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Comptes Rendus Acad. Sci. 99 (1884)

X ∈ Cm×n⇝ A ∈ Cm×m,D ∈ Cn×n
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Sylvester-like equations considered in this talk

AX +XD = E (Sylvester equation)
AXB+CXD = E (Generalized Sylvester equation)
AX +X ⋆D = E ⋆=⊤,∗ (⋆-Sylvester equation)

AXB+CX ⋆D = E ⋆=⊤,∗ (Generalized ⋆-Sylvester equation)

We are interested in:

▶ the solvability, and

▶ the uniqueness of solution.

� In all cases, the equation is a linear system (over C or R).

� We want to obtain conditions on the coefficient matrices
A,B,C,D,E .
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Uniqueness and the linear system

M = B⊤⊗A+(D⊤⊗C)Π: the matrix of the linear system (over C).

(Π : an appropriate permutation matrix).

M Uniqueness for the homogeneous equation ⇔
uniqueness for any right-hand side.

M Uniqueness for the homogeneous equation ⇔
at most one solution for any right-hand side.
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Transformations
▶ Sylvester:

AX −XD = E ⇔ (PAP−1)(PXQ−1)− (PXQ−1)(QDQ−1) =

PEQ−1 ⇔ ÃY −YD̃ = Ẽ .

(A,D)↔ (PAP−1,QDQ−1) (two similarities).

▶ Generalized Sylvester:
AXB−CXD = E ⇔ (PAQ)(Q−1XR−1)(RBS)−
(PCQ)(Q−1XR−1)(RDS) = PES ⇔ ÃY B̃− C̃Y D̃ = Ẽ .

(A,B,C,D)↔ (PAQ,RBS,PCQ,RDS)
(two strict equivalences
on A+λC and B+λD).

▶ ⋆-Sylvester:
AX +X ⋆D = E ⇔ (PAQ)(Q−1XP⋆)+(Q−1XP⋆)⋆(Q⋆DP⋆) =

PEP⋆ ⇔ ÃY +Y ⋆D̃ = Ẽ .

(A,D⋆)↔ (PAQ,PD⋆Q) (strict equivalence on A+λD⋆).

▶ Generalized ⋆-Sylvester: ???
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(A,D)↔ (PAP−1,QDQ−1) (two similarities).

▶ Generalized Sylvester:
AXB−CXD = E ⇔ (PAQ)(Q−1XR−1)(RBS)−
(PCQ)(Q−1XR−1)(RDS) = PES ⇔ ÃY B̃− C̃Y D̃ = Ẽ .
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(A,D⋆)↔ (PAQ,PD⋆Q) (strict equivalence on A+λD⋆).

▶ Generalized ⋆-Sylvester: ???



5/16

Transformations
▶ Sylvester:

AX −XD = E ⇔ (PAP−1)(PXQ−1)− (PXQ−1)(QDQ−1) =
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The Sylvester equation

� Solvability:

Theorem [Roth’52]

AX −XD = E is consistent iff[
A E
0 D

]
= P

[
A 0
0 D

]
P−1 (Roth’s criterion)

for some invertible P.

(If AX −XD = E then P =
[

I X
0 I

]
).

� Uniqueness:

Theorem [Gantmacher’59]

AX −XD = E has a unique solution, for every right-hand side E iff A
and D have disjoint spectra.

� The coefficient matrix of the associated linear system is square
(mn×mn).



6/16

The Sylvester equation

� Solvability:

Theorem [Roth’52]

AX −XD = E is consistent iff[
A E
0 D

]
= P

[
A 0
0 D

]
P−1 (Roth’s criterion)

for some invertible P.

(If AX −XD = E then P =
[

I X
0 I

]
).

� Uniqueness:

Theorem [Gantmacher’59]

AX −XD = E has a unique solution, for every right-hand side E iff A
and D have disjoint spectra.

� The coefficient matrix of the associated linear system is square
(mn×mn).



6/16

The Sylvester equation

� Solvability:

Theorem [Roth’52]

AX −XD = E is consistent iff[
A E
0 D

]
= P

[
A 0
0 D

]
P−1 (Roth’s criterion)

for some invertible P.

(If AX −XD = E then P =
[

I X
0 I

]
).

� Uniqueness:

Theorem [Gantmacher’59]

AX −XD = E has a unique solution, for every right-hand side E iff A
and D have disjoint spectra.

� The coefficient matrix of the associated linear system is square
(mn×mn).



6/16

The Sylvester equation

� Solvability:

Theorem [Roth’52]

AX −XD = E is consistent iff[
A E
0 D

]
= P

[
A 0
0 D

]
P−1 (Roth’s criterion)

for some invertible P.

(If AX −XD = E then P =
[

I X
0 I

]
).

� Uniqueness:

Theorem [Gantmacher’59]

AX −XD = E has a unique solution, for every right-hand side E iff A
and D have disjoint spectra.

� The coefficient matrix of the associated linear system is square
(mn×mn).



7/16

The generalized Sylvester equation: consistency

Theorem [Dmytryshyn-Kågström’15]

AXB−CXD = E is consistent iff

P−1
1

[
A E
0 D

]
P2 =

[
A 0
0 D

]
, P−1

2

[
C 0
0 I

]
P3 =

[
C 0
0 I

]
, P−1

3

[
I 0
0 D

]
P1 =

[
I 0
0 D

]
,

for some P1,P2,P3 invertible.

Comes from a more general result on systems of Sylvester equations:

AXB−CXD = E ⇔

{
AZ −YD = E ,
CX −Y = 0,
Z −XD = 0.

� Another characterization in terms of the Kronecker canonical form
of A+λC and B+λD in:

T. Kosir.
The matrix equation AXDT −BXCT = E .
U. Calgary, Dept. Math. & Stat., Res. paper no. 737 (1992)
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The generalized Sylvester equation: uniqueness

�A,C ∈ Rm×m,B,D ∈ Rn×n. Not the most general situation:
A,C ∈ Rp×m,B,D ∈ Rn×q

Theorem [Chu’87]

AXB−CXD = E has a unique solution (for any E) iff:
A+λC and D+λB are regular and have disjoint spectra.

� The coefficient matrix of the linear system is pq×mn.

: Characterize:
▶ the uniqueness of solution when pq = mn and, more in general,
▶ the existence of at most one solution.

Answer: Analyze the solution of the homogeneous equation given in
[Kosir’92].

DT-Iannazzo-Poloni-Robol.
Solvability and uniqueness criteria for generalized Sylvester-type equations.
LAA 542 (2018) 501–521.
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The ⋆-Sylvester equation: consistency

F a field with charF ̸= 2, A ∈ Fn×m,B ∈ Fm×n,C ∈ Fm×m

Theorem [Wimmer’94], [DT-Dopico’11]

AX +X ⋆D = E is consistent iff

P⋆

[
E A
D 0

]
P =

[
0 A
D 0

]
,

for some nonsingular P.

X ∈ Fm×n

� Size: Most general setting.

Open problem: What happens for charF= 2?
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The ⋆-Sylvester equation: uniqueness
A,D ∈ Cn×m

Theorem [DT-Iannazzo’24]

AX +X ⋆D = 0 has a unique solution iff A+λD⋆ has full column rank,
and
▶ ⋆=⊤: Λ(A+λD⋆)\{−1} is reciprocal free and

ma(−1,A+λD⋆)≤ 1.
▶ ⋆= ∗: Λ(A+λD⋆) is ∗-reciprocal free.

Definition: S ∈ C∪{∞} is:

(a) reciprocal free if λ µ ̸= 1, for any λ ,µ ∈ S .

(b) ∗-reciprocal free if λ µ ̸= 1, for any λ ,µ ∈ S .

ma(µ,A+λD⋆): algebraic multiplicity of µ in A+λD⋆.

� Generalizes the characterization in [Byers-Kressner’06],

[Kressner-Schröder-Watkins’09] for m = n (A+λD⋆ must be regular).
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Generalized ⋆-Sylvester: n×n coefficients
(uniqueness)

The “magic" pencil: Q(λ ) :=

[
λD⋆ B⋆

A λC

]
.

Theorem [DT-Iannazzo’16]

The equation AXB+CX ⋆D = E , with A,B,C,D ∈ Cn×n has a unique
solution, for every E , if and only if:

(i) Q(λ ) is regular;
(ii-a) if ⋆=⊤, Λ(Q)\{±1} is reciprocal free and ma(±1,Q)≤ 1;
(ii-b) if ⋆= ∗, Λ(Q) is ∗-reciprocal free.

FDT, B. Iannazzo.
Uniqueness of solution of a generalized ⋆-Sylvester matrix equation.
LAA, 493 (2016) 323-335.

� The matrix of the linear system is square.
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The equation AXB+CX ⋆D = E , with A,B,C,D ∈ Cn×n has a unique
solution, for every E , if and only if:

(i) Q(λ ) is regular;
(ii-a) if ⋆=⊤, Λ(Q)\{±1} is reciprocal free and ma(±1,Q)≤ 1;
(ii-b) if ⋆= ∗, Λ(Q) is ∗-reciprocal free.

FDT, B. Iannazzo.
Uniqueness of solution of a generalized ⋆-Sylvester matrix equation.
LAA, 493 (2016) 323-335.

� The matrix of the linear system is square.
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Generalized ⋆-Sylvester: coefficients with any size
Q(λ) :=

[
λD⋆ B⋆

A λC

]
.

Theorem [DT-Iannazzo’24, in preparation]

The equation AXB+CX ⋆D = 0, with
A ∈ Cp×m,B ∈ Cn×q ,C ∈ Cp×n,D ∈ Cm×q has only the trivial
solution if and only if:
(a) Q(λ ) has full column rank.

(b-⊤) If ⋆=⊤, the set Λ(Q)\{0,∞,±1} is reciprocal free and
ma(1,Q) = ma(−1,Q)≤ 1.

(b-∗) If ⋆= ∗, the set Λ(Q)\{0,∞} is ∗-reciprocal free.
(c) If 0,∞ are e-vals of Q, at least one of them is semisimple.
(d) At least one of A,C has full column rank.
(e) At least one of B⋆,D⋆ has full column rank.
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� Equivalently: AXB+CX ⋆D = E has at most one solution ∀E .
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� For at least one solution, replace Q(λ ) by Q♯(λ ) =
[

λC⋆ B
A⋆ λD

]
.
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Transformation on AXB+CX ⋆D = E

AXB+CX ⋆D = E is equivalent to:

(R2AS1)Y (S⋆
2BR⋆

1)+(R2CS2)Y ⋆(S⋆
1DR⋆

1) = R2ER⋆
1,

where Y = S−1
1 XS−⋆

2 .

� Corresponds to a block diagonal strict equivalence of Q(λ ):[
λ (S⋆

1DR⋆
1)

⋆ (S⋆
2BR⋆

1)
⋆

R2AS1 λ (R2CS2)

]
=

[
R1 0
0 R2

][
λD⋆ B⋆

A λC

][
S1 0
0 S2

]
.
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A summary of known results
S: Solvable, for given A,B,C,D,E .
US: Unique solution, for given A,B,C,D,E .
SR: Solvable, for any E .
OR: At most one solution, for any E (i.e.: the homogeneous eq. has
only the trivial solution).
UR: Unique solution, for any E .

AXB−CXD = E AXB+CX ⋆D = E
square

coefficients
general

coefficients
square

coefficients
general

coefficients

S [DK16] [K92],[DK16] [DK16] [DK16]
US [Chu87] [K92] [DI16] open

SR same as US [DIPR18]
(using [K92])

same as US [DI24]

OR same as US [K96] same as US [DI24]

UR same as US [DIPR18]
(using [K92])

same as US [DIPR18]

[DI16]: DT-Iannazzo’16; [DI24]: DT-Iannazzo’24; [DIPR18]: DT-Iannazzo-Poloni-Robol’18; [DK16]:

Dmytryshyn-Kågström’16; [K92]: Kosir’92; [K96]: Kosir’96.
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Explicit expression for the solution

(Up to the change matrices leading to the canonical form).

Equation Reference
AX +XD = 0 [Gantmacher’59]

AXB+CXD = 0 [Kosir’92]
AX +X ⋆D = 0 [DT-Dopico-Guillery-Montealegre-Reyes’13]

AXB+CX ⋆D = 0 open
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