Universidad Carlos III de Madrid Departamento de Matemáticas

Companion pencils for scalar polynomials in the monomial basis

Fernando De Terán

Joint work with C. Hernando

Outline

Basic definitions

Companion matrix vs companion pencil

$$\begin{array}{ll} q(z) = a_0 + z a_1 + \dots + z^{n-1} a_{n-1} + z^n & (a_0, \dots, a_{n-1} \in \mathbb{F}) \\ \text{a (scalar) monic polynomial.} & \mathbb{F} \text{ an arbitrary field.} \end{array}$$

Companion matrix

$$A(a_0,...,a_{n-1}) \in \mathbb{F}[a_0,...,a_{n-1}]^{n \times n}$$
 such that
$$p_A(z) = \det(zI - A) = a_0 + za_1 + \dots + z^{n-1}a_{n-1} + z^n = q(z)$$

Companion matrix vs companion pencil

$$\begin{array}{ll} q(z) = a_0 + z a_1 + \dots + z^{n-1} a_{n-1} + z^n & (a_0, \dots, a_{n-1} \in \mathbb{F}) \\ \text{a (scalar) monic polynomial.} & \mathbb{F} \text{ an arbitrary field.} \end{array}$$

Companion matrix

$$A(a_0, \dots, a_{n-1}) \in \mathbb{F}[a_0, \dots, a_{n-1}]^{n \times n}$$
 such that
$$p_A(z) = \det(zI - A) = a_0 + za_1 + \dots + z^{n-1}a_{n-1} + z^n = q(z)$$

For a general (non-necessarily monic) polynomial:

$$p(z) = a_0 + za_1 + \dots + z^{n-1}a_{n-1} + z^n a_n \qquad (a_0, \dots, a_n \in \mathbb{F}, a_n \neq 0)$$

Companion pencil

$$A+zB$$
, with $A,B\in\mathbb{F}[a_0,\ldots,a_{n-1},a_n]^{n\times n}$ such that
$$\det(A+zB)=\alpha(a_0+za_1+\cdots+z^{n-1}a_{n-1}+z^na_n)=\alpha p(z)$$
 $(\alpha\in\mathbb{F})$

Frobenius companion matrix

$$C_1 = \left[egin{array}{cccc} -a_{n-1} & -a_{n-2} & \cdots & -a_0 \ 1 & 0 & \cdots & 0 \ & \ddots & \ddots & dots \ 0 & & 1 & 0 \end{array}
ight], \qquad C_2 = C_1^ op$$

Frobenius companion matrix

$$C_1 = \left[egin{array}{cccc} -a_{n-1} & -a_{n-2} & \cdots & -a_0 \ 1 & 0 & \cdots & 0 \ & \ddots & \ddots & dots \ 0 & & 1 & 0 \end{array}
ight], \qquad C_2 = C_1^ op$$

MATLAB's command roots: QR algorithm on C2

Frobenius companion matrix

$$zI - C_1 = \begin{bmatrix} a_{n-1} + z & a_{n-2} & \cdots & a_0 \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}, \qquad zI - C_2 = zI - C_1^{\top}$$

Frobenius companion matrix

$$zI - C_1 = \begin{bmatrix} a_{n-1} + z & a_{n-2} & \cdots & a_0 \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}, \qquad zI - C_2 = zI - C_1^{\top}$$

Frobenius companion pencils

$$F_i(z) = z \operatorname{diag}(a_n, 1, ..., 1) - C_i$$
 $i = 1, 2$

Frobenius companion matrix

$$zI - C_1 = \begin{bmatrix} a_{n-1} + z & a_{n-2} & \cdots & a_0 \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}, \qquad zI - C_2 = zI - C_1^{\top}$$

Frobenius companion pencils

$$F_{1} = \begin{bmatrix} a_{n-1} + za_{n} & a_{n-2} & \cdots & a_{0} \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix} \qquad F_{2} = F_{1}^{\top}$$

▶ Strict equivalence: $P, Q \in \mathbb{F}^{n \times n}$ invertible:

▶ Strict equivalence: $P, Q \in \mathbb{F}^{n \times n}$ invertible:

P(A+zB)Q: strict equivalence of A+zB.

- ► Strict equivalence: $P, Q \in \mathbb{F}^{n \times n}$ invertible:
 - P(A+zB)Q: strict equivalence of A+zB.
- ▶ Unimodular equivalence (u. e.): U(z), V(z) with constant nonzero determinant (i. e., **unimodular**):

$$U(z)(A+zB)V(z)$$
: u. e. of $A+zB$.

Strict equivalence:

```
A+zB a companion pencil for p(z) \} \Rightarrow P(A+zB)Q is a companion pencil for p(z)
```

Strict equivalence:

$$A+zB$$
 a companion pencil for $p(z)$ $\}$ \Rightarrow $P(A+zB)Q$ is a companion pencil for $p(z)$

E.g.: *P*, *Q* are permutation matrices.

Strict equivalence:

```
A+zB a companion pencil for p(z) \Rightarrow P(A+zB)Q is a companion pencil for p(z)
```

E.g.: P, Q are permutation matrices.

Allows us to create **new** companion pencils.

Strict equivalence:

```
A+zB a companion pencil for p(z) \Rightarrow P(A+zB)Q is a companion pencil for p(z)
```

E.g.: P, Q are permutation matrices.

Allows us to create **new** companion pencils.

• Unimodular equivalence:

Does not necessarily provide other companion forms (**not even matrix pencils**).

Strict equivalence:

```
A+zB a companion pencil for p(z) \Rightarrow P(A+zB)Q is a companion pencil for p(z)
```

E.g.: P, Q are permutation matrices.

Allows us to create **new** companion pencils.

• Unimodular equivalence:

Does not necessarily provide other companion forms (**not even matrix pencils**).

Provides insight on some other "intrinsic information" of p(z).

Outline

Basic definitions

The Smith form of companion pencils

On the sparsity

The Smith canonical form

Theorem (Smith canonical form)

Let A + zB be an $n \times n$ matrix pencil (A, B have entries in a field). There are two unimodular matrices U(z), V(z) such that

$$U(z)(A+zB)V(z) = \begin{bmatrix} d_1(z) & & & \\ & \ddots & & \\ & & d_n(z) \end{bmatrix} := \Delta(z),$$

with $d_i(z) \in \mathbb{F}[z]$ and $d_i(z)|d_{i+1}(z)$, for i = 1, ..., n-1.

The Smith canonical form

Theorem (Smith canonical form)

Let A + zB be an $n \times n$ matrix pencil (A, B have entries in a field). There are two unimodular matrices U(z), V(z) such that

$$U(z)(A+zB)V(z)=\begin{bmatrix}d_1(z) & & & \\ & \ddots & & \\ & & d_n(z)\end{bmatrix}:=\Delta(z),$$

with $d_i(z) \in \mathbb{F}[z]$ and $d_i(z)|d_{i+1}(z)$, for $i = 1, \dots, n-1$.

Note: $det(A+zB) = d_1(z) \cdots d_n(z)$ (up to constants in \mathbb{F}).

The Smith canonical form

Theorem (Smith canonical form)

Let A + zB be an $n \times n$ matrix pencil (A, B have entries in a field). There are two unimodular matrices U(z), V(z) such that

$$U(z)(A+zB)V(z) = \begin{bmatrix} d_1(z) & & & \\ & \ddots & & \\ & & d_n(z) \end{bmatrix} := \Delta(z),$$

with $d_i(z) \in \mathbb{F}[z]$ and $d_i(z)|d_{i+1}(z)$, for $i = 1, \dots, n-1$.

Note: $det(A+zB) = d_1(z) \cdots d_n(z)$ (up to constants in \mathbb{F}).

Q: Which is the Smith form of a companion pencil?

The Smith form of a companion pencil

Lemma

$$p(z) = a_0 + za_1 + \cdots + z^n a_n$$
 is irreducible over $\mathbb{F}(a_0, \dots, a_n)$.

It's a generalization of the same result for monic polynomials in

C. Ma, X. Zhan.

Extremal sparsity of the companion matrix of a polynomial.

LAA 438 (2013) 621-625

The Smith form of a companion pencil

Lemma

$$p(z) = a_0 + za_1 + \cdots + z^n a_n$$
 is irreducible over $\mathbb{F}(a_0, \dots, a_n)$.

If A+zB is a companion pencil, and $\Delta(z)=\operatorname{diag}(d_1(z),\ldots,d_n(z))$ its Smith form, then:

$$\det(A+zB) = p(z) = d_1(z) \cdots d_n(z) \text{ (up to constants)}$$

$$\Rightarrow d_1(z) = \cdots = d_{n-1}(z) = 1, d_n(z) = p(z)$$

The Smith form of a companion pencil

Lemma

$$p(z) = a_0 + za_1 + \cdots + z^n a_n$$
 is irreducible over $\mathbb{F}(a_0, \dots, a_n)$.

If A+zB is a companion pencil, and $\Delta(z)=\operatorname{diag}(d_1(z),\ldots,d_n(z))$ its Smith form, then:

$$\det(A+zB) = p(z) = d_1(z) \cdots d_n(z) \text{ (up to constants)}$$

$$\Rightarrow d_1(z) = \cdots = d_{n-1}(z) = 1, d_n(z) = p(z)$$

Theorem

The Smith form of any companion $n \times n$ pencil is $\begin{bmatrix} I_{n-1} & 0 \\ p(z) \end{bmatrix}$.

(The base field is
$$\mathbb{F}(a_0,\ldots,a_n)$$
).

Corollary

Every companion pencil is non-derogatory.

(The geometric multiplicity of every eigenvalue is equal to 1).

Corollary

Every companion pencil is non-derogatory.

This is immediate for the **Frobenius** companion pencil:

$$\operatorname{rank} F_1(z) = \operatorname{rank} \begin{bmatrix} a_{n-1} + za_n & a_{n-2} & \cdots & a_0 \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix} \ge n - 1$$

for all $z \in \mathbb{F}$.

Corollary

Every companion pencil is non-derogatory.

Proof?: If

$$U(z)(A+zB)V(z) = \begin{bmatrix} I_{n-1} & 0 \\ p(z) \end{bmatrix},$$

then $\operatorname{rank}(A+z_0B)=\operatorname{rank} U(z_0)(A+z_0B)V(z_0)\geq n-1,$ for all $z_0\in\mathbb{F}.\Box$

Corollary

Every companion pencil is non-derogatory.

Proof?: If

$$U(z)(A+zB)V(z)=\begin{bmatrix}I_{n-1}&0\\p(z)\end{bmatrix},$$

then $\operatorname{rank}(A+z_0B)=\operatorname{rank} U(z_0)(A+z_0B)V(z_0)\geq n-1$, for all $z_0\in\mathbb{F}.\square$

However, U(z), $V(z) \in \mathbb{F}(a_0, ..., a_n)[z]$, so they are not necessarily defined for all $a_0, ..., a_n!!!$

Corollary

Every companion pencil is non-derogatory.

Proof?: If

$$U(z)(A+zB)V(z)=\begin{bmatrix}I_{n-1}&0\\&p(z)\end{bmatrix},$$

then $\operatorname{rank}(A+z_0B)\# \operatorname{rank}(U(\mathbb{Z}_0)(A)+\mathbb{Z}_0B)V(\mathbb{Z}_0)\geq n-1$, for all $z_0\in\mathbb{F}.\square$

However, $U(z), V(z) \in \mathbb{F}(a_0, ..., a_n)[z]$, so they are not necessarily defined for all $a_0, ..., a_n!!!$

Theorem

Every companion pencil is non-derogatory when \mathbb{F} is infinite.

Proof (sketch): By contradiction, we can prove that $\operatorname{rank}(A+z_0B) \geq n-1$, for all $z_0 \in \mathbb{F}$. Uses polynomial identities and ends up with a nonzero polynomial that vanishes over all values in \mathbb{F} .

FDT. C. Hernando.

A note on generalized companion pencils in the monomial basis.

RACSAM 114 (2020), Article 8.

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

▶ u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

▶ u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The Frobenius companion pencils are u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to diag $(I_{n-1},p(z))$:

$$\begin{bmatrix} a_{n-1} + za_n & a_{n-2} & \cdots & a_0 \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}$$

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

▶ u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The Frobenius companion pencils are u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to diag $(I_{n-1},p(z))$:

$$\begin{bmatrix} a_{n-1} + za_n & a_{n-2} + za_{n-1} + z^2a_n & \cdots & a_0 \\ -1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}$$

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

▶ u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The Frobenius companion pencils are u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to diag($I_{n-1},p(z)$):

$$\begin{bmatrix} a_{n-1} + za_n & a_{n-2} + za_{n-1} + z^2a_n & \cdots & a_0 + za_1 \\ -1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}$$

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

• u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The Frobenius companion pencils are u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to diag($I_{n-1},p(z)$):

$$\begin{bmatrix} a_{n-1} + za_n & a_{n-2} + za_{n-1} + z^2a_n & \cdots & a_0 + za_1 + \cdots + z^na_n \\ -1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & 0 \end{bmatrix}$$

uc3m Universidad Carlos III de Madrid

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

• u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The Frobenius companion pencils are u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to diag($I_{n-1},p(z)$):

$$\begin{bmatrix} a_{n-1} + za_n & a_{n-2} + za_{n-1} + z^2 a_n & \cdots & a_0 + za_1 + \cdots + z^n a_n \\ -1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & 0 \end{bmatrix}$$

uc3m Universidad Carlos III de Madrid

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

▶ u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The Frobenius companion pencils are u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to diag $(I_{n-1},p(z))$:

$$\begin{bmatrix} 0 & 0 & \cdots & p(z) \\ -1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & 0 \end{bmatrix}$$

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

▶ u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The Frobenius companion pencils are u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to $\operatorname{diag}(I_{n-1},p(z))$:

$$\begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & p(z) \end{bmatrix}$$

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z] \not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

▶ u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

The Frobenius companion pencils are u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to diag $(I_{n-1},p(z))$:

$$\begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & p(z) \end{bmatrix}$$

All transformations belong to $\mathbb{F}[a_0, \dots, a_n, z]!$

u. e. over $\mathbb{F}(a_0,\ldots,a_n)[z]\not\Rightarrow$ u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$:

Counterexample: $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are:

▶ u. e. over
$$\mathbb{F}(y)[z]$$
: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/y & -z/y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix}$

▶ not u. e. over
$$\mathbb{F}[y,z]$$
: det $\begin{bmatrix} y & z \\ 0 & 1 \end{bmatrix} = y \neq 1 = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Q: When is a companion pencil u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to its Smith form?

The result by Li, Liu & Chu

Theorem [Li, Liu & Chu'2020]

Let
$$P(z_1,...,z_m) \in \mathbb{F}[z_1,...,z_m]^{n \times n}$$
. If

$$\det P(z_1,\ldots,z_m)=z_1-f(z_2,\ldots,z_m)$$

then $P(z_1,...,z_m)$ is u. e. over $\mathbb{F}[z_1,...,z_m]$ to its Smith form.

D. Li, J. Liu, D. Chu.

The Smith form of a multivariate polynomial matrix over an arbitrary coefficient field.

LAMA 70 (2020) 366-379.

Relies on the Quillen-Suslin Theorem in

Quillen D.

Projective modules over polynomial rings.

Invent. Math. 36 (1976) 167-171.

The result by Li, Liu & Chu

Theorem [Li, Liu & Chu'2020]

Let $P(z_1,...,z_m) \in \mathbb{F}[z_1,...,z_m]^{n \times n}$. If

$$\det P(z_1,\ldots,z_m)=z_1-f(z_2,\ldots,z_m)$$

then $P(z_1,...,z_m)$ is u. e. over $\mathbb{F}[z_1,...,z_m]$ to its Smith form.

For companion pencils, we can set: $z_1 = a_0, ..., z_{m-1} = a_n, z_m = z$, so that $P(z_1, ..., z_m) = A(a_0, ..., a_n) + zB(a_0, ..., a_n)$ and

$$\det(A(a_0,...,a_n)+zB(a_0,...,a_n))=a_0-(-za_1-\cdots-z^na_n).$$

The result by Li, Liu & Chu

Theorem [Li, Liu & Chu'2020]

Let $P(z_1,...,z_m) \in \mathbb{F}[z_1,...,z_m]^{n \times n}$. If

$$\det P(z_1,\ldots,z_m)=z_1-f(z_2,\ldots,z_m)$$

then $P(z_1,...,z_m)$ is u. e. over $\mathbb{F}[z_1,...,z_m]$ to its Smith form.

For companion pencils, we can set: $z_1 = a_0, ..., z_{m-1} = a_n, z_m = z$, so that $P(z_1, ..., z_m) = A(a_0, ..., a_n) + zB(a_0, ..., a_n)$ and

$$\det(A(a_0,...,a_n)+zB(a_0,...,a_n))=a_0-(-za_1-\cdots-z^na_n).$$

Theorem

Every companion pencil is u. e. over $\mathbb{F}[a_0,\ldots,a_n,z]$ to $\begin{bmatrix} l_{n-1} \\ p(z) \end{bmatrix}$.

uc3m Universidad Carlos III de Madrid

Outline

Basic definitions

The Smith form of companion pencils

On the sparsity

The main question

Q: Which is the smallest possible number of nonzero entries in a companion pencil?

The main question

Q: Which is the smallest possible number of nonzero entries in a companion pencil?

For companion matrices:

Theorem [Ma & Zhan'2013]

If $A(a_0,...,a_{n-1})$ is a companion matrix, then it has, at least, 2n-1 nonzero entries.

C. Ma, X. Zhan.

Extremal sparsity of the companion matrix of a polynomial.

LAA 438 (2013) 621-625.

The main question

Q: Which is the smallest possible number of nonzero entries in a companion pencil?

For companion matrices:

Theorem [Ma & Zhan'2013]

If $A(a_0,...,a_{n-1})$ is a companion matrix, then it has, at least, 2n-1 nonzero entries.

This is the case of the Frobenius companion matrices

$$C_1 = \left[egin{array}{cccc} -a_{n-1} & -a_{n-2} & \cdots & -a_0 \ 1 & 0 & \cdots & 0 \ & \ddots & \ddots & dots \ 0 & & 1 & 0 \end{array}
ight], \qquad (C_2 = C_1^{ op}).$$

uc3m Universidad Carlos III de Madrid

The companion pencil includes also the leading entries:

$$F_i(z) = z \operatorname{diag}(a_n, 1, ..., 1) - C_i$$
 $i = 1, 2$

$$F_1(a_0,\ldots,a_n,z) = \begin{bmatrix} a_{n-1} + za_n & a_{n-2} & \cdots & a_0 \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}, \qquad (F_2 = F_1^\top).$$

In this case, n-1 additional entries are added: 3n-2 in total.

The companion pencil includes also the leading entries:

$$F_i(z) = z \operatorname{diag}(a_n, 1, \dots, 1) - C_i \qquad i = 1, 2$$

$$\begin{bmatrix} a_{n-1} + z a_n & a_{n-2} & \dots & a_{n-1} \end{bmatrix}$$

$$F_1(a_0,\ldots,a_n,z) = \begin{bmatrix} a_{n-1} + za_n & a_{n-2} & \cdots & a_0 \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}, \qquad (F_2 = F_1^\top).$$

In this case, n-1 additional entries are added: 3n-2 in total.

But we can do it better:

$$\begin{bmatrix} a_{n-1} + za_n & 0 & a_{n-3} + za_{n-2} & \cdots & a_0 + za_1 \\ -1 & z & 0 & \cdots & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ & & -1 & z & 0 \\ 0 & & & -1 & z \end{bmatrix}$$
 (n odd).

The companion pencil includes also the leading entries:

$$F_{i}(z) = z \operatorname{diag}(a_{n}, 1, \dots, 1) - C_{i} \qquad i = 1, 2$$

$$\begin{bmatrix} a_{n-1} + za_{n} & a_{n-2} & \cdots & a_{0} \\ -1 & z & \cdots & 0 \end{bmatrix}$$

$$F_1(a_0,\ldots,a_n,z) = \begin{bmatrix} a_{n-1} + za_n & a_{n-2} & \cdots & a_0 \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}, \qquad (F_2 = F_1^\top).$$

In this case, n-1 additional entries are added: 3n-2 in total.

But we can do it better:

$$\begin{bmatrix} a_{n-1} + za_n & 0 & a_{n-3} + za_{n-2} & \cdots & a_0 \\ -1 & z & 0 & \cdots & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ & & -1 & z & 0 \\ 0 & & & -1 & z \end{bmatrix}$$
 (*n* even).

The companion pencil includes also the leading entries:

$$F_{i}(z) = z \operatorname{diag}(a_{n}, 1, ..., 1) - C_{i} \qquad i = 1, 2$$

$$F_{1}(a_{0}, ..., a_{n}, z) = \begin{bmatrix} a_{n-1} + za_{n} & a_{n-2} & \cdots & a_{0} \\ -1 & z & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & z \end{bmatrix}, \qquad (F_{2} = F_{1}^{\top}).$$

In this case, n-1 additional entries are added: 3n-2 in total.

But we can do it better:

$$\begin{bmatrix} a_{n-1} + za_n & 0 & a_{n-3} + za_{n-2} & \cdots & a_0 \\ -1 & z & 0 & \cdots & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ & & -1 & z & 0 \\ 0 & & & -1 & z \end{bmatrix}$$
 (*n* even).

Number of nonzero entries: $2n-1+\lfloor \frac{n}{2} \rfloor$

volum Universidad Carles III de Madrid

When each coefficient appears once

Theorem

If A+zB is a companion pencil where each coefficient a_0,\ldots,a_n appears in just one entry, then A+zB has, at least, $2n-1+\lfloor\frac{n}{2}\rfloor$ nonzero entries.

FDT, C. Hernando.

A note on generalized companion pencils in the monomial basis.

RACSAM 114 (2020), Article 8.

When each coefficient appears once

Theorem

If A+zB is a companion pencil where each coefficient a_0,\ldots,a_n appears in just one entry, then A+zB has, at least, $2n-1+\lfloor\frac{n}{2}\rfloor$ nonzero entries.

FDT, C. Hernando.

A note on generalized companion pencils in the monomial basis. RACSAM 114 (2020), Article 8.

Open question: Which is the smallest possible number of nonzero entries in an arbitrary companion pencil?

When each coefficient appears once

Theorem

If A+zB is a companion pencil where each coefficient a_0,\ldots,a_n appears in just one entry, then A+zB has, at least, $2n-1+\lfloor \frac{n}{2}\rfloor$ nonzero entries.

FDT. C. Hernando.

A note on generalized companion pencils in the monomial basis. RACSAM 114 (2020), Article 8.

Open question: Which is the smallest possible number of nonzero entries in an arbitrary companion pencil?

Conjecture: $2n-1+\left|\frac{n}{2}\right|$

