Polynomial root-finding using companion matrices

Fernando De Terán

Departamento de Matemáticas
Universidad Carlos III de Madrid
(Spain)

Outline

(1) Introduction
(2) Numerical issues
(3) What is known so far?

4 Polynomial b'err using Fiedler matrices
(5) Backward stability?

- Numerical experiments

6 Other companion forms

- Companion matrices
- Companion forms
(7) Epilogue

Outline

(1) Introduction

(2) Numerical issues
(3) What is known so far?
(4) Polynomial b'err using Fiedler matrices
(5) Backward stability?

- Numerical experiments
(6) Other companion forms
- Companion matrices
- Companion forms
(7) Epilogue

Goal

Compute the roots of (scalar) polynomials

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

using companion forms.

We can restrict ourselves to monic polynomials (after dividing by a_{n}, if necessary)

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

...Can we ??? (more on this later)

Goal

Compute the roots of (scalar) polynomials

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

using companion forms.

We can restrict ourselves to monic polynomials (after dividing by a_{n}, if necessary)

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

Goal

Compute the roots of (scalar) polynomials

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

using companion forms.

We can restrict ourselves to monic polynomials (after dividing by a_{n}, if necessary)

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

...Can we ??? (more on this later)

Companion matrix

Companion matrix

$A\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ such that

$$
p_{A}(z)=\operatorname{det}(z l-A)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=p(z)
$$

(Only for monic polynomials).
Roots of $p(z)=$ Eigenvalues of $A \quad$ (i.e.: $p(z)=0 \Leftrightarrow \operatorname{det}(z I-A)=0$)

Theoretically:

Polynomial root-finding

But numerically, they are different problems !!!

Companion matrix

Companion matrix

$A\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ such that

$$
p_{A}(z)=\operatorname{det}(z l-A)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=p(z)
$$

(Only for monic polynomials).

Roots of $p(z)=$ Eigenvalues of A
Theoretically:
Polynomial root-finding
(i.e.: $p(z)=0 \Leftrightarrow \operatorname{det}(z I-A)=0$)

But numerically, they are different problems !!!

Companion matrix

Companion matrix

$A\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ such that

$$
p_{A}(z)=\operatorname{det}(z l-A)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=p(z)
$$

(Only for monic polynomials).
Roots of $p(z)=$ Eigenvalues of A

$$
\text { (i.e.: } p(z)=0 \Leftrightarrow \operatorname{det}(z I-A)=0 \text {) }
$$

Theoretically:
Polynomial root-finding

Companion matrices \Longleftrightarrow

Standard eigenvalue problem

Companion matrix

Companion matrix

$A\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ such that

$$
p_{A}(z)=\operatorname{det}(z l-A)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=p(z)
$$

(Only for monic polynomials).

Roots of $p(z)=$ Eigenvalues of A

Theoretically:

$$
\begin{array}{|l|l|l|}
\hline \text { Polynomial root-finding } \\
\hline
\end{array}
$$

Companion matrices \Longleftrightarrow

$$
\text { (i.e.: } p(z)=0 \Leftrightarrow \operatorname{det}(z I-A)=0 \text {) }
$$

Standard eigenvalue problem

But numerically, they are different problems !!!

Motivation

Frobenius companion matrices:

$$
C_{1}=\left[\begin{array}{cccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & 1 & 0
\end{array}\right], \quad C_{2}=C_{1}^{\top}
$$

MATLAB's command roots: QR algorithm on C_{2}

Companion forms

Companion form: Valid for non-monic polynomials.

Companion form

$A^{\prime}\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}\right)$ May have entries of the form $a+b z$

(More on this later)

Companion forms

Companion form: Valid for non-monic polynomials.

Companion form

$A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}\right) \rightsquigarrow \quad$ May have entries of the form $a+b z$
(More on this later)

Outline

(1) Introduction

(2) Numerical issues

(3) What is known so far?

4 Polynomial b'err using Fiedler matrices
(3) Backward stability?

- Numerical experiments

6 Other companion forms

- Companion matrices
- Companion forms
(7) Epilogue

Backward stability

is backward stable if

$u=$ unit roundoff)

疐 Different approaches for poly root-finding using companion matrices:
(1) B'stability on the comnanion matrix (e-vals):
\square
(the computed roots (e-vals) are the e-vals of a nearby matrix (not necessarily companion!!!))
(1) B'stability on the polynomial (roots):
\square
$f=$ e-val algorithm, $f=$ polynomial root-finding, $x=$ polynomial
(the computed roots (e-vals) are the roots of a nearby polynomial)

Backward stability

Problem:	Algorithm:
$f: \underbrace{X}_{\text {data }} \longrightarrow \underbrace{Y}_{\text {solution }}$	$\tilde{f}: \underbrace{X}_{\text {data }} \longrightarrow \underbrace{Y}_{\text {solution }}$

\widetilde{f} is backward stable if

$$
\tilde{f}(x)=f(x+\delta x), \quad\|\delta x\|=O(u)\|x\|
$$

($u=$ unit roundoff)
皐 Different approaches for poly root-finding using companion matrices:
(B'stability on the companion matrix (e-vals):
$\widetilde{f}=\mathrm{e}$-val algorithm, $f=\mathrm{e}$-val problem, $x=$ companion matrix
(the computed roots (e-vals) are the e-vals of a nearby matrix (not necessarily companion!!!))
(2) B'stability on the polynomial (roots):
\square
(the computed roots (e-vals) are the roots of a nearby polynomial)

Backward stability

\widetilde{f} is backward stable if

$$
\tilde{f}(x)=f(x+\delta x), \quad\|\delta x\|=O(u)\|x\|
$$

($u=$ unit roundoff)

傕 Different approaches for poly root-finding using companion matrices:

- B'stability on the companion matrix (e-vals)
$\tilde{f}=e$-val algorithm, $f=e$-val problem, $x=$ companion matrix
(the computed roots (e-vals) are the e-vals of a nearby matrix (not necessarily companion!!!))
(3) B'stability on the polynomial (roots):
$f=\mathrm{e}$-val algorithm, $f=$ polynomial root-finding, $x=$ polynomial
(the computed roots (e-vals) are the roots of a nearby polynomial)

Backward stability

\tilde{f} is backward stable if

$$
\tilde{f}(x)=f(x+\delta x), \quad\|\delta x\|=O(u)\|x\|
$$

($u=$ unit roundoff)
喂 Different approaches for poly root-finding using companion matrices:
(1) B'stability on the companion matrix (e-vals):
$\widetilde{f}=\mathrm{e}$-val algorithm, $f=\mathrm{e}$-val problem, $x=$ companion matrix
(the computed roots (e-vals) are the e-vals of a nearby matrix (not necessarily companion!!!))
(2) B'stability on the polynomial (roots):

$$
\widetilde{f}=\text { e-val algorithm, } f=\text { polynomial root-finding, } x=\text { polynomial }
$$

(the computed roots (e-vals) are the roots of a nearby polynomial)

Complexity

Complexity (Computational cost)

- Computation time (number of flops)
- Storage

Desideratum: $O\left(n^{2}\right)$ flops $+O(n)$ storage

I won't pay much attention to this!)

Complexity

Complexity (Computational cost)

- Computation time (number of flops)
- Storage
$\left.p(z): \begin{array}{cc}n & \text { coefficients } \\ n & \text { roots }\end{array}\right\} \rightsquigarrow$ Desideratum: $O\left(n^{2}\right)$ flops $+O(n)$ storage

(I won't pay much attention to this!)

Complexity

Complexity (Computational cost)

- Computation time (number of flops)
- Storage
$\left.p(z): \begin{array}{cc}n & \text { coefficients } \\ n & \text { roots }\end{array}\right\} \rightsquigarrow$ Desideratum: $O\left(n^{2}\right)$ flops $+O(n)$ storage
(I won't pay much attention to this!)

Outline

(9) Introduction

(2) Numerical issues
(3) What is known so far?
(4) Polynomial b'err using Fiedler matrices
(5) Backward stability?

- Numerical experiments
(6) Other companion forms
- Companion matrices
- Companion forms
(7) Epilogue

MATLAB'S command roots

- Uses a Frobenius companion matrix.

MATLAB'S command roots

- Uses a Frobenius companion matrix.

I危 Is b'stable in the matrix sense.

MATLAB'S command roots

- Uses a Frobenius companion matrix.

If Is b'stable in the matrix sense.

Too expensive: $O\left(n^{3}\right)$ computations and $O\left(n^{2}\right)$ storage.

MATLAB'S command roots

- Uses a Frobenius companion matrix.

If Is b'stable in the matrix sense.

Too expensive: $O\left(n^{3}\right)$ computations and $O\left(n^{2}\right)$ storage.
Not b'stable in the polynomial sense.

MATLAB'S command roots

- Uses a Frobenius companion matrix.

If Is b'stable in the matrix sense.

Too expensive: $O\left(n^{3}\right)$ computations and $O\left(n^{2}\right)$ storage.
Not b'stable in the polynomial sense.
If In practice, it can be considered b'stable (in the poly sense) \rightsquigarrow balancing!!

MATLAB'S command roots

- Uses a Frobenius companion matrix.

Too expensive: $O\left(n^{3}\right)$ computations and $O\left(n^{2}\right)$ storage.
Not b'stable in the polynomial sense.

Faster algorithms

- Many variants of the QR algorithm: [Calvetti-etal'02], [Bini-etal'04, '05, '10], [Gemignani'07], [Chandrasekharan-etal'08], [Van Barel-etal'10], [Aurentz-etal'13]
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- Not b'stable (in the matrix sense)!!!
- Variants of C_{1}, C_{2} ([Brugnano-Trigiante'95], [Niu-Sakurai'03]): Improve the accuracy of multiple roots.
[Aurentz-Mach-Vandebril-Watkins'15]: Fast and b'stable method.

Faster algorithms

- Many variants of the QR algorithm: [Calvetti-etal'02], [Bini-etal'04, '05, '10], [Gemignani'07], [Chandrasekharan-etal'08], [Van Barel-etal'10], [Aurentz-etal'13]
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- Not b'stable (in the matrix sense)!!!
- Variants of C_{1}, C_{2} ([Brugnano-Trigiante'95], [Niu-Sakurai'03]): Improve the accuracy of multiple roots.
[Aurentz-Mach-Vandebril-Watkins'15]: Fast and b'stable method.

Faster algorithms

- Many variants of the QR algorithm: [Calvetti-etal'02], [Bini-etal'04, '05, '10], [Gemignani'07], [Chandrasekharan-etal'08], [Van Barel-etal'10], [Aurentz-etal'13]
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- Not b'stable (in the matrix sense)!!!
- Variants of C_{1}, C_{2} ([Brugnano-Trigiante'95], [Niu-Sakurai'03]): Improve the accuracy of multiple roots.
[Aurentz-Mach-Vandebril-Watkins'15]: Fast and b'stable method.

Faster algorithms

- Many variants of the QR algorithm: [Calvetti-etal'02], [Bini-etal'04, '05, '10], [Gemignani'07], [Chandrasekharan-etal'08], [Van Barel-etal'10], [Aurentz-etal'13]
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- Not b'stable (in the matrix sense)!!!
- Variants of C_{1}, C_{2} ([Brugnano-Trigiante'95], [Niu-Sakurai'03]): Improve the accuracy of multiple roots.
[Aurentz-Mach-Vandebril-Watkins'15]: Fast and b'stable method.

Faster algorithms

- Many variants of the QR algorithm: [Calvetti-etal'02], [Bini-etal'04, '05, '10], [Gemignani'07], [Chandrasekharan-etal'08], [Van Barel-etal'10], [Aurentz-etal'13]
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- Not b'stable (in the matrix sense)!!!
- Variants of C_{1}, C_{2} ([Brugnano-Trigiante'95], [Niu-Sakurai'03]): Improve the accuracy of multiple roots.

噜 [Aurentz-Mach-Vandebril-Watkins'15]: Fast and b'stable method.

- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- B'stable (in the matrix sense)

Faster algorithms

- Many variants of the QR algorithm: [Calvetti-etal'02], [Bini-etal'04, '05, '10], [Gemignani'07], [Chandrasekharan-etal'08], [Van Barel-etal'10], [Aurentz-etal'13]
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- Not b'stable (in the matrix sense)!!!
- Variants of C_{1}, C_{2} ([Brugnano-Trigiante'95], [Niu-Sakurai'03]): Improve the accuracy of multiple roots.

噜 [Aurentz-Mach-Vandebril-Watkins'15]: Fast and b'stable method.

- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- B'stable (in the matrix sense)

Faster algorithms

- Many variants of the QR algorithm: [Calvetti-etal'02], [Bini-etal'04, '05, '10], [Gemignani'07], [Chandrasekharan-etal'08], [Van Barel-etal'10], [Aurentz-etal'13]
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- Not b'stable (in the matrix sense)!!!
- Variants of C_{1}, C_{2} ([Brugnano-Trigiante'95], [Niu-Sakurai'03]): Improve the accuracy of multiple roots.

噜 [Aurentz-Mach-Vandebril-Watkins'15]: Fast and b'stable method.

- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- B'stable (in the matrix sense).

Faster algorithms

- Many variants of the QR algorithm: [Calvetti-etal'02], [Bini-etal'04, '05, '10], [Gemignani'07], [Chandrasekharan-etal'08], [Van Barel-etal'10], [Aurentz-etal'13]
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- Not b'stable (in the matrix sense)!!!
- Variants of C_{1}, C_{2} ([Brugnano-Trigiante'95], [Niu-Sakurai'03]): Improve the accuracy of multiple roots.
[䠔 [Aurentz-Mach-Vandebril-Watkins'15]: Fast and b'stable method.
- $O\left(n^{2}\right)$ computations and $O(n)$ storage.
- B'stable (in the matrix sense).

Q: B'stability in the polynomial sense ???

B'err of polynomial root-finding using companion matrices

Given $p(z)$
 e-vals of A
(if we use a backward stable algorithm, like $Q R$)

Set $\widetilde{p}(z)=\operatorname{det}(z I-(A+E))$
Question: Is $\tilde{p}(z)$ close to $p(z)$?

b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze $\frac{\|p-\tilde{p}\|}{\|p\|}$, for A a Fiedler matrix.

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$

Choose A such that

 $p(z)=\operatorname{det}(z I-A)$
(if we use a backward stable algorithm, like $Q R$)
Set $\widetilde{p}(z)=\operatorname{det}(z l-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze $\frac{\|p-\tilde{p}\|}{\|p\|}$, for A a Fiedler matrix.

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$
 Choose A such that $p(z)=\operatorname{det}(z I-A)$
 Compute the e-vals of A
 (if we use a backward stable algorithm, like $Q R$)

Set $\widetilde{p}(z)=\operatorname{det}(z l-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze $\frac{\|p-\tilde{p}\|}{\|p\|}$, for A a Fiedler matrix.

B'err of polynomial root-finding using companion matrices

(if we use a backward stable algorithm, like $Q R$)

Question: Is $\widetilde{p}(z)$ close to $p(z)$?

b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze for A a Fiedler matrix.

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$

Choose A such that Compute the $p(z)=\operatorname{det}(z I-A)$ $\begin{gathered}\text { Compute the } \\ \text { e-vals of } A\end{gathered}=\begin{aligned} & \mathrm{e} \text {-vals of } A+E, \\ & \|E\|=O(u)\|A\|\end{aligned}$

(if we use a backward stable algorithm, like $Q R$)
Set $\tilde{p}(z)=\operatorname{det}(z l-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

Goal:

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$

Choose A such that
 $p(z)=\operatorname{det}(z I-A)$
 Compute the e-vals of $A=\|E\|=O(u)\|A\|$

(if we use a backward stable algorithm, like $Q R$)
Set $\widetilde{p}(z)=\operatorname{det}(z I-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

$$
\frac{\|p-\widetilde{p}\|}{\|p\|}=O(u) ?
$$

$\frac{\|p-\widetilde{p}\|}{\|p\|}$: b'err of polynomial root-finding as an eigenvalue problem (using A).

Goa:

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$

Choose A such that $p(z)=\operatorname{det}(z I-A)$

Compute the e-vals of $A=\|E\|=O(u)\|A\|$
(if we use a backward stable algorithm, like $Q R$)
Set $\widetilde{p}(z)=\operatorname{det}(z I-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

$$
\frac{\|p-\tilde{p}\|}{\|p\|}=O(u) ?
$$

$\frac{\|p-\widetilde{p}\|}{\|p\|}$: b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze $\frac{\|p-\widetilde{p}\|}{\|p\|}$, for A a Fiedler matrix.

Fiedler matrices: definition

$$
\begin{aligned}
& p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \\
& M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & & \\
& \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0 \\
\hline
\end{array} & \\
& & \\
& & I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1 .
\end{aligned}
$$

Fiedler matrices: definition

$p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$
$M_{0}=\left[\begin{array}{ll}I_{n-1} & \\ & -a_{0}\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}I_{n-k-1} & & \\ & \begin{array}{|cc|}\hline-a_{k} & 1 \\ 1 & 0 \\ \hline\end{array} & \\ & & I_{k-1}\end{array}\right], \quad k=1, \ldots, n-1$

Let $\sigma:\{0,1, \ldots, n-1\} \rightarrow\{1, \ldots, n\}$ be a bijection. Then:

$$
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)}
$$

Fiedler matrix of p associated with the bijection σ

- Introduced by Fiedler in 2003.

Fiedler matrices: definition

$p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$
$M_{0}=\left[\begin{array}{ll}I_{n-1} & \\ & -a_{0}\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}I_{n-k-1} & & \\ & \begin{array}{|cc|}\hline-a_{k} & 1 \\ 1 & 0 \\ \hline\end{array} & \\ & & I_{k-1}\end{array}\right], \quad k=1, \ldots, n-1$

Let $\sigma:\{0,1, \ldots, n-1\} \rightarrow\{1, \ldots, n\}$ be a bijection. Then:

$$
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)}
$$

Fiedler matrix of p associated with the bijection σ

- Introduced by Fiedler in 2003.

Fiedler matrices: some examples

- Frobenius companion matrices:

$$
\begin{aligned}
& C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{cccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & 1 & 0
\end{array}\right] \\
& C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top}
\end{aligned}
$$

Fiedler matrices: some examples

- Frobenius companion matrices:
$C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{cccc}-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & 1 & 0\end{array}\right]$
$C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top}$
- $M_{n-1} \cdots M_{2} M_{0} M_{1}=\left[\begin{array}{cccc}-a_{n-1} & -a_{n-2} & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -a_{0} & 0\end{array}\right]$
- $M_{6}\left(M_{4} M_{5}\right)\left(M_{2} M_{3}\right)\left(M_{0} M_{1}\right)=$

Fiedler matrices: some examples

- Frobenius companion matrices:
$C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{cccc}-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & 1 & 0\end{array}\right]$
$C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top}$
- $M_{n-1} \cdots M_{2} M_{0} M_{1}=\left[\begin{array}{cccc}-a_{n-1} & -a_{n-2} & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -a_{0} & 0\end{array}\right]$
- $M_{6}\left(M_{4} M_{5}\right)\left(M_{2} M_{3}\right)\left(M_{0} M_{1}\right)=\left[\begin{array}{cccccc}-a_{5} & 1 & 0 & 0 & 0 & 0 \\ -a_{4} & 0 & -a_{3} & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -a_{2} & 0 & -a_{1} & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -a_{0} & 0\end{array}\right]$

Fiedler matrices: Basic properties

- All M_{σ} contain the same entries (located in different positions):

$$
-a_{0}, \ldots,-a_{n-1} \quad \& \overbrace{1, \ldots, 1}^{n-1} \& 0^{\prime} s
$$

- M_{σ} is a companion matrix $\left(\operatorname{det}\left(z I-M_{\sigma}\right)=p(z)\right)$.
- There are 2^{n-1} different Fiedler matrices.

Fiedler matrices: Basic properties

- All M_{σ} contain the same entries (located in different positions):

$$
-a_{0}, \ldots,-a_{n-1} \quad \& \overbrace{1, \ldots, 1}^{n-1} \quad \& \quad 0^{\prime} s
$$

- M_{σ} is a companion matrix $\left(\operatorname{det}\left(z l-M_{\sigma}\right)=p(z)\right)$.
- There are 2^{n-1} different Fiedler matrices.

Fiedler matrices: Basic properties

- All M_{σ} contain the same entries (located in different positions):

$$
-a_{0}, \ldots,-a_{n-1} \quad \& \overbrace{1, \ldots, 1}^{n-1} \quad \& \quad 0^{\prime} s
$$

- M_{σ} is a companion matrix $\left(\operatorname{det}\left(z l-M_{\sigma}\right)=p(z)\right)$.
- There are 2^{n-1} different Fiedler matrices.

Outline

(9) Introduction

(2) Numerical issues
(3) What is known so far?

4 Polynomial b'err using Fiedler matrices
(5) Backward stability?

- Numerical experiments
(2) Other companion forms
- Companion matrices
- Companion forms
(7) Epilogue

Perturbation of the characteristic polynomial: first order term

Using Jacobi's formula:
$\tilde{p}(z)-p(z)=\operatorname{det}(z I-(A+E))-\operatorname{det}(z I-A)=-\operatorname{tr}(\operatorname{adj}(z I-A) E)+O\left(\|E\|^{2}\right)$

Hence, if we set: $\operatorname{det}(z I-X)=z^{n}+\sum_{k=0}^{n-1} a_{k}(X) z^{k}$, then, to first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\operatorname{tr}\left(A_{k} E\right)=-\operatorname{vec}\left(A_{k}^{\top}\right)^{\top} \operatorname{vec}(E)
$$

$\left(\operatorname{vec}(M):=\left[\begin{array}{lllllll}m_{11} & \ldots & m_{m 1} & m_{12} & \ldots & m_{m 2} & \ldots\end{array} m_{1 n} \ldots m_{m n}\right]^{\top}\right)$

Perturbation of the characteristic polynomial: first order term

Using Jacobi's formula:
$\tilde{p}(z)-p(z)=\operatorname{det}(z I-(A+E))-\operatorname{det}(z I-A)=-\operatorname{tr}(\operatorname{adj}(z I-A) E)+O\left(\|E\|^{2}\right)$
$\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} z^{k} A_{k}($ matrix polynomial of degree $n-1)$
Hence, if we set: $\operatorname{det}(z I-X)=z^{n}+\sum_{k=0}^{n-1} a_{k}(X) z^{k}$, then, to first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\operatorname{tr}\left(A_{k} E\right)=-\operatorname{vec}\left(A_{k}^{\top}\right)^{\top} \operatorname{vec}(E)
$$

$\left(\operatorname{vec}(M):=\left[m_{11} \ldots m_{m 1} m_{12} \ldots m_{m 2} \ldots m_{1 n} \ldots m_{m n}\right]^{\top}\right)$

Perturbation of the characteristic polynomial: first order term

Using Jacobi's formula:
$\tilde{p}(z)-p(z)=\operatorname{det}(z I-(A+E))-\operatorname{det}(z I-A)=-\operatorname{tr}(\operatorname{adj}(z I-A) E)+O\left(\|E\|^{2}\right)$
$\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} z^{k} A_{k}($ matrix polynomial of degree $n-1)$
Hence, if we set: $\operatorname{det}(z I-X)=z^{n}+\sum_{k=0}^{n-1} a_{k}(X) z^{k}$, then, to first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\operatorname{tr}\left(A_{k} E\right)=-\operatorname{vec}\left(A_{k}^{\top}\right)^{\top} \operatorname{vec}(E)
$$

$\left(\operatorname{vec}(M):=\left[\begin{array}{lllllll}m_{11} \ldots & m_{m 1} & m_{12} \ldots & m_{m 2} \ldots & m_{1 n} \ldots & m_{m n}\end{array}\right]^{\top}\right)$

- Formula for $\left[\left(M_{\sigma}\right)_{k}\right]_{i j}$??

Perturbation of the characteristic polynomial: first order term

Using Jacobi's formula:
$\widetilde{p}(z)-p(z)=\operatorname{det}(z I-(A+E))-\operatorname{det}(z I-A)=-\operatorname{tr}(\operatorname{adj}(z I-A) E)+O\left(\|E\|^{2}\right)$
$\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} z^{k} A_{k}$ (matrix polynomial of degree $n-1$)
Hence, if we set: $\operatorname{det}(z I-X)=z^{n}+\sum_{k=0}^{n-1} a_{k}(X) z^{k}$, then, to first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\operatorname{tr}\left(A_{k} E\right)=-\operatorname{vec}\left(A_{k}^{\top}\right)^{\top} \operatorname{vec}(E)
$$

$\left(\operatorname{vec}(M):=\left[\begin{array}{lllllll}m_{11} \ldots & m_{m 1} & m_{12} \ldots & m_{m 2} \ldots & m_{1 n} \ldots & m_{m n}\end{array}\right]^{\top}\right)$

- Formula for $\left[\left(M_{\sigma}\right)_{k}\right]_{i j}$: Is a polynomial on a_{i} with degree ≤ 2

Explicit formula for the adjugate matrix

Theorem

$\operatorname{PCIS}(\sigma)=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$. The (nonzero) k th coefficients of the (j, i) entry of $\operatorname{adj}\left(z I-M_{\sigma}\right)$ are:
(a) if $v_{n-i}=v_{n-j}=0$:

- $a_{k+i_{\sigma}(n-j: n-i)}$,
if $j \geq i$ and $n-k-i+1 \leq \mathfrak{i}_{\sigma}(n-j: n-i) \leq n-k$;
- $-a_{k+1-i_{\sigma}(n-i: n-j-1)}$,
if $j<i$ and $k+1+i-n \leq \mathfrak{i}_{\sigma}(n-i: n-j-1) \leq k+1$;
(b) if $v_{n-i}=v_{n-j}=1$:
- $a_{k+\mathfrak{c}_{\sigma}(n-i: n-j)}$,
if $j \leq i$ and $n-k-j+1 \leq \mathfrak{c}_{\sigma}(n-i: n-j) \leq n-k$;
- $-a_{k+1-\mathfrak{c}_{\sigma}(n-j: n-i-1)}$,
if $j>i$ and $k+1+j-n \leq \mathfrak{c}_{\sigma}(n-j: n-i-1) \leq k+1$;
(c) if $v_{n-i}=1$ and $v_{n-j}=0$:
- 1,

$$
\text { if } \quad \mathfrak{i}_{\sigma}(0: n-j-1)+\mathfrak{c}_{\sigma}(0: n-i-1)=k,
$$

(d) if $v_{n-i}=0$ and $v_{n-j}=1$:

$$
\begin{aligned}
& I=\min \left\{k+1-\mathcal{c}_{\sigma}(n-j: n-i-1), i-1\right\} \\
& \text { - } \sum_{I=\max \left\{0, k+1+j-\mathfrak{c}_{\sigma}(n-j: n-i-1)-n\right\}}-\left(a_{n+1-i+l} a_{k+1-\mathfrak{c}_{\sigma}(n-j: n-i-1)-I}\right) \text {, } \\
& \text { if } j>i \text { and } k+2+j-i-n \leq \mathfrak{c}_{\sigma}(n-j: n-i-1) \leq k+1 \text {; } \\
& I=\min \left\{k+1-i_{\sigma}(n-i: n-j-1), j-1\right\} \\
& \text { - } \quad \sum-\left(a_{n+1-j+l} a_{k+1-\mathfrak{i}_{\sigma}(n-i: n-j-1)-l}\right) \text {, } \\
& I=\max \left\{0, k+1+i-\mathfrak{i}_{\sigma}(n-i: n-j-1)-n\right\} \\
& \text { if } j<i \text { and } k+2+i-j-n \leq \mathfrak{i}_{\sigma}(n-i: n-j-1) \leq k+1 \text {; }
\end{aligned}
$$

(where we set $a_{n}:=1$, and $v_{n-1}=v_{n-2}$).

Formula for the adjugate: main features

To first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\sum_{i, j=1}^{n} p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) E_{i j}, \quad k=0,1, \ldots, n-1,
$$

where:

- $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is a polynomial in a_{i} with degree at most 2.
- If $M_{\sigma}=C_{1}, C_{2}$, then all $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ have degree 1 .
- If $M_{\sigma} \neq C_{1}, C_{2}$, then there is at least one k and some (i, j) such that $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ has degree 2.

Formula for the adjugate: main features

To first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\sum_{i, j=1}^{n} p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) E_{i j}, \quad k=0,1, \ldots, n-1,
$$

where:

- $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is a polynomial in a_{i} with degree at most 2.
- If $M_{\sigma}=C_{1}, C_{2}$, then all $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ have degree 1 .
- If $M_{\sigma} \neq C_{1}, C_{2}$, then there is at least one k and some (i, j) such that $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ has degree 2.

Formula for the adjugate: main features

To first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\sum_{i, j=1}^{n} p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) E_{i j}, \quad k=0,1, \ldots, n-1,
$$

where:

- $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is a polynomial in a_{i} with degree at most 2.
- If $M_{\sigma}=C_{1}, C_{2}$, then all $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ have degree 1 .
- If $M_{\sigma} \neq C_{1}, C_{2}$, then there is at least one k and some (i, j) such that $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ has degree 2.

Recursive formula for the adjugate

$p(z)=z^{n}+\sum_{k=0}^{n-1} a_{k} z^{k}$
Proposition [Gantmacher, 1959]
Set:

$$
\left\{\begin{array}{l}
A_{n-1}=I, \quad \text { and } \\
A_{k}=A \cdot A_{k+1}+a_{k} I, \quad \text { for } k=n-2, \ldots, 1,0
\end{array}\right.
$$

Then,

$$
\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} z^{k} A_{k} .
$$

Note:

$$
\begin{aligned}
& A_{k-1}=p_{n-k}(A)=A^{n-k}+a_{n-1} A^{n-k-1}+\cdots+a_{k+1} A+a_{k} l . \\
& ((n-k) \text { th Horner shift of } p(z) \text { evaluated at } A)
\end{aligned}
$$

Hence: $p_{n-k-1}(A)$ encodes the information on the variation $a_{k}(A+E)-a_{k}(A)$:

Recursive formula for the adjugate

$p(z)=z^{n}+\sum_{k=0}^{n-1} a_{k} z^{k}$
Proposition [Gantmacher, 1959]
Set:

$$
\left\{\begin{array}{l}
A_{n-1}=I, \quad \text { and } \\
A_{k}=A \cdot A_{k+1}+a_{k} l, \quad \text { for } k=n-2, \ldots, 1,0
\end{array}\right.
$$

Then,

$$
\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} z^{k} A_{k} .
$$

Note:

$$
A_{k-1}=p_{n-k}(A)=A^{n-k}+a_{n-1} A^{n-k-1}+\cdots+a_{k+1} A+a_{k} l .
$$

(($n-k)$ th Horner shift of $p(z)$ evaluated at A)
Hence: $p_{n-k-1}(A)$ encodes the information on the variation $a_{k}(A+E)-a_{k}(A)$:

Recursive formula for the adjugate

$p(z)=z^{n}+\sum_{k=0}^{n-1} a_{k} z^{k}$

Proposition [Gantmacher, 1959]

Set:

$$
\left\{\begin{array}{l}
A_{n-1}=I, \quad \text { and } \\
A_{k}=A \cdot A_{k+1}+a_{k} l, \quad \text { for } k=n-2, \ldots, 1,0
\end{array}\right.
$$

Then,

$$
\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} z^{k} A_{k} .
$$

Note:

$$
A_{k-1}=p_{n-k}(A)=A^{n-k}+a_{n-1} A^{n-k-1}+\cdots+a_{k+1} A+a_{k} l .
$$

$$
((n-k) \text { th Horner shift of } p(z) \text { evaluated at } A)
$$

Hence: $p_{n-k-1}(A)$ encodes the information on the variation $a_{k}(A+E)-a_{k}(A)$:

$$
a_{k}(A+E)-a_{k}(A)=-\sum_{i, j}\left(p_{n-k-1}(A)\right)_{j i} E_{i j}+O\left(\|E\|^{2}\right) .
$$

Some particular examples

Frobenius companion matrices:
$p_{n-k-1}\left(C_{1}^{\top}\right)=p_{n-k-1}\left(C_{2}\right)=\left[\begin{array}{ccc|cccc}0 & \cdots & 0 & 1 & & & 0 \\ -a_{k} & & & a_{n-1} & 1 & & \\ \vdots & \ddots & & \vdots & a_{n-1} & \ddots & \\ -a_{1} & \ddots & -a_{k} & a_{k+1} & \vdots & \ddots & 1 \\ -a_{0} & \ddots & \vdots & & a_{k+1} & \ddots & a_{n-1} \\ & \ddots & -a_{1} & & & \ddots & \vdots \\ 0 & & -a_{0} & 0 & & & a_{k+1}\end{array}\right]$.

These are the only Fiedler matrices M_{σ} for which all $p_{k}\left(M_{\sigma}\right)$ have entries of degree 1 !!!!

Some particular examples

Frobenius companion matrices:
$p_{n-k-1}\left(C_{1}^{\top}\right)=p_{n-k-1}\left(C_{2}\right)=\left[\begin{array}{ccc|cccc}0 & \cdots & 0 & 1 & & & 0 \\ -a_{k} & & & a_{n-1} & 1 & & \\ \vdots & \ddots & & \vdots & a_{n-1} & \ddots & \\ -a_{1} & \ddots & -a_{k} & a_{k+1} & \vdots & \ddots & 1 \\ -a_{0} & \ddots & \vdots & & a_{k+1} & \ddots & a_{n-1} \\ & \ddots & -a_{1} & & & \ddots & \vdots \\ 0 & & -a_{0} & 0 & & & a_{k+1}\end{array}\right]$.

These are the only Fiedler matrices M_{σ} for which all $p_{k}\left(M_{\sigma}\right)$ have entries of degree 1 !!!!

Some particular examples (II)

$F=M_{n-1} \cdots M_{2} M_{0} M_{1}$

$$
\begin{aligned}
& p_{n-k-1}(F)=\left[\begin{array}{ccccccc}
0 & & & & 1 & & \\
-a_{k} & & & & a_{n-1} & \ddots & \\
\vdots & \ddots & & & \vdots \\
\vdots & \ddots & 1 & 0 \\
-a_{1} & & -a_{k} & & a_{k+2} & & a_{n-1} \\
-a_{0} & \ddots & \vdots & -a_{k} & a_{k+1} & \ddots & \vdots \\
& \ddots & -a_{1} & \vdots & & \ddots & a_{k+2} \\
& & -a_{0} & -a_{1} & & \\
& & & a_{n-1} \\
& & & 1 & & & \\
a_{k+1} & -a_{0} a_{k+2} \\
a_{k+1}
\end{array}\right], \text { for } k=0: n-3, \\
& p_{1}(F)=\left[\begin{array}{cccccc}
0 & & & & & 0 \\
-a_{n-2} & 1 & & & & \\
-a_{n-3} & a_{n-1} & 1 & & & \\
\vdots & & a_{n-1} & \ddots & & \\
\vdots & & & \ddots & 1 & \\
-a_{1} & & & & a_{n-1} & -a_{0} \\
1 & & & & 0 & a_{n-1}
\end{array}\right], \text { and } p_{0}(F)=l .
\end{aligned}
$$

Outline

(9) Introduction

(2) Numerical issues
(3) What is known so far?
(4) Polynomial b'err using Fiedler matrices
(5) Backward stability?

- Numerical experiments

6) Other companion forms

- Companion matrices
- Companion forms
(7) Epilogue

Backward error

Theorem

If the roots of $p(z)$ are computed as the e-vals of M_{σ} with a backward stable algorithm, the computed roots are the exact roots of a polynomial $\widetilde{p}(z)$ with:
(a) If $M_{\sigma}=C_{1}, C_{2}$:

$$
\frac{\|\widetilde{p}-p\|_{\infty}}{\|p\|_{\infty}}=O(u)\|p\|_{\infty}
$$

(b) if $M_{\sigma} \neq C_{1}, C_{2}$:

$$
\frac{\|\widetilde{p}-p\|_{\infty}}{\|p\|_{\infty}}=O(u)\|p\|_{\infty}^{2} .
$$

(u is the machine precision)

using: $\max _{i, j=1,2 \ldots, n}\left|E_{i j}\right|=O(u)\left\|M_{\sigma}\right\|_{\infty}$ and $\left\|M_{\sigma}\right\|_{\infty}=O(1)\|p\|_{\infty}$ [D., Dopico, Pérez, 2013].

Backward error

Theorem

If the roots of $p(z)$ are computed as the e-vals of M_{σ} with a backward stable algorithm, the computed roots are the exact roots of a polynomial $\widetilde{p}(z)$ with:
(a) If $M_{\sigma}=C_{1}, C_{2}$:

$$
\frac{\|\widetilde{p}-p\|_{\infty}}{\|p\|_{\infty}}=O(u)\|p\|_{\infty}
$$

(b) if $M_{\sigma} \neq C_{1}, C_{2}$:

$$
\frac{\|\widetilde{p}-p\|_{\infty}}{\|p\|_{\infty}}=O(u)\|p\|_{\infty}^{2}
$$

(u is the machine precision)
Proof (idea): $\left|\tilde{a}_{k}-a_{k}\right|=\left|\sum_{i, j=1}^{n} p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) E_{i j}\right| \leq \sum_{i, j=1}^{n}\left|p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right| \cdot\left|E_{i j}\right| \leq$ $\left(\max _{1 \leq i, j \leq n} \mid E_{i j}\right) \cdot\left(\sum_{i, j=1}^{n}\left|p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right|\right)$. Therefore,

$$
\|\widetilde{p}-p\|_{\infty}=\max _{k=0,1, \ldots,-1}\left|\tilde{a}_{k}-a_{k}\right|=O(u)\left\|M_{\sigma}\right\|\left\|_{\infty}\right\| p\left\|_{\infty}^{2}=O(u)\right\| p \|_{\infty}^{3},
$$

using: $\max _{i, j=1,2, \ldots, n} \mid E_{j i j}=O(u)\left\|M_{\sigma}\right\|_{\infty}$ and $\left\|M_{\sigma}\right\|_{\infty}=O(1)\|p\|_{\infty}[D .$, Dopico, Pérez, 2013].

Some remarks

(Recall: $\|p\|_{\infty} \geq 1$, since p is monic).

- For $\|p\|_{\infty}$ moderate, backward stability of polynomial root-finding is guaranteed using any Fiedler matrix.
- Then, particular features of some Fiedler matrices (like low bandwidth) can make them preferable than C_{1} and C_{2}.
- When $\|p\|_{\infty}$ is large, C_{1} and C_{2} are expected to give smaller b'err than any other Fiedler.
- Coefficient-wise backward stability is not guaranteed for any Fiedler matrix, even when $\|p\|_{\infty}=1$.
- However, when all $\left|a_{i}\right|=\Theta(1)$ (i.e: moderate and not too close to zero), then: $\max _{k=0,1, \ldots, n-1} \frac{\left|a_{k}-a_{k}\right|}{\left|a_{k}\right|}=O(u)$

Some remarks

(Recall: $\|p\|_{\infty} \geq 1$, since p is monic).

- For $\|p\|_{\infty}$ moderate, backward stability of polynomial root-finding is guaranteed using any Fiedler matrix.
- Then, particular features of some Fiedler matrices (like low bandwidth) can make them preferable than C_{1} and C_{2}.
- When $\|p\|_{\infty}$ is large, C_{1} and C_{2} are expected to give smaller b'err than any other Fiedler.
- Coefficient-wise "backward stability is not guaranteed for any Fiedler matrix, even when $\|p\|_{\infty}=1$.
- However, when all $\left|a_{i}\right|=\Theta(1)$ (i.e: moderate and not too close to zero), then: $\max _{k=0.1} \quad n-1 \frac{a_{k}-a_{k} \mid}{\left|a_{k}\right|}=O(u)$

Some remarks

(Recall: $\|p\|_{\infty} \geq 1$, since p is monic).

- For $\|p\|_{\infty}$ moderate, backward stability of polynomial root-finding is guaranteed using any Fiedler matrix.
- Then, particular features of some Fiedler matrices (like low bandwidth) can make them preferable than C_{1} and C_{2}.
- When $\|p\|_{\infty}$ is large, C_{1} and C_{2} are expected to give smaller b'err than any other Fiedler.
- Coefficient-wise backward stability is not guaranteed for any Fiedler matrix, even when $\|p\|_{\infty}=1$.
- H'owever, when all | $a_{j} \mid=\theta(1)$ (i.e: moderate and not too close to zero), then: $\max _{k=0,1, \ldots, n-1} \frac{\left|a_{k}-a_{k}\right|}{\left|a_{k}\right|}=O(u)$

Some remarks

(Recall: $\|p\|_{\infty} \geq 1$, since p is monic).

- For $\|p\|_{\infty}$ moderate, backward stability of polynomial root-finding is guaranteed using any Fiedler matrix.
- Then, particular features of some Fiedler matrices (like low bandwidth) can make them preferable than C_{1} and C_{2}.
- When $\|p\|_{\infty}$ is large, C_{1} and C_{2} are expected to give smaller b'err than any other Fiedler.
- Coefficient-wise backward stability is not guaranteed for any Fiedler matrix, even when $\|p\|_{\infty}=1$.
- However, when all $\left|a_{i}\right|=\Theta(1)$ (i.e: moderate and not too close to zero) then: $\max _{k=0,1, \ldots, n-1} \frac{\left|a_{k}-a_{k}\right|}{\left|a_{k}\right|}=O(u)$.

Some remarks

(Recall: $\|p\|_{\infty} \geq 1$, since p is monic).

- For $\|p\|_{\infty}$ moderate, backward stability of polynomial root-finding is guaranteed using any Fiedler matrix.
- Then, particular features of some Fiedler matrices (like low bandwidth) can make them preferable than C_{1} and C_{2}.
- When $\|p\|_{\infty}$ is large, C_{1} and C_{2} are expected to give smaller b'err than any other Fiedler.
- Coefficient-wise backward stability is not guaranteed for any Fiedler matrix, even when $\|p\|_{\infty}=1$.
- However, when all $\left|a_{i}\right|=\Theta(1)$ (i.e: moderate and not too close to zero), then: $\max _{k=0,1, \ldots, n-1} \frac{\left|a_{k}-a_{k}\right|}{\left|a_{k}\right|}=O(u)$.

Random polynomials, $n=20$

Figure: 11 samples, 500 random polys, $\|p\|_{\infty}=10^{k}(k=0: 10), a_{i}=a \cdot 10^{c}, a \in[-1,1], c \in[-k, k], a_{0}=10^{k}$.

Random polynomials, $n=20$ (with balancing)

Figure: 11 samples, 500 random polys, $\|p\|_{\infty}=10^{k}(k=0: 10), a_{i}=a \cdot 10^{c}, a \in[-1,1], c \in[-k, k], a_{0}=10^{k}$.

Outline

(9) Introduction

2 Numerical issues
(3) What is known so far?
(4) Polynomial b'err using Fiedler matrices
(5) Backward stability?

- Numerical experiments

6 Other companion forms

- Companion matrices
- Companion forms
(7) Epilogue

Other companion matrices?

Q: Are there any other companion matrices than Fiedlers?

Other companion matrices?

Q: Are there any other companion matrices than Fiedlers?
YES: Infinitely many!
Just multiply: $P M_{\sigma} P^{-1}$ (P invertible)

Other companion matrices?

Q: Are there any other companion matrices than Fiedlers?
YES: Infinitely many!
Just multiply: $P M_{\sigma} P^{-1}$ (P invertible) \rightsquigarrow In general, not sparse (exception: P is a permutation matrix)

맚 We look for sparse companion matrices

Sparse companion matrices (I)

Sparse: It has the smallest number of nonzero entries

鲒 For companion matrices, this number is $2 n-1$ [Ma-Zhan'13]

Q: How many non-permutationally similar sparse companion matrices are there and how do they look like?

Sparse companion matrices (I)

Sparse: It has the smallest number of nonzero entries

[17 For companion matrices, this number is $2 n-1$ [Ma-Zhan'13] (we focus on: $\underbrace{1, \ldots, 1}_{n-1}, a_{0}, \ldots, a_{n-1}$)

Q: How many non-permutationally similar sparse companion matrices are there and how do they look like?

Sparse companion matrices (I)

Sparse: It has the smallest number of nonzero entries

[17 For companion matrices, this number is $2 n-1$ [Ma-Zhan'13] (we focus on: $\underbrace{1, \ldots, 1}_{n-1}, a_{0}, \ldots, a_{n-1}$)

Q: How many non-permutationally similar sparse companion matrices are there and how do they look like?

Sparse companion matrices (II)

We define the following (lower Hessenberg) classes of matrices:

Sparse companion matrices (II)

We define the following (lower Hessenberg) classes of matrices:

$\left(\mathscr{C} \mathscr{P}_{n} \subseteq \mathscr{C}_{n}\right)$

Sparse companion matrices (II)

We define the following (lower Hessenberg) classes of matrices:

$\left(\mathscr{C} \mathscr{P}_{n} \subseteq \mathscr{C}_{n}\right)$

Theorem [Eastman-etal"14]

Any sparse companion matrix is permutationally similar to a matrix in \mathscr{C}_{n}.

Sparse companion matrices (II)

We define the following (lower Hessenberg) classes of matrices:

$\left(\mathscr{C} \mathscr{P}_{n} \subseteq \mathscr{C}_{n}\right)$

Theorem [Eastman-etal"14]

Any sparse companion matrix is permutationally similar to a matrix in \mathscr{C}_{n}.

Theorem [Eastman-etal'14]

$A\left(a_{0}, \ldots, a_{n-1}\right) \in \mathscr{C}_{n}$ is a sparse companion matrix $\Leftrightarrow A\left(a_{0}, \ldots, a_{n-1}\right) \in \mathscr{C} \mathscr{P}_{n}$.

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$
Then $p(z)=\frac{1}{a_{n}} q(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}$ is monic

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$
Then $p(z)=\frac{1}{a_{n}} q(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}$ is monic
If the method is b'stable for monic polys:

$$
\frac{\|p-\widetilde{p}\|}{\|p\|}=O(u) \quad(\text { for some } \widetilde{p}) .
$$

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$
Then $p(z)=\frac{1}{a_{n}} q(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}$ is monic
If the method is b'stable for monic polys:

$$
\frac{\|p-\widetilde{p}\|}{\|p\|}=O(u) \quad(\text { for some } \widetilde{p}) .
$$

Then (setting $\left.\widetilde{q}:=a_{n} \widetilde{p}\right)$:

$$
\frac{\|q-\widetilde{q}\|}{\|q\|}=\frac{\left\|\frac{q}{a_{n}}-\frac{\tilde{q}}{a_{n}}\right\|}{\left\|\frac{q}{a_{n}}\right\|}=\frac{\|p-\tilde{p}\|}{\|p\|}=O(u) .
$$

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$
Then $p(z)=\frac{1}{a_{n}} q(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}$ is monic
If the method is b'stable for monic polys:

$$
\frac{\|p-\widetilde{p}\|}{\|p\|}=O(u) \quad(\text { for some } \widetilde{p}) .
$$

Then (setting $\left.\widetilde{q}:=a_{n} \widetilde{p}\right)$:

$$
\frac{\|q-\widetilde{q}\|}{\|q\|}=\frac{\left\|\frac{q}{a_{n}}-\frac{\tilde{q}}{a_{n}}\right\|}{\left\|\frac{q}{a_{n}}\right\|}=\frac{\|p-\tilde{p}\|}{\|p\|}=O(u) .
$$

\Rightarrow It is enough to prove b'stability for monic polys

However...

- B'stability (in the poly sense) is only guaranteed if $\|p\|$ is moderate.
- The QZ algorithm on the Frobenius companion form (non-monic) gives b'stability if $\|p\|_{\infty} \approx 1$ ([van Dooren-Dewilde' 83).
- If we divide by $\|p\|_{\infty} \rightsquigarrow$ the polynomial may become non-monic!

However...

- B'stability (in the poly sense) is only guaranteed if $\|p\|$ is moderate.
- The QZ algorithm on the Frobenius companion form (non-monic) gives b'stability if $\|p\|_{\infty} \approx 1$ (IVan Dooren-Dewilde'83).
- If we divide by $\|p\|_{\infty} \rightsquigarrow$ the polynomial may become non-monic!

However...

- B'stability (in the poly sense) is only guaranteed if $\|p\|$ is moderate.
- The QZ algorithm on the Frobenius companion form (non-monic) gives b'stability if $\|p\|_{\infty} \approx 1$ (IVan Dooren-Dewilde'83).
- If we divide by $\|p\|_{\infty} \rightsquigarrow$ the polynomial may become non-monic!

Fiedler companion forms

Frobenius companion forms

$$
F_{i}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-C_{i} \quad i=1,2
$$

Fiedler companion forms

Frobenius companion forms

$$
F_{i}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-C_{i} \quad i=1,2
$$

Fiedler companion forms

$$
F_{\sigma}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-M_{\sigma}
$$

Fiedler companion forms

Frobenius companion forms

$$
F_{i}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-C_{i} \quad i=1,2
$$

Fiedler companion forms

$$
F_{\sigma}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-M_{\sigma}
$$

Examples: $F_{1}=\left[\begin{array}{ccccc}a_{n} z+a_{n-1} & a_{n-2} & \cdots & a_{0} \\ -1 & z & \cdots & 0 \\ & & \ddots & \ddots & \vdots \\ 0 & & & -1 & z\end{array}\right] \quad F_{2}=F_{1}^{\top}$
$F=\left[\begin{array}{cccccc}a_{6} z+a_{5} & -1 & 0 & 0 & 0 & 0 \\ a_{4} & z & a_{3} & -1 & 0 & 0 \\ -1 & 0 & z & 0 & 0 & 0 \\ 0 & 0 & a_{2} & z & a_{1} & -1 \\ 0 & 0 & -1 & 0 & z & 0 \\ 0 & 0 & 0 & 0 & a_{0} & z\end{array}\right] \quad(n=6)$

Other companion forms

Companion form

A matrix $A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)$ such that:

- The entries are linear polynomials in z.
- $\operatorname{det} A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$

Other companion forms

Companion form

A matrix $A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)$ such that:

- The entries are linear polynomials in z.
- $\operatorname{det} A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$

19 Similarity Equivalence

Other companion forms

Companion form

A matrix $A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)$ such that:

- The entries are linear polynomials in z.
- $\operatorname{det} A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$

IIP Similarity Equivalence

Fiedler-like:

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & z & a_{0}+z a_{1} \\
0 & 0 & 1 & 0 & -z \\
0 & z & a_{2}+z a_{3} & -1 & 0 \\
1 & 0 & -z & 0 & 0 \\
a_{4}+z a_{5} & -1 & 0 & 0 & 0
\end{array}\right] \quad(n=5)
$$

Other companion forms

Companion form

A matrix $A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)$ such that:

- The entries are linear polynomials in z.
- $\operatorname{det} A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$

10 Similarity Equivalence

Fiedler-like:

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & z & a_{0}+z a_{1} \\
0 & 0 & 1 & 0 & -z \\
0 & z & a_{2}+z a_{3} & -1 & 0 \\
1 & 0 & -z & 0 & 0 \\
a_{4}+z a_{5} & -1 & 0 & 0 & 0
\end{array}\right] \quad(n=5)
$$

呢 There are many others [Dopico-Lawrence-Pérez-VanDooren]:

- Permutationally equivalent to companion forms in some "extended $\mathscr{C} \mathscr{P}_{n}$ ".
- Most of them are not sparse.

Open questions for companion forms

- How many non-permutationally similar companion matrices are there in $\mathscr{C} \mathscr{P}_{n}$?
- Which is the smallest number of nonzero entries (sparse)?

Open questions for companion forms

- How many non-permutationally similar companion matrices are there in $\mathscr{C} \mathscr{P}_{n}$?
- Which is the smallest number of nonzero entries (sparse)?

$$
\left.\left[\begin{array}{ccccc}
0 & 0 & 0 & z & a_{0}+z a_{1} \\
0 & 0 & 1 & 0 & -z \\
0 & z & a_{2}+z a_{3} & -1 & 0 \\
1 & 0 & -z & 0 & 0 \\
a_{4}+2 a_{5} & -1 & 0 & 0 & 0
\end{array}\right] \quad \#(\text { nonzero })=11\right)
$$

Open questions for companion forms

- How many non-permutationally similar companion matrices are there in $\mathscr{C} \mathscr{P}_{n}$?
- Which is the smallest number of nonzero entries (sparse)?
- Are all sparse companion forms permutationally equivalent to a companion form in an "extended \mathscr{C}_{n} "?

Open questions for companion forms

- How many non-permutationally similar companion matrices are there in $\mathscr{C} \mathscr{P}_{n}$?
- Which is the smallest number of nonzero entries (sparse)?
- Are all sparse companion forms permutationally equivalent to a companion form in an "extended \mathscr{C}_{n} "?
- Do all sparse companion forms in this \mathscr{C}_{n} belong to an "extended $\mathscr{C} \mathscr{P}_{n}$ "?

Open questions for companion forms

- How many non-permutationally similar companion matrices are there in $\mathscr{C} \mathscr{P}_{n}$?
- Which is the smallest number of nonzero entries (sparse)?
- Are all sparse companion forms permutationally equivalent to a companion form in an "extended \mathscr{C}_{n} "?
- Do all sparse companion forms in this \mathscr{C}_{n} belong to an "extended $\mathscr{C} \mathscr{P}_{n}$ "?
- Is there any companion form that provides a smaller b'err than Frobenius ones?

Outline

(9) Introduction
(2) Numerical issues
(3) What is known so far?
(4) Polynomial b'err using Fiedler matrices
(5) Backward stability?

- Numerical experiments
(6) Other companion forms
- Companion matrices
- Companion forms
(7) Epilogue

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.

Aurentz, Mach, Vandebril, Watkins.
Fast and stable computation of roots of polynomials.
SIAM J. Matrix Anal. Appl., 36 (2015) 942-973.

DT., Dopico, Pérez.
Backward stability of polynomial root-finding using Fiedler companion matrices.
IMA J. Numer. Analysis, 36 (2016) 133-173.
Eastman, Kim, Shader, Vander Meulen.
Companion matrix patterns.
Linear Algebra Appl., 463 (2014) 255-272.
Edelman, Murakami.
Polynomial roots from companion matrix eigenvalues.
Math. Comp., 64 (1995) 763-776.
Fiedler.
A note on companion matrices.
Linear Algebra Appl., 372 (2003) 325-331.

Ma, Zhan.
Extremal sparsity of the companion matrix of a polynomial.
Linear Algebra Appl., 438 (2013) 621-625.
R
Van Dooren, Dewilde.
The eigenstructure of an arbitrary polynomial matrix: computational aspects Linear Algebra Appl., 50 (1983) 545-579.

DANKE !!

