uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

On the consistency of $X^{\top}AX = B$ when *B* is either symmetric or skew

Fernando De Terán

Joint work with A. Borobia and R. Canogar

uc3m Universidad Carlos III de Madrid Depatamento de Matemáticos

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - の < ♡ 1/21

Nick Higham (1961-2024)

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

Nick Higham (1961-2024)

uc3m Universidad Carlos III de Madrid Depatamento de Matemáticos

Goal

Provide necessary and sufficient conditions for the equation

 $X^{\top}AX = B$

to be consistent, when *B* is symmetric.

(Same when *B* is skew-symmetric).

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

<□> < □> < □> < 三> < 三> < 三> < 三 > ○へ · 3/21

Goal

Provide necessary and sufficient conditions for the equation

$$X^{\top}AX = B$$

to be consistent, when *B* is symmetric.

(Same when *B* is skew-symmetric).

IF $A \in \mathbb{C}^{n \times n}$, $B \in \mathbb{C}^{m \times m}$, $X \in \mathbb{C}^{n \times m}$ (unknown). (.)[⊤]: transpose.

> uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

(ロ)、(型)、(三)、(三)、 三 のへで 3/21

Goal

Provide necessary and sufficient conditions for the equation

$$X^{\top}AX = B$$

to be consistent, when *B* is symmetric.

(Same when *B* is skew-symmetric).

^{IGP} *A* ∈ $\mathbb{C}^{n \times n}$, *B* ∈ $\mathbb{C}^{m \times m}$, *X* ∈ $\mathbb{C}^{n \times m}$ (unknown).

 $(\cdot)^{\top}$: transpose.

A is not necessarily symmetric.

< ロ > < 団 > < 茎 > < 茎 > 茎 の < つ 3/21</p>

uc3m Universidad Carlos III de Madria

Goal

Provide necessary and sufficient conditions for the equation

$$X^{\top}AX = B$$

to be consistent, when *B* is symmetric.

(Same when *B* is skew-symmetric).

^{IGP} *A* ∈ $\mathbb{C}^{n \times n}$, *B* ∈ $\mathbb{C}^{m \times m}$, *X* ∈ $\mathbb{C}^{n \times m}$ (unknown).

$(\cdot)^{\top}$: transpose.

■ *A* is not necessarily symmetric. When *A* is symmetric the result is **well-known**:

```
X^{\top}AX = B is consistent \Leftrightarrow \operatorname{rank} B \leq \operatorname{rank} A
```

(even when $m \neq n$).

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

(ロ)、(型)、(三)、(三)、 三 のへで 3/21

$$X^{\top}AX = B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$$

If *X* is **invertible**, then *A* must be symmetric. \checkmark Then...

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$X^{\top}AX = B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$$

If *X* is **invertible**, then *A* must be symmetric. \checkmark Then...

The interesting case is when *X* is singular.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

<□> < □> < □> < 三> < 三> < 三> < 三 > < 三 < つへぐ 4/21

$$X^{\top}AX = B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$$

If *X* is **invertible**, then *A* must be symmetric. \checkmark Then...

The interesting case is when *X* is singular.

We'll see we can restrict ourselves to X having full (column) rank.

uching Universided Cardwall de Modrid Departmente de Manedica 《 □ 》 《 큔 》 《 문 》 《 문 》 문 《 ⑦ 《 ⓒ 4/21

$$X^{\top}AX = B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$$

If X is **invertible**, then A must be symmetric. \checkmark

Then...

The interesting case is when *X* is singular.

We'll see we can restrict ourselves to X having full (column) rank.

[™] Then, *n* > *m*

<□> < □> < □> < 三> < 三> < 三> < 三 > < 三 < つへぐ 4/21

$$X^{\top}AX = B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$$

If X is **invertible**, then A must be symmetric. \checkmark

Then...

The interesting case is when *X* is singular.

We'll see we can restrict ourselves to X having full (column) rank.

```
<sup>™</sup> Then, n > m
```

GOAL

Fixed $A \in \mathbb{C}^{n \times n}$, which is the largest *m* such that $X^{\top}AX = B$ is consistent, with $B \in \mathbb{C}^{m \times m}$ symmetric/skew?

ucim Utiversidad Catelellited Madrid Departmente de Maarida 《 그 》 《 큔 》 《 흔 》 《 흔 》 흔 『 이 익 약 4/21

$X^{\top}AX = B$ and bilinear forms

The problem is equivalent to

Given a bilinear form $\mathbb{A} : \mathbb{C}^n \to \mathbb{C}^n$, find the largest dimension of a subspace $V \subseteq \mathbb{C}^n$, such that $\mathbb{A}_{|V} : V \to V$ is symmetric and non-degenerate.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで 5/21

$X^{\top}AX = B$ and bilinear forms

The problem is equivalent to

Given a bilinear form $\mathbb{A} : \mathbb{C}^n \to \mathbb{C}^n$, find the largest dimension of a subspace $V \subseteq \mathbb{C}^n$, such that $\mathbb{A}_{|V} : V \to V$ is symmetric and non-degenerate.

(If *A* is a matrix of \mathbb{A} in some basis, and the columns of *X* are a basis of *V*, then $X^{\top}AX$ is a matrix for $\mathbb{A}_{|V}$.)

(So dim V = m).

ucim Uriversidad Carbolli de Madrid Departmento de Mandelas

Some references on this problem

$$X^{\top}AX = B \text{ with } \dots$$

• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix})$

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 7/21

$$X^{\top}AX = B \text{ with } \dots$$

• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0 \end{bmatrix})$

uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 7/21

$$X^{\top}AX = B \text{ with } \dots$$
• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ is NOT consistent }$

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

$$X^{\top}AX = B \text{ with } \dots$$
• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ is NOT consistent }$

(B is symmetric in all cases, but A is not).

uc3m Universidad Carlos III de Madrid Depatamento de Matemáticos

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ ○ 7/21

$$X^{\top}AX = B \text{ with } \dots$$
• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ is NOT consistent }$

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

$$X^{\top}AX = B \text{ with } \dots$$
• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ is NOT consistent }$

 $X^{\top}J_n(0)X = I_m \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \ge 2m - 1, n > 1$.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$X^{\top}AX = B \text{ with } \dots$$
• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}) \quad (m = 1, n = 2)$
• $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0 \end{bmatrix})$
• $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ is NOT consistent }$

 $X^{\top}J_n(0)X = I_m \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \ge 2m - 1, n > 1$.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$X^{\top}AX = B \text{ with } \dots$$
• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}) \quad (m = 1, n = 2)$
• $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0 \end{bmatrix})$
($m = 2, n = 3$)
• $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ is NOT consistent }$

 $X^{\top}J_n(0)X = I_m \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \ge 2m - 1, n > 1$.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

$$X^{\top}AX = B \text{ with } \dots$$
• $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}) \quad (m=1,n=2)$
• $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is consistent } (X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0 \end{bmatrix})$
($m=2,n=3$)
• $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ is NOT consistent
($m=3,n=4$)

 $X^{\top}J_n(0)X = I_m \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \ge 2m - 1, n > 1$.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

The Canonical form for congruence (CFC)

$$J_{k}(\lambda) := \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda \end{bmatrix}, \quad \Gamma_{k} := \begin{bmatrix} 0 & & (-1)^{k+1} \\ & & \ddots & (-1)^{k} \\ & & -1 & \ddots & \\ & & 1 & 1 & \\ & & -1 & -1 & \\ & 1 & 1 & 0 \end{bmatrix}, \quad H_{2k}(\lambda) := \begin{bmatrix} 0 & I_{k} \\ J_{k}(\lambda) & 0 \end{bmatrix}.$$

Theorem (CFC) [Horn & Sergeichuk, 2006]

Each square complex matrix is congruent to a direct sum, uniquely determined up to permutation of addends, of matrices of the form:

Туре 0	$J_k(0)$
Type I	Γ _k
	$H_{2k}(\mu),$
Type II	$0 eq \mu eq (-1)^{k+1}$
	(μ is determined up to replacement by μ^{-1})

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ • 의 Q ○ 8/21</p>

The Canonical form for congruence (CFC)

$$J_{k}(\lambda) := \begin{bmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda \end{bmatrix}, \quad \Gamma_{k} := \begin{bmatrix} 0 & & (-1)^{k+1} \\ & & \ddots & (-1)^{k} \\ & & -1 & \ddots & \\ & & 1 & 1 & \\ & & -1 & -1 & \\ & 1 & 1 & 0 \end{bmatrix}, \quad H_{2k}(\lambda) := \begin{bmatrix} 0 & I_{k} \\ J_{k}(\lambda) & 0 \end{bmatrix}.$$

Theorem (CFC) [Horn & Sergeichuk, 2006]

Each square complex matrix is congruent to a direct sum, uniquely determined up to permutation of addends, of matrices of the form:

Туре 0	$J_k(0)$
Type I	Γ _k
	$H_{2k}(\mu),$
Type II	$0 eq \mu eq (-1)^{k+1}$
	(μ is determined up to replacement by μ^{-1})

$$(\Gamma_1 = [1], \qquad H_2(-1) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

uc3m Universidad Carlos III de Madria Departamento de Matemáticos

8/21

(ロ) (回) (E) (E) (E) (O)

Notation: C_M = CFC of M.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ♡ 9/21

Notation: C_M = CFC of M.

$X^{\top}AX = B$ is consistent $\Leftrightarrow X^{\top}C_AX = C_B$ is consistent.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 9/21

Notation: C_M = CFC of M.

 $X^{\top}AX = B$ is consistent $\Leftrightarrow X^{\top}C_AX = C_B$ is consistent.

(If $A = P^{\top}C_AP$ and $B = Q^{\top}C_BQ$, then $X^{\top}AX = B \Leftrightarrow Y^{\top}C_AY = C_B$, with $Y = PXQ^{-1}$.)

uc3m Universidad Carlos III de Madr Departamento de Matemáticos

(ロ) (四) (三) (三) (三) (三) (100 - 100 -

Notation: C_M = CFC of M.

 $X^{\top}AX = B$ is consistent $\Leftrightarrow X^{\top}C_AX = C_B$ is consistent.

(If $A = P^{\top}C_AP$ and $B = Q^{\top}C_BQ$, then $X^{\top}AX = B \Leftrightarrow Y^{\top}C_AY = C_B$, with $Y = PXQ^{-1}$.)

We can restrict ourselves to A and B given in CFC.

• B symmetric $\Leftrightarrow C_B = I_m \oplus 0_{s \times s}$

X^T(A⊕0_{ℓ×ℓ})X = B⊕0_{s×s} is consistent ⇔ X^TAX = B is consistent.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

◆□ → ◆ □ → ◆ ■ → ▲ ■ → ○ へ ○ 10/21

Notation: $M^{\oplus k} = \overbrace{M \oplus \cdots \oplus M}^{k \text{ times}}$

• B symmetric $\Leftrightarrow C_B = I_m \oplus 0_{s \times s}$

X^T(A⊕0_{ℓ×ℓ})X = B⊕0_{s×s} is consistent ⇔ X^TAX = B is consistent.

uc3m Universidad Carlos III de Madrid Depatamento de Matemáticas

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ 2 ○ 20/21

Notation: $M^{\oplus k} = \overbrace{M \oplus \cdots \oplus M}^{k \text{ times}}$

• B symmetric $\Leftrightarrow C_B = I_m \oplus 0_{s \times s} = (\Gamma_1)^{\oplus m} \oplus 0_{s \times s}$.

X^T(A⊕0_{ℓ×ℓ})X = B⊕0_{s×s} is consistent ⇔ X^TAX = B is consistent.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ 2 ○ 20/21

Notation: $M^{\oplus k} = \overbrace{M \oplus \cdots \oplus M}^{k \text{ times}}$

• B symmetric $\Leftrightarrow C_B = I_m \oplus 0_{s \times s} = (\Gamma_1)^{\oplus m} \oplus 0_{s \times s}$.

X[⊤](A⊕0_{ℓ×ℓ})X = B⊕0_{s×s} is consistent ⇔ X[⊤]AX = B is consistent.

uc3m Universidad Carlos III de Madrid Depatamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ 2 ○ 20/21

Notation: $M^{\oplus k} = \overbrace{M \oplus \cdots \oplus M}^{k \text{ times}}$

• B symmetric $\Leftrightarrow C_B = I_m \oplus 0_{s \times s} = (\Gamma_1)^{\oplus m} \oplus 0_{s \times s}$.

X[⊤](A⊕0_{ℓ×ℓ})X = B⊕0_{s×s} is consistent ⇔ X[⊤]AX = B is consistent.

(We can get rid of possible null diagonal blocks in the CFC of A and B, namely blocks $J_1(0)$. In particular, B may be assumed to be invertible).

uc3m Universidad Carlos III de Madrid

A necessary condition

Theorem $A \in \mathbb{C}^{m \times m}$. If $X^{\top}AX = B$ is consistent, with *B* symmetric, then:

$$\operatorname{rank} B \leq \min\{m - d_A - \frac{\operatorname{rank}(A - A^{\top})}{2}, \operatorname{rank}(A + A^{\top})\},$$

with $d_A = \dim (\operatorname{Nul} A \cap \operatorname{Nul} A^{\top})$.

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ○ 11/21

Theorem $A \in \mathbb{C}^{m \times m}$. If $X^{\top}AX = B$ is consistent, with *B* symmetric, then:

$$\operatorname{rank} B \leq \min\{m - d_A - \frac{\operatorname{rank}(A - A^{\top})}{2}, \operatorname{rank}(A + A^{\top})\},$$

with $d_A = \dim (\operatorname{Nul} A \cap \operatorname{Nul} A^{\top})$.

Proof: If $X^{\top}AX = B$, for some X, then

$$X^{\top}(A + A^{\top})X = 2B$$

uc3m Universidad Carlos III de Madria Departamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ○ 11/21

Theorem

 $A \in \mathbb{C}^{m \times m}$. If $X^{\top}AX = B$ is consistent, with *B* symmetric, then:

$$\operatorname{rank} B \leq \min\{m - d_A - \frac{\operatorname{rank}(A - A^{\top})}{2}, \operatorname{rank}(A + A^{\top})\},$$

with $d_A = \dim (\operatorname{Nul} A \cap \operatorname{Nul} A^{\top})$.

Proof: If $X^{\top}AX = B$, for some X, then

$$X^{\top}(A + A^{\top})X = 2B \Rightarrow \operatorname{rank} B = \operatorname{rank}(X^{\top}(A + A^{\top})X) \le \operatorname{rank}(A + A^{\top}).$$

uc3m Universidad Carlos III de Madri Depatamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ○ 11/21

Theorem

 $A \in \mathbb{C}^{m \times m}$. If $X^{\top}AX = B$ is consistent, with *B* symmetric, then:

$$\operatorname{rank} B \leq \min\{m - d_A - \frac{\operatorname{rank}(A - A^{\top})}{2}, \operatorname{rank}(A + A^{\top})\},$$

with $d_A = \dim (\operatorname{Nul} A \cap \operatorname{Nul} A^{\top})$.

Proof: If $X^{\top}AX = B$, for some X, then $X^{\top}(A+A^{\top})X = 2B \Rightarrow \operatorname{rank}B = \operatorname{rank}(X^{\top}(A+A^{\top})X) \le \operatorname{rank}(A+A^{\top}).$ $X^{\top}(A-A^{\top})X = 0.$ Using $\operatorname{rank}(MN) \ge \operatorname{rank}M + \operatorname{rank}N - m$ $(M \in \mathbb{C}^{p \times m}, N \in \mathbb{C}^{m \times q}),$

we get:

$$0 = \operatorname{rank}(X^{\top}(A - A^{\top})X) \ge 2\operatorname{rank} X + \operatorname{rank}(A - A^{\top}) - 2m \ge 2\operatorname{rank} B + \operatorname{rank}(A - A^{\top}) - 2m$$
$$\Rightarrow \operatorname{rank} B \le m - \frac{\operatorname{rank}(A - A^{\top})}{2}.$$

uc3m Universidad Carlos III de Madri Departamento de Matemáticos

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > □ Ξ · の Q ○ 11/21

Theorem

 $A \in \mathbb{C}^{m \times m}$. If $X^{\top}AX = B$ is consistent, with *B* symmetric, then:

$$\operatorname{rank} B \leq \min\{m - d_A - \frac{\operatorname{rank}(A - A^{\top})}{2}, \operatorname{rank}(A + A^{\top})\},\$$

with $d_A = \dim(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top})$.

Proof: If $X^{\top}AX = B$, for some X, then $X^{\top}(A+A^{\top})X = 2B \Rightarrow \operatorname{rank}B = \operatorname{rank}(X^{\top}(A+A^{\top})X) \le \operatorname{rank}(A+A^{\top}).$ $X^{\top}(A-A^{\top})X = 0.$ Using $\operatorname{rank}(MN) \ge \operatorname{rank}M + \operatorname{rank}N - m$ $(M \in \mathbb{C}^{p \times m}, N \in \mathbb{C}^{m \times q}).$

we get:

$$0 = \operatorname{rank}(X^{\top}(A - A^{\top})X) \ge 2\operatorname{rank} X + \operatorname{rank}(A - A^{\top}) - 2m \ge 2\operatorname{rank} B + \operatorname{rank}(A - A^{\top}) - 2m$$

$$\Rightarrow \operatorname{rank} B \le m - \frac{\operatorname{rank}(A - A^{\top})}{2}.$$

 $CFC(A) = \begin{bmatrix} \widehat{A} & 0 \\ 0 & 0_{d_A} \end{bmatrix}$, and we apply the previous inequality to $X^{\top}\widehat{A}X = B$ (which is consistent).

uc3m Universidad Carlos III de Madri Departamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ○ 11/21

Theorem $A \in \mathbb{C}^{m \times m}$. If $X^{\top}AX = B$ is consistent, with *B* symmetric, then:

$$\operatorname{rank} B \leq \min\{m - d_A - \frac{\operatorname{rank}(A - A^{\top})}{2}, \operatorname{rank}(A + A^{\top})\},\$$

with $d_A = \dim (\operatorname{Nul} A \cap \operatorname{Nul} A^{\top})$.

Be Comes from $X^{\top}(A + A^{\top})X = 2B$ and $X^{\top}(A - A^{\top})X = 0$.

uc3m Universidad Carlos III de Madri Departamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ○ 11/21

Theorem $A \in \mathbb{C}^{m \times m}$. If $X^{\top}AX = B$ is consistent, with *B* symmetric, then:

$$\operatorname{rank} B \leq \min\{m - d_A - \frac{\operatorname{rank}(A - A^{\top})}{2}, \operatorname{rank}(A + A^{\top})\},\$$

with $d_A = \dim (\operatorname{Nul} A \cap \operatorname{Nul} A^{\top})$.

Solution $X^{\top}(A + A^{\top})X = 2B$ and $X^{\top}(A - A^{\top})X = 0$.

Q: Is it sufficient???

uc3m Universidad Carlos III de Madri Departamento de Matemáticos

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > □ Ξ · の Q ○ 11/21

It is sufficient (for most $A \in \mathbb{C}^{m \times m}$)!

Theorem

 $A \in \mathbb{C}^{m \times m}$ whose CFC does not have $H_4(1)$ blocks, B symmetric. Then

$$(H_4(1) = \begin{bmatrix} 0 & l_2 \\ J_2(1) & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}).$$

uc3m Universidad Carlos III de Madria Departamento de Matemáticas

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ℃ 12/21

It is sufficient (for most $A \in \mathbb{C}^{m \times m}$)!

Theorem

 $A \in \mathbb{C}^{m \times m}$ whose CFC does not have $H_4(1)$ blocks, B symmetric. Then

with $d_A = \dim(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top})$.

$$(H_4(1) = \begin{bmatrix} 0 & l_2 \\ l_2(1) & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & | & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 1 & 1 & | & 0 & 0 \\ 0 & 1 & | & 0 & 0 \end{bmatrix}).$$

^{ISF} What happens when CFC(A) contains blocks $H_4(1)$?

$$A = H_4(1) \rightsquigarrow X^\top A X = I_3 \text{ is not consistent, but}$$
$$\min\{4 - d_A - \frac{\operatorname{rank}(A - A^\top)}{2}, \operatorname{rank}(A + A^\top)\} = \min\{3, 4\} = 3.$$

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ℃ 12/21

Comments on the proof

► The CFC is our main tool.

- We prove the condition is sufficient for a direct sum of blocks of Type I, Type II, and Type III independently.
- When we put all pieces (canonical blocks) together, the necessary conditions shows up to be sufficient!

uc3m Universidad Carlos III de Madria Departamento de Matemáticas

<ロト < 部ト < 画ト < 画ト = 一 つ < で 13/21

Comments on the proof

- ► The CFC is our main tool.
- We prove the condition is sufficient for a direct sum of blocks of Type I, Type II, and Type III independently.
- When we put all pieces (canonical blocks) together, the necessary conditions shows up to be sufficient!

uc3m Universidad Carlos III de Madria Departamento de Matemáticas

<ロト < 部ト < 目ト < 目ト = 三 の Q (* 13/21)

Comments on the proof

- ► The CFC is our main tool.
- We prove the condition is sufficient for a direct sum of blocks of Type I, Type II, and Type III independently.
- When we put all pieces (canonical blocks) together, the necessary conditions shows up to be sufficient!

<ロト < 部ト < 画ト < 画ト = 一 つ < で 13/21

The generic case

The "generic" CFC in $\mathbb{C}^{n \times n}$ is:

$$\operatorname{CFC}_{g}(n) := \begin{cases} H_{2}(\mu_{1}) \oplus \cdots \oplus H_{2}(\mu_{k}), & \text{if } n = 2k, \\ H_{2}(\mu_{1}) \oplus \cdots \oplus H_{2}(\mu_{k}) \oplus \Gamma_{1}, & \text{if } n = 2k+1 \end{cases}$$

 $(\mu_1,\ldots,\mu_k$ different to each other and to $\mu_1^{-1},\ldots,\mu_k^{-1}, \pm 1$).

FDT, F. M. Dopico. The solution of the equation $XA + AX^{T} = 0$ and its application to the theory of orbits. Linear Algebra Appl., 434 (2011) 44–67

> uc3m Universidad Carlos III de Madrid Depatamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ○ 14/21

The generic case

The "generic" CFC in $\mathbb{C}^{n \times n}$ is:

$$\operatorname{CFC}_{g}(n) := \begin{cases} H_{2}(\mu_{1}) \oplus \cdots \oplus H_{2}(\mu_{k}), & \text{if } n = 2k, \\ H_{2}(\mu_{1}) \oplus \cdots \oplus H_{2}(\mu_{k}) \oplus \Gamma_{1}, & \text{if } n = 2k+1 \end{cases}$$

 $(\mu_1, \ldots, \mu_k \text{ different to each other and to } \mu_1^{-1}, \ldots, \mu_k^{-1}, \pm 1).$

FDT, F. M. Dopico. The solution of the equation $XA + AX^{T} = 0$ and its application to the theory of orbits. Linear Algebra Appl., 434 (2011) 44–67

Theorem If $C_A = CFC_g(n)$, then

 $X^{\top}AX = B$ (*B* symmetric)

is consistent if and only if rank $B \le n/2$.

uc3m Universidad Carlos III de Madri Departamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ○ 14/21

B skew: Characterization for consistency

Theorem

 $A \in \mathbb{C}^{m \times m}$ and *B* skew-symmetric matrix. If CFC(*A*) does not have Γ_2 blocks, then:

where $d_A = \dim(\operatorname{Nul} A \cap \operatorname{Nul} A^{\mathsf{T}})$.

 $(\Gamma_2 = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}).$

B skew: Characterization for consistency

Theorem

 $A \in \mathbb{C}^{m \times m}$ and *B* skew-symmetric matrix. If CFC(*A*) does not have Γ_2 blocks, then:

where $d_A = \dim(\operatorname{Nul} A \cap \operatorname{Nul} A^T)$.

 $(\Gamma_2 = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}).$

^{ICF} When CFC(A) contains blocks Γ_2 , it is not necessarily true:

$$X^{\top}\Gamma_2^{\oplus 4}X = H_2(-1)^{\oplus 3}$$

is not consistent, but rank $H_2(-1)^{\oplus 3} = 6 = \min\{6, 8\}$.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

(ロト () ト (E) (E) E のQで 15/21

M^{*}: Conjugate transpose of *M*.

A, B are *-congruent if $P^*AP = B$, for some invertible P.

I^{SE} $X^*AX = B$ is consistent ⇔ $X^*C_AX = C_B$ is consistent, for any C_A and C_B *-congruent with A and B (respectively).

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

<ロト < 回 > < 三 > < 三 > < 三 > つへで 16/21

The *-CFC

$$\begin{split} \text{Type-0:} \quad J_{k}(0) &= \begin{bmatrix} 0 & 1 & 0 \\ \ddots & \ddots & \\ 0 & & 0 \end{bmatrix}; \\ \text{Type-I:} \quad \mu \widetilde{\Gamma}_{k} &= \widetilde{\Gamma}_{k}(\mu) &= \mu \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & & 0 \\ & 1 & 0 & 1 & & \\ & & -1 & 0 & 1 & \\ & & & 1 & 0 & \ddots \\ 0 & & & \ddots & \ddots \end{bmatrix} \text{ with } \mu \in \mathbb{F}, \ |\mu| &= 1; \text{ and } \end{split}$$

$$\begin{aligned} \text{Type-II:} \quad \widetilde{H}_{2k}(\mu) &= \begin{bmatrix} 0 & 1 & & 0 & & \\ \mu & 0 & 1 & & & 0 & \\ & \mu & 0 & 1 & & & \\ & & 0 & \ddots & \ddots & & \\ & 0 & & \ddots & \ddots & & \\ & 0 & & \ddots & 0 & 1 & \\ & & & \mu & 0 & \end{bmatrix}_{2k \times 2k} \mu \in \mathbb{F}, \ 0 < |\mu| < 1. \end{split}$$

Theorem [Horn-Sergeichuk, 2006]

Every square complex matrix *A* is *-congruent to a direct sum of blocks of Types 0, I, and II (uniquely determined up to permutation).

Ongoing work

We are trying to get a characterization for

 $X^*AX = B$ to be consistent,

with B being either Hermitian or skew-Hermitian.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

◆□ → ◆□ → ◆ ■ → ◆ ■ → ○ へ ○ 18/21

Ongoing work

We are trying to get a characterization for

 $X^*AX = B$ to be consistent,

with B being either Hermitian or skew-Hermitian.

The inertia comes into play!!!

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ Q ○ 18/21

Characterize the consistency of:

► $X^{\top}AX = B$, *B* symmetric when C_A contains blocks $H_4(1)$.

► $X^{\top}AX = B$, *B* skew-symmetric when C_A contains blocks Γ_2 .

- $X^*AX = B$, with B Hermitian or skew-Hermitian.
- > $X^{\top}AX = B$ with B symmetric but A, B, X having real entries.

Characterize the consistency of:

- ► $X^{\top}AX = B$, *B* symmetric when C_A contains blocks $H_4(1)$.
- $X^{\top}AX = B$, *B* skew-symmetric when C_A contains blocks Γ_2 .
- $X^*AX = B$, with B Hermitian or skew-Hermitian.
- > $X^{\top}AX = B$ with B symmetric but A, B, X having real entries.
- (Hard) $X^{\top}AX = B$, with *B* arbitrary.

Characterize the consistency of:

- ► $X^{\top}AX = B$, *B* symmetric when C_A contains blocks $H_4(1)$.
- $X^{\top}AX = B$, *B* skew-symmetric when C_A contains blocks Γ_2 .
- $X^*AX = B$, with *B* Hermitian or skew-Hermitian.
- > $X^{\top}AX = B$ with B symmetric but A, B, X having real entries.

uc3m Universidad Carlos III de Madr

Characterize the consistency of:

- ► $X^{\top}AX = B$, *B* symmetric when C_A contains blocks $H_4(1)$.
- $X^{\top}AX = B$, *B* skew-symmetric when C_A contains blocks Γ_2 .
- $X^*AX = B$, with *B* Hermitian or skew-Hermitian.
- ► $X^{\top}AX = B$ with B symmetric but A, B, X having real entries.

uc3m Universidad Carlos III de Madri

Characterize the consistency of:

- ► $X^{\top}AX = B$, *B* symmetric when C_A contains blocks $H_4(1)$.
- $X^{\top}AX = B$, *B* skew-symmetric when C_A contains blocks Γ_2 .
- $X^*AX = B$, with *B* Hermitian or skew-Hermitian.
- ► $X^{\top}AX = B$ with B symmetric but A, B, X having real entries.

uc3m Universidad Carlos III de Madri

$X^{\top}AX = B$ with A, B real: inertia comes into play

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 275-276 (1998) 261-279

Modifying the inertia of matrices arising in optimization

Nicholas J. Higham *, Sheung Hun Cheng¹

Department of Mathematics, University of Manchester, Manchester M13 9PL, UK Received 9 October 1996; accepted 10 March 1997

Submitted by V. Mehrmann

Corollary 3.3. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, and let $X \in \mathbb{R}^{n \times m} (n \ge m)$ be of full rank. Then

inertia
$$(A) - (n - m, n - m, n - m) \leq$$
 inertia $(X^T A X)$
 \leq inertia $(A) + (0, 0, n - m).$

ss III de Madrid

ر 20/21

References

 A. Borobia, R. Canogar, FDT. On the consistency of the matrix equation X^TAX = B when B is symmetric. Mediterr. J. Math. (2021) 18:40 (electronic)
 A. Borobia, R. Canogar, FDT. The equation X^TAX = B with B skew-symmetric: How much of a bilinear form is skew-symmetric?

Lin. Multilin. Algebra, in press.

📄 A. Borobia, R. Canogar, FDT.

On the consistency of the matrix equation $X^T A X = B$ when B is symmetric: the case where CFC(A) includes skew-symmetric blocks.

RACSAM, 117 (2023) Article number: 61.

🔋 A. Borobia, R. Canogar, FDT.

On the consistency of the matrix equation $X^T A X = B$ when B is skew-symmetric: improving the previous characterization. Lin. Multilin. Algebra, in press.