w}_r^\top,$$

where:

• deg
$$v_i$$
, deg $w_i \leq 1$ (for all $i = 1, \ldots, r$),

• either deg $v_i = 0$ or deg $w_i = 0$ (for each $1 \le i \le r$).

When $B = A^{\top}$, either

- $v_i = w_i \text{ (deg } v_i = 0) \rightsquigarrow (1 + \lambda) v v^{\top}$, or
- there is a couple $v_i w_i^\top + (\operatorname{rev} w_i) v_i^\top$ (deg $v_i = 0$).

Example:
$$M_1^{\sharp}(\lambda) = \begin{bmatrix} \lambda \\ 1 \\ 1 \\ -1 \\ -\lambda \end{bmatrix} = \underbrace{\begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ -\lambda \end{bmatrix}}_{v} \underbrace{\begin{bmatrix} 1 & \lambda & 0 \end{bmatrix}}_{w^{\top}} + \underbrace{\begin{bmatrix} \lambda \\ 1 \\ 0 \\ -1 \\ -v^{\top} \end{bmatrix}}_{v^{\top}} \underbrace{\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}}_{v^{\top}}.$$

Theorem (rank-1 decomposition of ⊤-pal pencils)

 $A \in \mathbb{C}^{n \times n}$. If rank $(A + \lambda A^{\top}) = r \leq n$, then

$$A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top} & \text{if } r \text{ is even,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even,} \\ \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2} w_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd,} \end{cases}$$

where

•
$$u, v_1, \dots, v_{\lfloor r/2 \rfloor} \in \mathbb{C}^n$$
,
• $w_1, \dots, w_{\lfloor r/2 \rfloor} \in \mathbb{C}[\lambda]^n$,
• $\deg w_i \le 1$, for $i = 1, \dots, \lfloor r/2 \rfloor$.

Theorem (rank-1 decomposition of ⊤-pal pencils)

 $A \in \mathbb{C}^{n \times n}$. If rank $(A + \lambda A^{\top}) = r \leq n$, then

$$A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top} & \text{if } r \text{ is even,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even,} \\ \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2} w_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd,} \end{cases}$$

where

•
$$u, v_1, \dots, v_{\lfloor r/2 \rfloor} \in \mathbb{C}^n$$
,
• $w_1, \dots, w_{\lfloor r/2 \rfloor} \in \mathbb{C}[\lambda]^n$,
• $\deg w_i \le 1$, for $i = 1, \dots, \lfloor r/2 \rfloor$

Theorem (rank-1 decomposition of ⊤-pal pencils)

 $A \in \mathbb{C}^{n \times n}$. If rank $(A + \lambda A^{\top}) = r \leq n$, then

$$A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top} & \text{if } r \text{ is even,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even,} \end{cases}$$
$$\begin{pmatrix} (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + v_{(r-1)/2} w_{(r-1)/2}^{\top} & \text{if } r \text{ is odd,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd,} \end{cases}$$

where

•
$$u, v_1, \dots, v_{\lfloor r/2 \rfloor} \in \mathbb{C}^n$$
,
• $w_1, \dots, w_{\lfloor r/2 \rfloor} \in \mathbb{C}[\lambda]^n$,
• $\deg w_i \le 1$, for $i = 1, \dots, \lfloor r/2 \rfloor$

Theorem (rank-1 decomposition of \top -pal pencils)

 $A \in \mathbb{C}^{n \times n}$. If rank $(A + \lambda A^{\top}) = r \leq n$, then

$$A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top} & \text{if } r \text{ is even,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even,} \end{cases}$$
$$\begin{pmatrix} (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + v_{(r-1)/2} w_{(r-1)/2}^{\top} & \text{if } r \text{ is odd,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd,} \end{cases}$$

where

•
$$u, v_1, ..., v_{\lfloor r/2 \rfloor} \in \mathbb{C}^n$$
,
• $w_1, ..., w_{\lfloor r/2 \rfloor} \in \mathbb{C}[\lambda]^n$,
• $\deg w_i \le 1$, for $i = 1, ..., \lfloor r/2 \rfloor$

Proof. Through the \top -pal canonical form. \Box

Outline

Introduction

- 2 Low-rank pencils
- 3 Orbits and irreducible components.
 - 4) The main result

Congruence orbit of $A + \lambda A^{\top}$

 $\mathscr{O}_{c}(A + \lambda A^{\top}) = \{ V(A + \lambda A^{\top}) V^{\top} : V \text{ nonsingular} \}$

Congruence orbit of $A + \lambda A^{\top}$

 $\mathscr{O}_{c}(A + \lambda A^{\top}) = \{ V(A + \lambda A^{\top}) V^{\top} : V \text{ nonsingular} \}$

$\overset{\text{\tiny IMP}}{=} \mathscr{O}_c(A + \lambda A^{\top}) \text{ contains all } \top \text{-pal pencils with the same eigenstructure as } A + \lambda A^{\top}$

= nac

Congruence orbit of $A + \lambda A^{\top}$

 $\mathscr{O}_{c}(A + \lambda A^{\top}) = \{ V(A + \lambda A^{\top}) V^{\top} : V \text{ nonsingular} \}$

^{IEP} $\mathcal{O}_c(A + \lambda A^{\top})$ contains all ⊤-pal pencils with the same eigenstructure as $A + \lambda A^{\top}$ (i.e.: with the same ⊤-pal canonical form.)

Congruence orbit of $A + \lambda A^{\top}$

 $\mathscr{O}_{c}(A + \lambda A^{\top}) = \{ V(A + \lambda A^{\top}) V^{\top} : V \text{ nonsingular} \}$

 $\overline{\mathscr{O}}_{c}(A+\lambda A^{\top})$: Closure of $\mathscr{O}_{c}(A+\lambda A^{\top})$ (either in Zariski or Euclidean topology).

^{IEP} $\mathcal{O}_c(A + \lambda A^{\top})$ contains all ⊤-pal pencils with the same eigenstructure as $A + \lambda A^{\top}$ (i.e.: with the same ⊤-pal canonical form.)

Congruence orbits and their closures

Congruence orbit of $A + \lambda A^{\top}$

 $\mathscr{O}_{c}(A + \lambda A^{\top}) = \{ V(A + \lambda A^{\top}) V^{\top} : V \text{ nonsingular} \}$

 $\overline{\mathscr{O}}_{c}(A+\lambda A^{\top})$: Closure of $\mathscr{O}_{c}(A+\lambda A^{\top})$ (either in Zariski or Euclidean topology).

^{IEP} $\mathcal{O}_c(A + \lambda A^{\top})$ contains all *T*-pal pencils with the same eigenstructure as $A + \lambda A^{\top}$ (i.e.: with the same *T*-pal canonical form.)

^{IGP} *B*+λ*B*^T ∈ $\overline{O}_c(A + \lambda A^T)$ ⇔ There are arbitrarily nearby pencils to *B*+λ*B*^T having the same eigenstructure as *A*+λ*A*^T

Congruence orbits and their closures

Congruence orbit of $A + \lambda A^{\top}$

 $\mathscr{O}_{c}(A + \lambda A^{\top}) = \{ V(A + \lambda A^{\top}) V^{\top} : V \text{ nonsingular} \}$

 $\overline{\mathscr{O}}_{c}(A + \lambda A^{\top})$: Closure of $\mathscr{O}_{c}(A + \lambda A^{\top})$ (either in Zariski or Euclidean topology).

^{IGP} $\mathcal{O}_c(A + \lambda A^{\top})$ contains all *T*-pal pencils with the same eigenstructure as $A + \lambda A^{\top}$ (i.e.: with the same *T*-pal canonical form.)

^{IEP} $B + \lambda B^{\top} \in \mathcal{O}_c(A + \lambda A^{\top}) \Leftrightarrow$ There are arbitrarily nearby pencils to $B + \lambda B^{\top}$ having the same eigenstructure as $A + \lambda A^{\top} \Leftrightarrow$ The eigenstructure of $A + \lambda A^{\top}$ is "more likely" than that of $B + \lambda B^{\top}$.

- E - - E -

Irreducible components

Pal_r is an algebraic set in \mathbb{C}^{n^2}

Is the set of common zeroes of $p_{k\ell}(x_{ij})$, $1 \le i, j \le n$, with

 $\begin{array}{l} p_{k\ell} \colon \quad \ell \text{th coefficient of the } k \text{th } (r+1) \times (r+1) \text{ minor of } [x_{ij}] + \lambda [x_{ij}]^{\top} \\ \quad (\text{for } \ell = 0, 1, \ldots, r-1). \end{array}$

Irreducible components

Pal_r is an algebraic set in \mathbb{C}^{n^2}

Is the set of common zeroes of $p_{k\ell}(x_{ij})$, $1 \le i, j \le n$, with

 $\begin{array}{l} p_{k\ell} \colon \quad \ell \text{th coefficient of the } k\text{th } (r+1) \times (r+1) \text{ minor of } [x_{ij}] + \lambda [x_{ij}]^{\top} \\ \quad (\text{for } \ell = 0, 1, \ldots, r-1). \end{array}$

Irreducible components of *A*: A_1, \ldots, A_k (nonempty) algebraic subsets (i. e., closed in Zariski topology) such that $A = \bigcup_{i=1}^k A_i$.

Irreducible components

Pal_r is an algebraic set in \mathbb{C}^{n^2}

Is the set of common zeroes of $p_{k\ell}(x_{ij})$, $1 \le i, j \le n$, with

 $\begin{array}{l} p_{k\ell} \colon \quad \ell \text{th coefficient of the } k\text{th } (r+1) \times (r+1) \text{ minor of } [x_{ij}] + \lambda [x_{ij}]^{\top} \\ \quad (\text{for } \ell = 0, 1, \ldots, r-1). \end{array}$

Irreducible components of *A*: A_1, \ldots, A_k (nonempty) algebraic subsets (i. e., closed in Zariski topology) such that $A = \bigcup_{i=1}^k A_i$.

Q: Which are the irreducible components of Palr?

Outline

Introduction

- 2 Low-rank pencils
- Orbits and irreducible components.
- The main result

Geometric description of Pal_r

Theorem

Palr is an irreducible algebraic set with dimension

$$\dim \operatorname{Pal}_r = \begin{cases} (3n-r)r/2, & \text{if } r \text{ is even,} \\ (3n-r)(r-1)/2+n, & \text{if } r \text{ is odd.} \end{cases}$$

► If *r* is **even**, then $\operatorname{Pal}_{r} = \overline{\mathcal{O}}_{c}(K_{P}^{e}(\lambda))$, with $\mathcal{K}_{P}^{e}(\lambda) := \operatorname{diag}(\widetilde{M_{\alpha+1}^{\sharp}(\lambda), \dots, M_{\alpha+1}^{\sharp}(\lambda)}, \widetilde{M_{\alpha}^{\sharp}(\lambda), \dots, M_{\alpha}^{\sharp}(\lambda)}),$

where $r/2 = (n - r)\alpha + s$ is the Euclidean division of r/2 by n - r. If r is **odd**, then $\operatorname{Pal}_r = \overline{\mathscr{O}}_c(K_p^o(\lambda))$, with

 $K^o_P(\lambda) := \operatorname{diag}(1 + \lambda, K^o_P(\lambda)),$

and $(r-1)/2 = (n-r)\alpha + s$ is the Euclidean division of (r-1)/2 by n-r.

ELE NOO

(4) (3) (4) (4) (4)

< □ > < 同

Geometric description of Pal_r

Theorem

Palr is an irreducible algebraic set with dimension

$$\dim \operatorname{Pal}_r = \begin{cases} (3n-r)r/2, & \text{if } r \text{ is even,} \\ (3n-r)(r-1)/2+n, & \text{if } r \text{ is odd.} \end{cases}$$

► If *r* is **even**, then $\operatorname{Pal}_{r} = \overline{\mathcal{O}}_{c}(K_{P}^{e}(\lambda))$, with $\mathcal{K}_{P}^{e}(\lambda) := \operatorname{diag}(\widetilde{M_{\alpha+1}^{\sharp}(\lambda), \dots, M_{\alpha+1}^{\sharp}(\lambda)}, \widetilde{M_{\alpha}^{\sharp}(\lambda), \dots, M_{\alpha}^{\sharp}(\lambda)}),$

where $r/2 = (n - r)\alpha + s$ is the Euclidean division of r/2 by n - r. If r is **odd**, then $\operatorname{Pal}_r = \overline{\mathscr{O}}_c(K_p^o(\lambda))$, with

 $K^o_P(\lambda) := \operatorname{diag}(1 + \lambda, K^o_P(\lambda)),$

and $(r-1)/2 = (n-r)\alpha + s$ is the Euclidean division of (r-1)/2 by n-r.

ELE NON

(4) (3) (4) (4) (4)

Image: Image:

Small singular blocks $L_{\alpha}(\lambda)$ are non-generic.

Small singular blocks $L_{\alpha}(\lambda)$ are non-generic.

r even

Small singular blocks $L_{\alpha}(\lambda)$ are non-generic.

r even

Partition r/2 into n-r parts which are as close as possible to each other.

Small singular blocks $L_{\alpha}(\lambda)$ are non-generic.

r even

Partition r/2 into n-r parts which are as close as possible to each other.

Provide: $r/2 = (n-r)\alpha + s$. Then:

 $\frac{r}{2} = s \cdot (\alpha + 1) + (n - r - s) \cdot \alpha$

$$\text{Recall that} \quad A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top}, & \text{if } r \text{ is even} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even} \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + v_{(r-1)/2} w_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd.} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd.} \end{cases}$$

Set $w_i = w_{i0} + \lambda w_{i1}$ and define the **polynomial** map (for *r* even):

$$\begin{split} \Phi : & \mathbb{C}^{\frac{3m}{2}} & \longrightarrow & \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\ & (v_1, \dots, v_{r/2}; \\ w_{10}, \dots, w_{r/2,0}; \\ w_{11}, \dots, w_{r/2,1}) & \mapsto & (v_1 w_{10}^\top + \dots + v_{r/2} w_{r/2,0}^\top + w_{11} v_1^\top + \dots + w_{r/2,1} v_{r/2,1}^\top \\ & w_{10} v_1^\top + \dots + w_{r/2,0} v_{r/2}^\top + v_1 w_{11}^\top + \dots + v_{r/2} w_{r/2,1}^\top). \end{split}$$

$$\text{Recall that} \quad A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top}, & \text{if } r \text{ is even}, \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even}, \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + v_{(r-1)/2} w_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd}. \end{cases}$$

Set $w_i = w_{i0} + \lambda w_{i1}$ and define the **polynomial** map (for *r* odd):

$$\begin{split} \Phi : & \mathbb{C}^{\frac{(2r-1)n}{2}} & \longrightarrow & \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\ & (u_1, \dots, u_n; \\ v_1, \dots, v_{\frac{r-1}{2}}; \\ w_{10}, \dots, w_{\frac{r-1}{2}, 0}; \\ w_{11}, \dots, w_{\frac{r-1}{2}, 1}) & \mapsto & uu^\top + w_{10}v_1^\top + \dots + w_{\frac{r-1}{2}, 0}v_{\frac{r-1}{2}}^\top + v_1w_{11}^\top + \dots + v_{\frac{r-1}{2}, 1}v_{\frac{r-1}{2}, 1}^\top). \end{split}$$

$$\text{Recall that} \quad A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top}, & \text{if } r \text{ is even} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even} \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + v_{(r-1)/2} w_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd.} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd.} \end{cases}$$

Set $w_i = w_{i0} + \lambda w_{i1}$ and define the **polynomial** map (for *r* even):

$$\begin{split} \Phi : & \mathbb{C}^{\frac{3m}{2}} & \longrightarrow & \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\ & (v_1, \dots, v_{r/2}; \\ w_{10}, \dots, w_{r/2,0}; \\ w_{11}, \dots, w_{r/2,1}) & \mapsto & (v_1 w_{10}^\top + \dots + v_{r/2} w_{r/2,0}^\top + w_{11} v_1^\top + \dots + w_{r/2,1} v_{r/2,1}^\top \\ & w_{10} v_1^\top + \dots + w_{r/2,0} v_{r/2}^\top + v_1 w_{11}^\top + \dots + v_{r/2} w_{r/2,1}^\top). \end{split}$$

$$\text{Recall that} \quad A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top} & \text{if } r \text{ is even,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even,} \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + v_{(r-1)/2} w_{(r-1)/2}^{\top} & \text{if } r \text{ is odd.} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd.} \end{cases}$$

Set $w_i = w_{i0} + \lambda w_{i1}$ and define the **polynomial** map (for *r* even):

$$\Phi: \qquad \mathbb{C}^{\frac{3m}{2}} \longrightarrow \qquad \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\ (v_1, \dots, v_{r/2}; \\ w_{10}, \dots, w_{r/2,0}; \\ w_{11}, \dots, w_{r/2,1}) \mapsto \qquad (v_1 w_{10}^\top + \dots + v_{r/2} w_{r/2,0}^\top + w_{11} v_1^\top + \dots + w_{r/2,1} v_{r/2}^\top, \\ w_{10} v_1^\top + \dots + w_{r/2,0} v_{r/2}^\top + v_1 w_{11}^\top + \dots + v_{r/2} w_{r/2,1}^\top).$$

Note that $\Phi(\mathbb{C}^{\frac{3m}{2}}) = \operatorname{Pal}_r$.

= nac

Recall that
$$A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top} & \text{if } r \text{ is even,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even,} \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + v_{(r-1)/2} w_{(r-1)/2}^{\top} & \text{if } r \text{ is odd.} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd.} \end{cases}$$

Set $w_i = w_{i0} + \lambda w_{i1}$ and define the **polynomial** map (for *r* even):

$$\begin{split} \Phi : & \mathbb{C}^{\frac{3m}{2}} & \longrightarrow & \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\ & (v_1, \dots, v_{r/2}; \\ w_{10}, \dots, w_{r/2,0}; \\ w_{11}, \dots, w_{r/2,1}) & \mapsto & (v_1 w_{10}^\top + \dots + v_{r/2} w_{r/2,0}^\top + w_{11} v_1^\top + \dots + w_{r/2,1} v_{r/2}^\top \\ & w_{10} v_1^\top + \dots + w_{r/2,0} v_{r/2}^\top + v_1 w_{11}^\top + \dots + v_{r/2} w_{r/2,1}^\top). \end{split}$$

Note that $\Phi(\mathbb{C}^{\frac{3m}{2}}) = \operatorname{Pal}_r$. Then, prove:

- $\Phi(\mathbb{C}^{\frac{3m}{2}})$ is irreducible (easy).
- $e \dim \Phi(\mathbb{C}^{\frac{3m}{2}}) \leq \frac{r(3n-r)}{2} = \dim \mathscr{O}_{c}(K_{P}^{e}) = \dim \overline{\mathscr{O}}_{c}(K_{P}^{e}).$

Recall that
$$A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top} & \text{if } r \text{ is even,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even,} \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + v_{(r-1)/2} w_{(r-1)/2}^{\top} & \text{if } r \text{ is odd.} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd.} \end{cases}$$

Set $w_i = w_{i0} + \lambda w_{i1}$ and define the **polynomial** map (for *r* even):

$$\Phi: \begin{array}{ccc} \mathbb{C}^{\frac{3r_{1}}{2}} & \longrightarrow & \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\ (v_{1}, \dots, v_{r/2}; & & (v_{1}w_{10}^{\top} + \dots + v_{r/2}w_{r/2,0}^{\top} + w_{11}v_{1}^{\top} + \dots + w_{r/2,1}v_{r/2}^{\top}, \\ w_{10}, \dots, w_{r/2,1}) & & w_{10}v_{1}^{\top} + \dots + w_{r/2,0}v_{r/2}^{\top} + v_{1}w_{11}^{\top} + \dots + v_{r/2}w_{r/2,1}^{\top}). \end{array}$$

Note that $\Phi(\mathbb{C}^{\frac{3m}{2}}) = \operatorname{Pal}_r$. Then, prove:

- $\Phi(\mathbb{C}^{\frac{3m}{2}})$ is irreducible (easy).
- $e \dim \Phi(\mathbb{C}^{\frac{3m}{2}}) \leq \frac{r(3n-r)}{2} = \dim \mathscr{O}_{\mathcal{C}}(K_{\mathcal{P}}^{e}) = \dim \overline{\mathscr{O}}_{\mathcal{C}}(K_{\mathcal{P}}^{e}).$

$$\text{Recall that} \quad A + \lambda A^{\top} = \begin{cases} v_1 w_1^{\top} + \dots + v_{r/2} w_{r/2}^{\top} & \text{if } r \text{ is even,} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{r/2}) v_{r/2}^{\top}, & \text{if } r \text{ is even,} \\ (1 + \lambda) u u^{\top} + v_1 w_1^{\top} + \dots + (v_{r-1})/2 w_{(r-1)/2}^{\top} & \text{if } r \text{ is odd.} \\ + (\operatorname{rev} w_1) v_1^{\top} + \dots + (\operatorname{rev} w_{(r-1)/2}) v_{(r-1)/2}^{\top}, & \text{if } r \text{ is odd.} \end{cases}$$

Set $w_i = w_{i0} + \lambda w_{i1}$ and define the **polynomial** map (for *r* even):

$$\Phi: \begin{array}{ccc} \mathbb{C}^{\frac{3r_{1}}{2}} & \longrightarrow & \mathbb{C}^{n \times n} \times \mathbb{C}^{n \times n} \\ (v_{1}, \dots, v_{r/2}; & & (v_{1}w_{10}^{\top} + \dots + v_{r/2}w_{r/2,0}^{\top} + w_{11}v_{1}^{\top} + \dots + w_{r/2,1}v_{r/2}^{\top}, \\ w_{10}, \dots, w_{r/2,1}) & & w_{10}v_{1}^{\top} + \dots + w_{r/2,0}v_{r/2}^{\top} + v_{1}w_{11}^{\top} + \dots + v_{r/2}w_{r/2,1}^{\top}). \end{array}$$

Note that $\Phi(\mathbb{C}^{\frac{3m}{2}}) = \operatorname{Pal}_r$. Then, prove:

- $\Phi(\mathbb{C}^{\frac{3m}{2}})$ is irreducible (easy).
- $e \dim \Phi(\mathbb{C}^{\frac{3m}{2}}) \leq \frac{r(3n-r)}{2} = \dim \mathscr{O}_{\mathcal{C}}(K_{\mathcal{P}}^{e}) = \dim \overline{\mathscr{O}}_{\mathcal{C}}(K_{\mathcal{P}}^{e}).$

Now $\mathscr{O}_{c}(K_{P}^{e}) \subseteq \operatorname{Pal}_{r} \Rightarrow \overline{\mathscr{O}}_{c}(K_{P}^{e}) \subseteq \operatorname{Pal}_{r} \Rightarrow \overline{\mathscr{O}}_{c}(K_{P}^{e}) = \operatorname{Pal}_{r}$

To prove claim 💿:

• dim $\mathcal{O}_{c}(K_{P}^{e}) = \dim T_{K_{P}^{e}}(\mathcal{O}_{c}(K_{P}^{e}))$, with $(K_{P}^{e}(\lambda) = A + \lambda A^{\top})$:

 $T_{\mathcal{K}_{\mathcal{P}}^{e}}(\mathscr{O}_{\mathcal{C}}(\mathcal{K}_{\mathcal{P}}^{e})) = \{X: AX + X^{\top}A = 0\}$

tangent space of $\mathcal{O}_c(K_P^e)$ at $K_P^e(\lambda)$.

dim Φ(C^{3m}/₂) can be bounded by identifying a set of generators of the columns of the Jacobian matrix.

To prove claim 💿:

• dim $\mathscr{O}_{c}(K_{P}^{e}) = \dim T_{K_{P}^{e}}(\mathscr{O}_{c}(K_{P}^{e}))$, with $(K_{P}^{e}(\lambda) = A + \lambda A^{\top})$:

 $T_{\mathcal{K}_{\mathcal{P}}^{e}}(\mathscr{O}_{\mathcal{C}}(\mathcal{K}_{\mathcal{P}}^{e})) = \{X: AX + X^{\top}A = 0\}$

tangent space of $\mathcal{O}_c(K_P^e)$ at $K_P^e(\lambda)$.

The dimension of the solution space can be computed using tools from **[DT.-Dopico'11]**.

dim Φ(C^{3m}/₂) can be bounded by identifying a set of generators of the columns of the Jacobian matrix.

To prove claim 🙆:

• dim $\mathcal{O}_{c}(K_{P}^{e}) = \dim T_{K_{P}^{e}}(\mathcal{O}_{c}(K_{P}^{e}))$, with $(K_{P}^{e}(\lambda) = A + \lambda A^{\top})$:

 $T_{K_{P}^{e}}(\mathscr{O}_{c}(K_{P}^{e})) = \{X: AX + X^{\top}A = 0\}$ tangent space of $\mathscr{O}_{c}(K_{P}^{e})$ at $K_{P}^{e}(\lambda)$.

The dimension of the solution space can be computed using tools from [DT.-Dopico'11].

• dim $\Phi(\mathbb{C}^{\frac{3m}{2}})$ can be bounded by identifying a set of generators of the columns of the Jacobian matrix.

The remaining structures

We can get similar results for the remaining structures:

- For \top -anti-palindromic: Use that $P(\lambda)$ is \top -pal $\Leftrightarrow P(-\lambda)$ is \top -anti-pal.
- For ⊤-even and ⊤-odd: Use Möbius transformations.

The remaining structures

We can get similar results for the remaining structures:

- For \top -anti-palindromic: Use that $P(\lambda)$ is \top -pal $\Leftrightarrow P(-\lambda)$ is \top -anti-pal.
- For ⊤-even and ⊤-odd: Use Möbius transformations.

The remaining structures

We can get similar results for the remaining structures:

- For \top -anti-palindromic: Use that $P(\lambda)$ is \top -pal $\Leftrightarrow P(-\lambda)$ is \top -anti-pal.
- For \top -even and \top -odd: Use Möbius transformations.

Comparison with other structures

- The set of $n \times n$ general (non-structured) pencils with rank at most r has r+1 generic eigenstructures (i. e., r+1 irreducible components) [Waterhouse'84].
- The set of *n* × *n* skew-symmetric pencils with rank at most *r* has just one generic eigenstructure (i. e., it is irreducible) [Dmytryshyn-Dopico'18].
- The set of n × n symmetric pencils with rank at most r has \[\[\frac{r}{2}\] + 1 generic eigenstructures (i. e., \[\[\frac{r}{2}\] + 1 irreducible components)
 [DT.-Dopico-Dmytryshyn, in preparation].

Comparison with other structures

- The set of $n \times n$ general (non-structured) pencils with rank at most r has r+1 generic eigenstructures (i. e., r+1 irreducible components) [Waterhouse'84].
- The set of $n \times n$ skew-symmetric pencils with rank at most r has just one generic eigenstructure (i. e., it is irreducible) [Dmytryshyn-Dopico'18].
- The set of *n* × *n* symmetric pencils with rank at most *r* has [^{*r*}/₂] + 1 generic eigenstructures (i. e., [^{*r*}/₂] + 1 irreducible components)
 [DT.-Dopico-Dmytryshyn, in preparation].

Comparison with other structures

- The set of $n \times n$ general (non-structured) pencils with rank at most r has r+1 generic eigenstructures (i. e., r+1 irreducible components) [Waterhouse'84].
- The set of $n \times n$ skew-symmetric pencils with rank at most r has just one generic eigenstructure (i. e., it is irreducible) [Dmytryshyn-Dopico'18].
- The set of *n* × *n* symmetric pencils with rank at most *r* has [^{*r*}/₂]+1 generic eigenstructures (i. e., [^{*r*}/₂]+1 irreducible components)
 [DT.-Dopico-Dmytryshyn, in preparation].

• Pal_r has only one generic eigenstructure. We have described it.

- Pal_r is an irreducible algebraic set.
- We have obtained the dimension of Pal_r.
- Similar results for the sets of ⊤-anti-palindromic and ⊤-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

- Palr has only one generic eigenstructure. We have described it.
- Pal_r is an irreducible algebraic set.
- We have obtained the dimension of Pal_r.
- Similar results for the sets of ⊤-anti-palindromic and ⊤-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

- Palr has only one generic eigenstructure. We have described it.
- Pal_r is an irreducible algebraic set.
- We have obtained the dimension of Pal_r.
- Similar results for the sets of ⊤-anti-palindromic and ⊤-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

- Pal_r has only one generic eigenstructure. We have described it.
- Pal_r is an irreducible algebraic set.
- We have obtained the dimension of Pal_r.
- Similar results for the sets of ⊤-anti-palindromic and ⊤-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

- Palr has only one generic eigenstructure. We have described it.
- Pal_r is an irreducible algebraic set.
- We have obtained the dimension of Pal_r.
- Similar results for the sets of ⊤-anti-palindromic and ⊤-alternating pencils with bounded rank.
- Different behavior than other structures (general, skew-symmetric, or symmetric pencils).

🔋 F. De Terán.

A geometric description of sets of structured matrix pencils with bounded rank.

To appear in SIMAX.

F. De Terán, F. M. Dopico.

The solution of the equation $XA + AX^T = 0$ and its application to the theory of orbits.

LAA 434 (2011) 44–67.

F. De Terán, F. M. Dopico, A. Dmytryshyn. Generic symmetric matrix pencils with bounded rank. In preparation.

A. Dmytryshyn, F. M. Dopico.

Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade LAA 536 (2018) 1–18.

W. C. Waterhouse.

The codimension of singular matrix pairs. LAA 57 (1984) 227–245.