uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

On the consistency of $X^{\top} A X=B$ when B is either symmetric or skew

Fernando De Terán

Joint work with A. Borobia and R. Canogar

Nick Higham (1961-2024)

Nick Higham (1961-2024)

The problem

Goal

Provide necessary and sufficient conditions for the equation

$$
X^{\top} A X=B
$$

to be consistent, when B is symmetric.
(Same when B is skew-symmetric).

The problem

Goal

Provide necessary and sufficient conditions for the equation

$$
X^{\top} A X=B
$$

to be consistent, when B is symmetric.
(Same when B is skew-symmetric).
咰 $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}, X \in \mathbb{C}^{n \times m}$ (unknown).
$(\cdot)^{\top}$: transpose.

The problem

Goal

Provide necessary and sufficient conditions for the equation

$$
X^{\top} A X=B
$$

to be consistent, when B is symmetric.
(Same when B is skew-symmetric).
뭅분 $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}, X \in \mathbb{C}^{n \times m}$ (unknown).
$(\cdot)^{\top}$: transpose.
맚아 A is not necessarily symmetric.

The problem

Goal

Provide necessary and sufficient conditions for the equation

$$
X^{\top} A X=B
$$

to be consistent, when B is symmetric.
(Same when B is skew-symmetric).
모아 $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}, X \in \mathbb{C}^{n \times m}$ (unknown).
$(\cdot)^{\top}$: transpose.
${ }^{1 \times 7 \times{ }^{\circ}} A$ is not necessarily symmetric. When A is symmetric the result is well-known:

$$
X^{\top} A X=B \text { is consistent } \Leftrightarrow \operatorname{rank} B \leq \operatorname{rank} A
$$

(even when $m \neq n$).

A remark

$X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$
뭆ㅇ If X is invertible, then A must be symmetric. \checkmark
Then...

A remark

$X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$
뭆ㅇ If X is invertible, then A must be symmetric. \checkmark
Then...
The interesting case is when X is singular.

A remark

$X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$
困 If X is invertible, then A must be symmetric. \checkmark
Then...
The interesting case is when X is singular.
We'll see we can restrict ourselves to X having full (column) rank.

A remark

$X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$
困 If X is invertible, then A must be symmetric. \checkmark
Then...
The interesting case is when X is singular.
We'll see we can restrict ourselves to X having full (column) rank.
망 Then, $n>m$

A remark

$X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}$
IT웅 If X is invertible, then A must be symmetric. \checkmark
Then...
The interesting case is when X is singular.
We'll see we can restrict ourselves to X having full (column) rank.
망 Then, $n>m$
GOAL
Fixed $A \in \mathbb{C}^{n \times n}$, which is the largest m such that $X^{\top} A X=B$ is consistent, with $B \in \mathbb{C}^{m \times m}$ symmetric/skew?

$X^{\top} A X=B$ and bilinear forms

The problem is equivalent to

Given a bilinear form $\mathbb{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, find the largest dimension of a subspace $V \subseteq \mathbb{C}^{n}$, such that $\mathbb{A}_{\mid V}: V \rightarrow V$ is symmetric and non-degenerate.

$X^{\top} A X=B$ and bilinear forms

The problem is equivalent to

Given a bilinear form $\mathbb{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, find the largest dimension of a subspace $V \subseteq \mathbb{C}^{n}$, such that $\mathbb{A}_{\mid V}: V \rightarrow V$ is symmetric and non-degenerate.
(If A is a matrix of \mathbb{A} in some basis, and the columns of X are a basis of V, then $X^{\top} A X$ is a matrix for $\mathbb{A}_{\mid V}$.)
(So $\operatorname{dim} V=m$).

Some references on this problem

－A, B with entries over finite fields（or fields with characteristic 2）：
J．H．M．Wedderburn．
The automorphic transformation of a bilinear form．
Ann．of Math．2， 23 （1921）122－134．
屋 L．Carlitz．
Representations by skew forms in a finite field．
Arch．Math．，V（1954）19－31．
目 J．H．Hodges．
A skew matrix equation over a finite field．
Math．Nachr．， 17 （1966）49－55．
P．P．G．Buckhiester．
Rank r solutions to the matrix equation $X A X^{t}=C, A$ alternate，over $\operatorname{GF}\left(2^{y}\right)$ ．
Trans．Amer．Math．Soc．， 189 （1974）201－209．
－Recent references（connected to applications）：

P．Benner，D．Palitta．
On the solution of the non－symmetric T－Riccati equation．
Electron．Trans．Numer．Anal．， 54 （2021）66－88．
国
P．Benner，B．Iannazzo，B．Meini，D．Palitta．
Palindromic linearization and numerical solution of nonsymmetric algebraic T－Riccati equations．
BIT 62 （2022）1649－1672．

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
(B is symmetric in all cases, but A is not).

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
$X^{\top} J_{n}(0) X=I_{m} \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \geq 2 m-1, n>1$.

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right) \quad(m=1, n=2)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
$X^{\top} J_{n}(0) X=I_{m} \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \geq 2 m-1, n>1$.

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right) \quad(m=1, n=2)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
($m=2, n=3$)
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
$X^{\top} J_{n}(0) X=I_{m} \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \geq 2 m-1, n>1$.

Some examples

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right) \quad(m=1, n=2)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
($m=2, n=3$)
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
$X^{\top} J_{n}(0) X=I_{m} \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \geq 2 m-1, n>1$.

The Canonical form for congruence (CFC)

Theorem (CFC) [Horn \& Sergeichuk, 2006]
Each square complex matrix is congruent to a direct sum, uniquely determined up to permutation of addends, of matrices of the form:

Type 0	$J_{k}(0)$
Type I	Γ_{k}
Type II	$H_{2 k}(\mu)$,
	 $\mu \neq(-1)^{k+1}$ $\left(\mu\right.$ is determined up to replacement by $\left.\mu^{-1}\right)$

The Canonical form for congruence (CFC)

Theorem (CFC) [Horn \& Sergeichuk, 2006]
Each square complex matrix is congruent to a direct sum, uniquely determined up to permutation of addends, of matrices of the form:

Type 0	$J_{k}(0)$
Type I	Γ_{k}
Type II	$H_{2 k}(\mu)$,
	 $\mu \neq(-1)^{k+1}$ $\left(\mu\right.$ is determined up to replacement by $\left.\mu^{-1}\right)$

$$
\left(\Gamma_{1}=[1], \quad H_{2}(-1)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .\right)
$$

Reduction to CFC

Notation: $C_{M}=$ CFC of M.

Reduction to CFC

Notation: $C_{M}=$ CFC of M.
$X^{\top} A X=B$ is consistent $\Leftrightarrow X^{\top} C_{A} X=C_{B}$ is consistent.

Reduction to CFC

Notation: $C_{M}=$ CFC of M.

$$
X^{\top} A X=B \text { is consistent } \Leftrightarrow X^{\top} C_{A} X=C_{B} \text { is consistent. }
$$

(If $A=P^{\top} C_{A} P$ and $B=Q^{\top} C_{B} Q$, then $X^{\top} A X=B \Leftrightarrow Y^{\top} C_{A} Y=C_{B}$, with $Y=P X Q^{-1}$.)

Reduction to CFC

Notation: $C_{M}=$ CFC of M.

$$
X^{\top} A X=B \text { is consistent } \Leftrightarrow X^{\top} C_{A} X=C_{B} \text { is consistent. }
$$

(If $A=P^{\top} C_{A} P$ and $B=Q^{\top} C_{B} Q$, then $X^{\top} A X=B \Leftrightarrow Y^{\top} C_{A} Y=C_{B}$, with $Y=P X Q^{-1}$.)

맚ㅇ We can restrict ourselves to A and B given in CFC.

Some basic remarks

- B symmetric $\Leftrightarrow C_{B}=I_{m} \oplus 0_{s \times s}$
$X^{\top}\left(A \oplus 0_{\ell \times \ell}\right) X=B \oplus 0_{s \times s}$ is consistent $\Leftrightarrow X^{\top} A X=B$ is
consistent.

Some basic remarks

Notation: $M^{\oplus k}=\overbrace{M \oplus \cdots \oplus M}^{k \text { times }}$

- B symmetric $\Leftrightarrow C_{B}=I_{m} \oplus 0_{s \times s}$

Some basic remarks

Notation: $M^{\oplus k}=\overbrace{M \oplus \cdots \oplus M}^{k \text { times }}$

- B symmetric $\Leftrightarrow C_{B}=I_{m} \oplus 0_{s \times s}=\left(\Gamma_{1}\right)^{\oplus m} \oplus 0_{s \times s}$.

Some basic remarks

Notation: $M^{\oplus k}=\overbrace{M \oplus \cdots \oplus M}^{k \text { times }}$

- B symmetric $\Leftrightarrow C_{B}=I_{m} \oplus 0_{s \times s}=\left(\Gamma_{1}\right)^{\oplus m} \oplus 0_{s \times s}$.
- $X^{\top}\left(A \oplus 0_{\ell \times \ell}\right) X=B \oplus 0_{s \times s}$ is consistent $\Leftrightarrow X^{\top} A X=B$ is consistent.

Some basic remarks

Notation: $M^{\oplus k}=\overbrace{M \oplus \cdots \oplus M}^{k \text { times }}$

- B symmetric $\Leftrightarrow C_{B}=I_{m} \oplus 0_{s \times s}=\left(\Gamma_{1}\right)^{\oplus m} \oplus 0_{s \times s}$.
- $X^{\top}\left(A \oplus 0_{\ell \times \ell}\right) X=B \oplus 0_{s \times s}$ is consistent $\Leftrightarrow X^{\top} A X=B$ is consistent.
(We can get rid of possible null diagonal blocks in the CFC of A and B, namely blocks $J_{1}(0)$. In particular, B may be assumed to be invertible).

A necessary condition

Theorem
$A \in \mathbb{C}^{m \times m}$. If $X^{\top} A X=B$ is consistent, with B symmetric, then:

$$
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\}
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.

A necessary condition

Theorem
$A \in \mathbb{C}^{m \times m}$. If $X^{\top} A X=B$ is consistent, with B symmetric, then:

$$
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\},
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.
Proof: If $X^{\top} A X=B$, for some X, then

- $X^{\top}\left(A+A^{\top}\right) X=2 B$

A necessary condition

Theorem
$A \in \mathbb{C}^{m \times m}$. If $X^{\top} A X=B$ is consistent, with B symmetric, then:

$$
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\}
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.
Proof: If $X^{\top} A X=B$, for some X, then

- $X^{\top}\left(A+A^{\top}\right) X=2 B \Rightarrow \operatorname{rank} B=\operatorname{rank}\left(X^{\top}\left(A+A^{\top}\right) X\right) \leq \operatorname{rank}\left(A+A^{\top}\right)$.

A necessary condition

Theorem
$A \in \mathbb{C}^{m \times m}$. If $X^{\top} A X=B$ is consistent, with B symmetric, then:

$$
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\}
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.
Proof: If $X^{\top} A X=B$, for some X, then

- $X^{\top}\left(A+A^{\top}\right) X=2 B \Rightarrow \operatorname{rank} B=\operatorname{rank}\left(X^{\top}\left(A+A^{\top}\right) X\right) \leq \operatorname{rank}\left(A+A^{\top}\right)$.
- $X^{\top}\left(A-A^{\top}\right) X=0$. Using

$$
\operatorname{rank}(M N) \geq \operatorname{rank} M+\operatorname{rank} N-m \quad\left(M \in \mathbb{C}^{p \times m}, N \in \mathbb{C}^{m \times q}\right)
$$

we get:

$$
\begin{gathered}
0=\operatorname{rank}\left(X^{\top}\left(A-A^{\top}\right) X\right) \geq 2 \operatorname{rank} X+\operatorname{rank}\left(A-A^{\top}\right)-2 m \geq 2 \operatorname{rank} B+\operatorname{rank}\left(A-A^{\top}\right)-2 m \\
\Rightarrow \operatorname{rank} B \leq m-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2} .
\end{gathered}
$$

A necessary condition

Theorem

$A \in \mathbb{C}^{m \times m}$. If $X^{\top} A X=B$ is consistent, with B symmetric, then:

$$
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\}
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.
Proof: If $X^{\top} A X=B$, for some X, then

- $X^{\top}\left(A+A^{\top}\right) X=2 B \Rightarrow \operatorname{rank} B=\operatorname{rank}\left(X^{\top}\left(A+A^{\top}\right) X\right) \leq \operatorname{rank}\left(A+A^{\top}\right)$.
- $X^{\top}\left(A-A^{\top}\right) X=0$. Using

$$
\operatorname{rank}(M N) \geq \operatorname{rank} M+\operatorname{rank} N-m \quad\left(M \in \mathbb{C}^{p \times m}, N \in \mathbb{C}^{m \times q}\right)
$$

we get:

$$
\begin{gathered}
0=\operatorname{rank}\left(X^{\top}\left(A-A^{\top}\right) X\right) \geq 2 \operatorname{rank} X+\operatorname{rank}\left(A-A^{\top}\right)-2 m \geq 2 \operatorname{rank} B+\operatorname{rank}\left(A-A^{\top}\right)-2 m \\
\Rightarrow \operatorname{rank} B \leq m-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2} .
\end{gathered}
$$

$\operatorname{CFC}(A)=\left[\begin{array}{cc}\hat{A} & 0 \\ 0 & 0_{d_{A}}\end{array}\right]$, and we apply the previous inequality to $X^{\top} \widehat{A} X=B$ (which is consistent).

A necessary condition

Theorem
$A \in \mathbb{C}^{m \times m}$. If $X^{\top} A X=B$ is consistent, with B symmetric, then:

$$
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\}
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.

맚아 Comes from $X^{\top}\left(A+A^{\top}\right) X=2 B$ and $X^{\top}\left(A-A^{\top}\right) X=0$.

A necessary condition

Theorem
$A \in \mathbb{C}^{m \times m}$. If $X^{\top} A X=B$ is consistent, with B symmetric, then:

$$
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\}
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.

맙 Comes from $X^{\top}\left(A+A^{\top}\right) X=2 B$ and $X^{\top}\left(A-A^{\top}\right) X=0$.

Q: Is it sufficient???

It is sufficient (for most $A \in \mathbb{C}^{m \times m}$)!

Theorem

$A \in \mathbb{C}^{m \times m}$ whose CFC does not have $H_{4}(1)$ blocks, B symmetric. Then

$$
\begin{gathered}
X^{\top} A X=B \text { is consistent } \\
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\},
\end{gathered}
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul}^{\top}\right)$.
$\left(H_{4}(1)=\left[\begin{array}{cc}0 & I_{2} \\ J_{2}(1) & 0\end{array}\right]=\left[\begin{array}{ll|ll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\right.$.

It is sufficient (for most $A \in \mathbb{C}^{m \times m}$)!

Theorem

$A \in \mathbb{C}^{m \times m}$ whose CFC does not have $H_{4}(1)$ blocks, B symmetric. Then

$$
\begin{gathered}
X^{\top} A X=B \text { is consistent } \\
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\},
\end{gathered}
$$

with $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul}^{\top}\right)$.
$\left(H_{4}(1)=\left[\begin{array}{cc}0 & I_{2} \\ J_{2}(1) & 0\end{array}\right]=\left[\begin{array}{ll|ll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\right)$.

What happens when $\operatorname{CFC}(A)$ contains blocks $H_{4}(1)$?

$$
\begin{gathered}
A=H_{4}(1) \rightsquigarrow X^{\top} A X=I_{3} \text { is not consistent, but } \\
\min \left\{4-d_{A}-\frac{\operatorname{rank}\left(A-A^{\top}\right)}{2}, \operatorname{rank}\left(A+A^{\top}\right)\right\}=\min \{3,4\}=3 .
\end{gathered}
$$

Comments on the proof

- The CFC is our main tool.
- We prove the condition is sufficient for a direct sum of blocks of Type I, Type II, and Type III independently.
- When we put all pieces (canonical blocks) together, the necessary conditions shows up to be sufficient!

Comments on the proof

- The CFC is our main tool.
- We prove the condition is sufficient for a direct sum of blocks of Type I, Type II, and Type III independently.
- When we put all pieces (canonical blocks) together, the necessary conditions shows up to be sufficient!

Comments on the proof

- The CFC is our main tool.
- We prove the condition is sufficient for a direct sum of blocks of Type I, Type II, and Type III independently.
- When we put all pieces (canonical blocks) together, the necessary conditions shows up to be sufficient!

The generic case

The "generic" CFC in $\mathbb{C}^{n \times n}$ is:

$$
\mathrm{CFC}_{g}(n):=\left\{\begin{array}{lc}
H_{2}\left(\mu_{1}\right) \oplus \cdots \oplus H_{2}\left(\mu_{k}\right), & \text { if } n=2 k, \\
H_{2}\left(\mu_{1}\right) \oplus \cdots \oplus H_{2}\left(\mu_{k}\right) \oplus \Gamma_{1}, & \text { if } n=2 k+1
\end{array}\right.
$$

(μ_{1}, \ldots, μ_{k} different to each other and to $\mu_{1}^{-1}, \ldots, \mu_{k}^{-1}, \pm 1$).

FDT, F. M. Dopico.
The solution of the equation $X A+A X^{T}=0$ and its application to the theory of orbits.
Linear Algebra Appl., 434 (2011) 44-67

The generic case

The "generic" CFC in $\mathbb{C}^{n \times n}$ is:

$$
\mathrm{CFC}_{g}(n):=\left\{\begin{array}{lc}
H_{2}\left(\mu_{1}\right) \oplus \cdots \oplus H_{2}\left(\mu_{k}\right), & \text { if } n=2 k, \\
H_{2}\left(\mu_{1}\right) \oplus \cdots \oplus H_{2}\left(\mu_{k}\right) \oplus \Gamma_{1}, & \text { if } n=2 k+1
\end{array}\right.
$$

(μ_{1}, \ldots, μ_{k} different to each other and to $\mu_{1}^{-1}, \ldots, \mu_{k}^{-1}, \pm 1$).

嘈
FDT, F. M. Dopico.
The solution of the equation $X A+A X^{T}=0$ and its application to the theory of orbits.
Linear Algebra Appl., 434 (2011) 44-67
Theorem
If $C_{A}=\mathrm{CFC}_{g}(n)$, then

$$
X^{\top} A X=B \quad(B \text { symmetric })
$$

is consistent if and only if rank $B \leq n / 2$.

B skew: Characterization for consistency

Theorem
$A \in \mathbb{C}^{m \times m}$ and B skew-symmetric matrix. If $\operatorname{CFC}(A)$ does not have Γ_{2} blocks, then:

$$
\begin{gathered}
X^{\top} A X=B \text { is consistent } \\
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A+A^{\top}\right)}{2}, \operatorname{rank}\left(A-A^{\top}\right)\right\},
\end{gathered}
$$

where $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.

$$
\left(\Gamma_{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right]\right)
$$

B skew: Characterization for consistency

Theorem
$A \in \mathbb{C}^{m \times m}$ and B skew-symmetric matrix. If $\operatorname{CFC}(A)$ does not have Γ_{2} blocks, then:

$$
\begin{gathered}
X^{\top} A X=B \text { is consistent } \\
\operatorname{rank} B \leq \min \left\{m-d_{A}-\frac{\operatorname{rank}\left(A+A^{\top}\right)}{2}, \operatorname{rank}\left(A-A^{\top}\right)\right\},
\end{gathered}
$$

where $d_{A}=\operatorname{dim}\left(\operatorname{Nul} A \cap \operatorname{Nul} A^{\top}\right)$.
$\left(\Gamma_{2}=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]\right)$.
㕷 When $\operatorname{CFC}(A)$ contains blocks Γ_{2}, it is not necessarily true:

$$
X^{\top} \Gamma_{2}^{\oplus 4} X=H_{2}(-1)^{\oplus 3}
$$

is not consistent, but rank $H_{2}(-1)^{\oplus 3}=6=\min \{6,8\}$.

The $*$-congruence

M^{*} : Conjugate transpose of M.
A, B are $*$-congruent if $P^{*} A P=B$, for some invertible P.
127 $X^{*} A X=B$ is consistent $\Leftrightarrow X^{*} C_{A} X=C_{B}$ is consistent, for any C_{A} and $C_{B} *$-congruent with A and B (respectively).

The $*$-CFC

$$
\begin{aligned}
& \text { Type-0: } \quad J_{k}(0)=\left[\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & \ddots & \\
0 & & & 1 \\
0 & & & 0
\end{array}\right] ; \\
& \text { Type-I : } \mu \widetilde{\Gamma}_{k}=\widetilde{\Gamma}_{k}(\mu)=\mu\left[\begin{array}{cccccc}
1 & 1 & & & & 0 \\
-1 & 0 & 1 & & & \\
& 1 & 0 & 1 & & \\
& & -1 & 0 & 1 & \\
& & & 1 & 0 & \ddots \\
0 & & & & \ddots & \ddots
\end{array}\right] \quad \text { with } \mu \in \mathbb{F},|\mu|=1 \text {; and } \\
& \text { Type-II : } \quad \widetilde{H}_{2 k}(\mu)=\left[\begin{array}{ccccccc}
0 & 1 & & & & & \\
\mu & 0 & 1 & & & 0 & \\
& 0 & 0 & 1 & & & \\
& & \mu & 0 & 1 & & \\
& & & 0 & \ddots & \ddots & \\
& 0 & & & \ddots & 0 & 1 \\
& & & & & \mu & 0
\end{array}\right]_{2 k \times 2 k} \quad \mu \in \mathbb{F}, 0<|\mu|<1 .
\end{aligned}
$$

Theorem [Horn-Sergeichuk, 2006]
Every square complex matrix A is $*$-congruent to a direct sum of blocks of Types 0 , I, and II (uniquely determined up to permutation).

Ongoing work

We are trying to get a characterization for

$$
X^{*} A X=B \quad \text { to be consistent }
$$

with B being either Hermitian or skew-Hermitian.

Ongoing work

We are trying to get a characterization for

$$
X^{*} A X=B \quad \text { to be consistent }
$$

with B being either Hermitian or skew-Hermitian.

맚ㅇ The inertia comes into play!!!

Open questions

Characterize the consistency of:

- $X^{\top} A X=B, B$ symmetric when C_{A} contains blocks $H_{4}(1)$.
- $X^{\top} A X=B, B$ skew-symmetric when C_{A} contains blocks Γ_{2}.
- $X^{*} A X=B$, with B Hermítian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric but A, B, X having real entries.
- (Hard) $X^{\top} A X=B$, with B arbitrary.

Open questions

Characterize the consistency of:

- $X^{\top} A X=B, B$ symmetric when C_{A} contains blocks $H_{4}(1)$.
- $X^{\top} A X=B, B$ skew-symmetric when C_{A} contains blocks Γ_{2}.
- $X^{*} A X=B$, with B Hermitian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric but A, B, X having real entries.
- (Hard) $X^{\top} A X=B$, with B arbitrary.

Open questions

Characterize the consistency of:

- $X^{\top} A X=B, B$ symmetric when C_{A} contains blocks $H_{4}(1)$.
- $X^{\top} A X=B, B$ skew-symmetric when C_{A} contains blocks Γ_{2}.
- $X^{*} A X=B$, with B Hermitian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric but A, B, X having real entries.
$>(H a r d) X^{\top} A X=B$, with B arbitrary.

Open questions

Characterize the consistency of:

- $X^{\top} A X=B, B$ symmetric when C_{A} contains blocks $H_{4}(1)$.
- $X^{\top} A X=B, B$ skew-symmetric when C_{A} contains blocks Γ_{2}.
- $X^{*} A X=B$, with B Hermitian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric but A, B, X having real entries.
- (Hard) $X^{\top} A X=B$, with B arbitrary.

Open questions

Characterize the consistency of:

- $X^{\top} A X=B, B$ symmetric when C_{A} contains blocks $H_{4}(1)$.
- $X^{\top} A X=B, B$ skew-symmetric when C_{A} contains blocks Γ_{2}.
- $X^{*} A X=B$, with B Hermitian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric but A, B, X having real entries.
- (Hard) $X^{\top} A X=B$, with B arbitrary.

$X^{\top} A X=B$ with A, B real: inertia comes into play

LINEAR ALGEBRA AND ITS APPLICATIONS

Modifying the inertia of matrices arising in optimization

Nicholas J. Higham *, Sheung Hun Cheng ${ }^{1}$

Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
Received 9 October 1996; accepted 10 March 1997
Submitted by V. Mehrmann

Corollary 3.3. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, and let $X \in \mathbb{R}^{n \times m}(n \geqslant m)$ be of full rank. Then

$$
\begin{aligned}
\operatorname{inertia}(A)-(n-m, n-m, n-m) & \leqslant \operatorname{inertia}\left(X^{\top} A X\right) \\
& \leqslant \operatorname{inertia}(A)+(0,0, n-m)
\end{aligned}
$$

References

(A. Borobia, R. Canogar, FDT.
On the consistency of the matrix equation $X^{\top} A X=B$ when B is symmetric.
Mediterr. J. Math. (2021) 18:40 (electronic)
A. Borobia, R. Canogar, FDT.

The equation $X^{T} A X=B$ with B skew-symmetric: How much of a bilinear form is skew-symmetric?
Lin. Multilin. Algebra, in press.
嗇 A. Borobia, R. Canogar, FDT.
On the consistency of the matrix equation $X^{\top} A X=B$ when B is symmetric: the case where CFC(A) includes skew-symmetric blocks.
RACSAM, 117 (2023) Article number: 61.
A. Borobia, R. Canogar, FDT.

On the consistency of the matrix equation $X^{\top} A X=B$ when B is skew-symmetric: improving the previous characterization.
Lin. Multilin. Algebra, in press.

