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The problem

Goal
Provide necessary and sufficient conditions for the equation

X⊤AX = B

to be consistent, when B is symmetric.

(Same when B is skew-symmetric).

� A ∈ Cn×n, B ∈ Cm×m, X ∈ Cn×m (unknown).

(·)⊤: transpose.

� A is not necessarily symmetric.

When A is symmetric the result is
well-known:

X⊤AX = B is consistent ⇔ rankB ≤ rankA

(even when m ̸= n).
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A remark

X⊤AX = B, A ∈ Cn×n,B ∈ Cm×m

� If X is invertible, then A must be symmetric.✓
Then...

The interesting case is when X is singular.

We’ll see we can restrict ourselves to X having full (column) rank.

� Then, n > m

GOAL
Fixed A ∈ Cn×n, which is the largest m such that X⊤AX = B is
consistent, with B ∈ Cm×m symmetric/skew?
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X⊤AX = B and bilinear forms

The problem is equivalent to

Given a bilinear form A : Cn → Cn, find the largest dimension of a
subspace V ⊆ Cn, such that A|V : V → V is symmetric and
non-degenerate.

(If A is a matrix of A in some basis, and the columns of X are a basis
of V , then X⊤AX is a matrix for A|V .)

(So dimV = m).
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Some references on this problem
▶ A,B with entries over finite fields (or fields with characteristic 2):

J. H. M. Wedderburn.
The automorphic transformation of a bilinear form.
Ann. of Math. 2, 23 (1921) 122–134.

L. Carlitz.
Representations by skew forms in a finite field.
Arch. Math., V (1954) 19–31.

J. H. Hodges.
A skew matrix equation over a finite field.
Math. Nachr., 17 (1966) 49–55.

P. G. Buckhiester.
Rank r solutions to the matrix equation XAX t = C, A alternate, over GF(2y ).
Trans. Amer. Math. Soc., 189 (1974) 201–209.

▶ Recent references (connected to applications):
P. Benner, D. Palitta.
On the solution of the non-symmetric T -Riccati equation.
Electron. Trans. Numer. Anal., 54 (2021) 66–88.

P. Benner, B. Iannazzo, B. Meini, D. Palitta.
Palindromic linearization and numerical solution of nonsymmetric algebraic T -Riccati
equations.
BIT 62 (2022) 1649-1672.
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Some examples

X⊤AX = B with . . .

• A =

[
0 1
0 0

]
, B =

[
1 0
0 0

]
is consistent (X =

[
1 0
1 0

]
)

(m = 1,n = 2)

(m = 2,n = 3)

(m = 3,n = 4)



7/21

Some examples

X⊤AX = B with . . .

• A =

[
0 1
0 0

]
, B =

[
1 0
0 0

]
is consistent (X =

[
1 0
1 0

]
)

(m = 1,n = 2)

• A =

0 1 0
0 0 1
0 0 0

 , B =

1 0 0
0 1 0
0 0 0

 is consistent(X =

[
1 0 0
1 −i 0
0 i 0

]
)

(m = 2,n = 3)

(m = 3,n = 4)



7/21

Some examples

X⊤AX = B with . . .

• A =

[
0 1
0 0

]
, B =

[
1 0
0 0

]
is consistent (X =

[
1 0
1 0

]
)

(m = 1,n = 2)

• A =

0 1 0
0 0 1
0 0 0

 , B =

1 0 0
0 1 0
0 0 0

 is consistent(X =

[
1 0 0
1 −i 0
0 i 0

]
)

(m = 2,n = 3)

• A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

, B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 is NOT consistent

(m = 3,n = 4)



7/21

Some examples

X⊤AX = B with . . .

• A =

[
0 1
0 0

]
, B =

[
1 0
0 0

]
is consistent (X =

[
1 0
1 0

]
)

(m = 1,n = 2)

• A =

0 1 0
0 0 1
0 0 0

 , B =

1 0 0
0 1 0
0 0 0

 is consistent(X =

[
1 0 0
1 −i 0
0 i 0

]
)

(m = 2,n = 3)

• A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

, B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 is NOT consistent

(m = 3,n = 4)

(B is symmetric in all cases, but A is not).
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The Canonical form for congruence (CFC)

Jk (λ) :=

 λ 1
. . .

. . .
λ 1

λ

, Γk :=


0 (−1)k+1

. .
.

(−1)k

−1 . .
.

1 1
−1 −1

1 1 0

 , H2k (λ) :=

[
0 Ik

Jk (λ) 0

]
.

Theorem (CFC) [Horn & Sergeichuk, 2006]

Each square complex matrix is congruent to a direct sum, uniquely
determined up to permutation of addends, of matrices of the form:

Type 0 Jk (0)
Type I Γk

Type II
H2k (µ),

0 ̸= µ ̸= (−1)k+1

(µ is determined up to replacement by µ−1)

(Γ1 = [1], H2(−1) =
[

0 1
−1 0

]
.)
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Reduction to CFC

Notation: CM = CFC of M.

X⊤AX = B is consistent ⇔ X⊤CAX = CB is consistent.

(If A = P⊤CAP and B = Q⊤CBQ, then X⊤AX = B ⇔ Y⊤CAY = CB,
with Y = PXQ−1.)

�We can restrict ourselves to A and B given in CFC.
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Some basic remarks

Notation: M⊕k =

k times︷ ︸︸ ︷
M ⊕·· ·⊕M

▶ B symmetric ⇔ CB = Im ⊕0s×s

= (Γ1)
⊕m ⊕0s×s.

▶ X⊤(A⊕0ℓ×ℓ)X = B⊕0s×s is consistent ⇔ X⊤AX = B is
consistent.

(We can get rid of possible null diagonal blocks in the CFC of A and
B, namely blocks J1(0). In particular, B may be assumed to be
invertible).
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A necessary condition

Theorem
A ∈ Cm×m. If X⊤AX = B is consistent, with B symmetric, then:

rankB ≤min{m−dA − rank(A−A⊤)

2
, rank(A+A⊤)},

with dA = dim(NulA∩NulA⊤).
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Proof: If X⊤AX = B, for some X , then
▶ X⊤(A+A⊤)X = 2B

⇒ rankB = rank(X⊤(A+A⊤)X)≤ rank(A+A⊤).
▶ X⊤(A−A⊤)X = 0. Using

rank(MN)≥ rankM +rankN −m (M ∈ Cp×m ,N ∈ Cm×q),

we get:

0 = rank(X⊤(A−A⊤)X)≥ 2 rankX +rank(A−A⊤)−2m ≥ 2 rankB+rank(A−A⊤)−2m

⇒ rankB ≤ m− rank(A−A⊤)
2 .

CFC(A)=
[
Â 0
0 0dA

]
, and we apply the previous inequality to X⊤ÂX = B (which is

consistent).□
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A necessary condition

Theorem
A ∈ Cm×m. If X⊤AX = B is consistent, with B symmetric, then:

rankB ≤min{m−dA − rank(A−A⊤)

2
, rank(A+A⊤)},

with dA = dim(NulA∩NulA⊤).

� Comes from X⊤(A+A⊤)X = 2B and X⊤(A−A⊤)X = 0.

Q: Is it sufficient???
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It is sufficient (for most A ∈ Cm×m)!

Theorem
A ∈ Cm×m whose CFC does not have H4(1) blocks, B symmetric.
Then

X⊤AX = B is consistent

⇔

rankB ≤min{m−dA − rank(A−A⊤)
2 , rank(A+A⊤)},

with dA = dim(NulA∩NulA⊤).

(H4(1) =
[

0 I2
J2(1) 0

]
=

 0 0 1 0
0 0 0 1
1 1 0 0
0 1 0 0

).

�What happens when CFC(A) contains blocks H4(1)?

A = H4(1)⇝ X⊤AX = I3 is not consistent, but
min{4−dA − rank(A−A⊤)

2 , rank(A+A⊤)}=min{3,4}= 3.
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Comments on the proof

▶ The CFC is our main tool.

▶ We prove the condition is sufficient for a direct sum of blocks of
Type I, Type II, and Type III independently.

▶ When we put all pieces (canonical blocks) together, the
necessary conditions shows up to be sufficient!
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The generic case

The “generic" CFC in Cn×n is:

CFCg(n) :=
{

H2(µ1)⊕·· ·⊕H2(µk ), if n = 2k ,
H2(µ1)⊕·· ·⊕H2(µk )⊕Γ1, if n = 2k +1

(µ1, . . . ,µk different to each other and to µ
−1
1 , . . . ,µ−1

k , ±1).

FDT, F. M. Dopico.
The solution of the equation XA+AX T = 0 and its application to the theory of orbits.
Linear Algebra Appl., 434 (2011) 44–67

Theorem
If CA = CFCg(n), then

X⊤AX = B (B symmetric)

is consistent if and only if rankB ≤ n/2.
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B skew: Characterization for consistency

Theorem
A ∈ Cm×m and B skew-symmetric matrix. If CFC(A) does not have Γ2
blocks, then:

X TAX = B is consistent

⇔

rankB ≤min{m−dA − rank(A+AT)
2 , rank(A−AT)},

where dA = dim(NulA∩NulAT).

(Γ2 =

[
0 −1
1 1

]
).

�When CFC(A) contains blocks Γ2, it is not necessarily true:

X⊤Γ⊕4
2 X = H2(−1)⊕3

is not consistent, but rankH2(−1)⊕3 = 6 =min{6,8}.
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The ∗-congruence

M∗: Conjugate transpose of M.

A,B are ∗-congruent if P∗AP = B, for some invertible P.

� X ∗AX = B is consistent ⇔ X ∗CAX = CB is consistent, for any CA
and CB ∗-congruent with A and B (respectively).
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The ∗-CFC

Type-0 : Jk (0) =


0 1 0

. . .
. . .

1
0 0

 ;

Type-I : µΓ̃k = Γ̃k (µ) = µ



1 1 0
−1 0 1

1 0 1
−1 0 1

1 0
. . .

0
. . .

. . .


with µ ∈ F, |µ|= 1; and

Type-II : H̃2k (µ) =



0 1
µ 0 1 0

0 0 1
µ 0 1

0
. . .

. . .

0
. . . 0 1

µ 0


2k×2k

µ ∈ F, 0 < |µ|< 1.

Theorem [Horn-Sergeichuk, 2006]

Every square complex matrix A is ∗-congruent to a direct sum of
blocks of Types 0, I, and II (uniquely determined up to permutation).
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Ongoing work

We are trying to get a characterization for

X ∗AX = B to be consistent,

with B being either Hermitian or skew-Hermitian.

� The inertia comes into play!!!
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Open questions

Characterize the consistency of:

▶ X⊤AX = B, B symmetric when CA contains blocks H4(1).

▶ X⊤AX = B, B skew-symmetric when CA contains blocks Γ2.

▶ X ∗AX = B, with B Hermitian or skew-Hermitian.

▶ X⊤AX = B with B symmetric but A,B,X having real entries.

▶ (Hard) X⊤AX = B, with B arbitrary.
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X⊤AX = B with A,B real: inertia comes into play
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