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Orbits closures of matrix pencils under strict equivalence

Orbit: definition

Matrix pencil: A+λB, with A,B ∈ Cm×n (or matrix pairs (A,B)).

A+λB and A′+λB′ are strictly equivalent if:

A′ = PAQ, B′ = PBQ, for some P,Q invertible.

(namely, A′+λB′ = P(A+λB)Q).

Definition (orbit)
O(A+λB) := {P(A+λB)Q : P,Q invertible}.
(i.e.: it’s the set of pencils which are strictly equivalent to A+λB).
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Orbits closures of matrix pencils under strict equivalence

Orbit and the KCF

Theorem (Kronecker Canonical Form, KCF)
Every pencil is strictly equivalent to a direct sum, uniquely determined (up to permutation), of
blocks:

Blocks associated with finite evals (µ): Jk (µ) :=

λ−µ 1
. . .

. . .
λ−µ 1

λ−µ


k×k

(k ≥ 1).

Blocks associated with the ∞ eval: Jk (∞) :=

1 λ

. . .
. . .
1 λ

1


k×k

(k ≥ 1).

Right singular blocks: Rk (λ) =:

λ 1
λ 1

. . .
. . .
λ 1


k×(k+1)

(k ≥ 0).

Left singular blocks: Rk (λ)
⊤ (k ≥ 0).

� Every orbit is (uniquely) determined by the KCF.
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Orbits closures of matrix pencils under strict equivalence

Orbit closures

L,L1,L2 are m×n pencils.

O(L): closure of O(L) (in the standard topology of Cm×n ×Cm×n).

Problem: Characterize the inclusion L1 ∈ O(L2).

� The inclusion relationship between orbit closures allows us to
classify the KCFs according to their “genericity".
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O(L): closure of O(L) (in the standard topology of Cm×n ×Cm×n).

Problem: Characterize the inclusion L1 ∈ O(L2).

Motivation: When computing KCF(L1), if L1 ∈ O(L2), there are
arbitrarily small perturbations, L1 +Lε , s. t. KCF(L1 +Lε) =KCF(L2).
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Problem: Characterize the inclusion L1 ∈ O(L2).

Lemma
L1 ∈ O(L2)⇔ O(L1)⊆ O(L2)⇔ O(L1)⊆ O(L2).

Proof: If PnL2Qn → L1, then (PPn)L2(QnQ)→ PL1Q. □

� The inclusion relationship between orbit closures allows us to
classify the KCFs according to their “genericity".
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Orbits closures of matrix pencils under strict equivalence

Orbit closures: domination rules

(Recall: Weyr characteristic of N = (n1,n2, . . . ,nk ,0,0, . . .), is
W (N) := (w1(N),w2(N), . . .) with wi (N) = #{nj : nj ≥ i}).

r(L) : Weyr characteristic of the sizes of right singular blocks in KCF(L).

ℓ(L) : Weyr characteristic of the sizes of left singular blocks in KCF(L).

W (µ,L) : Weyr characteristic of the sizes of Jordan blocks of µ in KCF(L).

Definition: (m1,m2, . . .)≺(n1,n2, . . .)⇔ ∑
k
i=1 mi ≤ ∑

k
i=1 ni , for all k ≥ 1.

Theorem [Pokrzywa’86]

O(L1)⊆ O(L2) iff:
(i) r(L1)≺ r(L2)+(h,h, . . .),

(ii) ℓ(L1)≺ ℓ(L2)+(h,h, . . .),
(iii) W (µ,L2)≺ W (µ,L1)+(h,h, . . .), ∀µ ∈ C,
where h := rankL2 − rankL1.
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Orbits closures of matrix pencils under strict equivalence

Domination rules: Visualization

Stratification of closure orbits of 3×2 pencils

Stratification of closure orbits of 4×3 pencils

Made with Stratigraph:

https://www.umu.se/en/research/projects/stratigraph-and-mcs-toolbox/
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Orbits closures of matrix pencils under strict equivalence

Orbit closures: summary

A characterization for the inclusion is known.

This allows us to known whether a given KCF can be obtained
after an arbitrarily small perturbation of another one...

...and to to classify the KCFs according to their “likelihood".

DHowever...the eigenvalues must be fixed!
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Bundles come into play

Bundle: definition

Definition (bundle)
The bundle of L, B(L), is the set of matrix pencils with the same KCF
as L, up to the specific values of the evals.

Example: If

L = R1(λ )⊕J1(µ) =

[
λ 1 0
0 0 λ −µ

]
,

then

B(L) =

{
P
[

λ 1 0
0 0 λ −α

]
Q : P,Q invertible, α ∈ C

}
∪
{

P
[

λ 1 0
0 0 1

]
Q : P,Q invertible

}
.

� A bundle is a union of orbits (infinite, provided that there are
eigenvalues).
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Bundles come into play

Bundle: different eigenvalues

Important: The number of different eigenvalues must stay invariant!

Example: If

L = J2(0)⊕J1(1) =

 λ 1 0
0 λ 0
0 0 λ −1

 ,

then B(L) = P(J2(α)⊕J1(β ))Q with α ̸= β (one of α,β can be ∞).

Therefore:

J2(0)⊕J1(0) =

 λ 1 0
0 λ 0
0 0 λ

 ̸∈ B(L).

Fernando De Terán (UC3M) Bundles of pencils under strict equivalence CEDYA/CMA2022 12 / 21



Bundles come into play

Bundle: different eigenvalues

Important: The number of different eigenvalues must stay invariant!

Example: If

L = J2(0)⊕J1(1) =

 λ 1 0
0 λ 0
0 0 λ −1

 ,

then B(L) = P(J2(α)⊕J1(β ))Q with α ̸= β (one of α,β can be ∞).

Therefore:

J2(0)⊕J1(0) =

 λ 1 0
0 λ 0
0 0 λ

 ̸∈ B(L).

Fernando De Terán (UC3M) Bundles of pencils under strict equivalence CEDYA/CMA2022 12 / 21



Bundles come into play

Bundle: different eigenvalues

Important: The number of different eigenvalues must stay invariant!

Example: If

L = J2(0)⊕J1(1) =

 λ 1 0
0 λ 0
0 0 λ −1

 ,

then B(L) = P(J2(α)⊕J1(β ))Q with α ̸= β (one of α,β can be ∞).

Therefore:

J2(0)⊕J1(0) =

 λ 1 0
0 λ 0
0 0 λ

 ̸∈ B(L).

Fernando De Terán (UC3M) Bundles of pencils under strict equivalence CEDYA/CMA2022 12 / 21



Bundles come into play

Bundle closures: inclusion relation

Problem: Characterize the inclusion L1 ∈ B(L2).

Q: Same domination rules as for the orbits?

A: NO. Different eigenvalues may coalesce.

Example: L =

[
λ 1 0
0 λ 0
0 0 λ −1

]
, Then

L̃ ̸∈ B(L),

L̃ ̸∈ O(L)

(the number of different eigenvalues must be the same),

L̃ ∈ B(L).
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]
. Then

L̃ ̸∈ B(L),

L̃ ̸∈ O(L) (the number of different eigenvalues must be the same),
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A: NO. Different eigenvalues may coalesce.

Example: L =

[
λ 1 0
0 λ 0
0 0 λ −1

]
, L̃ =

[
λ 1 0
0 λ 1
0 0 λ

]
. Then

L̃ ̸∈ B(L),

L̃ ̸∈ O(L) (the number of different eigenvalues must be the same),
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Bundles come into play

Coalescence of eigenvalues

� Coalescence of evals: Take the union of their Weyr characteristics.
(i.e.: add up the sizes of the Jordan blocks).

Example:

=



λ −1 1
λ −1 1

λ −1
λ −1 1

λ −1
λ 1

λ

λ

λ −2 1
λ −2 1

λ −2 1
λ −2


.

Then, the evals 1,0,2 coalesce to µ ∈ C in L̃ if
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Bundles come into play

Rules for the inclusion of bundle closures

Theorem (domination rules for bundle closures)

B(L̃)⊆ B(L) if and only if KCF(L̃) is obtained from KCF(L) after
coalescing eigenvalues and applying the dominance rules for closure
orbit inclusion.

Same result, for bundles of matrices under similarity, stated (not
proved) in

A. Edelman, E. Elmroth, B. Kågström.
SIAM J. Matrix Anal. Appl., 20-3 (1999) 667–699.

D However, no formal definition of coalescence is provided in that
reference.
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Bundles come into play

Stratigraph again
Let’s compare bundles and orbits:

Orbits (left) and bundles (right) of 3×2 pencils
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Bundles come into play

Some aside results

L̃ ∈ B(L)⇒ B(L̃)⊆ B(L).

Bundle closures are “stratified manifolds" (namely, the union of the
bundle itself with other bundles of smaller dimension).

Bundles are open in their closure.

The same is true for bundles of
matrices (under similarity) and matrix polynomials (under strict
equivalence).
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Conclusions and open questions
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Conclusions and open questions

Our contribution

We have provided a formal notion of coalescence of eigenvalues.

We have provided necessary and sufficient conditions for the
inclusion of bundle closures.

We have proved that bundles are open in their closure.
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Conclusions and open questions

Open questions

For matrix polynomials, P1,P2: provide necessary and sufficient
conditions for B(P1)⊆ B(P2).

For structured pencils (alternating, symmetric, Hermitian,
palindromic...), L1,L2: provide necessary and sufficient conditions
for B(L1)⊆ B(L2).

For matrix polynomials and structured pencils: Are bundles open
in their closure?
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