uc3m \quad Universidad Carlos III de Madrid Departamento de Matemáticas

Companion forms for scalar and matrix polynomials: a personal review

Fernando De Terán

uc3m $\begin{aligned} & \text { Universidad Carlos III de Madrid }\end{aligned}$

Thanks to...

D. S. Mackey

And also to: F. M. Dopico, M. I. Bueno, C. Hernando, J. Pérez, V. Noferini, F. Tisseur, and P. Van Dooren.

Strong linearizations

Let \mathscr{R} be a (commutative) ring.
Definition: $A, B \in \mathscr{R}^{m \times n}$ are unimodularly equivalent ($\sim u e$) if there are $U \in \mathscr{R}^{m \times m}$ and $V \in \mathscr{R}^{n \times n}$, with $\operatorname{det} U$, $\operatorname{det} V$ being units in \mathscr{R}, s. t.
$(U, V$ are unimodular). $\quad U A V=B$.

Strong linearizations

Let \mathscr{R} be a (commutative) ring.
Definition: $A, B \in \mathscr{R}^{m \times n}$ are unimodularly equivalent ($\sim u e$) if there are $U \in \mathscr{R}^{m \times m}$ and $V \in \mathscr{R}^{n \times n}$, with $\operatorname{det} U$, $\operatorname{det} V$ being units in \mathscr{R}, s. t.

$$
U A V=B
$$

(U, V are unimodular).
Definition: $L(\lambda)=\lambda X+Y \in \mathbb{F}[\lambda]^{p \times q}$ is a linearization of
$P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i} \in \mathbb{F}[\lambda]^{m \times n}$ if

$$
L(\lambda) \sim_{u e} \operatorname{diag}\left(P(\lambda), I_{(d-1) n}\right)
$$

The linearization is strong if, moreover,

$$
\begin{aligned}
\operatorname{rev} L(\lambda) & \sim u e \operatorname{diag}\left(\operatorname{rev} P(\lambda), I_{(d-1) n}\right) \\
\operatorname{rev}\left(A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}\right) & :=A_{d}+\lambda A_{d-1}+\cdots+\lambda^{d} A_{0} \text { (reversal). }
\end{aligned}
$$

Strong linearizations

Let \mathscr{R} be a (commutative) ring.
Definition: $A, B \in \mathscr{R}^{m \times n}$ are unimodularly equivalent ($\sim u e$) if there are $U \in \mathscr{R}^{m \times m}$ and $V \in \mathscr{R}^{n \times n}$, with $\operatorname{det} U$, $\operatorname{det} V$ being units in \mathscr{R}, s. t.

$$
U A V=B
$$

(U, V are unimodular).
Definition: $L(\lambda)=\lambda X+Y \in \mathbb{F}[\lambda]^{p \times q}$ is a linearization of
$P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i} \in \mathbb{F}[\lambda]^{m \times n}$ if

$$
L(\lambda) \sim_{u e} \operatorname{diag}\left(P(\lambda), I_{(d-1) n}\right)
$$

The linearization is strong if, moreover,

$$
\operatorname{rev} L(\lambda) \sim_{u e} \operatorname{diag}\left(\operatorname{rev} P(\lambda), I_{(d-1) n}\right)
$$

$\operatorname{rev}\left(A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}\right):=A_{d}+\lambda A_{d-1}+\cdots+\lambda^{d} A_{0}$ (reversal).
吡 Strong linearizations have the same (regular) spectral information as $P(\lambda)$.

What is a companion form?

Let \mathbb{F} be a field.
A companion pencil for matrix polynomials $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i} \in \mathbb{F}[\lambda]^{n \times n}$ is an $n d \times n d$ matrix pencil $\mathscr{C}_{P}(\lambda)=\lambda X+Y$ s. t. if X, Y are viewed as block $d \times d$ matrices with $n \times n$ blocks, then:
(a) each nonzero block of X and Y is either $\pm I$ or $\pm A_{i}$, for some
$i=0: d$, and
(b) \mathscr{C}_{P} is a strong linearization of $P(\lambda)$.

㫫
FDT, F. M. Dopico, D. S. Mackey.
Palindromic companion forms for matrix polynomials of odd degree.
JCAM, 236 (2011) 1464-1480.

What is a companion form?

Let \mathbb{F} be a field.
A companion pencil for matrix polynomials $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i} \in \mathbb{F}[\lambda]^{n \times n}$ is an $n d \times n d$ matrix pencil $\mathscr{C}_{P}(\lambda)=\lambda X+Y$ s. t. if X, Y are viewed as block $d \times d$ matrices with $n \times n$ blocks, then:
(a) each nonzero block of X and Y is either $\pm /$ or $\pm A_{i}$, for some $i=0: d$, and
(b) \mathscr{C}_{P} is a strong linearization of $P(\lambda)$.

围
FDT, F. M. Dopico, D. S. Mackey.
Palindromic companion forms for matrix polynomials of odd degree.
JCAM, 236 (2011) 1464-1480.
睻 Simplicity of the constructions

What is a companion form?

Let \mathbb{F} be a field.
A companion pencil for matrix polynomials $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i} \in \mathbb{F}[\lambda]^{n \times n}$ is an $n d \times n d$ matrix pencil $\mathscr{C}_{P}(\lambda)=\lambda X+Y$ s. t. if X, Y are viewed as block $d \times d$ matrices with $n \times n$ blocks, then:
(a) each nonzero block of X and Y is either $\pm /$ or $\pm A_{i}$, for some $i=0: d$, and
(b) \mathscr{C}_{P} is a strong linearization of $P(\lambda)$.

围
FDT, F. M. Dopico, D. S. Mackey.
Palindromic companion forms for matrix polynomials of odd degree.
JCAM, 236 (2011) 1464-1480.
掐 Simplicity of the constructions ...and all families of companion pencils knew at that time satisfied it!

What is a companion form?

Let \mathbb{F} be a field.
A companion pencil for matrix polynomials $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i} \in \mathbb{F}[\lambda]^{n \times n}$ is an $n d \times n d$ matrix pencil $\mathscr{C}_{P}(\lambda)=\lambda X+Y$ s. t. if X, Y are viewed as block $d \times d$ matrices with $n \times n$ blocks, then:
(a) each nonzero block of X and Y is either $\pm /$ or $\pm A_{i}$, for some $i=0: d$, and
(b) \mathscr{C}_{P} is a strong linearization of $P(\lambda)$.

囯
FDT, F. M. Dopico, D. S. Mackey.
Palindromic companion forms for matrix polynomials of odd degree.
JCAM, 236 (2011) 1464-1480.
1, Quite restrictive!

What is a companion form?

Let \mathbb{F} be a field.
A companion pencil for matrix polynomials $P \in \mathscr{P}(d, m \times n, \mathbb{F})$ is a uniform template for building a pencil $\mathscr{C}_{P} \in \mathscr{P}(1, p \times q, \mathbb{F})$ from the entries in the coefficient matrices of P, in such a way that

- \mathscr{C}_{P} is a strong linearization of P, for all $P \in \mathscr{P}(d, m \times n, \mathbb{F})$ (regular or singular).
- The construction of the coefficient matrices of \mathscr{C}_{P} from those of P should involve no matrix operations other than scalar multiplication.
$\mathscr{P}(d, m \times n, \mathbb{F})$: the set of matrix polynomials over \mathbb{F} of degree d with size $m \times n$.

国
FDT, F. M. Dopico, D. S. Mackey.
Spectral equivalence of matrix polynomials and the Index Sum Theorem.
LAA, 459 (2014) 264-333.

What is a companion form?

Let \mathbb{F} be a field.

A companion pencil for matrix polynomials $P \in \mathscr{P}(d, m \times n, \mathbb{F})$ is a uniform template for building a pencil $\mathscr{C}_{P} \in \mathscr{P}(1, p \times q, \mathbb{F})$ from the entries in the coefficient matrices of P, in such a way that

- \mathscr{C}_{P} is a strong linearization of P, for all $P \in \mathscr{P}(d, m \times n, \mathbb{F})$ (regular or singular).
- The construction of the coefficient matrices of \mathscr{C}_{P} from those of P should involve no matrix operations other than scalar multiplication.
$\mathscr{P}(d, m \times n, \mathbb{F})$: the set of matrix polynomials over \mathbb{F} of degree d with size $m \times n$.

Taㅜㅇㅜ The size $p \times q$ depends on d, m, and n.
屋 FDT, F. M. Dopico, D. S. Mackey.
Spectral equivalence of matrix polynomials and the Index Sum Theorem.

Examples of companion pencils for $P(\lambda)=\sum_{i=0}^{d} \lambda^{\prime} A_{i}$

- 1st and 2nd Frobenius pencils:

$$
F_{1}(\lambda)=\left[\begin{array}{cccc}
A_{d-1}+\lambda A_{d} & A_{d-2} & \cdots & A_{0} \\
-1 & \lambda 1 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -1 & \lambda 1
\end{array}\right], \quad F_{2}(\lambda)=F_{1}(\lambda)^{\mathscr{B}} .
$$

Examples of companion pencils for $P(\lambda)=\sum_{i=0}^{d} \lambda^{\prime} A_{i}$

- 1st and 2nd Frobenius pencils:

$$
F_{1}(\lambda)=\left[\begin{array}{cccc}
A_{d-1}+\lambda A_{d} & A_{d-2} & \cdots & A_{0} \\
-1 & \lambda 1 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & - & \lambda 1
\end{array}\right], \quad F_{2}(\lambda)=F_{1}(\lambda)^{\mathscr{B}} .
$$

- Fiedler pencils: Same entries as $F_{1}(\bar{\lambda})$ but more flexibility in the positions. Example ($d=6$):

$$
\left[\begin{array}{cccccc}
A_{5}+\lambda A_{6} & -1 & 0 & 0 & 0 & 0 \\
A_{4} & \lambda I & A_{3} & -1 & 0 & 0 \\
-I & 0 & \lambda I & 0 & 0 & 0 \\
0 & 0 & A_{2} & \lambda I & A_{1} & -1 \\
0 & 0 & -1 & 0 & \lambda I & 0 \\
0 & 0 & 0 & 0 & A_{0} & \lambda I
\end{array}\right] .
$$

Examples of companion pencils for $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$

- 1st and 2nd Frobenius pencils:

$$
F_{1}(\lambda)=\left[\begin{array}{cccc}
A_{d-1}+\lambda A_{d} & A_{d-2} & \cdots & A_{0} \\
-1 & \lambda 1 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & - & \lambda 1
\end{array}\right], \quad F_{2}(\lambda)=F_{1}(\lambda)^{\mathscr{B}} .
$$

- Fiedler pencils: Same entries as $F_{1}(\lambda)$ but more flexibility in the positions. Example $(d=6)$:

$$
\left[\begin{array}{cccccc}
A_{5}+\lambda A_{6} & -1 & 0 & 0 & 0 & 0 \\
A_{4} & \lambda I & A_{3} & -1 & 0 & 0 \\
-I & 0 & \lambda I & 0 & 0 & 0 \\
0 & 0 & A_{2} & \lambda I & A_{1} & -1 \\
0 & 0 & -I & 0 & \lambda I & 0 \\
0 & 0 & 0 & 0 & A_{0} & \lambda I
\end{array}\right] .
$$

- Generalized Fiedler pencils: Same $I, \lambda /$ blocks as Fiedlers, but λI not necessarily on the main diagonal, and some blocks A_{i}, A_{i+1} may appear as $A_{i}+\lambda A_{i+1}$. Example $(d=5)$:

$$
\left[\begin{array}{ccccc}
A_{4}+\lambda A_{5} & -I & 0 & 0 & 0 \\
-I & 0 & \lambda I & 0 & 0 \\
0 & \lambda I & A_{2}+\lambda A_{3} & -1 & 0 \\
0 & 0 & -I & 0 & \lambda I \\
0 & 0 & 0 & \lambda I & A_{0}+\lambda A_{1}
\end{array}\right] .
$$

Examples of companion pencils for $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$

- 1st and 2nd Frobenius pencils:

$$
F_{1}(\lambda)=\left[\begin{array}{cccc}
A_{d-1}+\lambda A_{d} & A_{d-2} & \cdots & A_{0} \\
-1 & \lambda 1 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -1 & \lambda 1
\end{array}\right], \quad F_{2}(\lambda)=F_{1}(\lambda)^{\mathscr{B}} .
$$

- Fiedler pencils: Same entries as $F_{1}(\bar{\lambda})$ but more flexibility in the positions. Example $(d=6)$:

$$
\left[\begin{array}{cccccc}
A_{5}+\lambda A_{6} & -1 & 0 & 0 & 0 & 0 \\
A_{4} & \lambda I & A_{3} & -1 & 0 & 0 \\
-I & 0 & \lambda I & 0 & 0 & 0 \\
0 & 0 & A_{2} & \lambda I & A_{1} & -1 \\
0 & 0 & -I & 0 & \lambda I & 0 \\
0 & 0 & 0 & 0 & A_{0} & \lambda I
\end{array}\right] .
$$

- Generalized Fiedler pencils: Same $I, \lambda /$ blocks as Fiedlers, but λI not necessarily on the main diagonal, and some blocks A_{i}, A_{i+1} may appear as $A_{i}+\lambda A_{i+1}$. Example $(d=5)$:

$$
\left[\begin{array}{ccccc}
A_{4}+\lambda A_{5} & -I & 0 & 0 & 0 \\
-I & 0 & \lambda I & 0 & 0 \\
0 & \lambda I & A_{2}+\lambda A_{3} & -1 & 0 \\
0 & 0 & -I & 0 & \lambda I \\
0 & 0 & 0 & \lambda I & A_{0}+\lambda A_{1}
\end{array}\right] .
$$

瞫 Allow us to create structured linearizations ((skew-)symmetric, alternating, (anti-)palindromic).

Examples of companion pencils for $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$

- 1st and 2nd Frobenius pencils:

$$
F_{1}(\lambda)=\left[\begin{array}{cccc}
A_{d-1}+\lambda A_{d} & A_{d-2} & \cdots & A_{0} \\
-1 & \lambda 1 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -1 & \lambda 1
\end{array}\right], \quad F_{2}(\lambda)=F_{1}(\lambda)^{\mathscr{B}} .
$$

- Fiedler pencils: Same entries as $F_{1}(\bar{\lambda})$ but more flexibility in the positions. Example $(d=6)$:

$$
\left[\begin{array}{cccccc}
A_{5}+\lambda A_{6} & -1 & 0 & 0 & 0 & 0 \\
A_{4} & \lambda I & A_{3} & -1 & 0 & 0 \\
-I & 0 & \lambda I & 0 & 0 & 0 \\
0 & 0 & A_{2} & \lambda I & A_{1} & -1 \\
0 & 0 & -1 & 0 & \lambda I & 0 \\
0 & 0 & 0 & 0 & A_{0} & \lambda I
\end{array}\right] .
$$

- Generalized Fiedler pencils: Same $I, \lambda /$ blocks as Fiedlers, but λI not necessarily on the main diagonal, and some blocks A_{i}, A_{i+1} may appear as $A_{i}+\lambda A_{i+1}$. Example $(d=5)$:

$$
\left[\begin{array}{ccccc}
A_{4}+\lambda A_{5} & -1 & 0 & 0 & 0 \\
-1 & 0 & \lambda 1 & 0 & 0 \\
0 & \lambda 1 & A_{2}+\lambda A_{3} & -1 & 0 \\
0 & 0 & -1 & 0 & \lambda 1 \\
0 & 0 & 0 & \lambda 1 & A_{0}+\lambda A_{1}
\end{array}\right]
$$

嗗 Allow to create structured linearizations ((skew-)symmetric, alternating, (anti-)palindromic).

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λ I's can be different to those in Fiedler's (and with different signs). Example ($d=4$):

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & 1 & -\lambda I & 0
\end{array}\right]
$$

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λ I's can be different to those in Fiedler's (and with different signs). Example ($d=4$):

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & I & -\lambda I & 0
\end{array}\right]
$$

(symmetric linearization).

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λ I's can be different to those in Fiedler's (and with different signs). Example ($d=4$):

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & I & -\lambda I & 0
\end{array}\right]
$$

(symmetric linearization).

- Block-Kronecker pencils: Choose p, q with $p+q=d-1$:

$$
\left[\begin{array}{cccc|c}
X_{11}+\lambda Y_{11} & X_{12}+\lambda Y_{12} & \cdots & X_{1, p+1}+\lambda Y_{1, p+1} & -I \\
X_{21}+\lambda Y_{21} & . & \ddots & \vdots & \lambda I \\
\vdots & . & \therefore & X_{q, p+1}+\lambda Y_{q, p+1} & \ddots \\
X_{q+1,1}+\lambda Y_{q+1,1} & \cdots & X_{q+1, p}+\lambda Y_{q+1, p} & X_{q+1, p+1}+\lambda Y_{q+1, p+1} & \\
\hline-I & \lambda I & & & \\
& \ddots & \ddots & & \\
& & -I & \lambda I &
\end{array}\right]_{d n \times d n}
$$

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λ I's can be different to those in Fiedler's (and with different signs). Example $(d=4)$:

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & I & -\lambda I & 0
\end{array}\right]
$$

(Symmetric linearization).

- Block-Kronecker pencils: Choose p, q with $p+q=d-1$:

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
X_{11}+\lambda Y_{11} & X_{12}+\lambda Y_{12} & \cdots & X_{1, p+1}+\lambda Y_{1, p+1} & -I \\
X_{21}+\lambda Y_{21} & \therefore & . & \vdots & \\
\vdots & . & . & X_{q, p+1}+\lambda Y_{q, p+1} & \\
X_{q+1,1}+\lambda Y_{q+1,1} & \cdots & X_{q+1, p}+\lambda Y_{q+1, p} & X_{q+1, p+1}+\lambda Y_{q+1, p+1} & \\
\hline-I & \lambda I & & -I \\
& \ddots & \ddots & & \\
& & -I & \lambda I & \\
& & & & \\
\hline
\end{array}\right]_{d n \times d n}} \\
& X_{q+1, p+1}=A_{0}
\end{aligned}
$$

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λ I's can be different to those in Fiedler's (and with different signs). Example $(d=4)$:

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & I & -\lambda I & 0
\end{array}\right]
$$

(symmetric linearization).

- Block-Kronecker pencils: Choose p, q with $p+q=d-1$:

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
X_{11}+\lambda Y_{11} & X_{12}+\lambda Y_{12} & \ldots & X_{1, p+1}+\lambda Y_{1, p+1} & -I \\
X_{21}+\lambda Y_{21} & \therefore & \ddots & \vdots & \lambda I \\
\vdots & \therefore & \therefore & X_{q, p+1}+\lambda Y_{q, p+1} & \ddots \\
X_{q+1,1}+\lambda Y_{q+1,1} & \cdots & x_{q+1, p}+\lambda Y_{q+1, p} & X_{q+1, p+1}+\lambda Y_{q+1, p+1} & \\
\hline-I & \lambda I & & & \\
& \ddots & \ddots & & \\
& & -I & \lambda I &
\end{array}\right]_{d n \times d n}} \\
& X_{q+1, p}+X_{q, p+1}+Y_{q+1, p+1}=A_{1}
\end{aligned}
$$

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λ I's can be different to those in Fiedler's (and with different signs). Example $(d=4)$:

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & I & -\lambda I & 0
\end{array}\right]
$$

(symmetric linearization).

- Block-Kronecker pencils: Choose p, q with $p+q=d-1$:

$$
\left[\begin{array}{cccc|c}
X_{11}+\lambda Y_{11} & X_{12}+\lambda Y_{12} & \cdots & X_{1, p+1}+\lambda Y_{1, p+1} & -I \\
X_{21}+\lambda Y_{21} & . & . & \vdots & \\
\vdots & \therefore & . & X_{q, p+1}+\lambda Y_{q, p+1} & \ddots \\
X_{q+1,1}+\lambda Y_{q+1,1} & \cdots & X_{q+1, p}+\lambda Y_{q+1, p} & X_{q+1, p+1}+\lambda Y_{q+1, p+1} & \\
\hline-I & \lambda I & & & \\
& \ddots & \ddots & & \\
& & -I & \lambda I & \\
& & & &
\end{array}\right]_{d n \times d n}
$$

$X_{11}+Y_{12}+Y_{21}=A_{d-1}$

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λl 's can be different to those in Fiedler's (and with different signs). Example $(d=4)$:

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & I & -\lambda I & 0
\end{array}\right]
$$

(symmetric linearization).

- Block-Kronecker pencils: Choose p, q with $p+q=d-1$:
$\left[\begin{array}{cccc|c}X_{11}+\lambda Y_{11} & X_{12}+\lambda Y_{12} & \cdots & X_{1, p+1}+\lambda Y_{1, p+1} & -I \\ X_{21}+\lambda Y_{21} & . & \therefore & \vdots & \lambda I \\ \vdots & \therefore & \therefore & X_{q, p+1}+\lambda Y_{q, p+1} & \ddots \\ X_{q+1,1}+\lambda Y_{q+1,1} & \cdots & X_{q+1, p}+\lambda Y_{q+1, p} & X_{q+1, p+1}+\lambda Y_{q+1, p+1} & \\ \hline-I & \lambda I & & & \\ & \ddots & \ddots & & \\ & & -I & \lambda I & \end{array}\right]_{d n \times d n}$
$Y_{11}=A_{d}$

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λl 's can be different to those in Fiedler's (and with different signs). Example ($d=4$):

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & I & -\lambda I & 0
\end{array}\right]
$$

(symmetric linearization).

- Block-Kronecker pencils: Choose p, q with $p+q=d-1$:

$$
\left[\begin{array}{cccc|c}
X_{11}+\lambda Y_{11} & X_{12}+\lambda Y_{12} & \cdots & X_{1, p+1}+\lambda Y_{1, p+1} & -I \\
X_{21}+\lambda Y_{21} & . & \ddots & \vdots & \lambda I \\
\vdots & . & \therefore & \\
X_{q+1,1}+\lambda Y_{q+1,1} & \cdots & X_{q+1, p}+\lambda Y_{q+1, p} & X_{q+1, p+1}+\lambda Y_{q+1, p+1} & \\
\hline-I & \lambda I & & & \\
& \ddots & \ddots & & \\
& & -I & \lambda I & \\
& & & &
\end{array}\right]_{d n \times d n}
$$

[危 Very flexible family.

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λ I's can be different to those in Fiedler's (and with different signs). Example $(d=4)$:

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & 1 & -\lambda I & 0
\end{array}\right]
$$

(Symmetric linearization).

- Block-Kronecker pencils: Choose p, q with $p+q=d-1$:

$$
\left[\begin{array}{cccc|c}
X_{11}+\lambda Y_{11} & X_{12}+\lambda Y_{12} & \cdots & X_{1, p+1}+\lambda Y_{1, p+1} & -I \\
X_{21}+\lambda Y_{21} & . & . & \vdots & \\
\vdots & . & \therefore & X_{q, p+1}+\lambda Y_{q, p+1} & \ddots \\
X_{q+1,1}+\lambda Y_{q+1,1} & \cdots & X_{q+1, p}+\lambda Y_{q+1, p} & X_{q+1, p+1}+\lambda Y_{q+1, p+1} & \\
\hline-I & \lambda I & & & \\
& \ddots & \ddots & & \\
& & -I & \lambda I & \\
& & & &
\end{array}\right]_{d n \times d n}
$$

馆Can be more general \rightsquigarrow Block-minimal-bases pencils.

Examples of companion pencils (II)

- Generalized Fiedler pencils with repetition: Some A_{i} 's can appear more than once. The number of l 's and λl 's can be different to those in Fiedler's (and with different signs). Example ($d=4$):

$$
\left[\begin{array}{cccc}
-1 & \lambda A_{4} & 0 & 0 \\
\lambda A_{4} & A_{2}+\lambda A_{3} & A_{1} & 1 \\
0 & A_{1} & A_{0}-\lambda A_{1} & -\lambda I \\
0 & I & -\lambda I & 0
\end{array}\right]
$$

(symmetric linearization).

- Block-Kronecker pencils: Choose p, q with $p+q=d-1$:
[危Can be more general \rightsquigarrow Block-minimal-bases pencils.
ITP8 Include, up to block permutation, all Fiedler-like pencils.

A summary of known companion pencils

Frobenius companion pencils
 (long time ago)

Fiedler pencils
[Antoniou-Vologiannidis'04], [DT-Dopico-Mackey'10] (after [Fiedler'02])
Generalized Fiedler pencils
[Antoniou-Vologiannidis'04], [Bueno-DT-Dopico'11]
Generalized Fiedler pencils with repetition
[Vologiannidis-Antoniou'11], [Bueno-DT'14]
Block minimal bases pencils [Dopico-Lawrence-Pérez-VanDooren'18]

Some history on the name of Fiedler pencils
"Greek pencils":

NOTES on the GREEK PENCILS
240 at 2007
DSMackey

Some history on the name of Fiedler pencils

"Greek pencils":

NOTES on the GREEX Pevaiss

$$
\begin{aligned}
& 240 \text { Ot } 2007 \\
& \text { DSMackey }
\end{aligned}
$$

E. N. Antoniou, S. Vologiannidis.

A new family of companion forms of polynomial matrices.
ELA, 11 (2004) 78-87.

Some history on the name of Fiedler pencils

"Greek pencils":

NOTES on the GREEX Pavais

$$
\begin{aligned}
& 240 \text { Ot } 2007 \\
& \text { DSMackey }
\end{aligned}
$$

E. N. Antoniou, S. Vologiannidis.

A new family of companion forms of polynomial matrices.
ELA, 11 (2004) 78-87.
Shortly after this...
"We should probably decide on a better name. I suggested in Berlin that maybe it would be appropriate to call them the "Fiedler companion pencils", since it was really Fiedler who first(?) suggested factoring the companion matrix and then rearranging the factors." (e-mail from August 30, 2008)M.Fiedler.

A note on companion matrices.
LAA, 372 (2003) 325-331.

Why companion "form"?

It is the word used in
E. N. Antoniou, S. Vologiannidis.

A new family of companion forms of polynomial matrices.
ELA, 11 (2004) 78-87.

Why companion "form"?

It is the word used in
E. N. Antoniou, S. Vologiannidis.

A new family of companion forms of polynomial matrices.
ELA, 11 (2004) 78-87.
It allows us to include also companion ℓ-ifications:
显
FDT, F. M. Dopico, D. S. Mackey.
Spectral equivalence of matrix polynomials and the Index Sum theorem.
LAA, 459 (2014) 264-333.
Which are used in:
[DT-Dopico-Van Dooren, LAA 495 (2016) 344-372], [Bini-Robol, LAA 502 (2016)
275-298], [Van Dooren-Dopico, LAA 542 (2018) 246-281], [Melman, LAMA 67 (2019) 598-612], [Chan-Corless-González-Vega-Sendra-Sendra, LAA 563 (2019) 373-399], [Dopico-Pérez-Van Dooren, LAA 562 (2019) 163-204], [Song-Maier-Luskin, J. Comput. Phys. 423 (2020) 109871], [Zhan-Dyachencko, JCAM 383 (2021) 113113], [DT-Hernando-Pérez, ELA 37 (2021) 35-71], [Drmac̆-S̆ain-Glibić, TOMS 48 (2022), Art. 4],...

Why companion "form"?

It is the word used in
E. N. Antoniou, S. Vologiannidis.

A new family of companion forms of polynomial matrices.
ELA, 11 (2004) 78-87.
It allows us to include also companion ℓ-ifications:
显
FDT, F. M. Dopico, D. S. Mackey.
Spectral equivalence of matrix polynomials and the Index Sum theorem.
LAA, 459 (2014) 264-333.
Which are used in:
[DT-Dopico-Van Dooren, LAA 495 (2016) 344-372], [Bini-Robol, LAA 502 (2016)
275-298], [Van Dooren-Dopico, LAA 542 (2018) 246-281], [Melman, LAMA 67 (2019) 598-612], [Chan-Corless-González-Vega-Sendra-Sendra, LAA 563 (2019) 373-399], [Dopico-Pérez-Van Dooren, LAA 562 (2019) 163-204], [Song-Maier-Luskin, J. Comput. Phys. 423 (2020) 109871], [Zhan-Dyachencko, JCAM 383 (2021) 113113], [DT-Hernando-Pérez, ELA 37 (2021) 35-71], [Drmac̆-S̆ain-Glibić, TOMS 48 (2022), Art. 4],...

胙 The word " ℓ-ification" (including "quadratification") was made up by Steve.

Are they useful in practice?

傕 They are natural tools to be used in the Polynomial Eigenvalue Problem (PEP):

Finding $\lambda_{0} \in \mathbb{C}, 0 \neq v \in \mathbb{C}^{n}: P\left(\lambda_{0}\right) v=0$ λ_{0} : eigenvalue, v : eigenvector
$(\operatorname{det} P(\lambda) \not \equiv 0)$

Are they useful in practice？

傕 They are natural tools to be used in the Polynomial Eigenvalue Problem（PEP）：

Finding $\lambda_{0} \in \mathbb{C}, 0 \neq v \in \mathbb{C}^{n}: P\left(\lambda_{0}\right) v=0$ λ_{0} ：eigenvalue，v ：eigenvector

The backward error and conditioning have been analyzed in：
－For Fiedlers：
FDT．
Backward error and conditioning of Fiedler companion linearizations．
Math．Comp． 89 （2020）1459－1300．
－For block－Kronecker（b＇err）：

围
F．M．Dopico，P．Lawrence J．Pérez，P．Van Dooren．
Block Kronecker linearizations of matrix polynomials and their backward errors．
Numer．Math． 140 （2018）373－426．

Are they useful in practice?

강앙 They are natural tools to be used in the Polynomial Eigenvalue Problem (PEP):

$$
\begin{gathered}
\text { Finding } \lambda_{0} \in \mathbb{C}, 0 \neq v \in \mathbb{C}^{n}: P\left(\lambda_{0}\right) v=0 \\
\lambda_{0}: \text { eigenvalue, } v \text { : eigenvector }
\end{gathered}
$$

$$
(\operatorname{det} P(\lambda) \not \equiv 0)
$$

The backward error and conditioning have been analyzed in:

- For Fiedlers:

固 FDT.
Backward error and conditioning of Fiedler companion linearizations.
Math. Comp. 89 (2020) 1459-1300.

- For block-Kronecker (b’err):

䀏 F. M. Dopico, P. Lawrence J. Pérez, P. Van Dooren.
Block Kronecker linearizations of matrix polynomials and their backward errors.
Numer. Math. 140 (2018) 373-426.
망아 The main tools come from:
[Tisseur, LAA 309 (2000) 339-361], [Higham-Mackey-Tisseur, SIMAX 28 (2006)
1005-1028], [Higham-Li-Tisseur, SIMAX 29 (2007) 1218-1241],
[Higham-Grammont-Tisseur, LAA 435 (2011) 623-640].

Are they useful? (ctd)

[结 The numerical features (b'err \& conditioning) are similar to those of the Frobenius pencils.

Are they useful? (ctd)

[危 The numerical features (b'err \& conditioning) are similar to those of the Frobenius pencils.

None of them seems to present advantages (b'err \& conditioning) compared to the Frobenius pencils.

Are they useful? (ctd)

[危 The numerical features (b'err \& conditioning) are similar to those of the Frobenius pencils.
[3 None of them seems to present advantages (b'err \& conditioning) compared to the Frobenius pencils.
"One thing that came up in Nick Higham's talk gave a strong indication that the conditioning and backward error properties of the Greek pencils (at least for regular P) will very likely be much like those of the standard Frobenius companion pencils. Hence they are probably completely OK for numerical computation, but also there may not be any particular advantage in using them either." (e-mail from August 30, 2008)

Exploit the structure!

$1 /$ The Frobenius companion forms do not preserve any of the standard symmetry structures of matrix polynomials arising in applications:

- \star-Symmetric: $P^{\star}(\lambda)=P(\lambda)$.
- \star-Skew-symmetric: $P^{\star}(\lambda)=-P(\lambda)$.
- \star-palindromic: $P^{\star}(\lambda)=\operatorname{rev} P(\lambda)$.
- \star-alternating (odd/even): $P^{\star}(\lambda)= \pm P(-\lambda)$.

Exploit the structure!

The Frobenius companion forms do not preserve any of the standard symmetry structures of matrix polynomials arising in applications:

- \star-Symmetric: $P^{\star}(\lambda)=P(\lambda)$.
- *-Skew-symmetric: $P^{\star}(\lambda)=-P(\lambda)$.
- \star-palindromic: $P^{\star}(\lambda)=\operatorname{rev} P(\lambda)$.
- \star-alternating (odd/even): $P^{\star}(\lambda)= \pm P(-\lambda)$.

㖪 The family of block-Kronecker pencils allows to create structured pencils for all (possible) structures above.

Exploit the structure!

13 The Frobenius companion forms do not preserve any of the standard symmetry structures of matrix polynomials arising in applications:

- *-Symmetric: $P^{\star}(\lambda)=P(\lambda)$.
- \star-Skew-symmetric: $P^{\star}(\lambda)=-P(\lambda)$.
- \star-palindromic: $P^{\star}(\lambda)=\operatorname{rev} P(\lambda)$.
- \star-alternating (odd/even): $P^{\star}(\lambda)= \pm P(-\lambda)$.

The The family of block-Kronecker pencils allows to create structured pencils for all (possible) structures above.

皐 There cannot be structured companion linearizations for matrix polynomials of even degree $d \geq 2$ for the \star-symmetric, \star-alternating, and \star-palindromic structures.
首 FDT, F. M. Dopico, D. S. Mackey.
Spectral equivalence of matrix polynomials and the Index Sum theorem.
LAA 459 (2014) 264-333.

Look for structured ℓ-ifications!

Companion structured ℓ-ifications for \star-symmetric, \star-alternating, and \star-palindromic matrix polynomials with degree d, are known for $d=(2 s+1) \ell$:

FDT, C. Hernando, J. Pérez.
Structured strong ℓ-ifications for structured matrix polynomials in the monomial basis.
ELA 37 (2021) 35-71.

Look for structured ℓ-ifications!

Companion structured ℓ-ifications for \star-symmetric, \star-alternating, and *-palindromic matrix polynomials with degree d, are known for $d=(2 s+1) \ell$:FDT, C. Hernando, J. Pérez.
Structured strong ℓ-ifications for structured matrix polynomials in the monomial basis. ELA 37 (2021) 35-71.

망앙 In particular, quadratifications of $(2 s+1) \ell$-degree matrix polynomials.
Example (\star-palindromic quadratification of degree-10 matrix polynomials):

$$
\left[\begin{array}{ccc|cc}
P_{4}+\lambda P_{5}+\lambda^{2} P_{6} & \lambda P_{3} / 2 & P_{0}+\lambda P_{1}+\lambda^{2} P_{2} & -\lambda^{2} I & 0 \\
\lambda P_{7} / 2 & 0 & \lambda P_{3} / 2 & I & -\lambda^{2} I \\
P_{8}+\lambda P_{9}+\lambda^{2} P_{10} & \lambda P_{7} / 2 & 0 & 0 & I \\
\hline-I & \lambda^{2} I & 0 & 0 & 0 \\
0 & -I & \lambda^{2} I & 0 & 0
\end{array}\right]
$$

Look for structured ℓ-ifications!

Companion structured ℓ-ifications for \star-symmetric, \star-alternating, and \star-palindromic matrix polynomials with degree d, are known for $d=(2 s+1) \ell$:
易
FDT, C. Hernando, J. Pérez.
Structured strong ℓ-ifications for structured matrix polynomials in the monomial basis. ELA 37 (2021) 35-71.

맚이 In particular, quadratifications of $(2 s+1) \ell$-degree matrix polynomials.
Example (\star-palindromic quadratification of degree-10 matrix polynomials):

$$
\left[\begin{array}{ccc|cc}
P_{4}+\lambda P_{5}+\lambda^{2} P_{6} & \lambda P_{3} / 2 & P_{0}+\lambda P_{1}+\lambda^{2} P_{2} & -\lambda^{2} I & 0 \\
\lambda P_{7} / 2 & 0 & \lambda P_{3} / 2 & I & -\lambda^{2} I \\
P_{8}+\lambda P_{9}+\lambda^{2} P_{10} & \lambda P_{7} / 2 & 0 & 0 & I \\
\hline-I & \lambda^{2} I & 0 & 0 & 0 \\
0 & -I & \lambda^{2} I & 0 & 0
\end{array}\right]
$$

No structured quadratifications for degree-4 matrix polynomials exist.

An interesting example of structured companion pencil

The symmetric companion pencil:

$$
\left[\begin{array}{ccccccc}
A_{d-1}+\lambda A_{d} & -I & & & & & \\
-I & 0 & \lambda I & & & & \\
& \lambda I & A_{d-3}+\lambda A_{d-2} & -I & & & \\
& & -I & 0 & & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & \lambda I & A_{2}+\lambda A_{3} & -I \\
& & & & & -I & 0 \\
& & & & & & \lambda I \\
0 & & & & A_{0}+\lambda A_{1}
\end{array}\right]
$$

presents better numerical behavior (b'err \& conditioning) than any other symmetric linearization know so far.
M. I. Bueno, F. M. Dopico, S. Furtado, L. Medina.

A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error.
Calcolo 55 (2018) 1-32:43.

What is a companion form? (revisited)

Let \mathbb{F} be a field.

A companion pencil for scalar polynomials $p(\lambda)=\sum_{i=0}^{d} \lambda^{i} a_{i}$, with $a_{i} \in \mathbb{F}$, is a pencil $A+\lambda B$, with $A, B \in \mathbb{F}\left[a_{0}, \ldots, a_{d-1}, a_{d}\right]^{n \times n}$ such that

$$
\operatorname{det}(A+\lambda B)=\alpha \cdot p(\lambda) \quad(\alpha \in \mathbb{F})
$$

圊
FDT, C. Hernando.
A note on generalized companion pencils.
RACSAM 114 (2020) Article number: 8.

Are they "strong linearizations"?

$(L(\lambda)=A+\lambda B$ Companion pencil: $\operatorname{det} L(\lambda)=\alpha \cdot p(\lambda), \alpha \in \mathbb{F})$.

Question
$L(\lambda)$ companion pencil $\Rightarrow\left\{\begin{array}{l}L(\lambda) \sim_{u e}\left[\begin{array}{cc}p(\lambda) & \\ & 1\end{array}\right] \\ \operatorname{rev} L(\lambda) \sim_{u e}\left[\begin{array}{ll}\operatorname{rev} p(\lambda) & \\ & I\end{array}\right]\end{array} ?\right.$

Are they "strong linearizations"?

$(L(\lambda)=A+\lambda B$ Companion pencil: $\operatorname{det} L(\lambda)=\alpha \cdot p(\lambda), \alpha \in \mathbb{F})$.

Question
$L(\lambda)$ companion pencil $\Rightarrow\left\{\begin{array}{l}L(\lambda) \sim_{u e}\left[\begin{array}{cc}p(\lambda) & \\ & 1\end{array}\right] \\ \operatorname{rev} L(\lambda) \sim u e\left[\begin{array}{ll}\operatorname{rev} p(\lambda) & \\ & I\end{array}\right]\end{array} ?\right.$
Over which ring?

Are they "strong linearizations"?

$(L(\lambda)=A+\lambda B$ Companion pencil: $\operatorname{det} L(\lambda)=\alpha \cdot p(\lambda), \alpha \in \mathbb{F})$.

Question
$L(\lambda)$ companion pencil $\Rightarrow\left\{\begin{array}{l}L(\lambda) \sim u e\left[\begin{array}{cc}p(\lambda) & \\ & I\end{array}\right] \\ \operatorname{rev} L(\lambda) \sim u e\left[\begin{array}{ll}\operatorname{rev} p(\lambda) & I\end{array}\right]\end{array}\right.$?
Over which ring?
맚ㅇ We know: $L(\lambda) \sim_{u e}\left[\begin{array}{ll}p(\lambda) & \\ & l\end{array}\right]$ over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$ (Smith form over $\left.\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)\right)$.

Are they "strong linearizations"?

$(L(\lambda)=A+\lambda B$ Companion pencil: $\operatorname{det} L(\lambda)=\alpha \cdot p(\lambda), \alpha \in \mathbb{F})$.

Question
$L(\lambda)$ companion pencil $\Rightarrow\left\{\begin{array}{l}L(\lambda) \sim_{u e}\left[\begin{array}{cc}p(\lambda) & \\ & I\end{array}\right] \\ \operatorname{rev} L(\lambda) \sim_{u e}\left[\begin{array}{ll}\operatorname{rev} p(\lambda) & \\ & 1\end{array}\right]\end{array} ?\right.$
Over which ring?
맚ㅇ We know: $L(\lambda) \sim u e\left[\begin{array}{ll}p(\lambda) & \\ & l\end{array}\right]$ over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$ (Smith form over $\left.\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)\right)$.

This may involve dividing by some a_{i} !

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]$: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]$: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The Frobenius companion pencils are u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to $\operatorname{diag}\left(l_{d-1}, p(\lambda)\right)$:

$$
\left[\begin{array}{cccc}
a_{d-1}+\lambda a_{d} & a_{d-2} & \cdots & a_{0} \\
-1 & \lambda & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -1 & \lambda
\end{array}\right]
$$

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]:\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The Frobenius companion pencils are u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to $\operatorname{diag}\left(p(\lambda), I_{d-1}\right)$:

$$
\left[\begin{array}{cccc}
a_{d-1}+\lambda a_{d} & a_{d-2}+\lambda a_{d-1}+\lambda^{2} a_{d} & \cdots & a_{0} \\
-1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
0 & & -1 & \lambda
\end{array}\right]
$$

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]$: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The Frobenius companion pencils are u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to $\operatorname{diag}\left(p(\lambda), I_{d-1}\right)$:

$$
\left[\begin{array}{cccc}
a_{d-1}+\lambda a_{d} & a_{d-2}+\lambda a_{d-1}+\lambda^{2} a_{d} & \cdots & a_{0} \\
-1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -1 & \lambda
\end{array}\right]
$$

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]$: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The Frobenius companion pencils are u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to $\operatorname{diag}\left(p(\lambda), I_{d-1}\right)$:

$$
\left[\begin{array}{cccc}
a_{d-1}+\lambda a_{d} & a_{d-2}+\lambda a_{d-1}+\lambda^{2} a_{d} & \cdots & a_{0}+\lambda a_{1}+\cdots+\lambda^{d} a_{d} \\
-1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -1 & 0
\end{array}\right]
$$

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]$: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The Frobenius companion pencils are u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to $\operatorname{diag}\left(p(\lambda), I_{d-1}\right)$:
$\left[\begin{array}{cccc}a_{d-1}+\lambda a_{d} & a_{d-2}+\lambda a_{d-1}+\lambda^{2} a_{d} & \cdots & a_{0}+\lambda a_{1}+\cdots+\lambda^{d} a_{d} \\ -1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -1 & 0\end{array}\right]$

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]$: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The Frobenius companion pencils are u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to $\operatorname{diag}\left(p(\lambda), I_{d-1}\right)$:

$$
\left[\begin{array}{cccc}
0 & 0 & \cdots & p(\lambda) \\
-1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -1 & 0
\end{array}\right]
$$

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]$: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The Frobenius companion pencils are u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to $\operatorname{diag}\left(p(\lambda), I_{d-1}\right)$:

$$
\left[\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & p(\lambda)
\end{array}\right]
$$

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]$: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The Frobenius companion pencils are u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to $\operatorname{diag}\left(p(\lambda), I_{d-1}\right)$:

$$
\left[\begin{array}{cccc}
p(\lambda) & & \\
& 1 & \\
& \ddots & \\
& & 1
\end{array}\right]
$$

All transformations belong to $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$!

U. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ and $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda]$

u. e. over $\mathbb{F}\left(a_{0}, \ldots, a_{d}\right)[\lambda] \nRightarrow$ u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$:

Counterexample: $\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are:

- u. e. over $\mathbb{F}(y)[\lambda]:\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 / y & -\lambda / y \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]$
- not u. e. over $\mathbb{F}[y, \lambda]: \operatorname{det}\left[\begin{array}{cc}y & \lambda \\ 0 & 1\end{array}\right]=y \neq 1=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Q: When is a companion pencil u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, \lambda\right]$ to its Smith form?

The result by Li, Liu \& Chu

Theorem [Li, Liu \& Chu'2020]
Let $P\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{F}\left[z_{1}, \ldots, z_{m}\right]^{n \times n}$. If

$$
\operatorname{det} P\left(z_{1}, \ldots, z_{m}\right)=z_{1}-f\left(z_{2}, \ldots, z_{m}\right)
$$

then $P\left(z_{1}, \ldots, z_{m}\right)$ is u. e. over $\mathbb{F}\left[z_{1}, \ldots, z_{m}\right]$ to its Smith form.
嘈
D. Li, J. Liu, D. Chu.

The Smith form of a multivariate polynomial matrix over an arbitrary coefficient field.
LAMA 70 (2020) 366-379.
Relies on the Quillen-Suslin Theorem in

周
D. Quillen

Projective modules over polynomial rings.
Invent. Math. 36 (1976) 167-171.

The result by Li, Liu \& Chu

Theorem [Li, Liu \& Chu' $\left.{ }^{\prime} 020\right]$
Let $P\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{F}\left[z_{1}, \ldots, z_{m}\right]^{n \times n}$. If

$$
\operatorname{det} P\left(z_{1}, \ldots, z_{m}\right)=z_{1}-f\left(z_{2}, \ldots, z_{m}\right)
$$

then $P\left(z_{1}, \ldots, z_{m}\right)$ is \mathbf{u}. e. over $\mathbb{F}\left[z_{1}, \ldots, z_{m}\right]$ to its Smith form.
For companion pencils, we can set: $z_{1}=a_{0}, \ldots, z_{m-1}=a_{d}, z_{m}=z$, so that $P\left(z_{1}, \ldots, z_{m}\right)=A\left(a_{0}, \ldots, a_{d}\right)+z B\left(a_{0}, \ldots, a_{d}\right)$ and

$$
\operatorname{det}\left(A\left(a_{0}, \ldots, a_{d}\right)+z B\left(a_{0}, \ldots, a_{d}\right)\right)=a_{0}-\left(-z a_{1}-\cdots-z^{n} a_{d}\right)
$$

The result by Li, Liu \& Chu

Theorem [Li, Liu \& Chu'2020]
Let $P\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{F}\left[z_{1}, \ldots, z_{m}\right]^{n \times n}$. If

$$
\operatorname{det} P\left(z_{1}, \ldots, z_{m}\right)=z_{1}-f\left(z_{2}, \ldots, z_{m}\right)
$$

then $P\left(z_{1}, \ldots, z_{m}\right)$ is u. e. over $\mathbb{F}\left[z_{1}, \ldots, z_{m}\right]$ to its Smith form.
For companion pencils, we can set: $z_{1}=a_{0}, \ldots, z_{m-1}=a_{d}, z_{m}=z$, so that $P\left(z_{1}, \ldots, z_{m}\right)=A\left(a_{0}, \ldots, a_{d}\right)+z B\left(a_{0}, \ldots, a_{d}\right)$ and

$$
\operatorname{det}\left(A\left(a_{0}, \ldots, a_{d}\right)+z B\left(a_{0}, \ldots, a_{d}\right)\right)=a_{0}-\left(-z a_{1}-\cdots-z^{n} a_{d}\right)
$$

Theorem
Every companion pencil is u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, z\right]$ to $\left[\begin{array}{l}I_{d-1} \\ \\ p(z)\end{array}\right]$.
Also, the reversal is u. e. over $\mathbb{F}\left[a_{0}, \ldots, a_{d}, z\right]$ to $\left[\begin{array}{l}I_{d-1} \\ \operatorname{revp(z)}\end{array}\right]$.

Can this be extended to matrix polynomials?

Let us consider the following companion pencil:

$$
L\left(a_{0}, a_{1}, a_{2}, \lambda\right):=\left[\begin{array}{cc}
1-\lambda a_{1} & a_{0} a_{1}+a_{1}+\lambda a_{2} \\
-\lambda & a_{0}
\end{array}\right],
$$

with $\operatorname{det} L\left(a_{0}, a_{1}, a_{2}, \lambda\right)=a_{0}+\lambda a_{1}+\lambda^{2} a_{2}$.

Can this be extended to matrix polynomials?

Let us consider the following companion pencil:

$$
L\left(a_{0}, a_{1}, a_{2}, \lambda\right):=\left[\begin{array}{cc}
1-\lambda a_{1} & a_{0} a_{1}+a_{1}+\lambda a_{2} \\
-\lambda & a_{0}
\end{array}\right],
$$

with $\operatorname{det} L\left(a_{0}, a_{1}, a_{2}, \lambda\right)=a_{0}+\lambda a_{1}+\lambda^{2} a_{2}$.
If we consider the matrix extension:

$$
L\left(A_{0}, A_{1}, A_{2}, \lambda\right):=\left[\begin{array}{cc}
I-\lambda A_{1} & A_{0} A_{1}+A_{1}+\lambda A_{2} \\
-\lambda I & A_{0}
\end{array}\right],
$$

then, by elementary row operations

$$
L\left(A_{0}, A_{1}, A_{2}, \lambda\right) \sim_{u e}\left[\begin{array}{cc}
l & 0 \\
0 & P(\lambda)+A_{0} A_{1}-A_{1} A_{0}
\end{array}\right] \neq\left[\begin{array}{cc}
I & 0 \\
0 & P(\lambda)
\end{array}\right] .
$$

Can this be extended to matrix polynomials?

Let us consider the following companion pencil:

$$
L\left(a_{0}, a_{1}, a_{2}, \lambda\right):=\left[\begin{array}{cc}
1-\lambda a_{1} & a_{0} a_{1}+a_{1}+\lambda a_{2} \\
-\lambda & a_{0}
\end{array}\right],
$$

with $\operatorname{det} L\left(a_{0}, a_{1}, a_{2}, \lambda\right)=a_{0}+\lambda a_{1}+\lambda^{2} a_{2}$.
If we consider the matrix extension:

$$
L\left(A_{0}, A_{1}, A_{2}, \lambda\right):=\left[\begin{array}{cc}
I-\lambda A_{1} & A_{0} A_{1}+A_{1}+\lambda A_{2} \\
-\lambda I & A_{0}
\end{array}\right],
$$

then, by elementary row operations

$$
L\left(A_{0}, A_{1}, A_{2}, \lambda\right) \sim u e\left[\begin{array}{cc}
I & 0 \\
0 & P(\lambda)+A_{0} A_{1}-A_{1} A_{0}
\end{array}\right] \neq\left[\begin{array}{cc}
1 & 0 \\
0 & P(\lambda)
\end{array}\right] .
$$

Q: Conditions to guarantee that the extension to matrix polynomials provide strong linearizations?

Are unimodular matrices a product of elementary matrices?

Elementary matrix (over \mathscr{R}): $I+E_{i j}(\alpha)$, with $E_{i j}(\alpha)$ being zero except for the (i, j) entry (which is $\alpha \in \mathscr{R}$).

Are unimodular matrices a product of elementary matrices?

Elementary matrix (over \mathscr{R}): $I+E_{i j}(\alpha)$, with $E_{i j}(\alpha)$ being zero except for the (i, j) entry (which is $\alpha \in \mathscr{R}$).

뭉ㅇ The answer is No for arbitrary \mathscr{R} (commutative).

Are unimodular matrices a product of elementary matrices?

Elementary matrix (over \mathscr{R}): $I+E_{i j}(\alpha)$, with $E_{i j}(\alpha)$ being zero except for the (i, j) entry (which is $\alpha \in \mathscr{R}$).

四 The answer is No for arbitrary \mathscr{R} (commutative).
园 Not even when \mathscr{R} is a polynomial ring.
Counterexample: $\left[\begin{array}{cc}1+x y & x^{2} \\ -y^{2} & 1-x y\end{array}\right]$.

Are unimodular matrices a product of elementary matrices?

Elementary matrix (over \mathscr{R}): $I+E_{i j}(\alpha)$, with $E_{i j}(\alpha)$ being zero except for the (i, j) entry (which is $\alpha \in \mathscr{R}$).

㖪 The answer is No for arbitrary \mathscr{R} (commutative).
맚ㅇ Not even when \mathscr{R} is a polynomial ring.
Counterexample: $\left[\begin{array}{cc}1+x y & x^{2} \\ -y^{2} & 1-x y\end{array}\right]$.
Theorem
If $\mathscr{R}=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $r \geq 3$, every $r \times r$ unimodular matrix over \mathscr{R} (with det=1) is a product of elementary matrices.

圊
D. Suslin.

On the structure of the special linear group over polynomial rings.
Math. USSR Izvestija, 11 (1977) no. 2.

On the sparsity

Q: Which is the smallest possible number of nonzero entries in a companion pencil?

On the sparsity

Q: Which is the smallest possible number of nonzero entries in a companion pencil?

For companion matrices:
Theorem [Ma \& Zhan'2013]
If $A\left(a_{0}, \ldots, a_{d-1}\right)$ is a companion matrix, then it has, at least, $2 d-1$ nonzero entries.C. Ma, X. Zhan.

Extremal sparsity of the companion matrix of a polynomial.
LAA 438 (2013) 621-625.

On the sparsity

Q: Which is the smallest possible number of nonzero entries in a companion pencil?

For companion matrices:
Theorem [Ma \& Zhan'2013]
If $A\left(a_{0}, \ldots, a_{d-1}\right)$ is a companion matrix, then it has, at least, $2 d-1$ nonzero entries.

This is the case of the Frobenius companion matrices

$$
C_{1}=\left[\begin{array}{cccc}
-a_{d-1} & -a_{d-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & 1 & 0
\end{array}\right], \quad\left(C_{2}=C_{1}^{\top}\right)
$$

Our conjecture

Conjecture: The smallest number of nonzero entries in a companion pencil is: $2 d-1+\left\lfloor\frac{d}{2}\right\rfloor$.

It is the number of nonzero entries, for instance, in:

Peter Lancaster is turning 95!

Peter Lancaster is turning 95!

ve3m \quad Universidad Carlos III de Madrid

And Steve is turning 70!

Happy birthday!

