On bundles of matrix pencils under strict equivalence

Fernando De Terán

(Joint work with Froilán M. Dopico)

uc3m Universidad Carlos III de Madrid
Departamento de Matemáticas

Outline

(1) Orbits closures of matrix pencils under strict equivalence
(2) Bundles come into play
(3) Conclusions and open questions

Outline

(1) Orbits closures of matrix pencils under strict equivalence

(2) Bundles come into play

(3) Conclusions and open questions

Orbit: definition

Matrix pencil: $A+\lambda B$, with $A, B \in \mathbb{C}^{m \times n}$ (or matrix pairs (A, B)).
$A+\lambda B$ and $A^{\prime}+\lambda B^{\prime}$ are strictly equivalent if:

$$
A^{\prime}=P A Q, B^{\prime}=P B Q, \quad \text { for some } P, Q \text { invertible. }
$$

(namely, $A^{\prime}+\lambda B^{\prime}=P(A+\lambda B) Q$).

Orbit: definition

Matrix pencil: $A+\lambda B$, with $A, B \in \mathbb{C}^{m \times n}$
(or matrix pairs (A, B)).
$A+\lambda B$ and $A^{\prime}+\lambda B^{\prime}$ are strictly equivalent if:

$$
A^{\prime}=P A Q, B^{\prime}=P B Q, \quad \text { for some } P, Q \text { invertible. }
$$

(namely, $A^{\prime}+\lambda B^{\prime}=P(A+\lambda B) Q$).

Definition (orbit)

$\mathscr{O}(A+\lambda B):=\{P(A+\lambda B) Q: P, Q$ invertible $\}$.
(i.e.: it's the set of pencils which are strictly equivalent to $A+\lambda B$).

Orbit and the KCF

Theorem (Kronecker Canonical Form, KCF)

Every pencil is strictly equivalent to a direct sum, uniquely determined (up to permutation), of blocks:

- Blocks associated with finite evals $(\mu): J_{k}(\mu):=\left[\begin{array}{ccccc}\lambda-\mu & 1 & & & \\ & \ddots & \ddots & \\ & & \lambda-\mu & 1 \\ & & & \lambda-\mu\end{array}\right]_{k \times k} \quad(k \geq 1)$.
- Blocks associated with the ∞ eval: $J_{k}(\infty):=\left[\begin{array}{ccccc}1 & \lambda & & \\ & \ddots & \ddots & \\ & & 1 & \lambda\end{array}\right]_{k \times k} \quad(k \geq 1)$.
- Right singular blocks: $R_{k}(\lambda)=:\left[\begin{array}{cccccc}\lambda & 1 & & & \\ & \lambda & 1 & & \\ & \ddots & \ddots & \\ & & & 1\end{array}\right]_{k \times(k+1)} \quad(k \geq 0)$.
- Left singular blocks: $R_{k}(\lambda)^{\top}(k \geq 0)$.

Orbit and the KCF

Theorem (Kronecker Canonical Form, KCF)

Every pencil is strictly equivalent to a direct sum, uniquely determined (up to permutation), of blocks:

- Blocks associated with finite evals $(\mu): J_{k}(\mu):=\left[\begin{array}{ccccc}\lambda-\mu & 1 & & & \\ & \ddots & \ddots & \\ & & \lambda-\mu & 1 \\ & & & \lambda-\mu\end{array}\right]_{k \times k} \quad(k \geq 1)$.
- Blocks associated with the ∞ eval: $J_{k}(\infty):=\left[\begin{array}{ccccc}1 & \lambda & & \\ & \ddots & \ddots & \\ & & 1 & \lambda\end{array}\right]_{k \times k} \quad(k \geq 1)$.
- Right singular blocks: $R_{k}(\lambda)=:\left[\begin{array}{ccccc}\lambda & 1 & & & \\ & \lambda & 1 & & \\ & \ddots & \ddots & \\ & & & 1\end{array}\right]_{k \times(k+1)} \quad(k \geq 0)$.
- Left singular blocks: $R_{k}(\lambda)^{\top}(k \geq 0)$.

四 Every orbit is (uniquely) determined by the KCF.

Orbit closures

L, L_{1}, L_{2} are $m \times n$ pencils.

$\overline{\mathscr{O}}(L)$: closure of $\mathscr{O}(L)$ (in the standard topology of $\mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n}$).

Orbit closures

L, L_{1}, L_{2} are $m \times n$ pencils.
$\overline{\mathscr{O}}(L)$: closure of $\mathscr{O}(L)$ (in the standard topology of $\mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n}$).

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right)$.

Orbit closures

L, L_{1}, L_{2} are $m \times n$ pencils.
$\overline{\mathscr{O}}(L)$: closure of $\mathscr{O}(L)$ (in the standard topology of $\mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n}$).

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right)$.

Motivation: When computing $\operatorname{KCF}\left(L_{1}\right)$, if $L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right)$, there are arbitrarily small perturbations, $L_{1}+L_{\varepsilon}$, s. t. $\operatorname{KCF}\left(L_{1}+L_{\varepsilon}\right)=\operatorname{KCF}\left(L_{2}\right)$.

Orbit closures

L, L_{1}, L_{2} are $m \times n$ pencils.
$\overline{\mathscr{O}}(L)$: closure of $\mathscr{O}(L)$ (in the standard topology of $\mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n}$).

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right)$.

Lemma

$$
L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right) \Leftrightarrow \mathscr{O}\left(L_{1}\right) \subseteq \overline{\mathscr{O}}\left(L_{2}\right) \Leftrightarrow \overline{\mathscr{O}}\left(L_{1}\right) \subseteq \overline{\mathscr{O}}\left(L_{2}\right) .
$$

Orbit closures

L, L_{1}, L_{2} are $m \times n$ pencils.
$\overline{\mathscr{O}}(L)$: closure of $\mathscr{O}(L)$ (in the standard topology of $\left.\mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n}\right)$.

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right)$.

Lemma
$L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right) \Leftrightarrow \mathscr{O}\left(L_{1}\right) \subseteq \overline{\mathscr{O}}\left(L_{2}\right) \Leftrightarrow \overline{\mathscr{O}}\left(L_{1}\right) \subseteq \overline{\mathscr{O}}\left(L_{2}\right)$.
Proof: If $P_{n} L_{2} Q_{n} \rightarrow L_{1}$, then $\left(P P_{n}\right) L_{2}\left(Q_{n} Q\right) \rightarrow P L_{1} Q$.

Orbit closures

L, L_{1}, L_{2} are $m \times n$ pencils.
$\overline{\mathscr{O}}(L)$: closure of $\mathscr{O}(L)$ (in the standard topology of $\mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n}$).

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right)$.

Lemma

$$
L_{1} \in \overline{\mathscr{O}}\left(L_{2}\right) \Leftrightarrow \mathscr{O}\left(L_{1}\right) \subseteq \overline{\mathscr{O}}\left(L_{2}\right) \Leftrightarrow \overline{\mathscr{O}}\left(L_{1}\right) \subseteq \overline{\mathscr{O}}\left(L_{2}\right)
$$

Tise The inclusion relationship between orbit closures allows us to classify the KCFs according to their "genericity".

Orbit closures: domination rules

(Recall: Weyr characteristic of $N=\left(n_{1}, n_{2}, \ldots, n_{k}, 0,0, \ldots\right)$, is $W(N):=\left(w_{1}(N), w_{2}(N), \ldots\right)$ with $\left.w_{i}(N)=\#\left\{n_{j}: n_{j} \geq i\right\}\right)$.
$r(L)$: Weyr characteristic of the sizes of right singular blocks in KCF (L).
$\ell(L)$: Weyr characteristic of the sizes of left singular blocks in KCF(L). $W(\mu, L)$: Weyr characteristic of the sizes of Jordan blocks of μ in $\operatorname{KCF}(L)$.
Definition: $\left(m_{1}, m_{2}, \ldots\right) \prec\left(n_{1}, n_{2}, \ldots\right) \Leftrightarrow \sum_{i=1}^{k} m_{i} \leq \sum_{i=1}^{k} n_{i}$, for all $k \geq 1$.

Theorem [Pokrzywa'86]

$\overline{\mathscr{O}}\left(L_{1}\right) \subseteq \overline{\mathscr{O}}\left(L_{2}\right)$ iff:
(i) $r\left(L_{1}\right) \prec r\left(L_{2}\right)+(h, h, \ldots)$,
(ii) $\ell\left(L_{1}\right) \prec \ell\left(L_{2}\right)+(h, h, \ldots)$,
(iii) $W\left(\mu, L_{2}\right) \prec W\left(\mu, L_{1}\right)+(h, h, \ldots), \forall \mu \in \overline{\mathbb{C}}$,
where $h:=\operatorname{rank} L_{2}-\operatorname{rank} L_{1}$.

Domination rules: Visualization

Stratification of closure orbits of 3×2 pencils

Domination rules: Visualization

Stratification of closure orbits of 4×3 pencils

Made with Stratigraph:
https://www.umu.se/en/research/projects/stratigraph-and-mcs-toolbox/

Orbit closures: summary

- A characterization for the inclusion is known.
- This allows us to known whether a given KCF can be obtained after an arbitrarily small perturbation of another one...
- ...and to to classify the KCFs according to their "likelihood".

Orbit closures: summary

- A characterization for the inclusion is known.
- This allows us to known whether a given KCF can be obtained after an arbitrarily small perturbation of another one...
- ...and to to classify the KCFs according to their "likelihood".

Orbit closures: summary

- A characterization for the inclusion is known.
- This allows us to known whether a given KCF can be obtained after an arbitrarily small perturbation of another one...
- ...and to to classify the KCFs according to their "likelihood".

Orbit closures: summary

- A characterization for the inclusion is known.
- This allows us to known whether a given KCF can be obtained after an arbitrarily small perturbation of another one...
- ...and to to classify the KCFs according to their "likelihood".

ISHowever...the eigenvalues must be fixed!

Outline

(1) Orbits closures of matrix pencils under strict equivalence

(2) Bundles come into play

(3) Conclusions and open questions

Bundle: definition

Definition (bundle)

The bundle of $L, \mathscr{B}(L)$, is the set of matrix pencils with the same KCF as L, up to the specific values of the evals.

Bundle: definition

Definition (bundle)

The bundle of $L, \mathscr{B}(L)$, is the set of matrix pencils with the same KCF as L, up to the specific values of the evals.

Example: If

$$
L=R_{1}(\lambda) \oplus J_{1}(\mu)=\left[\begin{array}{cc|c}
\lambda & 1 & 0 \\
\hline 0 & 0 & \lambda-\mu
\end{array}\right],
$$

then

$$
\begin{aligned}
\mathscr{B}(L)= & \left\{P\left[\begin{array}{ll|l}
\lambda & 1 & 0 \\
\hline 0 & 0 & \lambda-\alpha
\end{array}\right] Q: P, Q \text { invertible, } \alpha \in \mathbb{C}\right\} \\
& \cup\left\{P\left[\begin{array}{ll|l}
\lambda & 1 & 0 \\
\hline 0 & 0 & 1
\end{array}\right] Q: P, Q \text { invertible }\right\}
\end{aligned}
$$

Bundle: definition

Definition (bundle)

The bundle of $L, \mathscr{B}(L)$, is the set of matrix pencils with the same KCF as L, up to the specific values of the evals.

Example: If

$$
L=R_{1}(\lambda) \oplus J_{1}(\mu)=\left[\begin{array}{cc|c}
\lambda & 1 & 0 \\
\hline 0 & 0 & \lambda-\mu
\end{array}\right],
$$

then

$$
\begin{aligned}
\mathscr{B}(L)= & \left\{P\left[\begin{array}{cc|c}
\lambda & 1 & 0 \\
\hline 0 & 0 & \lambda-\alpha
\end{array}\right] Q: P, Q \text { invertible, } \alpha \in \mathbb{C}\right\} \\
& \cup\left\{P\left[\begin{array}{ll|l}
\lambda & 1 & 0 \\
\hline 0 & 0 & 1
\end{array}\right] Q: P, Q \text { invertible }\right\}
\end{aligned}
$$

A bundle is a union of orbits (infinite, provided that there are eigenvalues).

Bundle: different eigenvalues

Important: The number of different eigenvalues must stay invariant!

Bundle: different eigenvalues

Important: The number of different eigenvalues must stay invariant! Example: If

$$
L=J_{2}(0) \oplus J_{1}(1)=\left[\begin{array}{cc|c}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
\hline 0 & 0 & \lambda-1
\end{array}\right],
$$

then $\mathscr{B}(L)=P\left(J_{2}(\alpha) \oplus J_{1}(\beta)\right) Q$ with $\alpha \neq \beta$ (one of α, β can be ∞).

Bundle: different eigenvalues

Important: The number of different eigenvalues must stay invariant! Example: If

$$
L=J_{2}(0) \oplus J_{1}(1)=\left[\begin{array}{cc|c}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
\hline 0 & 0 & \lambda-1
\end{array}\right],
$$

then $\mathscr{B}(L)=P\left(J_{2}(\alpha) \oplus J_{1}(\beta)\right) Q$ with $\alpha \neq \beta$ (one of α, β can be ∞).
Therefore:

$$
J_{2}(0) \oplus J_{1}(0)=\left[\begin{array}{cc|c}
\lambda & 1 & 0 \\
0 & \lambda & 0 \\
\hline 0 & 0 & \lambda
\end{array}\right] \notin \mathscr{B}(L) .
$$

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.

Q: Same domination rules as for the orbits?

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.
Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.
Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.
Example: $L=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda-1\end{array}\right], \quad \tilde{L}=\left[\begin{array}{ll|l}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda\end{array}\right]$. Then

- $\widetilde{L} \notin \mathscr{B}(L)$.
- $\tilde{L} \notin \overline{\mathscr{O}}(L)$
- $\tilde{I} \in \overline{\mathscr{B}}(\underline{I})$

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.
Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.
Example: $L=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda-1\end{array}\right], \quad \tilde{L}=\left[\begin{array}{ll|l}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda\end{array}\right]$. Then

- $\tilde{L} \notin \mathscr{B}(L)$,
- $\tilde{L} \notin \overline{\mathscr{O}}(L)$
- $\widetilde{L} \in \bar{B}(L)$

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.
Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.
Example: $L=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda-1\end{array}\right], \quad \tilde{L}=\left[\begin{array}{ll|l}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda\end{array}\right]$. Then

- $\widetilde{L} \notin \mathscr{B}(L)$,
- $\widetilde{L} \notin \overline{\mathcal{O}}(L)$
- $\tilde{L} \in \bar{B}(L)$

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.
Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.
Example: $L=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda-1\end{array}\right], \quad \widetilde{L}=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda\end{array}\right]$. Then

- $\tilde{L} \notin \mathscr{B}(L)$,
- $\tilde{L} \notin \overline{\mathcal{O}}(L)$ (the number of different eigenvalues must be the same),

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.

Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.
Example: $L=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda-1\end{array}\right], \quad \widetilde{L}=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda\end{array}\right]$. Then

- $\tilde{L} \notin \mathscr{B}(L)$,
- $\widetilde{L} \notin \overline{\mathscr{O}}(L)$ (the number of different eigenvalues must be the same),
- $\tilde{L} \in \overline{\mathscr{B}}(L)$.

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.
Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.
Example: $L=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda-1\end{array}\right], \quad \widetilde{L}=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda\end{array}\right]$. Then

- $\tilde{L} \notin \mathscr{B}(L)$,
- $\widetilde{L} \notin \widetilde{\mathcal{O}}(L)$ (the number of different eigenvalues must be the same),
- $\tilde{L} \in \overline{\mathscr{B}}(L)$. Proof: $\widetilde{L}_{\varepsilon}:=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda+\varepsilon\end{array}\right] \in \mathscr{B}(L)$

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.
Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.
Example: $L=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda-1\end{array}\right], \quad \widetilde{L}=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda\end{array}\right]$. Then

- $\tilde{L} \notin \mathscr{B}(L)$,
- $\widetilde{L} \notin \widetilde{\mathcal{O}}(L)$ (the number of different eigenvalues must be the same),
- $\tilde{L} \in \overline{\mathscr{B}}(L)$. Proof: $\widetilde{L}_{\varepsilon}:=\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & \lambda+\varepsilon\end{array}\right] \in \mathscr{B}(L)$, and $\widetilde{L}_{\varepsilon} \rightarrow \widetilde{L}$.

Bundle closures: inclusion relation

Problem: Characterize the inclusion $L_{1} \in \overline{\mathscr{B}}\left(L_{2}\right)$.
Q: Same domination rules as for the orbits?
A: NO. Different eigenvalues may coalesce.
Example: $L=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & \lambda-1\end{array}\right], \quad \tilde{L}=\left[\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right]$. Then

- $\tilde{L} \notin \mathscr{B}(L)$,
- $\widetilde{L} \notin \widetilde{\mathcal{O}}(L)$ (the number of different eigenvalues must be the same),
- $\tilde{L} \in \overline{\mathscr{B}}(L)$. Proof: $L_{\varepsilon}:=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ \hline 0 & 0 & \lambda+\varepsilon\end{array}\right] \in \mathscr{B}(L)$, and $L_{\varepsilon} \rightarrow \widetilde{L}$.

Coalescence of eigenvalues

啹 Coalescence of evals: Take the union of their Weyr characteristics. (i.e.: add up the sizes of the Jordan blocks).

Coalescence of eigenvalues

啹 Coalescence of evals: Take the union of their Weyr characteristics. (i.e.: add up the sizes of the Jordan blocks).

Example:

$\mathrm{KCF}(L)=J_{3}(1) \oplus J_{2}(1) \oplus J_{2}(0) \oplus J_{1}(0) \oplus J_{4}(2)$

Then, the evals $1,0,2$ coalesce to $\mu \in \mathbb{C}$ in \widetilde{L} if

Coalescence of eigenvalues

맚ㅇ Coalescence of evals: Take the union of their Weyr characteristics. (i.e.: add up the sizes of the Jordan blocks).

Example:

$\mathrm{KCF}(L)=J_{3}(1) \oplus J_{2}(1) \oplus J_{2}(0) \oplus J_{1}(0) \oplus J_{4}(2)$

Then, the evals $1,0,2$ coalesce to $\mu \in \mathbb{C}$ in \widetilde{L} if

$$
\operatorname{KCF}(\widetilde{L})=J_{9}(\mu) \oplus J_{3}(\mu)
$$

Coalescence of eigenvalues

맚ㅇ Coalescence of evals: Take the union of their Weyr characteristics. (i.e.: add up the sizes of the Jordan blocks).

Example:

$\operatorname{KCF}(L)=J_{3}(1) \oplus J_{2}(1) \oplus J_{2}(0) \oplus J_{1}(0) \oplus J_{4}(2)$

Then, the evals $1,0,2$ coalesce to $\mu \in \mathbb{C}$ in \widetilde{L} if

$$
\operatorname{KCF}(\widetilde{L})=J_{9}(\mu) \oplus J_{3}(\mu)
$$

Coalescence of eigenvalues

맚ㅇ Coalescence of evals: Take the union of their Weyr characteristics. (i.e.: add up the sizes of the Jordan blocks).

Example:

$\mathrm{KCF}(L)=J_{3}(1) \oplus J_{2}(1) \oplus J_{2}(0) \oplus J_{1}(0) \oplus J_{4}(2)$

Then, the evals $1,0,2$ coalesce to $\mu \in \mathbb{C}$ in \widetilde{L} if

$$
\operatorname{KCF}(\widetilde{L})=J_{9}(\mu) \oplus J_{3}(\mu)
$$

Rules for the inclusion of bundle closures

Theorem (domination rules for bundle closures)

$\overline{\mathscr{B}}(\widetilde{L}) \subseteq \overline{\mathscr{B}}(L)$ if and only if $\operatorname{KCF}(\widetilde{L})$ is obtained from $\operatorname{KCF}(L)$ after coalescing eigenvalues and applying the dominance rules for closure orbit inclusion.

Rules for the inclusion of bundle closures

Theorem (domination rules for bundle closures)

$\bar{B}(\widetilde{L}) \subseteq \bar{B}(L)$ if and only if $\operatorname{KCF}(\widetilde{L})$ is obtained from $\operatorname{KCF}(L)$ after coalescing eigenvalues and applying the dominance rules for closure orbit inclusion.

Same result, for bundles of matrices under similarity, stated (not proved) in
A. Edelman, E. Elmroth, B. Kågström.

SIAM J. Matrix Anal. Appl., 20-3 (1999) 667-699.

Rules for the inclusion of bundle closures

Theorem (domination rules for bundle closures)

$\bar{B}(\widetilde{L}) \subseteq \bar{B}(L)$ if and only if $\operatorname{KCF}(\widetilde{L})$ is obtained from $\operatorname{KCF}(L)$ after coalescing eigenvalues and applying the dominance rules for closure orbit inclusion.

Same result, for bundles of matrices under similarity, stated (not proved) in

- A. Edelman, E. Elmroth, B. Kågström.

SIAM J. Matrix Anal. Appl., 20-3 (1999) 667-699.
$1 / 3$ However, no formal definition of coalescence is provided in that reference.

Stratigraph again

Let's compare bundles and orbits:

Orbits (left) and bundles (right) of 3×2 pencils

Stratigraph again

Let's compare bundles and orbits:

Orbits (left) and bundles (right) of 3×2 pencils

Some aside results

- $\widetilde{L} \in \overline{\mathscr{B}}(L) \Rightarrow \mathscr{B}(\widetilde{L}) \subseteq \overline{\mathscr{B}}(L)$.
- Bundle closures are "stratified manifolds" (namely, the union of the bundle itself with other bundles of smaller dimension).
- Bundles are open in their closure.

Some aside results

- $\widetilde{L} \in \overline{\mathscr{B}}(L) \Rightarrow \mathscr{B}(\widetilde{L}) \subseteq \overline{\mathscr{B}}(L)$.
- Bundle closures are "stratified manifolds" (namely, the union of the bundle itself with other bundles of smaller dimension).
- Bundles are open in their closure.

Some aside results

- $\widetilde{L} \in \overline{\mathscr{B}}(L) \Rightarrow \mathscr{B}(\widetilde{L}) \subseteq \overline{\mathscr{B}}(L)$.
- Bundle closures are "stratified manifolds" (namely, the union of the bundle itself with other bundles of smaller dimension).
- Bundles are open in their closure.

Some aside results

- $\widetilde{L} \in \overline{\mathscr{B}}(L) \Rightarrow \mathscr{B}(\widetilde{L}) \subseteq \overline{\mathscr{B}}(L)$.
- Bundle closures are "stratified manifolds" (namely, the union of the bundle itself with other bundles of smaller dimension).
- Bundles are open in their closure. The same is true for bundles of matrices (under similarity) and matrix polynomials (under strict equivalence).

Outline

(1) Orbits closures of matrix pencils under strict equivalence

2 Bundles come into play

(3) Conclusions and open questions

Our contribution

- We have provided a formal notion of coalescence of eigenvalues.

- We have provided necessary and sufficient conditions for the inclusion of bundle closures.

- We have proved that bundles are open in their closure.

Our contribution

- We have provided a formal notion of coalescence of eigenvalues.
- We have provided necessary and sufficient conditions for the inclusion of bundle closures.
- We have proved that bundles are open in their closure.

Our contribution

- We have provided a formal notion of coalescence of eigenvalues.
- We have provided necessary and sufficient conditions for the inclusion of bundle closures.
- We have proved that bundles are open in their closure.

Open questions

- For matrix polynomials, P_{1}, P_{2} : provide necessary and sufficient conditions for $\overline{\mathscr{B}}\left(P_{1}\right) \subseteq \overline{\mathscr{B}}\left(P_{2}\right)$.
- For structured pencils (alternating, symmetric, Hermitian, palindromic...), L_{1}, L_{2} : provide necessary and sufficient conditions for $\overline{\mathscr{B}}\left(L_{1}\right) \subseteq \overline{\mathscr{B}}\left(L_{2}\right)$.
- For matrix polynomials and structured pencils: Are bundles open in their closure?

Open questions

- For matrix polynomials, P_{1}, P_{2} : provide necessary and sufficient conditions for $\overline{\mathscr{B}}\left(P_{1}\right) \subseteq \overline{\mathscr{B}}\left(P_{2}\right)$.
- For structured pencils (alternating, symmetric, Hermitian, palindromic...), L_{1}, L_{2} : provide necessary and sufficient conditions for $\overline{\mathscr{B}}\left(L_{1}\right) \subseteq \overline{\mathscr{B}}\left(L_{2}\right)$.
- For matrix polynomials and structured pencils: Are bundles open in their closure?

Open questions

- For matrix polynomials, P_{1}, P_{2} : provide necessary and sufficient conditions for $\overline{\mathscr{B}}\left(P_{1}\right) \subseteq \overline{\mathscr{B}}\left(P_{2}\right)$.
- For structured pencils (alternating, symmetric, Hermitian, palindromic...), L_{1}, L_{2} : provide necessary and sufficient conditions for $\overline{\mathscr{B}}\left(L_{1}\right) \subseteq \overline{\mathscr{B}}\left(L_{2}\right)$.
- For matrix polynomials and structured pencils: Are bundles open in their closure?

THANK YOU!

