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Generalized Sylvester equations

AXB−CXD = E (generalized Sylvester)

AXB−CX ⋆D = E (generalized ⋆-Sylvester) ⋆=⊤,∗

Particular cases:

AX −XD = E (Sylvester)

AX −X ⋆D = E (⋆-Sylvester)

All Cn×n matrices

�We are interested in:

Systems of all previous equations (coupled):

AiXjBi −CiX▲k Di = Ei , i , j ,k ▲= 1,⋆
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Main goals

G1
When does

AiXjBi −CiX▲k Di = Ei , i , j ,k ▲= 1,⋆

have unique solution for any right-hand side Ei?

G2
Provide an O(n3) algorithm to compute the (unique) solution.
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The vec approach

vec(AXB−CX▲D) = vec(E) leads to

▶ ▲= 1 :
[
B⊤⊗A− (C ⊗D⊤)

]
vec(X ) = vec(E)

▶ ▲=⊤ :
[
B⊤⊗A−Π(C ⊗D⊤)

]
vec(X ) = vec(E)

Linear over F= C,R ✓

▶ ▲= ∗ : (B⊤⊗A)vec(X )−Π(C ⊗D⊤)vec(X ) = vec(E)

⇝ vec(X ) = [vec(ReX ); vec(ImX )]

�AXB−CX▲D = E can be written as a linear system MY = b:

Y =

{
vec(X ), if ▲=⊤,1
[vec(ReX ); vec(ImX )] , if ▲= ∗
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The vec approach (ctd.)

AXB−CX▲D = E ⇔ MY = b

M ∈

{
Fn2×n2

, if ▲= 1,⊤,

R(2n2)×(2n2), if ▲= ∗

/ Too large!

/ Not easy to handle with

� Combined with:
▶ Appropriate permutation of rows/columns.
▶ Periodic Schur decomposition (F= R,C).

, It will be useful!!
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Linearity and uniqueness of solution

AiXji Bi −CiX▲ki
Di = Ei ⇔ MY = b

▶ Unique solution for any b ⇒ M square.

▶ If M is square:

AiXji Bi −CiX▲ki
Di = Ei has a unique solution

⇕
AiXji Bi −CiX▲ki

Di = 0 has a unique solution

�We only need to look at the homogeneous equation!
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Related work
▶ Systems of generalized Sylvester equations:

▶ Uniqueness (periodic systems): [Byers-Rhee’95]

▶ Consistency, uniqueness (structured
coefficients/solutions/equations, matrices over other sets, ...):
[Wang-Sun-Li’02], [Lee-Vu’12], [He-etal’16], ...

▶ Systems of coupled generalized Sylvester and ⋆-Sylvester
equations:
▶ Iterative methods (structured coefficients and solution):

[Dehghan-Hajarian’11], [Song-Chen-Zhao’11], [Wu-etal’11], [Wu-etal’11],
[Beik-etal’13], [Song-etal’14], ...

▶ Consistency: [Dmytryshyn-Kågström’16]

▶ Uniqueness: ???

Most general setting !!!
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Motivation: the case r = 1

Theorem [Chu’87]

AXB−CXD = 0 has only the trivial solution iff A−λC and D−λB are
regular and have disjoint spectra.

Theorem [DT-Iannazo’16]

AXB−CX ⋆D = 0 has only the trivial solution iff

Q(λ ) =

[
λD⋆ B⋆

−A λC

]
is regular and

⋆= ∗ : λiλ j ̸= 1 (λi ,λj e-vals of Q).

⋆=⊤ : λiλj ̸= 1 (λi ,λj ̸=±1 e-vals of Q) and λ =±1
have multiplicity ≤ 1.
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Most general setting

AiXjBi −CiX▲k Di = Ei , i , j ,k

▶ r (matrix) equations and s (matrix) unknowns.

▶ The unknowns Xj ,Xk can be equal or different.

▶ ▲= 1,⋆

▶ M square ⇒ r = s
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Irreducible systems

S: a system of (matrix) equations. Then

S= S1 ∪S2 ∪·· ·∪Sℓ
S1, . . . ,Sℓ irreducible

▶ S has a unique solution iff Si has a unique solution, for all
i = 1, . . . , ℓ.

▶ If S has a unique solution, then Si has the same number of
equations and unknowns.

�We can focus on irreducible systems.
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All unknowns appear exactly twice

If some Xj appears just once in S (with unique solution), say in
AjXjBj +CjX▲k Dj = 0, then

▶ Aj ,Bj are invertible.

▶ S is equivalent to:
{

Xj =−A−1
j CjX▲k DjB−1

j
Sr−1

▶ Sr−1 irreducible with r −1 equations in the r −1 unknowns
X1, . . . ,Xj−1,Xj+1, . . . ,Xr

�We can remove the equations corresponding to unknowns
appearing just once.

� In the new system, all unknowns appear exactly twice.
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Reduction to a periodic system with at most one ⋆

Given the irreducible system

AiXjBi +CiX▲k Di = Ei , i , j ,k , ▲= 1,⋆

with each unknown appearing exactly twice.
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Reduction to a periodic system with at most one ⋆

Given the irreducible system

AiXjBi +CiX▲k Di = Ei , i , j ,k , ▲= 1,⋆

with each unknown appearing exactly twice.

� There is an equivalent system (periodic)

ÂiXi B̂i + ĈiXi+1D̂i = Êi , i = 1, . . . , r −1,
Âr Xr B̂r + Ĉr X▲1 D̂r = Êr .

(Applying ⋆, and changing variables Xi 7→ X ⋆
i , if necessary)
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The periodic Schur decomposition

Theorem [Bojanzyck-Golub-VanDooren’92]

Given Mk ,Nk ∈ Cn×n, k = 1, . . . , r . There are Qk ,Zk unitary, for
k = 1, . . . , r , such that

Q∗
k Mk Zk = Tk , Q∗

k Nk Zk+1 = Rk ,
(Periodic Schur
decomposition)

where Tk ,Rk are upper triangular and Zr+1 = Z1.
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Eigenvalues of formal products
Given the formal product

Π= N−1
r Mr N−1

r−1Mr−1 · · ·N−1
1 M1

through the periodic Schur decomposition of Mi ,Ni ,

Q∗
k Mk Zk = Tk , Q∗

k Nk Zk+1 = Rk ,

we define its eigenvalues

λi =
∏

r
k=1(Tk )ii

∏
r
k=1(Rk )ii

, i = 1,2, . . . ,n.

Definition: Π is singular if: ∏
r
k=1(Tk )ii = ∏

r
k=1(Rk )ii = 0, for some

i ∈ {1,2, . . . ,n} (and regular otherwise).

▶ Considered by several authors: [Bojanzyck-Golub-VanDooren’92],
[Benner-Mehrmann-Xu’02], [Granat-Kågström’06a–b],
[Granat-Kågström-Kressner’07a–b], ...
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Main result (first formulation). The case ▲= 1

Theorem
The system{

AkXkBk −CkXk+1Dk = 0, k = 1, . . . , r −1,
Ar Xr Br −Cr X1Dr = 0

has only the trivial solution iff

C−1
r Ar C−1

r−1Ar−1 · · ·C−1
1 A1 and Dr B−1

r D−1
r−1B−1

r−1 · · ·D1B−1
1

are regular and have no common e-vals.
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Theorem
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r B⋆
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r−1B⋆

r−1 · · ·D
−⋆
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1C−1
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1 A1
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⋆= ∗ : λiλ j ̸= 1 (λi ,λj e-vals of Π).

⋆=⊤ : λiλj ̸= 1 (λi ,λj ̸=−1 e-vals of Π), and λ =−1
has multiplicity ≤ 1.



17/30

Main result (first formulation). The case ▲= ⋆

Theorem
The system{

AkXkBk −CkXk+1Dk = 0, k = 1, . . . , r −1,
Ar Xr Br −Cr X ⋆
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The case ▲= ⋆

Theorem
The system

{
Ak Xk Bk −Ck Xk+1Dk = 0, k = 1, . . . , r −1,
Ar Xr Br −Cr X ⋆

1 Dr = 0. has

only the trivial solution iff the matrix pencil

Q(λ ) :=



λA1 C1
. . .

. . .

λAr Cr
λB⋆

1 D⋆
1

. . .
. . .

. . . D⋆
r−1

−D⋆
r λB⋆

r


is regular and

⋆= ∗ : λiλ j ̸= 1 (λi ,λj e-vals of Q).

⋆=⊤ : λiλj ̸= 1 (λi ̸= λj e-vals of Q) and λ 2r ̸=−1 for any λ

e-val of Q.
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The case ▲= 1

Theorem [Chu’87]

The equation AXB−CXD = 0 has only the trivial solution iff the
pencils A−λC and D−λB are regular and have no common e-vals.

Theorem [Byers-Rhee’95]

For r > 1, the system{
Ak Xk Bk −Ck Xk+1Dk = 0, k = 1, . . . , r −1,
Ar Xr Br −Cr X1Dr = 0

has only the trivial solution iff the matrix pencils
λA1 C1

λA2
. . .

. . . Cr−1
Cr λAr

 and


λD1 B2

λD2
. . .

. . . Br
B1 λDr


are regular and have no common e-vals.
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Two basic ideas (▲= 1,⊤)

� Main procedure:

1. Get an equivalent system with Ai ,Ci upper triangular
and Bi ,Di lower triangular (using the periodic Schur).

2. Rearrange the equations / unknowns of the big linear
system to get a block-diagonal matrix.

Choose an appropriate ordering!!
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An equivalent system with triangular coeffs. (▲= 1)
Q∗

k Ak Zk = Âk , Q∗
k Ck Zk+1 = Ĉk ,

Âk , Ĉk upper triangular⇝ periodic Schur form of
C−1

r Ar C−1
r−1Ar−1 · · ·C−1

1 A1

Q̂∗
k B∗

k Ẑk = B̂∗
k , Q̂∗

k D∗
k Ẑk+1 = D̂∗

k ,

B̂∗
k , D̂

∗
k upper triangular⇝ periodic Schur form of

D−∗
r B∗

r D−∗
r−1B∗

r−1 · · ·D
−∗
1 B∗

1

Then
Ak Xk Bk −Ck Xk+1Dk = Ek (k = 1, . . . , r)

is equivalent to

(Zk X̂k Ẑ ∗
k = Xk )

Âk X̂k B̂k − Ĉk X̂k+1D̂k = Q∗
k Ak Zk X̂k Ẑ ∗

k Bk Q̂k −Q∗
k Ck Zk+1X̂k+1Ẑ ∗

k+1Dk Q̂k

= Q∗
k (Ak Xk Bk −Ck Xk+1Dk )Q̂k

= Q∗
k Ek Q̂k = Êk .
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An equivalent system with triangular coeffs. (▲=⊤)
Q∗

k Ak Zk = Âk , Q∗
k Ck Zk+1 = Ĉk , Z2r+1 = Z1,

Q∗
r+k B⊤

k Zr+k = B̂⊤
k , Q∗

r+k D⊤
k Zr+k+1 = D̂⊤

k , k = 1,2, . . . , r ,

(Âk , Ĉk , B̂∗
k , D̂

∗
k upper triangular)⇝ periodic Schur form of

D−⊤
r B⊤

r D−⊤
r−1B⊤

r−1 · · ·D
−⊤
1 B⊤

1 C−1
r Ar C−1

r−1Ar−1 · · ·C−1
1 A1.

Then
Ak Xk Bk −Ck Xk+1Dk = Ek (k = 1, . . . , r −1)

Ar Xr Br −Cr X⊤
1 Dr = Er

is equivalent to

(Zk X̂k Z⊤
r+k = Xk )

Âk X̂k B̂k − Ĉk X̂k+1D̂k = Q∗
k Ak Zk X̂k Z⊤

r+k Bk Qr+k −Q∗
k Ck Zk+1X̂k+1Z⊤

r+k+1Dk Qr+k

= Q∗
k (Ak Xk Bk −Ck Xk+1Dk )Qr+k

= Q∗
k Ek Qr+k = Êk ,

Âr X̂r B̂r − Ĉr X̂⊤
1 D̂r = Q∗

r Ar Zr X̂r Z⊤
2r Br Q2r −Q∗

r Cr Zr+1X̂⊤
1 Z⊤

1 Dr Q2r

= Q∗
r (Ar Xr Br −Cr X⊤

1 Dr )Q2r

= Q∗
r Er Q2r = Êr .
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Choosing an appropriate ordering

(i , j ,k) :{
(i , j) entry of Xk ⇝U (unknowns)
e⊤

i (AkXkBk −CkXk+1Dk )ej = (Ek )ij ⇝ E (equations)

If ≤ is an order on both U and E satisfying:

(i , j ,k)≤ (i ′, j ′,k ′) whenever i ≤ i ′ and j ≤ j ′,

then:

M is block-diagonal with r × r and (2r)× (2r) diagonal
blocks.

▶ r × r blocks: Correspond to (Xii)1, . . . ,(Xii)r .
▶ (2r)× (2r) blocks: Correspond to (Xij)1, . . . ,(Xij)r , i ̸= j .
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Diagonal blocks: ▲= 1

With such ordering, the diagonal blocks are:

Mii :=


(A1)ii(B1)ii −(C1)ii(D1)ii

. . .
. . .

(Ar−1)ii(Br−1)ii −(Cr−1)ii(Dr−1)ii
−(Cr )ii(Dr )ii (Ar )ii(Br )ii



detMii = ∏
r
k=1(Ak )ii(Bk )ii −∏

r
k=1(Ck )ii(Dk )ii

and

Mij :=


(A1)ii(B1)jj −(C1)ii(D1)jj

. . .
. . .

(Ar−1)ii(Br−1)jj −(Cr−1)ii(Dr−1)jj
−(Cr )ii(Dr )jj (Ar )ii(Br )jj



detMij = ∏
r
k=1(Ak )ii(Bk )jj −∏

r
k=1(Ck )ii(Dk )jj
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Diagonal blocks: ▲=⊤

With these orderings, the diagonal blocks are:

Mij :=

[
Bij −(Cr )ii(Dr )jjer e⊤

1
−(C1)jj(D1)iier e⊤

1 Bji

]
,

where

Bij =


(A1)ii(B1)jj −(C1)ii(D1)jj

. . .
. . .

. . . −(Cr−1)ii(Dr−1)jj
(Ar )ii(Br )jj

 .

detMij = ∏
r
k=1(Ak )ii(Bk )ii(Ak )jj(Bk )jj −∏

r
k=1(Ck )ii(Dk )ii(Ck )jj(Dk )jj

(Mii as for ▲= 1)
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The pencil approach: idea of the proof

1. detQ(λ ) = ∏
n
i=1

(
λ 2r

∏
r
k=1(Ak )ii(B⋆

k )ii +∏
r
k=1(Ck )ii(D⋆

k )ii
)

2. Λ(Q) = 2r√S , where

S :=

{
−

r

∏
k=1

(Ck )ii(D⋆
k )ii

(Ak )ii(B⋆
k )ii

, i = 1, . . . ,n

}
.
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The case ▲= ∗
Lemma
The system{

Ak Xk Bk −Ck Xk+1Dk = 0, k = 1, . . . , r −1,
Ar Xr Br −Cr X ∗

1 Dr = 0. (1)

has a unique solution if and only if the system
Ak Xk Bk −Ck Xk+1Dk = 0, k = 1, . . . , r −1,
Ar Xr Br −Cr Xr+1Dr = 0,

B∗
k Xr+k A∗

k −D∗
k Xr+k+1C∗

k = 0, k = 1, . . . , r −1,
B∗

r X2r A∗
r −D∗

r X1C∗
r = 0

(2)

has a unique solution.

Not true for ⊤ instead of ∗ !!!

Counterexample: x1 +x⊤
1 = 2x1 = 0 vs

{
z1 +z2 = 0
z1 +z2 = 0
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Proof (X1, . . . ,Xr ) ̸= 0 solution of (1) ⇒ (X1, . . . ,Xr ,X ∗
1 , . . . ,X

∗
r ) ̸= 0 solution of

(2).
(X1, . . . ,Xr ,Xr+1, . . . ,X2r ) nonzero solution of (2) ⇒ (X1 +X ∗

r+1, . . . ,Xr +X ∗
2r )

solution of (1). If (X1 +X ∗
r+1, . . . ,Xr +X ∗

2r ) = 0, then Xr+i =−X ∗
i , for

i = 1, . . . , r , and i(X1, . . . ,Xr ) is a nonzero solution of (1). □

Not true for ⊤
instead of ∗ !!!

Counterexample: x1 +x⊤
1 = 2x1 = 0 vs

{
z1 +z2 = 0
z1 +z2 = 0
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The case ▲= ∗ (ctd.)

The results for ▲= ∗ follow from the ones for ▲= 1:

Ak Xk Bk −Ck Xk+1Dk = 0,
Ar Xr Br −Cr X ∗

1 Dr = 0
unique

sol. ⇔

Ak Xk Bk −Ck Xk+1Dk = 0,
Ar Xr Br −Cr Xr+1Dr = 0,

B∗
k Xr+k A∗

k −D∗
k Xr+k+1C∗

k = 0,
B∗

r X2r A∗
r −D∗

r X1C∗
r = 0

unique
sol.

Applying the result for ▲= 1, this is equivalent to:

Π1 = D−∗
r B∗

r D−∗
r−1B∗

r−1 · · ·D
−∗
1 B∗

1C−1
r Ar C−1

r−1Ar−1 · · ·C−1
1 A1

and
Π2 = C∗

r A−∗
r C∗

r−1A−∗
r−1 · · ·C

∗
1A−∗

1 Dr B−1
r Dr−1B−1

r−1 · · ·D1B−1
1

are regular and have no common eigenvalues.

� e-vals of Π1: {λ1,λ2, . . . ,λn} ⇒ e-vals of Π2: {(λ 1)
−1,(λ 2)

−1, . . . ,(λ n)
−1},

so they are disjoint if and only if λi λ j ̸= 1.
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so they are disjoint if and only if λi λ j ̸= 1.
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An O(rn3) algorithm

▶ Compute the periodic Schur decomposition⇝O(rn3)

▶ Solve the block diagonal equations: O(r) (each)
⇝O(rn2)

▶ Compute the right-hand side: O(rn) (each)⇝O(rn3)
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▶ Characterization for the uniqueness of solution of
general systems of coupled generalized Sylvester and
⋆-Sylvester equation.

▶ Explicit characterization for periodic systems with at
most one ⋆.
▶ In terms of spectral properties of formal products.

▶ In terms of spectral properties of a block-partitioned (rn2)× (rn2)
matrix pencil.

▶ Leads to an O(rn3) algorithm.

FDT, B. Iannazzo, F. Poloni, L. Robol.
Nonsingular systems of generalized Sylvester equations: an algorithmic
approach.
Numer. Linear Algebra Appl. 26 (2019) e2261 (29 pages)
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