uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Uniqueness of solution of systems of generalized Sylvester and *-Sylvester equations

Fernando De Terán

ILAS2025, Kaohsiung June 2025

Joint work with...

Bruno lannazzo

Federico Poloni

Leonardo Robol

Outline

Introduction

Reduction to periodic systems

A characterization using formal products

The matrix pencil approach

Main ideas

Conclusions

Outline

Introduction

Reduction to periodic systems

A characterization using formal products

The matrix pencil approach

Main ideas

Conclusions

$$AXB - CXD = E$$
 (generalized Sylvester)
 $AXB - CX^*D = E$ (generalized *-Sylvester) $\star = \top, *$

Particular cases:

$$AX - XD = E$$
 (Sylvester

$$AX - X^*D = E$$
 (*-Sylvester)

We are interested in:

$$A_i X_i B_i - C_i X_k^{\wedge} D_i = E_i, \quad i, j, k \quad = 1, \star$$

$$AXB - CXD = E$$
 (generalized Sylvester)
 $AXB - CX^*D = E$ (generalized *-Sylvester) $* = \top, *$

Particular cases:

$$AX - XD = E$$
 (Sylvester)

$$AX - X^*D = E$$
 (*-Sylvester)

We are interested in:

$$A_i X_i B_i - C_i X_k^{\wedge} D_i = E_i, \quad i, j, k \quad \Delta = 1, \star$$

$$AXB - CXD = E$$
 (generalized Sylvester)
 $AXB - CX^*D = E$ (generalized *-Sylvester) $* = \top, *$

Particular cases:

$$AX - XD = E$$
 (Sylvester)

$$AX - X^*D = E$$
 (*-Sylvester)

We are interested in:

$$AXB - CXD = E$$
 (generalized Sylvester)
 $AXB - CX^*D = E$ (generalized *-Sylvester) $* = \top, *$

Particular cases:

$$AX - XD = E$$
 (Sylvester)

$$AX - X^*D = E$$
 (*-Sylvester)

All $\mathbb{C}^{n\times n}$ matrices

We are interested in:

$$A_i X_i B_i - C_i X_k^{\wedge} D_i = E_i, \quad i, j, k \quad = 1, \star$$

Main goals

When does

$$A_i X_i B_i - C_i X_k^{\wedge} D_i = E_i, \quad i, j, k \quad {\wedge} = 1, \star$$

have unique solution for any right-hand side E_i ?

Main goals

When does

$$A_i X_j B_i - C_i X_k^{\wedge} D_i = E_i, \qquad i, j, k \qquad {\wedge} = 1, *$$

have unique solution for any right-hand side E_i ?

Provide an $O(n^3)$ algorithm to compute the (unique) solution.

$$\operatorname{vec}(AXB - CX^{\blacktriangle}D) = \operatorname{vec}(E)$$
 leads to

- $\blacktriangleright \boxed{\blacktriangle = \top} : [B^\top \otimes A \Pi(C \otimes D^\top)] \operatorname{vec}(X) = \operatorname{vec}(E)$

 $\blacktriangle = * : (B^{\top} \otimes A) \operatorname{vec}(X) - \Pi(C \otimes D^{\top}) \operatorname{vec}(\overline{X}) = \operatorname{vec}(E)$

$$\operatorname{vec}(AXB - CX^{\blacktriangle}D) = \operatorname{vec}(E)$$
 leads to

- ► $\blacktriangle = \top$: $[B^{\top} \otimes A \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$ Linear over $\mathbb{F} = \mathbb{C}$. \mathbb{R}
- $\blacktriangleright \quad \boxed{\blacktriangle = *} : (B^{\top} \otimes A) \operatorname{vec}(X) \Pi(C \otimes D^{\top}) \operatorname{vec}(\overline{X}) = \operatorname{vec}(E)$

$$\operatorname{vec}(AXB - CX^{\blacktriangle}D) = \operatorname{vec}(E)$$
 leads to

- $\blacktriangleright \quad \boxed{\blacktriangle = 1} : \left[B^{\top} \otimes A (C \otimes D^{\top}) \right] \operatorname{vec}(X) = \operatorname{vec}(E)$
- ► $\blacktriangle = \top$: $[B^{\top} \otimes A \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$ Linear over $\mathbb{F} = \mathbb{C}, \mathbb{R} \checkmark$
- $\blacktriangleright \quad \boxed{\blacktriangle = *} : (B^{\top} \otimes A) \operatorname{vec}(X) \Pi(C \otimes D^{\top}) \operatorname{vec}(\overline{X}) = \operatorname{vec}(E)$

Not linear over $\mathbb C$

$$\operatorname{vec}(AXB - CX^{\blacktriangle}D) = \operatorname{vec}(E)$$
 leads to

- $\blacktriangle = 1 : [B^{\top} \otimes A (C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$
- - Linear over $\mathbb{F} = \mathbb{C}, \mathbb{R}$ \checkmark
- ► \blacktriangle = *: $(B^{\top} \otimes A) \operatorname{vec}(X) \Pi(C \otimes D^{\top}) \operatorname{vec}(\overline{X}) = \operatorname{vec}(E)$ Not linear over $\mathbb{C} \leadsto \operatorname{vec}(X) = [\operatorname{vec}(\operatorname{Re}X); \operatorname{vec}(\operatorname{Im}X)]$

$$\operatorname{vec}(AXB - CX^{\blacktriangle}D) = \operatorname{vec}(E)$$
 leads to

- $\blacktriangle = 1 : [B^{\top} \otimes A (C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$
- ► $\blacktriangle = \top$: $[B^{\top} \otimes A \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$ Linear over $\mathbb{F} = \mathbb{C}$. \mathbb{R}
- - Linear over $\mathbb{R} \checkmark \leadsto \text{vec}(X) = [\text{vec}(\text{Re} X); \text{vec}(\text{Im} X)]$

$$\operatorname{vec}(AXB - CX^{\blacktriangle}D) = \operatorname{vec}(E)$$
 leads to

- $\blacktriangleright \quad \boxed{\blacktriangle = 1} : \ [B^{\top} \otimes A (C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$
- ► $\blacktriangle = \top$: $[B^{\top} \otimes A \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$ Linear over $\mathbb{F} = \mathbb{C}$. \mathbb{R}
- ► \blacktriangle = *: $(B^{\top} \otimes A) \operatorname{vec}(X) \Pi(C \otimes D^{\top}) \operatorname{vec}(\overline{X}) = \operatorname{vec}(E)$ Linear over $\mathbb{R} \checkmark \hookrightarrow \operatorname{vec}(X) = [\operatorname{vec}(\operatorname{Re}X); \operatorname{vec}(\operatorname{Im}X)]$

𝔻 AXB − CX $^{\blacktriangle}D = E$ can be written as a **linear system** MY = b:

$$Y = \begin{cases} \operatorname{vec}(X), & \text{if } A = \top, 1 \\ \left[\operatorname{vec}(\operatorname{Re}X); \operatorname{vec}(\operatorname{Im}X) \right], & \text{if } A = * \end{cases}$$

$$AXB - CX^{\blacktriangle}D = E \Leftrightarrow MY = b$$

$$M \in \left\{ \begin{array}{ll} \mathbb{F}^{n^2 \times n^2}, & \text{if } \mathbf{A} = 1, \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \mathbf{A} = * \end{array} \right.$$

$$AXB - CX^{\blacktriangle}D = E \Leftrightarrow MY = b$$

$$M \in \left\{ \begin{array}{ll} \mathbb{F}^{n^2 \times n^2}, & \text{if } \mathbf{\Lambda} = 1, \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \mathbf{\Lambda} = * \end{array} \right.$$

- © Too large!
- Not easy to handle with
- Combined with:
 - Appropriate permutation of rows/columns.
 - Periodic Schur decomposition ($\mathbb{F} = \mathbb{R}, \mathbb{C}$).
- © It will be useful!!

$$AXB - CX^{\blacktriangle}D = E \Leftrightarrow MY = b$$

$$M \in \left\{ \begin{array}{ll} \mathbb{F}^{n^2 \times n^2}, & \text{if } \mathbf{A} = 1, \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \mathbf{A} = * \end{array} \right.$$

- © Too large!
- © Not easy to handle with

Combined with:

- Appropriate permutation of rows/columns.
- Periodic Schur decomposition ($\mathbb{F} = \mathbb{R}, \mathbb{C}$).
- It will be useful!!

$$AXB - CX^{\blacktriangle}D = E \Leftrightarrow MY = b$$

$$M \in \left\{ \begin{array}{ll} \mathbb{F}^{n^2 \times n^2}, & \text{if } \mathbf{\Lambda} = 1, \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \mathbf{\Lambda} = * \end{array} \right.$$

- © Too large!
- © Not easy to handle with

Combined with:

- Appropriate permutation of rows/columns.
- Periodic Schur decomposition ($\mathbb{F} = \mathbb{R}, \mathbb{C}$).
- It will be useful!!

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = E_i \Leftrightarrow MY = b$$

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = E_i \Leftrightarrow MY = b$$

▶ Unique solution for any $b \Rightarrow M$ square.

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = E_i \Leftrightarrow MY = b$$

- ▶ Unique solution for any $b \Rightarrow M$ square.
- ▶ If *M* is square:

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = E_i \Leftrightarrow MY = b$$

- ▶ Unique solution for any $b \Rightarrow M$ square.
- ▶ If *M* is square:

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = E_i$$
 has a unique solution \updownarrow

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = 0 \text{ has a unique solution}$$

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = E_i \Leftrightarrow MY = b$$

- ▶ Unique solution for any $b \Rightarrow M$ square.
- ▶ If *M* is square:

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = E_i$$
 has a unique solution \bigoplus

$$A_i X_{j_i} B_i - C_i X_{k_i}^{\blacktriangle} D_i = 0 \text{ has a unique solution}$$

We only need to look at the homogeneous equation!

Related work

- Systems of generalized Sylvester equations:
 - Uniqueness (periodic systems): [Byers-Rhee'95]
 - Consistency, uniqueness (structured) coefficients/solutions/equations, matrices over other sets, ...): [Wang-Sun-Li'02], [Lee-Vu'12], [He-etal'16], ...
- Systems of coupled generalized Sylvester and *-Sylvester equations:
 - Iterative methods (structured coefficients and solution): [Dehghan-Hajarian'11], [Song-Chen-Zhao'11], [Wu-etal'11], [Wu-etal'11], [Beik-etal'13], [Song-etal'14], ...
 - Consistency: [Dmytryshyn-Kågström'16]
 - Uniqueness: ???

Related work

- Systems of generalized Sylvester equations:
 - Uniqueness (periodic systems): [Byers-Rhee'95]
 - Consistency, uniqueness (structured) coefficients/solutions/equations, matrices over other sets, ...): [Wang-Sun-Li'02], [Lee-Vu'12], [He-etal'16], ...
- Systems of coupled generalized Sylvester and *-Sylvester equations:
 - Iterative methods (structured coefficients and solution): [Dehghan-Hajarian'11], [Song-Chen-Zhao'11], [Wu-etal'11], [Wu-etal'11], [Beik-etal'13], [Song-etal'14], ...
 - Consistency: [Dmytryshyn-Kågström'16]
 - Uniqueness: This talk

Related work

- Systems of generalized Sylvester equations:
 - Uniqueness (periodic systems): [Byers-Rhee'95]
 - Consistency, uniqueness (structured) coefficients/solutions/equations, matrices over other sets, ...): [Wang-Sun-Li'02], [Lee-Vu'12], [He-etal'16], ...
- Systems of coupled generalized Sylvester and *-Sylvester equations:
 - Iterative methods (structured coefficients and solution): [Dehghan-Hajarian'11], [Song-Chen-Zhao'11], [Wu-etal'11], [Wu-etal'11], [Beik-etal'13], [Song-etal'14], ...
 - Consistency: [Dmytryshyn-Kågström'16]

Uniqueness: This talk

Motivation: the case r = 1

Theorem [Chu'87]

AXB - CXD = 0 has only the trivial solution iff $A - \lambda C$ and $D - \lambda B$ are regular and have disjoint spectra.

Theorem [DT-lannazo'16]

 $AXB - CX^*D = 0$ has only the trivial solution iff

$$\mathscr{Q}(\lambda) = \left[\begin{array}{cc} \lambda D^{\star} & B^{\star} \\ -A & \lambda C \end{array} \right]$$

is regular and

$$\star = *$$
: $\lambda_i \overline{\lambda}_i \neq 1$ (λ_i, λ_i e-vals of \mathcal{Q}).

$$\star = \top$$
: $\lambda_i \lambda_j \neq 1$ ($\lambda_i, \lambda_j \neq \pm 1$ e-vals of \mathscr{Q}) and $\lambda = \pm 1$ have multiplicity ≤ 1 .

Outline

Reduction to periodic systems

$$A_iX_jB_i-C_iX_k^{\blacktriangle}D_i=E_i, \qquad i,j,k$$

- r (matrix) equations and s (matrix) unknowns.
- ▶ The unknowns X_i, X_k can be **equal** or **different**.
- **▶ △** = 1.*
- ightharpoonup M square $\Rightarrow r = s$

$$A_i X_j B_i - C_i X_k^{\wedge} D_i = E_i, \quad i, j, k$$

- r (matrix) equations and s (matrix) unknowns.
- ▶ The unknowns X_i, X_k can be **equal** or **different**.
- **▶ △** = 1.*
- ightharpoonup M square $\Rightarrow r = s$

$$A_i X_j B_i - C_i X_k^{\wedge} D_i = E_i, \quad i, j, k$$

- r (matrix) equations and s (matrix) unknowns.
- ▶ The unknowns X_i, X_k can be **equal** or **different**.
- $\blacktriangle = 1, \star \quad (\star = * \text{ or } \top, \text{ but not both } * !!)$
- ightharpoonup M square $\Rightarrow r = s$

$$A_i X_j B_i - C_i X_k^{\wedge} D_i = E_i, \quad i, j, k$$

- r (matrix) equations and s (matrix) unknowns.
- ▶ The unknowns X_i, X_k can be **equal** or **different**.
- $\blacktriangle = 1, \star \quad (\star = * \text{ or } \top, \text{ but not both } * !!)$
- ightharpoonup M square $\Rightarrow r = s$

Irreducible systems

S: a system of (matrix) equations. Then

$$\begin{split} \mathbb{S} &= \mathbb{S}_1 \cup \mathbb{S}_2 \cup \dots \cup \mathbb{S}_\ell \\ \mathbb{S}_1, \dots, \mathbb{S}_\ell & \text{irreducible} \end{split}$$

Irreducible systems

S: a system of (matrix) equations. Then

$$\begin{array}{c} \mathbb{S} = \mathbb{S}_1 \cup \mathbb{S}_2 \cup \cdots \cup \mathbb{S}_\ell \\ \mathbb{S}_1, \ldots, \mathbb{S}_\ell & \text{irreducible} \end{array}$$

- \triangleright S has a unique solution iff S_i has a unique solution, for all $i=1,\ldots,\ell$.
- ▶ If S has a unique solution, then S_i has the same number of equations and unknowns.

Irreducible systems

S: a system of (matrix) equations. Then

- \triangleright S has a unique solution iff S_i has a unique solution, for all $i=1,\ldots,\ell$.
- ▶ If \mathbb{S} has a unique solution, then \mathbb{S}_i has the same number of equations and unknowns.

We can focus on **irreducible systems**.

All unknowns appear exactly twice

If some X_j appears just once in $\mathbb S$ (with unique solution), say in $A_jX_jB_j+C_jX_k^{\blacktriangle}D_j=0$, then

- $ightharpoonup A_i, B_i$ are invertible.
- ▶ \mathbb{S} is equivalent to: $\begin{cases} X_j = -A_j^{-1} C_j X_k^{\blacktriangle} D_j B_j^{-1} \\ \mathbb{S}_{r-1} \end{cases}$
- ▶ \mathbb{S}_{r-1} irreducible with r-1 equations in the r-1 unknowns $X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_r$

All unknowns appear exactly twice

If some X_j appears just once in $\mathbb S$ (with unique solution), say in $A_i X_i B_j + C_i X_k^{\blacktriangle} D_j = 0$, then

- $ightharpoonup A_i, B_i$ are invertible.
- ▶ \mathbb{S} is equivalent to: $\begin{cases} X_j = -A_j^{-1} C_j X_k^{\blacktriangle} D_j B_j^{-1} \\ \mathbb{S}_{r-1} \end{cases}$
- ▶ \mathbb{S}_{r-1} irreducible with r-1 equations in the r-1 unknowns $X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_r$

We can **remove** the equations corresponding to unknowns appearing just once.

All unknowns appear exactly twice

If some X_i appears just once in \mathbb{S} (with unique solution), say in $A_i X_i B_i + C_i X_k^{\blacktriangle} D_i = 0$, then

- $ightharpoonup A_i, B_i$ are invertible.
- ▶ \mathbb{S} is equivalent to: $\begin{cases} X_j = -A_j^{-1} C_j X_k^{\blacktriangle} D_j B_j^{-1} \\ \mathbb{S}_{r-1} \end{cases}$
- $ightharpoonup
 vert_{r-1}$ irreducible with r-1 equations in the r-1 unknowns $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_r$

We can **remove** the equations corresponding to unknowns appearing just once.

In the new system, all unknowns appear exactly twice.

Reduction to a periodic system with at most one *

Given the irreducible system

$$A_i X_i B_i + C_i X_k^{\wedge} D_i = E_i, \qquad i, j, k, \qquad {\wedge} = 1, *$$

with each unknown appearing exactly twice.

Reduction to a periodic system with at most one *

Given the irreducible system

$$A_i X_j B_i + C_i X_k^{\wedge} D_i = E_i, \qquad i, j, k, \qquad = 1, \star$$

with each unknown appearing exactly twice.

There is an equivalent system (periodic)

$$\begin{array}{lcl} \widehat{A}_{i}X_{i}\widehat{B}_{i}+\widehat{C}_{i}X_{i+1}\widehat{D}_{i} & = & \widehat{E}_{i}, \quad i=1,\ldots,r-1, \\ \widehat{A}_{r}X_{r}\widehat{B}_{r}+\widehat{C}_{r}X_{1}^{\blacktriangle}\widehat{D}_{r} & = & \widehat{E}_{r}. \end{array}$$

(Applying \star , and changing variables $X_i \mapsto X_i^{\star}$, if necessary)

Reduction to a periodic system with at most one *

Given the irreducible system

$$A_i X_j B_i + C_i X_k^{\wedge} D_i = E_i, \qquad i, j, k, \qquad = 1, \star$$

with each unknown appearing exactly twice.

There is an equivalent system (periodic)

$$A_i X_i B_i + C_i X_{i+1} D_i = E_i, i = 1, ..., r-1, A_r X_r B_r + C_r X_1^{\wedge} D_r = E_r.$$

Outline

A characterization using formal products

The periodic Schur decomposition

Theorem [Bojanzyck-Golub-VanDooren'92]

Given $M_k, N_k \in \mathbb{C}^{n \times n}$, k = 1, ..., r. There are Q_k, Z_k unitary, for k = 1, ..., r, such that

$$Q_k^* M_k Z_k = T_k$$
, $Q_k^* N_k Z_{k+1} = R_k$, (Periodic Schur decomposition)

where T_k , R_k are upper triangular and $Z_{r+1} = Z_1$.

$$\Pi = N_r^{-1} M_r N_{r-1}^{-1} M_{r-1} \cdots N_1^{-1} M_1$$

through the periodic Schur decomposition of M_i , N_i ,

$$Q_k^* M_k Z_k = T_k, \qquad Q_k^* N_k Z_{k+1} = R_k,$$

we define its eigenvalues

$$\lambda_i = \frac{\prod_{k=1}^r (T_k)_{ii}}{\prod_{k=1}^r (R_k)_{ii}}, \quad i = 1, 2, \dots, n.$$

$$\Pi = N_r^{-1} M_r N_{r-1}^{-1} M_{r-1} \cdots N_1^{-1} M_1$$

through the periodic Schur decomposition of M_i , N_i ,

$$Q_k^* M_k Z_k = T_k, \qquad Q_k^* N_k Z_{k+1} = R_k,$$

we define its eigenvalues

$$\lambda_i = \frac{\prod_{k=1}^r (T_k)_{ii}}{\prod_{k=1}^r (R_k)_{ii}}, \quad i = 1, 2, \dots, n.$$

$$(Z_1^{-1}\Pi Z_1 = R_r^{-1} T_r R_{r-1}^{-1} T_{r-1} \cdots R_1^{-1} T_1)$$

$$\Pi = N_r^{-1} M_r N_{r-1}^{-1} M_{r-1} \cdots N_1^{-1} M_1$$

through the periodic Schur decomposition of M_i , N_i ,

$$Q_k^* M_k Z_k = T_k, \qquad Q_k^* N_k Z_{k+1} = R_k,$$

we define its eigenvalues

$$\lambda_i = \frac{\prod_{k=1}^r (T_k)_{ii}}{\prod_{k=1}^r (R_k)_{ii}}, \quad i = 1, 2, \dots, n.$$

Definition: Π is singular if: $\prod_{k=1}^{r} (T_k)_{ii} = \prod_{k=1}^{r} (R_k)_{ii} = 0$, for some $i \in \{1, 2, ..., n\}$ (and regular otherwise).

$$\Pi = N_r^{-1} M_r N_{r-1}^{-1} M_{r-1} \cdots N_1^{-1} M_1$$

through the periodic Schur decomposition of M_i , N_i ,

$$Q_k^* M_k Z_k = T_k, \qquad Q_k^* N_k Z_{k+1} = R_k,$$

we define its eigenvalues

$$\lambda_i = \frac{\prod_{k=1}^r (T_k)_{ii}}{\prod_{k=1}^r (R_k)_{ii}}, \quad i = 1, 2, \dots, n.$$

Definition: Π is singular if: $\prod_{k=1}^{r} (T_k)_{ii} = \prod_{k=1}^{r} (R_k)_{ii} = 0$, for some $i \in \{1, 2, \dots, n\}$ (and regular otherwise).

► Considered by several authors: [Bojanzyck-Golub-VanDooren'92], [Benner-Mehrmann-Xu'02], [Granat-Kågström'06a-b], [Granat-Kågström-Kressner'07a-b], ...

Main result (first formulation). The case $\triangle = 1$

Theorem

The system

$$\left\{ \begin{array}{ll} A_k X_k B_k - C_k X_{k+1} D_k = 0, & k = 1, \dots, r-1, \\ A_r X_r B_r - C_r X_1 D_r = 0 \end{array} \right.$$

has only the trivial solution iff

$$C_r^{-1}A_rC_{r-1}^{-1}A_{r-1}\cdots C_1^{-1}A_1$$
 and $D_rB_r^{-1}D_{r-1}^{-1}B_{r-1}^{-1}\cdots D_1B_1^{-1}$

are regular and have no common e-vals.

Main result (first formulation). The case $\blacktriangle = \star$

Theorem

The system

$$\left\{ \begin{array}{ll} A_k X_k B_k - C_k X_{k+1} D_k = 0, & \quad k = 1, \ldots, r-1, \\ A_r X_r B_r - C_r X_1^\star D_r = 0 \end{array} \right.$$

has only the trivial solution iff

$$\Pi = D_r^{-\star} B_r^{\star} D_{r-1}^{-\star} B_{r-1}^{\star} \cdots D_1^{-\star} B_1^{\star} C_r^{-1} A_r C_{r-1}^{-1} A_{r-1} \cdots C_1^{-1} A_1$$

is regular and

$$\star = *$$
: $\lambda_i \overline{\lambda}_j \neq 1$ (λ_i, λ_j e-vals of Π).

 $\boxed{\star = \top}$: $\lambda_i \lambda_j \neq 1$ ($\lambda_i, \lambda_j \neq -1$ e-vals of Π), and $\lambda = -1$ has multiplicity < 1.

Main result (first formulation). The case $\blacktriangle = \star$

Theorem

The system

$$\left\{ \begin{array}{ll} A_k X_k B_k - C_k X_{k+1} D_k = 0, & \quad k=1,\ldots,r-1, \\ A_r X_r B_r - C_r X_1^\star D_r = 0 \end{array} \right.$$

has only the trivial solution iff

$$\Pi = D_r^{-*}B_r^*D_{r-1}^{-*}B_{r-1}^*\cdots D_1^{-*}B_1^*C_r^{-1}A_rC_{r-1}^{-1}A_{r-1}\cdots C_1^{-1}A_1$$

is regular and

$$\star = *$$
: $\lambda_i \overline{\lambda}_j \neq 1$ (λ_i, λ_j e-vals of Π).

 $\boxed{\star = \top}$: $\lambda_i \lambda_j \neq 1$ ($\lambda_i, \lambda_j \neq -1$ e-vals of Π), and $\lambda = -1$ has multiplicity < 1.

Outline

The matrix pencil approach

The case $\blacktriangle = \star$

Theorem

The system $\left\{ \begin{array}{ll} A_k X_k B_k - C_k X_{k+1} D_k = 0, & k = 1, \dots, r-1, \\ A_r X_r B_r - C_r X_1^* D_r = 0. & \end{array} \right.$ has only the trivial solution iff the matrix pencil

is regular and

$$\star = *$$
: $\lambda_i \overline{\lambda}_j \neq 1$ (λ_i, λ_j e-vals of \mathscr{Q}).

 $\star = \top$: $\lambda_i \lambda_j \neq 1$ ($\lambda_i \neq \lambda_j$ e-vals of \mathcal{Q}) and $\lambda^{2r} \neq -1$ for any λ e-val of \mathcal{Q} .

The case $\blacktriangle = 1$

Theorem [Chu'87]

The equation AXB - CXD = 0 has only the trivial solution iff the pencils $A - \lambda C$ and $D - \lambda B$ are regular and have no common e-vals.

Theorem [Byers-Rhee'95]

For r > 1, the system

$$\left\{ \begin{array}{l} A_k X_k B_k - C_k X_{k+1} D_k = 0, \qquad k = 1, \dots, r-1, \\ A_r X_r B_r - C_r X_1 D_r = 0 \end{array} \right.$$

has only the trivial solution iff the matrix pencils

$$\begin{bmatrix} \lambda A_1 & C_1 & & & \\ & \lambda A_2 & \ddots & & \\ & & \ddots & C_{r-1} \\ C_r & & \lambda A_r \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \lambda D_1 & B_2 & & & \\ & \lambda D_2 & \ddots & & \\ & & \ddots & B_r \\ B_1 & & \lambda D_r \end{bmatrix}$$

are regular and have no common e-vals.

Outline

Main ideas

Two basic ideas ($\blacktriangle = 1, \top$)

Main procedure:

- 1. Get an equivalent system with A_i , C_i upper triangular and B_i , D_i lower triangular (using the periodic Schur).
- 2. Rearrange the equations / unknowns of the big linear system to get a **block-diagonal** matrix.

Two basic ideas ($\blacktriangle = 1, \top$)

Main procedure:

- 1. Get an equivalent system with A_i , C_i upper triangular and B_i , D_i lower triangular (using the periodic Schur).
- 2. Rearrange the equations / unknowns of the big linear system to get a **block-diagonal** matrix. How???

Two basic ideas ($\blacktriangle = 1, \top$)

Main procedure:

- 1. Get an equivalent system with A_i , C_i upper triangular and B_i , D_i lower triangular (using the periodic Schur).
- 2. Rearrange the equations / unknowns of the big linear system to get a **block-diagonal** matrix.

Choose an appropriate ordering!!

An equivalent system with triangular coeffs. ($\triangle = 1$)

$$Q_k^* A_k Z_k = \widehat{A}_k, \quad Q_k^* C_k Z_{k+1} = \widehat{C}_k,$$

 $\widehat{A}_k, \widehat{C}_k$ upper triangular \leadsto **periodic Schur form** of $C_r^{-1}A_rC_{r-1}^{-1}A_{r-1}\cdots C_1^{-1}A_1$

$$\widehat{Q}_k^* B_k^* \widehat{Z}_k = \widehat{B}_k^*, \quad \widehat{Q}_k^* D_k^* \widehat{Z}_{k+1} = \widehat{D}_k^*,$$

 $\widehat{B}_k^*, \widehat{D}_k^*$ upper triangular \leadsto **periodic Schur form** of $D_r^* B_r^* D_{r-1}^{-*} B_{r-1}^* \cdots D_1^{-*} B_1^*$

Then

$$A_k X_k B_k - C_k X_{k+1} D_k = E_k \qquad (k = 1, \dots, r)$$

is equivalent to

$$\widehat{A}_k\widehat{X}_k\widehat{B}_k - \widehat{C}_k\widehat{X}_{k+1}\widehat{D}_k = Q_k^*A_kZ_k\widehat{X}_k\widehat{Z}_k^*B_k\widehat{Q}_k - Q_k^*C_kZ_{k+1}\widehat{X}_{k+1}\widehat{Z}_{k+1}^*D_k\widehat{Q}_k$$

An equivalent system with triangular coeffs. (= 1)

$$Q_k^* A_k Z_k = \widehat{A}_k, \quad Q_k^* C_k Z_{k+1} = \widehat{C}_k,$$

 $\widehat{A}_k, \widehat{C}_k$ upper triangular \leadsto **periodic Schur form** of $C_r^{-1}A_rC_{r-1}^{-1}A_{r-1}\cdots C_1^{-1}A_1$

$$\widehat{Q}_k^* B_k^* \widehat{Z}_k = \widehat{B}_k^*, \quad \widehat{Q}_k^* D_k^* \widehat{Z}_{k+1} = \widehat{D}_k^*,$$

 $\widehat{B}_k^*,\widehat{D}_k^*$ upper triangular \leadsto **periodic Schur form** of $D_r^{-*}B_r^*D_{r-1}^{-*}B_{r-1}^*\cdots D_1^{-*}B_1^*$

Then

$$A_k X_k B_k - C_k X_{k+1} D_k = E_k \qquad (k = 1, \dots, r)$$

is equivalent to $(Z_k \widehat{X}_k \widehat{Z}_k^* = X_k)$

$$\begin{split} \widehat{A}_{k}\widehat{X}_{k}\widehat{B}_{k} - \widehat{C}_{k}\widehat{X}_{k+1}\widehat{D}_{k} &= Q_{k}^{*}A_{k}Z_{k}\widehat{X}_{k}\widehat{Z}_{k}^{*}B_{k}\widehat{Q}_{k} - Q_{k}^{*}C_{k}Z_{k+1}\widehat{X}_{k+1}\widehat{Z}_{k+1}^{*}D_{k}\widehat{Q}_{k} \\ &= Q_{k}^{*}(A_{k}X_{k}B_{k} - C_{k}X_{k+1}D_{k})\widehat{Q}_{k} \\ &= Q_{k}^{*}E_{k}\widehat{Q}_{k} = \widehat{E}_{k}. \end{split}$$

An equivalent system with triangular coeffs. ($\blacktriangle = \top$)

$$\begin{aligned} Q_k^* A_k Z_k &= \widehat{A}_k, & Q_k^* C_k Z_{k+1} &= \widehat{C}_k, & Z_{2r+1} &= Z_1, \\ Q_{r+k}^* B_k^\top Z_{r+k} &= \widehat{B}_k^\top, & Q_{r+k}^* D_k^\top Z_{r+k+1} &= \widehat{D}_k^\top, & k &= 1, 2, \dots, r, \end{aligned}$$

 $(\widehat{A}_k,\widehat{C}_k,\widehat{B}_k^*,\widehat{D}_k^*)$ upper triangular) \leadsto periodic Schur form of

$$D_r^{-\top}B_r^{\top}D_{r-1}^{-\top}B_{r-1}^{\top}\cdots D_1^{-\top}B_1^{\top}C_r^{-1}A_rC_{r-1}^{-1}A_{r-1}\cdots C_1^{-1}A_1.$$

Then

$$\begin{array}{ll} A_k X_k B_k - C_k X_{k+1} D_k = E_k & (k = 1, \dots, r-1) \\ A_r X_r B_r - C_r X_1^\top D_r = E_r \end{array}$$

is equivalent to

$$\widehat{A}_k \widehat{X}_k \widehat{B}_k - \widehat{C}_k \widehat{X}_{k+1} \widehat{D}_k = Q_k^* A_k Z_k \widehat{X}_k Z_{r+k}^\top B_k \overline{Q}_{r+k} - Q_k^* C_k Z_{k+1} \widehat{X}_{k+1} Z_{r+k+1}^\top D_k \overline{Q}_{r+k}$$

$$\widehat{A}_r \widehat{X}_r \widehat{B}_r - \widehat{C}_r \widehat{X}_1^\top \widehat{D}_r = Q_r^* A_r Z_r \widehat{X}_r Z_{2r}^\top B_r \overline{Q}_{2r} - Q_r^* C_r Z_{r+1} \widehat{X}_1^\top Z_1^\top D_r \overline{Q}_{2r}$$

An equivalent system with triangular coeffs. ($\blacktriangle = \top$)

$$Q_k^* A_k Z_k = \widehat{A}_k, \qquad Q_k^* C_k Z_{k+1} = \widehat{C}_k, \qquad Z_{2r+1} = Z_1, \ Q_{r+k}^{\top} B_k^{\top} Z_{r+k} = \widehat{B}_k^{\top}, \qquad Q_{r+k}^{*} D_k^{\top} Z_{r+k+1} = \widehat{D}_k^{\top}, \qquad k = 1, 2, \dots, r,$$

 $(\widehat{A}_k, \widehat{C}_k, \widehat{B}_k^*, \widehat{D}_k^*)$ upper triangular) \rightsquigarrow periodic Schur form of

$$D_r^{-\top} B_r^{\top} D_{r-1}^{-\top} B_{r-1}^{\top} \cdots D_1^{-\top} B_1^{\top} C_r^{-1} A_r C_{r-1}^{-1} A_{r-1} \cdots C_1^{-1} A_1$$

Then

$$A_k X_k B_k - C_k X_{k+1} D_k = E_k \quad (k = 1, ..., r-1)$$

 $A_r X_r B_r - C_r X_1^{\top} D_r = E_r$

is equivalent to $(Z_k \widehat{X}_k Z_{r+k}^\top = X_k)$

$$\widehat{A}_{k}\widehat{X}_{k}\widehat{B}_{k} - \widehat{C}_{k}\widehat{X}_{k+1}\widehat{D}_{k} = Q_{k}^{*}A_{k}Z_{k}\widehat{X}_{k}Z_{r+k}^{\top}B_{k}\overline{Q}_{r+k} - Q_{k}^{*}C_{k}Z_{k+1}\widehat{X}_{k+1}Z_{r+k+1}^{\top}D_{k}\overline{Q}_{r+k}
= Q_{k}^{*}(A_{k}X_{k}B_{k} - C_{k}X_{k+1}D_{k})\overline{Q}_{r+k}
= Q_{k}^{*}E_{k}\overline{Q}_{r+k} = \widehat{E}_{k},$$

$$= Q_{k}E_{k}Q_{r+k} = E_{k},$$

$$\widehat{A}_{r}\widehat{X}_{r}\widehat{B}_{r} - \widehat{C}_{r}\widehat{X}_{1}^{\top}\widehat{D}_{r} = Q_{r}^{*}A_{r}Z_{r}\widehat{X}_{r}Z_{2r}^{\top}B_{r}\overline{Q}_{2r} - Q_{r}^{*}C_{r}Z_{r+1}\widehat{X}_{1}^{\top}Z_{1}^{\top}D_{r}\overline{Q}_{2r}$$

$$= Q_{r}^{*}(A_{r}X_{r}B_{r} - C_{r}X_{1}^{\top}D_{r})\overline{Q}_{2r}$$

$$= Q_{r}^{*}E_{r}\overline{Q}_{2r} = \widehat{E}_{r}.$$

Choosing an appropriate ordering

If \leq is an order on both $\mathscr U$ and $\mathscr E$ satisfying:

$$(i,j,k) \le (i',j',k')$$
 whenever $i \le i'$ and $j \le j'$,

then:

M is block-diagonal with $r \times r$ and $(2r) \times (2r)$ diagonal blocks.

- $ightharpoonup r \times r$ blocks: Correspond to $(X_{ii})_1, \ldots, (X_{ii})_r$.
- ▶ $(2r) \times (2r)$ blocks: Correspond to $(X_{ij})_1, \ldots, (X_{ij})_r, i \neq j$.

Choosing an appropriate ordering

$$\begin{array}{c|c} \hline (i,j,k) \\ \hline \{ (i,j) \text{ entry of } X_k & \rightsquigarrow \mathscr{U} \text{ (unknowns)} \\ e_i^\top (A_k X_k B_k - C_k X_{k+1} D_k) e_j = (E_k)_{ij} & \rightsquigarrow \mathscr{E} \text{ (equations)} \end{array}$$

If \leq is an order on both $\mathscr U$ and $\mathscr E$ satisfying:

$$(i,j,k) \le (i',j',k')$$
 whenever $i \le i'$ and $j \le j'$,

then:

M is block-diagonal with $r \times r$ and $(2r) \times (2r)$ diagonal blocks.

- $ightharpoonup r \times r$ blocks: Correspond to $(X_{ii})_1, \ldots, (X_{ii})_r$.
- ▶ $(2r) \times (2r)$ blocks: Correspond to $(X_{ij})_1, \ldots, (X_{ij})_r, i \neq j$.

Choosing an appropriate ordering

$$\begin{array}{|c|c|} \hline (i,j,k) \\ \hline (i,j) \text{ entry of } X_k & \rightsquigarrow \mathscr{U} \text{ (unknowns)} \\ \hline (e_i^\top (A_k X_k B_k - C_k X_{k+1} D_k) e_j = (E_k)_{ij} & \rightsquigarrow \mathscr{E} \text{ (equations)} \\ \end{array}$$

If \leq is an order on both $\mathscr U$ and $\mathscr E$ satisfying:

$$(i,j,k) \le (i',j',k')$$
 whenever $i \le i'$ and $j \le j'$,

then:

M is block-diagonal with $r \times r$ and $(2r) \times (2r)$ diagonal blocks.

- ▶ $r \times r$ blocks: Correspond to $(X_{ii})_1, \ldots, (X_{ii})_r$.
- ▶ $(2r) \times (2r)$ blocks: Correspond to $(X_{ij})_1, \ldots, (X_{ij})_r, i \neq j$.

Diagonal blocks: $\triangle = 1$

With such ordering, the diagonal blocks are:

and

$$M_{ij} := \begin{bmatrix} (A_1)_{ii}(B_1)_{jj} & -(C_1)_{ii}(D_1)_{jj} & & & & & & & \\ & & \ddots & & \ddots & & & & \\ & & & (A_{r-1})_{ii}(B_{r-1})_{jj} & -(C_{r-1})_{ii}(D_{r-1})_{jj} & & & & \\ -(C_r)_{ii}(D_r)_{jj} & & & & & & & \\ -(C_r)_{ii}(D_r)_{jj} & & & & & & \\ \end{bmatrix}$$

Diagonal blocks: $\blacktriangle = 1$

With such ordering, the diagonal blocks are:

 $\det M_{ii} = \prod_{k=1}^{r} (A_k)_{ii} (B_k)_{ii} - \prod_{k=1}^{r} (C_k)_{ii} (D_k)_{ii}$

and

$$M_{ij} := \begin{bmatrix} (A_1)_{ii}(B_1)_{jj} & -(C_1)_{ii}(D_1)_{jj} & & & & & & & \\ & & \ddots & & \ddots & & & & \\ & & & \ddots & & \ddots & & & \\ & & & (A_{r-1})_{ii}(B_{r-1})_{jj} & -(C_{r-1})_{ii}(D_{r-1})_{jj} & & & & \\ -(C_r)_{ii}(D_r)_{jj} & & & & & (A_r)_{ii}(B_r)_{jj} \end{bmatrix}$$

$$\det M_{ij} = \prod_{k=1}^{r} (A_k)_{ii} (B_k)_{jj} - \prod_{k=1}^{r} (C_k)_{ii} (D_k)_{jj}$$

Diagonal blocks: $\blacktriangle = \top$

With these orderings, the diagonal blocks are:

$$M_{ij} := \begin{bmatrix} \mathscr{B}_{ij} & -(C_r)_{ii}(D_r)_{jj}e_re_1^\top \\ -(C_1)_{jj}(D_1)_{ii}e_re_1^\top & \mathscr{B}_{ji} \end{bmatrix},$$

where

$$(M_{ii} \text{ as for } \blacktriangle = 1)$$

Diagonal blocks: $\blacktriangle = \top$

With these orderings, the diagonal blocks are:

$$\textit{M}_{ij} := \begin{bmatrix} \mathscr{B}_{ij} & -(\textit{C}_r)_{ii}(\textit{D}_r)_{jj}\textit{e}_r\textit{e}_1^\top \\ -(\textit{C}_1)_{jj}(\textit{D}_1)_{ii}\textit{e}_r\textit{e}_1^\top & \mathscr{B}_{ji} \end{bmatrix},$$

where

$$\det M_{ij} = \prod_{k=1}^{r} (A_k)_{ii} (B_k)_{ii} (A_k)_{jj} (B_k)_{jj} - \prod_{k=1}^{r} (C_k)_{ii} (D_k)_{ii} (C_k)_{jj} (D_k)_{jj}$$

$$(M_{ii} \text{ as for } \blacktriangle = 1)$$

ucles Universidad Carlos III de Macilid

The pencil approach: idea of the proof

1.
$$\det \mathcal{Q}(\lambda) = \prod_{i=1}^n \left(\lambda^{2r} \prod_{k=1}^r (A_k)_{ii} (B_k^\star)_{ii} + \prod_{k=1}^r (C_k)_{ii} (D_k^\star)_{ii}\right)$$

2.
$$\Lambda(\mathcal{Q}) = \sqrt[2r]{\mathscr{S}}$$
, where

$$\mathscr{S} := \left\{ -\prod_{k=1}^r \frac{(C_k)_{ii}(D_k^{\star})_{ii}}{(A_k)_{ii}(B_k^{\star})_{ii}} , \quad i=1,\ldots,n \right\}.$$

The case ▲ = * Lemma

The system

$$\begin{cases} A_k X_k B_k - C_k X_{k+1} D_k = 0, & k = 1, ..., r-1, \\ A_r X_r B_r - C_r X_1^* D_r = 0. \end{cases}$$
 (1)

has a unique solution if and only if the system

$$\begin{cases}
A_{k}X_{k}B_{k} - C_{k}X_{k+1}D_{k} = 0, & k = 1, ..., r-1, \\
A_{r}X_{r}B_{r} - C_{r}X_{r+1}D_{r} = 0, & k = 1, ..., r-1, \\
B_{k}^{*}X_{r+k}A_{k}^{*} - D_{k}^{*}X_{r+k+1}C_{k}^{*} = 0, & k = 1, ..., r-1, \\
B_{r}^{*}X_{2r}A_{r}^{*} - D_{r}^{*}X_{1}C_{r}^{*} = 0
\end{cases} (2)$$

has a unique solution.

The case $\blacktriangle = *$ Lemma

The system

$$\begin{cases} A_k X_k B_k - C_k X_{k+1} D_k = 0, & k = 1, ..., r-1, \\ A_r X_r B_r - C_r X_1^* D_r = 0. \end{cases}$$
 (1)

has a unique solution if and only if the system

$$\begin{cases}
A_k X_k B_k - C_k X_{k+1} D_k = 0, & k = 1, ..., r-1, \\
A_r X_r B_r - C_r X_{r+1} D_r = 0, \\
B_k^* X_{r+k} A_k^* - D_k^* X_{r+k+1} C_k^* = 0, & k = 1, ..., r-1, \\
B_r^* X_{2r} A_r^* - D_r^* X_1 C_r^* = 0
\end{cases} (2)$$

has a unique solution.

Proof $(X_1,...,X_r) \neq 0$ solution of $(1) \Rightarrow (X_1,...,X_r,X_1^*,...,X_r^*) \neq 0$ solution of (2).

$$(X_1,...,X_r,X_{r+1},...,X_{2r})$$
 nonzero solution of $(2) \Rightarrow (X_1 + X_{r+1}^*,...,X_r + X_{2r}^*)$ solution of (1). If $(X_1 + X_{r+1}^*,...,X_r + X_{2r}^*) = 0$, then $X_{r+i} = -X_i^*$, for $i=1,...,N$ is a paragrap solution of (1).

 $i=1,\ldots,r$, and $\mathfrak{i}(X_1,\ldots,X_r)$ is a nonzero solution of (1). \square

The case ▲ = *

The system

$$\begin{cases} A_k X_k B_k - C_k X_{k+1} D_k = 0, & k = 1, ..., r-1, \\ A_r X_r B_r - C_r X_1^* D_r = 0. \end{cases}$$
 (1)

has a unique solution if and only if the system

$$\begin{cases}
A_k X_k B_k - C_k X_{k+1} D_k = 0, & k = 1, ..., r - 1, \\
A_r X_r B_r - C_r X_{r+1} D_r = 0, & k = 1, ..., r - 1, \\
B_k^* X_{r+k} A_k^* - D_k^* X_{r+k+1} C_k^* = 0, & k = 1, ..., r - 1, \\
B_r^* X_{2r} A_r^* - D_r^* X_1 C_r^* = 0
\end{cases} (2)$$

has a unique solution.

Not true for \top instead of * !!!

Counterexample:
$$x_1 + x_1^{\top} = 2x_1 = 0$$
 vs $\begin{cases} z_1 + z_2 = 0 \\ z_1 + z_2 = 0 \end{cases}$

The results for $\blacktriangle = *$ follow from the ones for $\blacktriangle = 1$:

$$\begin{array}{c} A_k X_k B_k - C_k X_{k+1} D_k = 0, \\ A_r X_r B_r - C_r X_1^* D_r = 0 \end{array} \text{ unique sol.} \Leftrightarrow \begin{array}{c} A_k X_k B_k - C_k X_{k+1} D_k = 0, \\ A_r X_r B_r - C_r X_{r+1} D_r = 0, \\ B_k^* X_{r+k} A_k^* - D_k^* X_{r+k+1} C_k^* = 0, \\ B_r^* X_{2r} A_r^* - D_r^* X_1 C_r^* = 0 \end{array}$$

unique sol.

Applying the result for $\triangle = 1$, this is equivalent to:

$$\Pi_1 = D_r^{-*} B_r^* D_{r-1}^{-*} B_{r-1}^* \cdots D_1^{-*} B_1^* C_r^{-1} A_r C_{r-1}^{-1} A_{r-1} \cdots C_1^{-1} A_1$$

and

$$\Pi_2 = C_r^* A_r^{-*} C_{r-1}^* A_{r-1}^{-*} \cdots C_1^* A_1^{-*} D_r B_r^{-1} D_{r-1} B_{r-1}^{-1} \cdots D_1 B_1^{-1}$$

are regular and have no common eigenvalues

 \blacksquare e-vals of Π_1 : $\{\lambda_1, \lambda_2, \dots, \lambda_n\} \Rightarrow \underline{\text{e}}$ -vals of Π_2 : $\{(\overline{\lambda}_1)^{-1}, (\overline{\lambda}_2)^{-1}, \dots, (\overline{\lambda}_n)^{-1}\}$, so they are disjoint if and only if $\lambda_i \overline{\lambda}_i \neq 1$.

The results for $\blacktriangle = *$ follow from the ones for $\blacktriangle = 1$:

$$A_k X_k B_k - C_k X_{k+1} D_k = 0,$$

 $A_r X_r B_r - C_r X_1^* D_r = 0$

unique sol.

$$\Leftrightarrow \begin{array}{|c|c|} & A_k X_k B_k - C_k X_{k+1} D_k = 0, \\ & A_r X_r B_r - C_r X_{r+1} D_r = 0, \\ & B_k^* X_{r+k} A_k^* - D_k^* X_{r+k+1} C_k^* = 0, \\ & B_r^* X_{2r} A_r^* - D_r^* X_1 C_r^* = 0 \end{array}$$

unique sol.

Applying the result for $\triangle = 1$, this is equivalent to:

$$\Pi_1 = D_r^{-*} B_r^* D_{r-1}^{-*} B_{r-1}^* \cdots D_1^{-*} B_1^* C_r^{-1} A_r C_{r-1}^{-1} A_{r-1} \cdots C_1^{-1} A_1$$

and

$$\Pi_2 = C_r^* A_r^{-*} C_{r-1}^* A_{r-1}^{-*} \cdots C_1^* A_1^{-*} D_r B_r^{-1} D_{r-1} B_{r-1}^{-1} \cdots D_1 B_1^{-1}$$

are regular and have no common eigenvalues

e-vals of $\Pi_1: \{\lambda_1, \lambda_2, \dots, \lambda_n\} \Rightarrow \text{e-vals of } \Pi_2: \{(\overline{\lambda}_1)^{-1}, (\overline{\lambda}_2)^{-1}, \dots, (\overline{\lambda}_n)^{-1}\},$ so they are disjoint if and only if $\lambda_i \overline{\lambda}_i \neq 1$.

The results for $\blacktriangle = *$ follow from the ones for $\blacktriangle = 1$:

$$A_k X_k B_k - C_k X_{k+1} D_k = 0,$$

 $A_r X_r B_r - C_r X_1^* D_r = 0$

unique sol.

Applying the result for $\blacktriangle = 1$, this is equivalent to:

$$\Pi_1 = D_r^{-*} B_r^* D_{r-1}^{-*} B_{r-1}^* \cdots D_1^{-*} B_1^* C_r^{-1} A_r C_{r-1}^{-1} A_{r-1} \cdots C_1^{-1} A_1$$

and

$$\Pi_2 = C_r^* A_r^{-*} C_{r-1}^* A_{r-1}^{-*} \cdots C_1^* A_1^{-*} D_r B_r^{-1} D_{r-1} B_{r-1}^{-1} \cdots D_1 B_1^{-1}$$

are regular and have no common eigenvalues.

The results for $\blacktriangle = *$ follow from the ones for $\blacktriangle = 1$:

$$\begin{array}{c|c} \hline A_k X_k B_k - C_k X_{k+1} D_k = 0, \\ A_r X_r B_r - C_r X_1^* D_r = 0 \end{array} \text{ unique sol.} \Leftrightarrow \begin{array}{c|c} A_k X_k B_k - C_k X_{k+1} D_k = 0, \\ A_r X_r B_r - C_r X_{r+1} D_r = 0, \\ B_k^* X_{r+k} A_k^* - D_k^* X_{r+k+1} C_k^* = 0, \\ B_r^* X_{2r} A_r^* - D_r^* X_1 C_r^* = 0 \end{array}$$

unique sol.

Applying the result for $\triangle = 1$, this is equivalent to:

$$\Pi_1 = D_r^{-*} B_r^* D_{r-1}^{-*} B_{r-1}^* \cdots D_1^{-*} B_1^* C_r^{-1} A_r C_{r-1}^{-1} A_{r-1} \cdots C_1^{-1} A_1$$

and

$$\Pi_2 = C_r^* A_r^{-*} C_{r-1}^* A_{r-1}^{-*} \cdots C_1^* A_1^{-*} D_r B_r^{-1} D_{r-1} B_{r-1}^{-1} \cdots D_1 B_1^{-1}$$

are regular and have no common eigenvalues.

e-vals of Π_1 : $\{\lambda_1, \lambda_2, \dots, \lambda_n\} \Rightarrow \text{e-vals of } \Pi_2$: $\{(\overline{\lambda}_1)^{-1}, (\overline{\lambda}_2)^{-1}, \dots, (\overline{\lambda}_n)^{-1}\}$, so they are disjoint if and only if $\lambda_i \overline{\lambda}_i \neq 1$.

An $O(rn^3)$ algorithm

- ► Compute the periodic Schur decomposition $\rightsquigarrow O(rn^3)$
- Solve the block diagonal equations: O(r) (each) $\sim O(rn^2)$
- ► Compute the right-hand side: O(rn) (each) $\rightsquigarrow O(rn^3)$

An $O(rn^3)$ algorithm

- ► Compute the periodic Schur decomposition $\rightsquigarrow O(rn^3)$
- Solve the block diagonal equations: O(r) (each) $\sim O(rn^2)$
- ► Compute the right-hand side: O(rn) (each) $\rightsquigarrow O(rn^3)$

An $O(rn^3)$ algorithm

- ► Compute the periodic Schur decomposition $\rightsquigarrow O(rn^3)$
- Solve the block diagonal equations: O(r) (each) $\sim O(rn^2)$
- ► Compute the right-hand side: O(rn) (each) $\rightsquigarrow O(rn^3)$

Outline

Conclusions

Explicit characterization for periodic systems with at most one *.

- Explicit characterization for periodic systems with at most one *.
 - In terms of spectral properties of formal products.

- Explicit characterization for periodic systems with at most one *.
 - In terms of spectral properties of formal products.
 - In terms of spectral properties of a block-partitioned $(rn^2) \times (rn^2)$ matrix pencil.

- Explicit characterization for periodic systems with at most one *.
 - In terms of spectral properties of formal products.
 - In terms of spectral properties of a block-partitioned $(rn^2) \times (rn^2)$ matrix pencil.
- Leads to an O(rn³) algorithm.

- Explicit characterization for periodic systems with at most one *.
 - In terms of spectral properties of formal products.
 - In terms of spectral properties of a block-partitioned $(rn^2) \times (rn^2)$ matrix pencil.
- Leads to an O(m3) algorithm.
- FDT. B. lannazzo, F. Poloni, L. Robol.

 Norwingula i systems of generalized Sylvester equations, an islandid with
 - Numer. Linear Algebra Appl. 26 (2019) e2261 (29 pages