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Main goals

When does
A,‘)(jB,'—C,’)(k‘D,'ZE,'7 i,j,k A=1x%

have unique solution for any right-hand side E;?

Provide an O(n®) algorithm to compute the (unique) solution.
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The vec approach
vec (AXB— CXAD) = vec (E) leads to
> [a=1] [BT@A—(C®DT)]vec(X) = vec(E)
> [a=T] [BT®A-N(C®D")]vec(X) = vec(E)

Linear over F=C,R v

> [a=x] (B" ®@A)vec(X) —N(C® D" )vec(X) = vec(E)
Linear over R v~ vec(X) = [vec (Re X); vec (Im X)]

IZ"AXB — CXAD = E can be written as a linear system MY = b:

Y — vec (X), if A=T,1
| [vec(ReX); vec(ImX)], if A =x
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The vec approach (ctd.)

|AXB-CXA*D=E & MY =b

Ve FPExr i a=1,T,
REAXCE)  if 4 — 4

® Too large!
® Not easy to handle with

I¥" Combined with:

> Appropriate permutation of rows/columns.
» Periodic Schur decomposition (F =R, C).

® It will be useful!!
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Linearity and uniqueness of solution

A,')(j/.B,'—C,'XkAiD,': E,‘ S MY =b

» Unique solution for any b = M square.

» If M is square:

AiX;. B — C,-Xk‘,, D; = E; has a unique solution

AiX;B; — CkaA,- D; = 0 has a unique solution

IS” We only need to look at the homogeneous equation!



Related work

» Systems of generalized Sylvester equations:
» Uniqueness (periodic systems): [Byers-Rhee’95]
» Consistency, uniqueness (structured

coefficients/solutions/equations, matrices over other sets, ...):
[Wang-Sun-Li'02], [Lee-Vu'12], [He-etal’16], ...

» Systems of coupled generalized Sylvester and x-Sylvester
equations:
> lterative methods (structured coefficients and solution):
[Dehghan-Hajarian’11], [Song-Chen-Zhao’11], [Wu-etal'11], [Wu-etal'11],
[Beik-etal’13], [Song-etal’14], ...

> Consistency: [Dmytryshyn-Kagstréom'16]

» Uniqueness: ???
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Motivation: the case r = 1

Theorem [chus7]

AXB— CXD = 0 has only the trivial solution iff A—AC and D—AB are
regular and have disjoint spectra.

Theorem [DT-lannazo’16]
AXB— CX*D = 0 has only the trivial solution iff

2w =" %]

is regular and
Z l,'%j #1 (li,lj e-vals of Q)
[x =T} 4idj#1 (4,4 # £1 e-vals of 2) and A = +1

have multiplicity < 1.
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Reduction to periodic systems
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Most general setting

‘A,‘)(jBi_CiXkADI‘:Eh i’j7k

» r (matrix) equations and s (matrix) unknowns.
» The unknowns X;, Xy can be equal or different.
> A=1,x (x==x*orT,but not both x )

» Msquare=r=s
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Irreducible systems

S: a system of (matrix) equations. Then

S=S1US,U---USy
S1,...,S, irreducible

» S has a unique solution iff S; has a unique solution, for all
i=1,...,0

» If S has a unique solution, then S; has the same number of
equations and unknowns.

IZ" We can focus on irreducible systems.
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All unknowns appear exactly twice

If some X; appears just once in S (with unique solution), say in
Aj)(]B/ + Cij‘ Dj =0, then
> Aj,B; are invertible.
—1 —1
Xj=—A C,-Xk‘D,-B/.

> S is equivalent to: {
r—1

» S,_4 irreducible with r — 1 equations in the r — 1 unknowns
X1a"'7)(jf1a)(j+1,"'axr
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All unknowns appear exactly twice

If some X; appears just once in S (with unique solution), say in
Aj)(jB/ + Cij‘ Dj =0, then
> Aj,B; are invertible.
—1 —1
Xj=—A Cixp D;B;

> S is equivalent to: {
r—1

» S,_4 irreducible with r — 1 equations in the r — 1 unknowns
X1a---7Xj—1an+1»---aXr

IZ” We can remove the equations corresponding to unknowns
appearing just once.

IZ" |In the new system, all unknowns appear exactly twice.




Reduction to a periodic system with at most one x
Given the irreducible system

AiXiBi+CiXg¢Di=Ej,  ijk, A=1x

with each unknown appearing exactly twice.



Reduction to a periodic system with at most one

Given the irreducible system
A,‘)(jB,'—FC,’Xk‘D,':E,', i,j,k, A=1,*
with each unknown appearing exactly twice.

IZ" There is an equivalent system (periodic)

~

AXB+CX,+1 = E, i=1,..,r-1,
ArXrBr+CrX Dr - Er.

(Applying %, and changing variables X; — X7, if necessary)



Reduction to a periodic system with at most one

Given the irreducible system
A,‘)(jB,'—FC,’Xk‘D,':E,', i,j,k, A=1,*
with each unknown appearing exactly twice.

IZ" There is an equivalent system (periodic)

AiXiBi+CiXi1Dj = Ej, i=1,..,r-1,
ArXrBr + Cr)(‘]A Dr - Er.
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A characterization using formal products



The periodic Schur decomposition

Theorem [Bojanzyck-Golub-VanDooren’92]

Given My, N, € C™" k=1,...,r. There are Q, Zx unitary, for
k=1,...,r,such that

. . Periodic Schur
QM2 =Ty, QNkZiy1 = Ry, Ejecomposition)

where Ty, Ry are upper triangular and Z,, 1 = Z;.




Eigenvalues of formal products
Given the formal product

N=N"MN_"M_1---N; "My
through the periodic Schur decomposition of M;, N;,
QM Zyc =Ty, QkNikZiy1 = R,
we define its eigenvalues

r .
A,-—M i=1,2,...,n.
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Eigenvalues of formal products
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Eigenvalues of formal products
Given the formal product

N=N"MN_"M_1---N; "My
through the periodic Schur decomposition of M;, N;,
QM Zyc =Ty, QkNikZiy1 = R,
we define its eigenvalues

r ;
o Wt (i q 5

i (Reii’ B

Definition: M is singular if:  [T;_¢(T«)i = ITk_1(R«k)i = 0, for some
ie€{1,2,...,n} (and regular otherwise).

» Considered by several authors: [Bojanzyck-Golub-VanDooren'92],
[Benner-Mehrmann-Xu’02], [Granat-Kagstrom’'06a—b],
[Granat-Kagstrom-Kressner'07a—b], ...




Main result (first formulation). The case A = 1

Theorem
The system

AkaBk—Cka_HDk:O, k:1,...,f—1,
ArXrBr - CrX1 Dr = 0

has only the trivial solution iff
C,'AC. LA _1---C;'Ay and DB 'D B .. DB’

are regular and have no common e-vals.
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Main result (first formulation). The case A =«

Theorem
The system

AkaBk—Cka_HDk:O, k:1,...,f—1,
ArXrBr — CrX1*Dr - 0

has only the trivial solution iff
N=D,"B;D,*B;_y---D;*B{C; 'A,C, \A_1---C; ' A
is regular and
[x=x*]: Lid; # 1 (A, A, e-vals of ).
[x =T} A #1 (4,4 £ —1 e-vals of M), and A = —1

has multiplicity < 1.
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The matrix pencil approach
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The case A = %

Theorem
AkaBk—Cka+1Dk=O, k=1,...,f 1,

The system AXBy — C,X; D, = 0. has
only the trivial solution iff the matrix pencil

[AA; Gy ]

LA Cr
2(A) = ABy Dy
R 2/
|—D; AB; |

is regular and
Z l/x/' 75 1 ()L,‘,ﬂ,/' e-vals of Q)
[x=T| Aid # 1 (A # A e-vals of 2) and A"  —1 for any A

e-val of 2.




The case A =1

Theorem [chu's7)

The equation AXB — CXD = 0 has only the trivial solution iff the
pencils A—AC and D — AB are regular and have no common e-vals.

Theorem [Byers-Rhee'95]
For r > 1, the system

AkakackaJﬂDk:O, k:1,...,l’717
ArXrBr - CrX1 Dr = 0

has only the trivial solution iff the matrix pencils

LA Gy AD;  B»

LA and AD,
G K B
Cr lAr B1 )LD’

are regular and have no common e-vals.
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Main ideas



Two basic ideas (Ao =1,T)

IE” Main procedure:

1. Get an equivalent system with A;, C; upper triangular
and B;, D; lower triangular (using the periodic Schur).

2. Rearrange the equations / unknowns of the big linear
system to get a block-diagonal matrix.
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Two basic ideas (Ao =1,T)

IE” Main procedure:

1. Get an equivalent system with A;, C; upper triangular
and B;, D; lower triangular (using the periodic Schur).

2. Rearrange the equations / unknowns of the big linear
system to get a block-diagonal matrix.

Choose an appropriate ordering!!



An equivalent system with triangular coeffs. (Ao = 1)
Qi AcZi = Ak, Qi CrkZis1 = Cr,
Z\k, @ upper triangular ~ periodic Schur form of
CF1ArC;J1 Aq-- C;1A1
QiBiZk =B, QiDiZis1 =Dy,
E;;, D; upper triangular ~ periodic Schur form of
D, *B;D,",B;_; Dy "B
Then
AxXkBk — CkXky1Dk=Ex  (k=1,...,r)

is equivalent to

A Xy Bi — Ci Xi1 Dy = QiAKZk X Zi Bk Qk — Qi CrcZks1 Xi12541 Di Qi




An equivalent system with triangular coeffs. (Ao = 1)
Qi AcZi = Ak, Qi CrkZis1 = Cr,
Z\k, @ upper triangular ~ periodic Schur form of
CAC Ay Gy A
QiBiZk =B, QiDiZis1 =Dy,
@;, D; upper triangular ~ periodic Schur form of
D, *B;D, "B} ;- Dy"B;

Then
AxXkBk — CkXky1Dk=Ex  (k=1,...,r)

is equivalent to (Zk)A(kZ’; = Xy)

A Xy Bi — Ci Xi1 Dy = QA Zk X Zi Bk Qk — Qi Crc Zks1 X121 1 Di Qi
= Qi (Ax Xk Bk — C X1 D) Qk
= Q;E«Qx = Ex.




An equivalent system with triangular coeffs. (A =T)
QxAkZk = Ak, QkCkZki1=Ck, Zorv1=21,
Q «BiZk =By, Q «DiZ xi1=Di, k=1.2,...r,
(,7\k, E:k, 3;, f); upper triangular) ~ periodic Schur form of
D, 'B/D;\B ---D;"B{ C;TAC, Ay CT Ay
Then
AkaBk—Cka+1Dk:Ek (k: 1,...,[’—1)
ArXrBr - CrX{rDr = Er
is equivalent to

AXiBy — CiXicy1 Dk = QuAZXKZ, 4B Qr-k — Qi CcZic 1 Xics1 Z, 1 Dk Qr ik

/arj\(rér - 6(5\(1T Dr = Q;kArer\(rZ;BrEZr - Q;f C/Zr+1 5\(1-I—Z1TD,’62,~




An equivalent system with triangular coeffs. (A =T)
QAkZk = Ak, QkCrZks1=Ck, Zory1 =24,

Q «BiZk =By, Q «DiZ xi1=Di, k=1.2,...r,
(,7\k, E:k, 3;, f); upper triangular) ~ periodic Schur form of

D; "B/ D, B/ 1Dy 'B{ C,TAC, Ay G Ay

Then
AkaBk—Cka+1Dk:Ek (k: 1,...,[’—1)
ArXrBr — CrX{rDr == Er

is equivalent to (ZcXkZ,, , = Xk)

AxXByc = CieXicy1 D = QpAZXKZ, kB Qrk — Q CrcZicst1 X1 Z i1 Dk Qi
= Q(AkXkBxk — CXic+1Dk) Qr ik
— QiExQryk = Ex,
AX;B,—C: X[ D, = QA Z X, Z3. B, Qor — Q: CrZ, 1 X Z) D, Qoy
— Q:(AX:B, — C.X] D)0y,
= QEQo =E,.




Choosing an appropriate ordering

(i,J,k) |
{ (i,)) entry of X ~+ 9/ (unknowns)
e,-T(AkaBk - Cka+1 Dk)e/- = (Ek),j ~ & (equations)

If <'is an order on both % and & satisfying:
(i,j,k) < (i',j,K") whenever i < [ and j </,

then:
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{ (i,)) entry of X ~+ 9/ (unknowns)
e,-T(AkaBk - Cka+1 Dk)e/- = (Ek),/ ~ & (equations)

If <'is an order on both % and & satisfying:
(i,j,k) < (i',j,K") whenever i < [ and j </,

then:

M is block-diagonal with r x r and (2r) x (2r) diagonal
blocks.



Choosing an appropriate ordering

(i,J,k) |
{ (i,)) entry of X ~+ 9/ (unknowns)
e,-T(AkaBk - Cka+1 Dk)e/- = (Ek),/ ~ & (equations)

If <'is an order on both % and & satisfying:

(i,j,k) < (/',j/,k") whenever i < /" and j </,
then:
M is block-diagonal with r x r and (2r) x (2r) diagonal
blocks.

» rx r blocks: Correspond to (Xj)1,...,(Xi)r-
> (2r) x (2r) blocks: Correspond to (Xj)1, ..., (Xj)r, i # J.
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Diagonal blocks: A =1

With such ordering, the diagonal blocks are:

(A1)i(B1)ii  —(C1)ii(Dy)ii

M,’,’ = e
(Ar—1)ii(Br-1)ii
—(Cii(Dr)ii
and
(A)i(B1)j  —(C1)i(Dy)j
M,'j = .

(Ar71 )ii(.Br71 )/'j

—(Cr-1)ii(Dr—1)ii
(Ani(Br)ii

*(Cr71 )ii(Dr—1 )jj
(Ar)ii(Br)jj



Diagonal blocks: A =1

With such ordering, the diagonal blocks are:

(A1)i(B1)ii  —(C1)ii(Dy)ii

M;; =
(Ar=1)i(Br=1)ii —(Cr=1)ii(Dr—1)ii
—(Cii(Dr)ii (Ani(Br)ii
det M = TTk_1 (Ak)ii(Bx)ii — ITk—1(Ck)ii( Dk )i
and
(A)i(B1)j  —(C1)i(Dy)j
M,'j = .

(Ar )ff(.BH )i —(Cr-1)i(Dr-1)ji
—(C)ilDr)j (An)ii(Br)jj

det Mjj = TTj—1 (Ax)ii(Bk)j — [Tk—1(Ck)ii( Dk )i



Diagonal blocks: A =T

With these orderings, the diagonal blocks are:

Mi‘ = %U - _(C/‘)I'I'(DI’)jjere;r ’
' _(C1 )J](D1 )iiere1 '%jl
where
(A)i(Br)y —(C1)i(D1)j
?@ij =

(An)ii(Br)jj

(Mj as for A =1)

—(Cr-1)i(Dr—1)jj .



Diagonal blocks: A =T

With these orderings, the diagonal blocks are:

Mi‘ = %U - _(Cf)l'/(DI’)jjere;r ’
' _(C1 )I](D1 )iiere1 f%ﬂ
where
(A)i(Br)y —(C1)i(D1)j
t_@ij =

—(Cr-1)i(Dr—1)jj .
(An)ii(Br)j

det Mjj = TTje_1 (An)ii(Bi)ii(Ak)jj(Bi)j — TTk=1 (Ci)ii( Di)ii( Cic) i D)

(Mj as for A =1)



The pencil approach: idea of the proof

1. det 2(A) =174 (A% TTieq (Ak)i(BR)ii + =1 (Ci)ii( Dj)it)

2.

N2) = ¥.7 |, where

DN = SO .
‘7'—{ ‘E(Ak)ﬁ(BE)ii’ I 17“"’7}'



The case A = x
Lemma
The system

{ AXiBi — CiXii 1Dk =0,  k=1,...

ArXrBr - C[’X‘i‘< Dr = 0.

has a unique solution if and only if the system

AXiBk — CiXii 1Dk =0,  k=1,...

ArXrBr - CrXrJr1 Dr = 07

BiXo, A — DiX;C =0

has a unique solution.




The case A = x
Lemma
The system

AkaBk_Cka+1Dk:O, k:1,...,f—1, (1)
ArXrBr* CrXikDr = 0.

has a unique solution if and only if the system

AkaBk—Cka+1Dk=O, k:1,...,f—1,
ArXrBr— CrXrJr1Dr :Ov (2)
B; Xk Ar — Di Xriks1Cp =0, k=1,...,r—1,
B} Xo, At — D X C: =0

has a unique solution.

Proof (Xj,...,X;) # 0 solution of (1) = (Xy,..., X, X{,..., X}) # 0 solution of
().

(X1, Xr, Xp g1, Xor) nonzero solution of (2) = (X1 + X/ 4,.... Xr +X5,)
solution of (1). If (X1 + X e Xe - X5,) = 0 then X, ; = - X7, for
i=1,...,r,and i(Xj,...,X;) is a nonzero solution of (1). O
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The case A = x
Lemma
The system

AkaBk_Cka+1Dk:O, k:1,...,f—1, (1)
ArXrBr* CrXikDr = 0.

has a unique solution if and only if the system

AkaBk—Cka+1Dk=O, k:1,...,f—1,
ArXrBr - CrXrJr1 Dr = 07

B; Xk Ar — Di Xriks1Cp =0, k=1,...,r—1,
B Xo, At — DX, C; =0

has a unique solution.

Not true for T instead of * !l

V4 Zo =
Counterexample: x; +x; =2x;=0  vs { 1122=0

Z21+2o=0
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The results for A = x follow from the ones for A = 1:



The case A = x (ctd.)

The results for A = x follow from the ones for A = 1:

Ay X Bk — Ck Xk 1D =0,
ArXrBr— CrX{Dr =0

unique
sol.

unique
sol.

A Xy Bk — Ci Xy 11Dk = 0,
ArXrBr - CrXr+1 Dr = 07
By Xr 1k Ay — DiXrik1-1C =0,
B Xo, A — D;X1C} =0




The case A = x (ctd.)

The results for A = x follow from the ones for A = 1:

AkaBk - Cka+1 Dk = 07

A X By — C Xy 1D =0, | unique ArXrBr — Cr X, 1Dr =0,
ArX:B;— CX; Dy =0 sol. B X, s kA — Dy Xrs i1 Cf = 0,
By XorAr — D X1 Gy =0

unique
sol.

Applying the result for A =1, this is equivalent to:
My =D;*B;D.*B;_y---D;*B;C, A C, L Ay CT 1A

and
ok A— —x% * A—* —1 —1 —1
Mo =CiA "C;_1A % ---C{A"DrB, 'D,_1B,; --- D1 B,
are regular and have no common eigenvalues.
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The case A = x (ctd.)

The results for A = x follow from the ones for A = 1:

AkaBk - Cka+1 Dk = 07

A X By — C Xy 1D =0, | unique ArXrBr — Cr X, 1Dr =0,
ArX:B;— CX; Dy =0 sol. B X, s kA — Dy Xrs i1 Cf = 0,
By XorAr — D X1 Gy =0

unique
sol.

Applying the result for A =1, this is equivalent to:
My =D;*B;D.*B;_y---D;*B;C, A C, L Ay CT 1A

and
ok A— —x% * A—* —1 —1 —1
Mo =CiA "C;_1A % ---C{A"DrB, 'D,_1B,; --- D1 B,
are regular and have no common eigenvalues.

9 e-vals of My: {Ay,2p,...,An} = e-vals of Ma: {(21)~ 1. (A2)~"....,(An) "},
so they are disjoint if and only if ;4 # 1.
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An O(rn3) algorithm

» Compute the periodic Schur decomposition ~ O(rn®)

» Solve the block diagonal equations: O(r) (each)
~ O(rn?)



An O(rn3) algorithm

» Compute the periodic Schur decomposition ~ O(rn®)

» Solve the block diagonal equations: O(r) (each)
~ O(rn?)

» Compute the right-hand side: O(rn) (each) ~ O(rn®)
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