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Strong linearizations
Let R be a (commutative) ring.

Definition: A,B ∈ Rm×n are unimodularly equivalent (∼ue) if there
are U ∈ Rm×m and V ∈ Rn×n, with detU,detV being units in R, s. t.

UAV = B.
(U,V are unimodular).

Definition: L(λ ) = λX +Y ∈ F[λ ]p×q is a linearization of

P(λ) =
d

∑
i=0

λ
i Ai ∈ F[λ ]m×n if

L(λ )∼ue diag(P(λ ), I(d−1)n).

The linearization is strong if, moreover,

revL(λ )∼ue diag(revP(λ ), I(d−1)n).

rev(A0 +λA1 + · · ·+λ d Ad ) := Ad +λAd−1 + · · ·+λ d A0 (reversal).

� Strong linearizations have the same (regular) spectral information
as P(λ ).
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What is a companion form?

Let F be a field.

A companion pencil for matrix polynomials P(λ ) = ∑
d
i=0 λ iAi ∈ F[λ ]n×n

is an nd ×nd matrix pencil CP(λ ) = λX +Y s. t. if X ,Y are viewed as
block d ×d matrices with n×n blocks, then:
(a) each nonzero block of X and Y is either ±I or ±Ai , for some

i = 0 : d , and
(b) CP is a strong linearization of P(λ ).

� The size p×q depends on d ,m, and n.

FDT, F. M. Dopico, D. S. Mackey.
Palindromic companion forms for matrix polynomials of odd degree.
JCAM, 236 (2011) 1464-1480.
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USimplicity of the constructions ...and all families of companion
pencils knew at that time satisfied it!
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What is a companion form?

Let F be a field.

A companion pencil for matrix polynomials P ∈ P(d ,m×n,F) is a
uniform template for building a pencil CP ∈ P(1,p×q,F) from the
entries in the coefficient matrices of P, in such a way that
▶ CP is a strong linearization of P, for all P ∈ P(d ,m×n,F)

(regular or singular).
▶ The construction of the coefficient matrices of CP from those of P

should involve no matrix operations other than scalar
multiplication.

P(d ,m×n,F): the set of matrix polynomials over F of degree d with
size m×n.

� The size p×q depends on d ,m, and n.

FDT, F. M. Dopico, D. S. Mackey.
Spectral equivalence of matrix polynomials and the Index Sum Theorem.
LAA, 459 (2014) 264–333.
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Examples of companion pencils for P(λ ) = ∑
d
i=0 λ iAi

• 1st and 2nd Frobenius pencils:

F1(λ ) =

 Ad−1 +λAd Ad−2 · · · A0

−I λ I · · · 0
. . .

. . .
...

0 −I λ I

, F2(λ ) = F1(λ )
B.

• Fiedler pencils: Same entries as F1(λ ) but more flexibility in the
positions. Example (d = 6):

A5 +λA6 −I 0 0 0 0
A4 λ I A3 −I 0 0
−I 0 λ I 0 0 0
0 0 A2 λ I A1 −I
0 0 −I 0 λ I 0
0 0 0 0 A0 λ I

 .

• Generalized Fiedler pencils: Same I,λ I blocks as Fiedlers, but λ I
not necessarily on the main diagonal, and some blocks Ai ,Ai+1 may
appear as Ai +λAi+1. Example (d = 5):
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Examples of companion pencils (II)
• Generalized Fiedler pencils with repetition: Some Ai ’s can appear
more than once. The number of I’s and λ I’s can be different to those
in Fiedler’s (and with different signs). Example (d = 4):[ −I λA4 0 0

λA4 A2 +λA3 A1 I
0 A1 A0 −λA1 −λ I
0 I −λ I 0

]

(symmetric linearization).

• Block-Kronecker pencils: Choose p,q with p+q = d −1:
� Include, up to block permutation, all Fiedler-like pencils.
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. .
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A summary of known companion pencils

Frobenius companion pencils
(long time ago)

Fiedler pencils
[Antoniou-Vologiannidis’04], [DT-Dopico-Mackey’10] (after [Fiedler’02])

Generalized Fiedler pencils
[Antoniou-Vologiannidis’04], [Bueno-DT-Dopico’11]

Generalized Fiedler pencils with repetition
[Vologiannidis-Antoniou’11], [Bueno-DT’14]

Block minimal bases pencils [Dopico-Lawrence-Pérez-VanDooren’18]
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Some history on the name of Fiedler pencils
“Greek pencils":

E. N. Antoniou, S. Vologiannidis.
A new family of companion forms of polynomial matrices.
ELA, 11 (2004) 78–87.

Shortly after this...
“We should probably decide on a better name. I suggested
in Berlin that maybe it would be appropriate to call them the
"Fiedler companion pencils", since it was really Fiedler who
first(?) suggested factoring the companion matrix and then
rearranging the factors."
(e-mail from August 30, 2008)

M.Fiedler.
A note on companion matrices.
LAA, 372 (2003) 325–331.
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Why companion “form"?

It is the word used in
E. N. Antoniou, S. Vologiannidis.
A new family of companion forms of polynomial matrices.
ELA, 11 (2004) 78–87.

It allows us to include also companion ℓ-ifications:
FDT, F. M. Dopico, D. S. Mackey.
Spectral equivalence of matrix polynomials and the Index Sum theorem.
LAA, 459 (2014) 264–333.

Which are used in:
[DT-Dopico-Van Dooren, LAA 495 (2016) 344–372], [Bini-Robol, LAA 502 (2016)
275–298], [Van Dooren-Dopico, LAA 542 (2018) 246–281], [Melman, LAMA 67 (2019)
598–612], [Chan-Corless-González-Vega-Sendra-Sendra, LAA 563 (2019) 373–399],
[Dopico-Pérez-Van Dooren, LAA 562 (2019) 163–204], [Song-Maier-Luskin, J.
Comput. Phys. 423 (2020) 109871], [Zhan-Dyachencko, JCAM 383 (2021) 113113],
[DT-Hernando-Pérez, ELA 37 (2021) 35–71], [Drmac̆-S̆ain-Glibić, TOMS 48 (2022),
Art. 4],...

� The word “ℓ-ification" (including “quadratification") was made up by
Steve.
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Are they useful in practice?

� They are natural tools to be used in the Polynomial Eigenvalue
Problem (PEP):

Finding λ0 ∈ C,0 ̸= v ∈ Cn: P(λ0)v = 0
λ0: eigenvalue, v : eigenvector

(detP(λ ) ̸≡ 0)

The backward error and conditioning have been analyzed in:
▶ For Fiedlers:

FDT.
Backward error and conditioning of Fiedler companion linearizations.
Math. Comp. 89 (2020) 1459-1300.

▶ For block-Kronecker (b’err):
F. M. Dopico, P. Lawrence J. Pérez, P. Van Dooren.
Block Kronecker linearizations of matrix polynomials and their backward errors.
Numer. Math. 140 (2018) 373–426.

� The main tools come from:
[Tisseur, LAA 309 (2000) 339–361], [Higham-Mackey-Tisseur, SIMAX 28 (2006)
1005–1028], [Higham-Li-Tisseur, SIMAX 29 (2007) 1218–1241],
[Higham-Grammont-Tisseur, LAA 435 (2011) 623–640].
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Are they useful? (ctd)

UThe numerical features (b’err & conditioning) are similar to those
of the Frobenius pencils.

DNone of them seems to present advantages (b’err & conditioning)
compared to the Frobenius pencils.

“One thing that came up in Nick Higham’s talk gave a strong
indication that the conditioning and backward error properties
of the Greek pencils (at least for regular P) will very likely be
much like those of the standard Frobenius companion pen-
cils. Hence they are probably completely OK for numerical
computation, but also there may not be any particular advan-
tage in using them either."
(e-mail from August 30, 2008)
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Exploit the structure!

DThe Frobenius companion forms do not preserve any of the
standard symmetry structures of matrix polynomials arising in
applications:
▶ ⋆-Symmetric: P⋆(λ ) = P(λ ).
▶ ⋆-Skew-symmetric: P⋆(λ ) =−P(λ ).
▶ ⋆-palindromic: P⋆(λ ) = revP(λ ).
▶ ⋆-alternating (odd/even): P⋆(λ ) =±P(−λ ).

� The family of block-Kronecker pencils allows to create structured
pencils for all (possible) structures above.

� There cannot be structured companion linearizations for matrix
polynomials of even degree d ≥ 2 for the ⋆-symmetric, ⋆-alternating,
and ⋆-palindromic structures.

FDT, F. M. Dopico, D. S. Mackey.
Spectral equivalence of matrix polynomials and the Index Sum theorem.
LAA 459 (2014) 264–333.
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Look for structured ℓ-ifications!
Companion structured ℓ-ifications for ⋆-symmetric, ⋆-alternating, and
⋆-palindromic matrix polynomials with degree d , are known for
d = (2s+1)ℓ:

FDT, C. Hernando, J. Pérez.
Structured strong ℓ-ifications for structured matrix polynomials in the monomial basis.
ELA 37 (2021) 35–71.

� In particular, quadratifications of (2s+1)ℓ-degree matrix
polynomials.

Example (⋆-palindromic quadratification of degree-10 matrix
polynomials):

P4 +λP5 +λ 2P6 λP3/2 P0 +λP1 +λ 2P2 −λ 2I 0
λP7/2 0 λP3/2 I −λ 2I

P8 +λP9 +λ 2P10 λP7/2 0 0 I
−I λ 2I 0 0 0
0 −I λ 2I 0 0


� No structured quadratifications for degree-4 matrix polynomials

exist.
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An interesting example of structured companion pencil

The symmetric companion pencil:

Ad−1 +λAd −I 0
−I 0 λ I

λ I Ad−3 +λAd−2 −I
−I 0

. . .
. . .

. . .

λ I A2 +λA3 −I
−I 0 λ I

0 λ I A0 +λA1


presents better numerical behavior (b’err & conditioning) than any
other symmetric linearization know so far.

M. I. Bueno, F. M. Dopico, S. Furtado, L. Medina.
A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue
condition number and backward error.
Calcolo 55 (2018) 1–32:43.
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What is a companion form? (revisited)

Let F be a field.

A companion pencil for scalar polynomials p(λ ) = ∑
d
i=0 λ iai , with

ai ∈ F, is a pencil A+λB, with A,B ∈ F[a0, . . . ,ad−1,ad ]
n×n such that

det(A+λB) = α ·p(λ ) (α ∈ F).

FDT, C. Hernando.
A note on generalized companion pencils.
RACSAM 114 (2020) Article number: 8.
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Are they “strong linearizations"?

(L(λ ) = A+λB Companion pencil: detL(λ ) = α ·p(λ ),α ∈ F).

Question

L(λ ) companion pencil ⇒


L(λ )∼ue

[
p(λ )

I

]
revL(λ )∼ue

[
revp(λ )

I

] ?

�We know: L(λ )∼ue

[
p(λ )

I

]
over F(a0, . . . ,ad )[λ ] (Smith form

over F(a0, . . . ,ad )).

DThis may involve dividing by some ai !
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U. e. over F[a0, . . . ,ad ,λ ] and F(a0, . . . ,ad)[λ ]

u. e. over F(a0, . . . ,ad )[λ ] ̸⇒ u. e. over F[a0, . . . ,ad ,λ ]:

Counterexample:
[

y λ

0 1

]
and

[
1 0
0 1

]
are:

▶ u. e. over F(y)[λ ]:
[
1 0
0 1

]
=

[
1/y −λ/y
0 1

][
y λ

0 1

]
▶ not u. e. over F[y ,λ ]: det

[
y λ

0 1

]
= y ̸= 1 = det

[
1 0
0 1

]
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−1 λ · · · 0

. . .
. . .

...
0 −1 λ
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0 1

][
y λ

0 1

]
▶ not u. e. over F[y ,λ ]: det

[
y λ

0 1

]
= y ̸= 1 = det

[
1 0
0 1

]

The Frobenius companion pencils are u. e. over F[a0, . . . ,ad ,λ ] to
diag(p(λ ), Id−1):

ad−1 +λad ad−2 +λad−1 +λ 2ad · · · a0 +λa1 + · · ·+λ d ad
−1 0 · · · 0

. . .
. . .

...
0 −1 0


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[
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The Frobenius companion pencils are u. e. over F[a0, . . . ,ad ,λ ] to
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1
. . .

1


All transformations belong to F[a0, . . . ,ad ,λ ]!
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u. e. over F(a0, . . . ,ad )[λ ] ̸⇒ u. e. over F[a0, . . . ,ad ,λ ]:

Counterexample:
[

y λ

0 1

]
and

[
1 0
0 1

]
are:

▶ u. e. over F(y)[λ ]:
[
1 0
0 1

]
=

[
1/y −λ/y
0 1

][
y λ

0 1

]
▶ not u. e. over F[y ,λ ]: det

[
y λ

0 1

]
= y ̸= 1 = det

[
1 0
0 1

]

Q: When is a companion pencil u. e. over F[a0, . . . ,ad ,λ ] to its Smith
form?



18/24

The result by Li, Liu & Chu

Theorem [Li, Liu & Chu’2020]

Let P(z1, . . . ,zm) ∈ F[z1, . . . ,zm]n×n. If

detP(z1, . . . ,zm) = z1 − f (z2, . . . ,zm)

then P(z1, . . . ,zm) is u. e. over F[z1, . . . ,zm] to its Smith form.

D. Li, J. Liu, D. Chu.
The Smith form of a multivariate polynomial matrix over an arbitrary coefficient
field.
LAMA 70 (2020) 366–379.

Relies on the Quillen-Suslin Theorem in

D. Quillen
Projective modules over polynomial rings.
Invent. Math. 36 (1976) 167–171.

Theorem
Every companion pencil is u. e. over F[a0, . . . ,ad ,z] to

[
Id−1

p(z)

]
.

Also, the reversal is u. e. over F[a0, . . . ,ad ,z] to
[

Id−1
revp(z)

]
.
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Can this be extended to matrix polynomials?

Let us consider the following companion pencil:

L(a0,a1,a2,λ ) :=

[
1−λa1 a0a1 +a1 +λa2
−λ a0

]
,

with detL(a0,a1,a2,λ ) = a0 +λa1 +λ 2a2.

If we consider the matrix extension:

L(A0,A1,A2,λ ) :=

[
I −λA1 A0A1 +A1 +λA2
−λ I A0

]
,

then, by elementary row operations

L(A0,A1,A2,λ )∼ue

[
I 0
0 P(λ )+A0A1 −A1A0

]
̸=
[

I 0
0 P(λ )

]
.

Q: Conditions to guarantee that the extension to matrix polynomials
provide strong linearizations?
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Are unimodular matrices a product of elementary
matrices?

Elementary matrix (over R): I +Eij(α), with Eij(α) being zero except
for the (i , j) entry (which is α ∈ R).

� The answer is No for arbitrary R (commutative).

� Not even when R is a polynomial ring.

Counterexample:
[
1+xy x2

−y2 1−xy

]
.

Theorem
If R = F[x1, . . . ,xn] and r ≥ 3, every r × r unimodular matrix over R
(with det=1) is a product of elementary matrices.

D. Suslin.
On the structure of the special linear group over polynomial rings.
Math. USSR Izvestija, 11 (1977) no. 2.



20/24

Are unimodular matrices a product of elementary
matrices?

Elementary matrix (over R): I +Eij(α), with Eij(α) being zero except
for the (i , j) entry (which is α ∈ R).

� The answer is No for arbitrary R (commutative).

� Not even when R is a polynomial ring.

Counterexample:
[
1+xy x2

−y2 1−xy

]
.

Theorem
If R = F[x1, . . . ,xn] and r ≥ 3, every r × r unimodular matrix over R
(with det=1) is a product of elementary matrices.

D. Suslin.
On the structure of the special linear group over polynomial rings.
Math. USSR Izvestija, 11 (1977) no. 2.



20/24

Are unimodular matrices a product of elementary
matrices?

Elementary matrix (over R): I +Eij(α), with Eij(α) being zero except
for the (i , j) entry (which is α ∈ R).

� The answer is No for arbitrary R (commutative).

� Not even when R is a polynomial ring.

Counterexample:
[
1+xy x2

−y2 1−xy

]
.

Theorem
If R = F[x1, . . . ,xn] and r ≥ 3, every r × r unimodular matrix over R
(with det=1) is a product of elementary matrices.

D. Suslin.
On the structure of the special linear group over polynomial rings.
Math. USSR Izvestija, 11 (1977) no. 2.



20/24

Are unimodular matrices a product of elementary
matrices?

Elementary matrix (over R): I +Eij(α), with Eij(α) being zero except
for the (i , j) entry (which is α ∈ R).

� The answer is No for arbitrary R (commutative).

� Not even when R is a polynomial ring.

Counterexample:
[
1+xy x2

−y2 1−xy

]
.

Theorem
If R = F[x1, . . . ,xn] and r ≥ 3, every r × r unimodular matrix over R
(with det=1) is a product of elementary matrices.

D. Suslin.
On the structure of the special linear group over polynomial rings.
Math. USSR Izvestija, 11 (1977) no. 2.



21/24

On the sparsity

Q: Which is the smallest possible number of nonzero entries in a
companion pencil?

For companion matrices:

Theorem [Ma & Zhan’2013]

If A(a0, . . . ,ad−1) is a companion matrix, then it has, at least, 2d −1
nonzero entries.
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Theorem [Ma & Zhan’2013]

If A(a0, . . . ,ad−1) is a companion matrix, then it has, at least, 2d −1
nonzero entries.

C. Ma, X. Zhan.
Extremal sparsity of the companion matrix of a polynomial.
LAA 438 (2013) 621–625.
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On the sparsity

Q: Which is the smallest possible number of nonzero entries in a
companion pencil?

For companion matrices:

Theorem [Ma & Zhan’2013]

If A(a0, . . . ,ad−1) is a companion matrix, then it has, at least, 2d −1
nonzero entries.

This is the case of the Frobenius companion matrices

C1 =


−ad−1 −ad−2 · · · −a0

1 0 · · · 0
. . .

. . .
...

0 1 0

 , (C2 = C⊤
1 ).
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Our conjecture
Conjecture: The smallest number of nonzero entries in a companion
pencil is: 2d −1+

⌊
d
2

⌋
.

It is the number of nonzero entries, for instance, in:

ad−1 +λad 0 · · · 0 −1

0 ad−3 +λad−2
. . .

... λ
. . .

...
. . .

. . . 0
. . . −1

0 · · · 0 a0 +λa1 λ

−1 λ

. . .
. . .

−1 λ


(d odd)



λad 0 · · · 0 −1

ad−2 +λad−1 0
. . .

... λ −1

0
. . .

. . . 0
. . .

. . .
...

. . . a2 +λa3 0 λ −1
0 · · · 0 a0 +λa1 λ

−1 λ

. . .
. . .

−1 λ


(d even)
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Peter Lancaster is turning 95!
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And Steve is turning 70!

Happy birthday!


