Spectral equivalence of matrix polynomials, the Index Sum Theorem and consequences

Fernando de Terán

Departamento de Matemáticas
Universidad Carlos III de Madrid
(Spain)

CEDYA 2013, Castellón de la Plana
Sept 2013
F. M. Dopico (UC3M-ICMAT)
D. S. Mackey (WMich)

Outline

(1) Spectral structure and equivalence relations on matrix polynomials. - Unimodular equivalence. Linearizations.

- New equivalence relations. ℓ-ifications.
(2) Companion forms
(3) The Index Sum Theorem

4 Consequences of the Index Sum Theorem

Outline

(1) Spectral structure and equivalence relations on matrix polynomials.

- Unimodular equivalence. Linearizations.
- New equivalence relations. ℓ-ifications.

2 Companion forms
(3) The Index Sum Theorem

44 Consequences of the Index Sum Theorem

Basic notions

Matrix polynomial:

$$
P(\lambda)=\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+\lambda A_{1}+A_{0}, \quad A_{i} \in \mathbb{F}^{m \times n}
$$

\mathbb{F} and arbitrary field
$k=1$: matrix "pencil"
k is the grade of P (non unique!!)
$A_{k} \neq 0: P$ has degree k
P is regular if $m=n$ and $\operatorname{det} P \not \equiv 0$, and it is singular otherwise
P is unimodular if $\operatorname{det} P(\lambda)=c \neq 0 \quad(m=n)$
$P(\lambda) \in \mathbb{F}[\lambda]^{m \times n} \subseteq \mathbb{F}(\lambda)^{m \times n}$, where
$\mathbb{F}(\lambda)=\left\{\frac{p(\lambda)}{q(\lambda)}: p, q \in \mathbb{F}[\lambda]\right\}$, field of rational functions

Basic notions

Matrix polynomial:

$$
P(\lambda)=\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+\lambda A_{1}+A_{0}, \quad A_{i} \in \mathbb{F}^{m \times n}
$$

\mathbb{F} and arbitrary field
$k=1$: matrix "pencil"
k is the grade of P (non unique!!)
$A_{k} \neq 0: P$ has degree k
P is regular if $m=n$ and $\operatorname{det} P \not \equiv 0$, and it is singular otherwise
P is unimodular if $\operatorname{det} P(\lambda)=c \neq 0 \quad(m=n)$
$P(\lambda) \in \mathbb{F}[\lambda]^{m \times n} \subseteq \mathbb{F}(\lambda)^{m \times n}$, where
$\mathbb{F}(\lambda)=\left\{\frac{p(\lambda)}{q(\lambda)}: p, q \in \mathbb{F}[\lambda]\right\}$, field of rational functions

Regular structure:

- Finite elementary divisors (e.d) of P : $\left(\lambda-\lambda_{i}\right)^{\alpha_{i, 1}}, \ldots,\left(\lambda-\lambda_{i}\right)^{\alpha_{i, g_{i}}}, \quad \alpha_{i, j}>0, \quad i=1, \ldots, s$
$\lambda_{1}, \ldots, \lambda_{s} \in \overline{\mathbb{F}} \rightsquigarrow$ eigenvalues of $P \quad$ ($\overline{\mathbb{F}}$: algebraic closure of \mathbb{F}) $\alpha_{i, j}, j=1: g_{i} \rightsquigarrow$ partial multiplicities (p.m.) at λ_{i}
- Infinite elementary divisors of P : Elementary divisors at 0 of $\operatorname{rev} P:=\lambda^{k} P(1 / \lambda) \quad$ Depend on the grade!

Singular structure

- Right minimal basis of P : Polynomial basis, $\left\{x_{1}(\lambda), \ldots, x_{p}(\lambda)\right\}$, of

$$
N_{r}(P)=\left\{x(\lambda) \in \mathbb{F}(\lambda)^{n}: P(\lambda) x(\lambda)=0\right\}
$$

whose sum of degrees is minimal among all polynomial bases.

- Right minimal indices (m. i..) of P : Sequence of degrees of a minimal basis. Invariant of P ! (Forney, 1975)
- Left minimal basis / indices: Same for

Spectral structure (scalar)

Regular structure:

- Finite elementary divisors (e.d) of P :
$\left(\lambda-\lambda_{i}\right)^{\alpha_{i, 1}}, \ldots,\left(\lambda-\lambda_{i}\right)^{\alpha_{i, g_{i}}}, \quad \alpha_{i, j}>0, \quad i=1, \ldots, s$
$\lambda_{1}, \ldots, \lambda_{s} \in \overline{\mathbb{F}} \rightsquigarrow$ eigenvalues of $P \quad$ ($\overline{\mathbb{F}}$: algebraic closure of \mathbb{F})
$\alpha_{i, j}, j=1: g_{i} \rightsquigarrow$ partial multiplicities (p.m.) at λ_{i}
- Infinite elementary divisors of P : Elementary divisors at 0 of $\operatorname{rev} P:=\lambda^{k} P(1 / \lambda) \quad$ Depend on the grade!

Singular structure:

- Right minimal basis of P : Polynomial basis, $\left\{x_{1}(\lambda), \ldots, x_{p}(\lambda)\right\}$, of

$$
\mathscr{N}_{r}(P)=\left\{x(\lambda) \in \mathbb{F}(\lambda)^{n}: P(\lambda) x(\lambda) \equiv 0\right\}
$$

whose sum of degrees is minimal among all polynomial bases.

- Right minimal indices (m. i.) of P : Sequence of degrees of a minimal basis. Invariant of P ! (Forney, 1975)
- Left minimal basis / indices: Same for

$$
\left.\mathscr{N}_{l}(P)=\left\{y(\lambda) \in \mathbb{F}(\lambda)^{m}: P(\lambda)^{T} y(\lambda) \equiv 0\right)\right\} .
$$

Linearizations

Associated Differential-Algebraic Equation:

$$
P\left(\frac{d}{d t}\right) x(t)=\left(A_{k}\left(\frac{d}{d t}\right)^{k}+A_{k-1}\left(\frac{d}{d t}\right)^{k-1}+\cdots+A_{1} \frac{d}{d t}+A_{0}\right) x(t)=f(t), \quad A_{i} \in \mathbb{F}^{m \times n}
$$

Spectral structure: Relevant to know about the solvability and the behavior of the solutions (if any).

Question: Computation of the spectral structure?
Standard way: Using Linearizations

Definition (classical linearization)

$$
U(\lambda) L(\lambda) V(\lambda)=\operatorname{diag}\left(P(\lambda), I_{(k-1) n}\right),
$$

for some $U(\lambda), V(\lambda)$ unimodular.
L is a strong linearization if, in addition, rev L is a linearization of rev P.

Linearizations

Associated Differential-Algebraic Equation:

$$
P\left(\frac{d}{d t}\right) x(t)=\left(A_{k}\left(\frac{d}{d t}\right)^{k}+A_{k-1}\left(\frac{d}{d t}\right)^{k-1}+\cdots+A_{1} \frac{d}{d t}+A_{0}\right) x(t)=f(t), \quad A_{i} \in \mathbb{F}^{m \times n}
$$

Spectral structure: Relevant to know about the solvability and the behavior of the solutions (if any).
Question: Computation of the spectral structure?
Standard way: Using Linearizations
Definition (classical linearization)
$P(\lambda) \in \mathbb{F}[\lambda]^{n \times n}$ of dearee k. A pencil $L(\lambda) \in \mathbb{F}[\lambda]^{n k \times n k}$ is a linearization of P if

$$
U(\lambda) L(\lambda) V(\lambda)=\operatorname{diag}\left(P(\lambda), I_{(k-1) n}\right),
$$

for some $U(\lambda), V(\lambda)$ unimodular.
L is a strong linearization if, in addition, rev L is a linearization of rev P.

Linearizations

Associated Differential-Algebraic Equation:

$$
P\left(\frac{d}{d t}\right) x(t)=\left(A_{k}\left(\frac{d}{d t}\right)^{k}+A_{k-1}\left(\frac{d}{d t}\right)^{k-1}+\cdots+A_{1} \frac{d}{d t}+A_{0}\right) x(t)=f(t), \quad A_{i} \in \mathbb{F}^{m \times n}
$$

Spectral structure: Relevant to know about the solvability and the behavior of the solutions (if any).
Question: Computation of the spectral structure?
Standard way: Using Linearizations

Definition (classical linearization)

$P(\lambda) \in \mathbb{F}[\lambda]^{n \times n}$ of degree k. A pencil $L(\lambda) \in \mathbb{F}[\lambda]^{n k \times n k}$ is a linearization of P if

$$
U(\lambda) L(\lambda) V(\lambda)=\operatorname{diag}\left(P(\lambda), I_{(k-1) n}\right),
$$

for some $U(\lambda), V(\lambda)$ unimodular.
L is a strong linearization if, in addition, $\operatorname{rev} L$ is a linearization of $\operatorname{rev} P$.

Properties of linearizations

Advantages:

- Preserve part of the spectral structure: finite and infinite (strong) e. d.
- Numerical methods available to compute the eigenvalues of pencils (GEP).

Drawbacks:

- Classical linearizations (Frobenius companion forms) do not preserve any of the structure that the polynomial may have (symmetric, palindromic, hermitian, etc.), which arise frequently in applications.
- The size of the problem increases too much! $(n \times n \longrightarrow n k \times n k)$.
- NOT ALL the spectral structure is preserved (minimal indices??).
\qquad
- Look for new (structured) linearizations.

Properties of linearizations

Advantages:

- Preserve part of the spectral structure: finite and infinite (strong) e. d.
- Numerical methods available to compute the eigenvalues of pencils (GEP).

Drawbacks:

- Classical linearizations (Frobenius companion forms) do not preserve any of the structure that the polynomial may have (symmetric, palindromic, hermitian, etc.), which arise frequently in applications.
- The size of the problem increases too much! ($n \times n \longrightarrow n k \times n k$).
- NOT ALL the spectral structure is preserved (minimal indices??).
\square
- Look for new (structured) linearizations.
- Look for another constructions (with smaller size)

Properties of linearizations

Advantages:

- Preserve part of the spectral structure: finite and infinite (strong) e. d.
- Numerical methods available to compute the eigenvalues of pencils (GEP).

Drawbacks:

- Classical linearizations (Frobenius companion forms) do not preserve any of the structure that the polynomial may have (symmetric, palindromic, hermitian, etc.), which arise frequently in applications.
- The size of the problem increases too much! ($n \times n \longrightarrow n k \times n k$).
- NOT ALL the spectral structure is preserved (minimal indices??).

Then...

- Look for new (structured) linearizations.
- Look for another constructions (with smaller size).

Unimodular equivalence (classical)

Definition

P, Q with the same size $m \times n$. Then $P \sim_{u e} Q$ (unimodularly equivalent) if:

$$
Q(\lambda)=U(\lambda) P(\lambda) V(\lambda)
$$

U, V unimodular.

Hence

L linearization of $P \Leftrightarrow L \sim_{u e} \operatorname{diag}\left(P, I_{(k-1) n}\right)$.
L strong linearization if, in addition, rev $L \sim_{u e} \operatorname{diag}\left(\operatorname{rev} P, I_{(k-1) n)}\right)$
Theorem
$P \sim_{\text {ue }} Q \Leftrightarrow F, Q$ have the same finite e. d. and the same rank. (Smith form)
$\sim_{u e}$: Preserves finite e.d. + rank + size
Different size? $\rightsquigarrow ~ L i n e a r i z a t i o n s!!~$

Unimodular equivalence (classical)

Definition

P, Q with the same size $m \times n$. Then $P \sim_{u e} Q$ (unimodularly equivalent) if:

$$
Q(\lambda)=U(\lambda) P(\lambda) V(\lambda)
$$

U, V unimodular.

Hence:
L linearization of $P \Leftrightarrow L \sim_{u e} \operatorname{diag}\left(P, I_{(k-1) n}\right)$.
L strong linearization if, in addition, $\operatorname{rev} L \sim_{u e} \operatorname{diag}\left(\operatorname{rev} P, I_{(k-1) n}\right)$.

Theorem

$P \sim_{u e} Q \Leftrightarrow F, Q$ have the same finite e. d. and the same rank. (Smith form)
$\sim_{u e}$: Preserves finite e.d. + rank + size
Different size? \rightsquigarrow Linearizations!!

Unimodular equivalence (classical)

Definition

P, Q with the same size $m \times n$. Then $P \sim_{u e} Q$ (unimodularly equivalent) if:

$$
Q(\lambda)=U(\lambda) P(\lambda) V(\lambda)
$$

U, V unimodular.

Hence:
L linearization of $P \Leftrightarrow L \sim_{u e} \operatorname{diag}\left(P, I_{(k-1) n}\right)$.
L strong linearization if, in addition, $\operatorname{rev} L \sim_{u e} \operatorname{diag}\left(\operatorname{rev} P, I_{(k-1) n}\right)$.

Theorem

$P \sim_{u e} Q \Leftrightarrow P, Q$ have the same finite e. d. and the same rank. (Smith form)

[^0]
Unimodular equivalence (classical)

Definition

P, Q with the same size $m \times n$. Then $P \sim_{u e} Q$ (unimodularly equivalent) if:

$$
Q(\lambda)=U(\lambda) P(\lambda) V(\lambda)
$$

U, V unimodular.

Hence:
L linearization of $P \Leftrightarrow L \sim_{u e} \operatorname{diag}\left(P, I_{(k-1) n}\right)$.
L strong linearization if, in addition, $\operatorname{rev} L \sim_{u e} \operatorname{diag}\left(\operatorname{rev} P, I_{(k-1) n}\right)$.

Theorem

$P \sim_{u e} Q \Leftrightarrow P, Q$ have the same finite e. d. and the same rank. (Smith form)
$\sim_{u e}$: Preserves finite e.d. + rank + size
Different size? \rightsquigarrow Linearizations!!

Unimodular equivalence (classical)

Definition

P, Q with the same size $m \times n$. Then $P \sim_{u e} Q$ (unimodularly equivalent) if:

$$
Q(\lambda)=U(\lambda) P(\lambda) V(\lambda)
$$

U, V unimodular.

Hence:
L linearization of $P \Leftrightarrow L \sim_{u e} \operatorname{diag}\left(P, I_{(k-1) n}\right)$.
L strong linearization if, in addition, $\operatorname{rev} L \sim_{u e} \operatorname{diag}\left(\operatorname{rev} P, I_{(k-1) n}\right)$.

Theorem

$P \sim_{u e} Q \Leftrightarrow P, Q$ have the same finite e. d. and the same rank. (Smith form)
$\sim_{u e}$: Preserves finite e.d. + rank + size
Different size? Linearizations!

Unimodular equivalence (classical)

Definition

P, Q with the same size $m \times n$. Then $P \sim_{u e} Q$ (unimodularly equivalent) if:

$$
Q(\lambda)=U(\lambda) P(\lambda) V(\lambda)
$$

U, V unimodular.

Hence:
L linearization of $P \Leftrightarrow L \sim_{u e} \operatorname{diag}\left(P, I_{(k-1) n}\right)$.
L strong linearization if, in addition, $\operatorname{rev} L \sim_{u e} \operatorname{diag}\left(\operatorname{rev} P, I_{(k-1) n}\right)$.

Theorem

$P \sim_{u e} Q \Leftrightarrow P, Q$ have the same finite e. d. and the same rank. (Smith form)
$\sim_{u e}$: Preserves finite e.d. + rank + size
Different size? \rightsquigarrow Linearizations!!

Extended unimodular and spectral equivalences

$P \in \mathbb{F}[\lambda]^{m \times n}, Q \in \mathbb{F}[\lambda]^{p \times q}$ are:

- $P \smile Q \Leftrightarrow \operatorname{diag}\left(P, I_{r}\right) \sim_{u e} \operatorname{diag}\left(Q, I_{s}\right)$, for some $r, s \geq 0$

extended unimodularly equivalent

spectrally equivalent

- Allow for different size and degree of P and $Q!.$. but $m+q=n+p$ If $\operatorname{deg} Q=\ell$, then Q is an ℓ-ification (resp. strong ℓ-ification) of P if $P \smile Q$ (resp. $P \asymp Q$).

Particular cases:

Extended unimodular and spectral equivalences

$P \in \mathbb{F}[\lambda]^{m \times n}, Q \in \mathbb{F}[\lambda]^{p \times q}$ are:

- $P \smile Q \Leftrightarrow \operatorname{diag}\left(P, I_{r}\right) \sim_{u e} \operatorname{diag}\left(Q, I_{s}\right)$, for some $r, s \geq 0$
extended unimodularly equivalent
- $P \asymp Q \Leftrightarrow P \smile Q$ and $\operatorname{rev} P \smile \operatorname{rev} Q$
spectrally equivalent
- Allow for different size and degree of P and $Q!\ldots$ but $m+q=n+p$

If $\operatorname{deg} Q=\ell$, then Q is an $(-i f i c a t i o n(r e s p$. strong $(-i f i c a t i o n)$ of P if $P \cup Q$ (resp. $P \asymp Q$).

Particular cases:

Extended unimodular and spectral equivalences

$P \in \mathbb{F}[\lambda]^{m \times n}, Q \in \mathbb{F}[\lambda]^{p \times q}$ are:

- $P \smile Q \Leftrightarrow \operatorname{diag}\left(P, I_{r}\right) \sim_{u e} \operatorname{diag}\left(Q, I_{s}\right)$, for some $r, s \geq 0$
- $P \asymp Q \Leftrightarrow P \smile Q$ and $\operatorname{rev} P \smile \operatorname{rev} Q$
extended unimodularly equivalent
spectrally equivalent
- Allow for different size and degree of P and Q !

(resp. $P \asymp Q$).
Particular cases:
- $\ell=1$ (pencil) (strong) linearization of P

Extended unimodular and spectral equivalences

$P \in \mathbb{F}[\lambda]^{m \times n}, Q \in \mathbb{F}[\lambda]^{p \times q}$ are:

- $P \smile Q \Leftrightarrow \operatorname{diag}\left(P, I_{r}\right) \sim_{u e} \operatorname{diag}\left(Q, I_{s}\right)$, for some $r, s \geq 0$
extended unimodularly equivalent
- $P \asymp Q \Leftrightarrow P \smile Q$ and $\operatorname{rev} P \smile \operatorname{rev} Q$ spectrally equivalent
- Allow for different size and degree of P and $Q!\ldots$ but $m+q=n+p$

If $\operatorname{deg} Q=\ell$, then Q is an ℓ-ification (resp. strong ℓ-ification) of P if $P \smile Q$ (resp. $P \asymp Q$).

Particular cases:

- $\ell=1$ (pencil) (strong) linearization of P
- $\ell=2$ (quadratic)
(strong) quadratification of P

Extended unimodular and spectral equivalences

$P \in \mathbb{F}[\lambda]^{m \times n}, Q \in \mathbb{F}[\lambda]^{p \times q}$ are:

- $P \smile Q \Leftrightarrow \operatorname{diag}\left(P, I_{r}\right) \sim_{u e} \operatorname{diag}\left(Q, I_{s}\right)$, for some $r, s \geq 0$
extended unimodularly equivalent
- $P \asymp Q \Leftrightarrow P \smile Q$ and $\operatorname{rev} P \smile \operatorname{rev} Q$ spectrally equivalent
- Allow for different size and degree of P and $Q!\ldots$ but $m+q=n+p$

If $\operatorname{deg} Q=\ell$, then Q is an ℓ-ification (resp. strong ℓ-ification) of P if $P \smile Q$ (resp. $P \asymp Q$).

Particular cases:

- $\ell=1$ (pencil)
- $\ell=2$ (quadratic)
(strong) linearization of P

Extended unimodular and spectral equivalences

$P \in \mathbb{F}[\lambda]^{m \times n}, Q \in \mathbb{F}[\lambda]^{p \times q}$ are:

- $P \smile Q \Leftrightarrow \operatorname{diag}\left(P, I_{r}\right) \sim_{u e} \operatorname{diag}\left(Q, I_{s}\right)$, for some $r, s \geq 0$
extended unimodularly equivalent
- $P \asymp Q \Leftrightarrow P \smile Q$ and $\operatorname{rev} P \smile \operatorname{rev} Q$ spectrally equivalent
- Allow for different size and degree of P and $Q!\ldots$ but $m+q=n+p$

If $\operatorname{deg} Q=\ell$, then Q is an ℓ-ification (resp. strong ℓ-ification) of P if $P \smile Q$ (resp. $P \asymp Q$).

Particular cases:

- $\ell=1$ (pencil)
- $\ell=2$ (quadratic)
(strong) linearization of P (strong) quadratification of P

Spectral characterization of $P \smile Q$ and $P \asymp Q$

Theorem

$P \smile Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite e. d. } \\ \text { (b) } \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{N}_{1}(P)=\operatorname{dim} \mathscr{N}_{1}(Q)\end{array}\right.$

Theorem

\square

Note: $(b) \nRightarrow \operatorname{rank}(P)=\operatorname{rank}(Q)$, since P, Q may have different size!
preserves: regular spectral structure + little bit of singular structure
($\operatorname{dim} \mathscr{N}_{r}=\#$ right m. i. $\quad \operatorname{dim} \mathscr{N}_{1}=\#$ left m. i.)
Minimal indices are not preserved!!

Spectral characterization of $P \smile Q$ and $P \asymp Q$

Theorem

$P \smile Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite e. d. } \\ (\mathrm{b}) \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{N}_{1}(P)=\operatorname{dim} \mathscr{N}_{1}(Q)\end{array}\right.$

Theorem

$P \asymp Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite and infinite e. d. } \\ (\mathrm{b}) \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{A}_{1}(P)=\operatorname{dim} \mathscr{N}_{1}(Q)\end{array}\right.$

Note: $(\mathrm{b}) \nRightarrow \operatorname{rank}(P)=\operatorname{rank}(Q)$, since P, Q may have different size!
preserves: regular spectral structure + little bit of singular structure
($\operatorname{dim} \mathbb{N}_{r}=\#$ right m. i. $\quad \operatorname{dim} \mathbb{N}_{T}=\#$ Inft m.i.)
Minimal indices are not preserved!!

Spectral characterization of $P \smile Q$ and $P \asymp Q$

Theorem

$P \smile Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite e. d. } \\ \text { (b) } \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{N}_{1}(P)=\operatorname{dim} \mathscr{N}_{1}(Q)\end{array}\right.$

Theorem

$P \asymp Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite and infinite e. d. } \\ \text { (b) } \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{\Lambda}_{1}(P)=\operatorname{dim} \mathscr{N}_{1}(Q)\end{array}\right.$

Note: $(\mathrm{b}) \nRightarrow \operatorname{rank}(P)=\operatorname{rank}(Q)$, since P, Q may have different size!
\square
preserves: regular spectral structure + little bit of singular structure
$\left(\operatorname{dim} . N_{r}=\#\right.$ right $\mathrm{m} . \mathrm{i} . \quad \operatorname{dim} . N_{1}=\#$ left $\left.\mathrm{m} . \mathrm{i}.\right)$
Minimal indices are not preserved!!

Spectral characterization of $P \smile Q$ and $P \asymp Q$

Theorem

$P \smile Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite e. d. } \\ \text { (b) } \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{N}_{1}(P)=\operatorname{dim} \mathscr{N}_{1}(Q)\end{array}\right.$

Theorem

$P \asymp Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite and infinite e. d. } \\ (\mathrm{b}) \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{N}_{l}(P)=\operatorname{dim} \mathscr{N}_{l}(Q)\end{array}\right.$

Note: $(\mathrm{b}) \nRightarrow \operatorname{rank}(P)=\operatorname{rank}(Q)$, since P, Q may have different size!
\asymp preserves: regular spectral structure + little bit of singular structure $\left(\operatorname{dim} \mathscr{N}_{r}=\#\right.$ right m. i. $\quad \operatorname{dim} \mathscr{N}_{l}=\#$ left m. i. $)$ Minimal indices are not preserved!!

Spectral characterization of $P \smile Q$ and $P \asymp Q$

Theorem

$P \smile Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite e. d. } \\ (\mathrm{b}) \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{N}_{1}(P)=\operatorname{dim} \mathscr{N}_{1}(Q)\end{array}\right.$

Theorem

$P \asymp Q \Leftrightarrow\left\{\begin{array}{l}\text { (a) } P, Q \text { have the same finite and infinite e. d. } \\ (\mathrm{b}) \operatorname{dim} \mathscr{N}_{r}(P)=\operatorname{dim} \mathscr{N}_{r}(Q) \text { and } \operatorname{dim} \mathscr{N}_{1}(P)=\operatorname{dim} \mathscr{N}_{1}(Q)\end{array}\right.$

Note: $(\mathrm{b}) \nRightarrow \operatorname{rank}(P)=\operatorname{rank}(Q)$, since P, Q may have different size!
\asymp preserves: regular spectral structure + little bit of singular structure $\left(\operatorname{dim} \mathscr{A}_{r}=\#\right.$ right m. i. $\quad \operatorname{dim} \mathscr{N}_{l}=\#$ left m. i.)

Minimal indices are not preserved!!

Outline

(1) Spectral structure and equivalence relations on matrix polynomials.

- Unimodular equivalence. Linearizations.
- New equivalence relations. ℓ-ifications.

(2) Companion forms

(3) The Index Sum Theorem

4. Consequences of the Index Sum Theorem

Definition and basic examples

$\mathscr{P}(k, m \times n)$: Class of all matrix polynomials of fixed grade k and size $m \times n$.
$P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i} \in \mathscr{P}(k, m \times n)$
Companion form: Uniform template for building a pencil $\mathscr{C}_{P}(\lambda)$ directly from A_{i}, without any matrix operations, such that $\mathscr{C}_{P}(\lambda)$ is a strong linearization for every $P \in \mathscr{P}(k, m \times n)$, regular or singular, over any field.

Example: Fiedler pencils:

Definition and basic examples

$\mathscr{P}(k, m \times n)$: Class of all matrix polynomials of fixed grade k and size $m \times n$.
$P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i} \in \mathscr{P}(k, m \times n)$
Companion form: Uniform template for building a pencil $\mathscr{C}_{P}(\lambda)$ directly from A_{i}, without any matrix operations, such that $\mathscr{C}_{P}(\lambda)$ is a strong linearization for every $P \in \mathscr{P}(k, m \times n)$, regular or singular, over any field.

Example: Fiedler pencils:
First
Frobenius companion form:

$$
C_{1}(\lambda)=\lambda\left[\begin{array}{llll}
A_{k} & & & \\
& I_{n} & & \\
& & \ddots & \\
& & & I_{n}
\end{array}\right]+\left[\begin{array}{cccc}
A_{k-1} & A_{k-2} & \cdots & A_{0} \\
-I_{n} & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -I_{n} & 0
\end{array}\right]
$$

Another Fiedler:

Definition and basic examples

$\mathscr{P}(k, m \times n)$: Class of all matrix polynomials of fixed grade k and size $m \times n$.
$P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i} \in \mathscr{P}(k, m \times n)$
Companion form: Uniform template for building a pencil $\mathscr{C}_{P}(\lambda)$ directly from A_{i}, without any matrix operations, such that $\mathscr{C}_{P}(\lambda)$ is a strong linearization for every $P \in \mathscr{P}(k, m \times n)$, regular or singular, over any field.

Example: Fiedler pencils:
First
Frobenius companion form:

$$
C_{1}(\lambda)=\lambda\left[\begin{array}{lllll}
A_{k} & & & \\
& I_{n} & & \\
& & \ddots & \\
& & & I_{n}
\end{array}\right]+\left[\begin{array}{cccc}
A_{k-1} & A_{k-2} & \cdots & A_{0} \\
-I_{n} & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -I_{n} & 0
\end{array}\right]
$$

Another Fiedler: $F(\lambda)=\lambda\left[\begin{array}{lllll}A_{k} & & & \\ & I_{n} & & \\ & & \ddots & \\ & & & I_{m}\end{array}\right]+\left[\begin{array}{cccc}A_{k-1} & A_{k-2} & \cdots & -I_{m} \\ -I_{n} & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & A_{0} & 0\end{array}\right]$

Structured companion forms

Structured companion form: Companion form that shares some particular structure of P (symmetric, palindromic, alternating, etc.) \rightsquigarrow symmetric / palindromic / alternating companion form

Structured companion forms

Structured companion form: Companion form that shares some particular structure of P (symmetric, palindromic, alternating, etc.) \rightsquigarrow symmetric / palindromic / alternating companion form

Fiedler pencils are not structured, but they are the source of structured companion forms.

Known structured companion forms for:

- Symmetric (odd degree; even degree: nonsingular leading coeff.)
- Skew-symmetric (odd degree)
(odd degree)

Structured companion forms

Structured companion form: Companion form that shares some particular structure of P (symmetric, palindromic, alternating, etc.) \rightsquigarrow symmetric / palindromic / alternating companion form

Fiedler pencils are not structured, but they are the source of structured companion forms.

Known structured companion forms for:

- Symmetric (odd degree; even degree: nonsingular leading coeff.) $\left(A_{i}=A_{i}^{T}, i=0: k\right)$
- Skew-symmetric (odd degree) $\left(A_{i}=-A_{i}^{T}, i=0: k\right)$
- T-palindromic (odd degree) ($P^{T}=\operatorname{rev} P$).

What happens for arbitrary degree/grade???

Structured companion forms

Structured companion form: Companion form that shares some particular structure of P (symmetric, palindromic, alternating, etc.) \rightsquigarrow symmetric / palindromic / alternating companion form

Fiedler pencils are not structured, but they are the source of structured companion forms.

Known structured companion forms for:

- Symmetric (odd degree; even degree: nonsingular leading coeff.)

$$
\left(A_{i}=A_{i}^{T}, i=0: k\right)
$$

- Skew-symmetric (odd degree) $\left(A_{i}=-A_{i}^{T}, i=0: k\right)$
- T-palindromic (odd degree) ($P^{T}=\operatorname{rev} P$).

What happens for arbitrary degree/grade???

ℓ-ifications

Similar templates for ℓ-ifications ("Companion ℓ-ifications") ???

are ℓ-ifications (for all $\ell \leq k$) of $P=\sum_{i=0}^{k} \lambda^{i} A_{i}$ (even for P rectangular). $P_{\ell}(\lambda)=\lambda^{\ell} A_{k}+\lambda^{\ell-1} A_{k-1}+\cdots+A_{k-\ell}(\ell$ th Horner shift of $P)$.

But... NOT always strong ℓ-ifications !!!!
Are there strong ℓ-ifications for arbitrary $\ell \leq k$???

ℓ-ifications

Similar templates for ℓ-ifications ("Companion ℓ-fifications") ???

$$
C_{1}^{\ell}(\lambda):=\left[\begin{array}{cccc}
P_{\ell}(\lambda) & A_{k-\ell-1} & \cdots & A_{0} \\
-I_{n} & \lambda I_{n} & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -I_{n} & \lambda I_{n}
\end{array}\right]
$$

and

$$
C_{2}^{\ell}(\lambda):=\left[\begin{array}{cccc}
P_{\ell}(\lambda) & -I_{m} & & 0 \\
A_{k-\ell-1} & \lambda I_{m} & \ddots & \vdots \\
\vdots & & \ddots & -I_{m} \\
A_{0} & & & \lambda I_{m}
\end{array}\right]
$$

are ℓ-ifications (for all $\ell \leq k$) of $P=\sum_{i=0}^{k} \lambda^{i} A_{i}$ (even for P rectangular). $P_{\ell}(\lambda)=\lambda^{\ell} A_{k}+\lambda^{\ell-1} A_{k-1}+\cdots+A_{k-\ell}(\ell$ th Horner shift of $P)$.

ℓ-ifications

Similar templates for ℓ-ifications ("Companion ℓ-ifications") ???

$$
C_{1}^{\ell}(\lambda):=\left[\begin{array}{cccc}
P_{\ell}(\lambda) & A_{k-\ell-1} & \cdots & A_{0} \\
-I_{n} & \lambda I_{n} & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -I_{n} & \lambda I_{n}
\end{array}\right]
$$

and

$$
C_{2}^{\ell}(\lambda):=\left[\begin{array}{cccc}
P_{\ell}(\lambda) & -I_{m} & & 0 \\
A_{k-\ell-1} & \lambda I_{m} & \ddots & \vdots \\
\vdots & & \ddots & -I_{m} \\
A_{0} & & & \lambda I_{m}
\end{array}\right]
$$

are ℓ-ifications (for all $\ell \leq k$) of $P=\sum_{i=0}^{k} \lambda^{i} A_{i}$ (even for P rectangular). $P_{\ell}(\lambda)=\lambda^{\ell} A_{k}+\lambda^{\ell-1} A_{k-1}+\cdots+A_{k-\ell}(\ell$ th Horner shift of $P)$.

But... NOT always strong ℓ-ifications !!!!
Are there strong ℓ-ifications for arbitrary $\ell \leq k$???

ℓ-ifications

Similar templates for ℓ-ifications ("Companion ℓ-ifications") ???

$$
C_{1}^{\ell}(\lambda):=\left[\begin{array}{cccc}
P_{\ell}(\lambda) & A_{k-\ell-1} & \cdots & A_{0} \\
-I_{n} & \lambda I_{n} & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -I_{n} & \lambda I_{n}
\end{array}\right]
$$

and

$$
C_{2}^{\ell}(\lambda):=\left[\begin{array}{cccc}
P_{\ell}(\lambda) & -I_{m} & & 0 \\
A_{k-\ell-1} & \lambda I_{m} & \ddots & \vdots \\
\vdots & & \ddots & -I_{m} \\
A_{0} & & & \lambda I_{m}
\end{array}\right]
$$

are ℓ-ifications (for all $\ell \leq k$) of $P=\sum_{i=0}^{k} \lambda^{i} A_{i}$ (even for P rectangular). $P_{\ell}(\lambda)=\lambda^{\ell} A_{k}+\lambda^{\ell-1} A_{k-1}+\cdots+A_{k-\ell}(\ell$ th Horner shift of $P)$.

But... NOT always strong ℓ-ifications !!!!
Are there strong ℓ-ifications for arbitrary $\ell \leq k$???

Outline

(1) Spectral structure and equivalence relations on matrix polynomials.

- Unimodular equivalence. Linearizations.
- New equivalence relations. ℓ-ifications.
(2) Companion forms

(3) The Index Sum Theorem

4. Consequences of the Index Sum Theorem

Size, rank and spectral structure

$\delta_{\text {fin }}(P)=\sum$ (finite partial multiplicities), $\delta_{\infty}(P)=\sum$ (infinite partial multiplicities) $\mu(P):=\sum$ (left+right minimal indices)

Index Sum Theorem [Praagman 1991

$\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)=\operatorname{grade}(P) \cdot \operatorname{rank}(P)$
Proof: Let C_{1} be the first Frobenius companion form of P. Set $k=\operatorname{grade}(P)$. Then

Since $C_{1} \smile \operatorname{diag}\left(P, I_{n(k-1)}\right):$

$$
\operatorname{rank}\left(C_{1}\right)=\operatorname{rank}(P)+n(k-1) .
$$

Equating:

$$
\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)=k \cdot \operatorname{rank}(P) .
$$

Size, rank and spectral structure

$\delta_{\text {fin }}(P)=\sum$ (finite partial multiplicities), $\delta_{\infty}(P)=\sum$ (infinite partial multiplicities)
$\mu(P):=\sum$ (left+right minimal indices)

Index Sum Theorem [Praagman 1991]

$\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)=\operatorname{grade}(P) \cdot \operatorname{rank}(P)$
Proof: Let C_{1} be the first Frobenius companion form of P. Set $k=\operatorname{grade}(P)$ Then

Since $C_{1} \smile \operatorname{diag}\left(P, I_{n(k-1)}\right)$:

$$
\operatorname{rank}\left(C_{1}\right)=\operatorname{rank}(P)+n(k-1)
$$

Equating

$$
\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)=k \cdot \operatorname{rank}(P)
$$

Size, rank and spectral structure

$\delta_{\text {fin }}(P)=\sum$ (finite partial multiplicities), $\delta_{\infty}(P)=\sum$ (infinite partial multiplicities)
$\mu(P):=\sum$ (left+right minimal indices)

Index Sum Theorem [Praagman 1991]

$\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)=\operatorname{grade}(P) \cdot \operatorname{rank}(P)$
Proof: Let C_{1} be the first Frobenius companion form of P. Set $k=\operatorname{grade}(P)$. Then

$$
\begin{aligned}
\operatorname{rank}\left(C_{1}\right) & =\delta_{\mathrm{fin}}\left(C_{1}\right)+\delta_{\infty}\left(C_{1}\right)+\mu\left(C_{1}\right) \\
& =\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)+(n-\operatorname{rank}(P))(k-1)
\end{aligned}
$$

Since $C_{1} \smile \operatorname{diag}\left(P, I_{n(k-1)}\right)$:

$$
\operatorname{rank}\left(C_{1}\right)=\operatorname{rank}(P)+n(k-1)
$$

Equating:

$$
\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)=k \cdot \operatorname{rank}(P) .
$$

Outline

(1) Spectral structure and equivalence relations on matrix polynomials.

- Unimodular equivalence. Linearizations.
- New equivalence relations. ℓ-ifications.
(2) Companion forms
(3) The Index Sum Theorem

4 Consequences of the Index Sum Theorem

Companion forms and ℓ-fifications

Index Sum Th.: $\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)=\operatorname{grade}(P) \cdot \operatorname{rank}(P)$

Consequences on companion forms $(P \in \mathscr{P}(k, n \times n))$:

- P is regular $\Leftrightarrow \delta_{\text {fin }}(P)+\delta_{\infty}(P)=k n$
(2) Any companion form must have size $k n \times k n$.
(3) If $L \asymp P$ and L is $n k \times n k$, then $\mu(L)-\mu(P)=(k-1)(n-\operatorname{rank}(P))$.

4 No companion form can preserve all minimal indices of P.
P regular with grade k, Q a strong ℓ-ification of $P \Rightarrow \ell \operatorname{rank} Q=k n$. Then:

- 1 divides kn
(2) For k, n odd there are no strong quadratifications of P.
(3) "Companion" strong ℓ-ifications do not always exist (for all k)!!

Companion forms and ℓ-ifications

Index Sum Th.: $\delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)+\mu(P)=\operatorname{grade}(P) \cdot \operatorname{rank}(P)$
Consequences on companion forms ($P \in \mathscr{P}(k, n \times n)$):
(1) P is regular $\Leftrightarrow \delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)=k n$
(2) Any companion form must have size $k n \times k n$.
(3) If $L \asymp P$ and L is $n k \times n k$, then $\mu(L)-\mu(P)=(k-1)(n-\operatorname{rank}(P))$.
(9) No companion form can preserve all minimal indices of P.

P regular with grade k, Q a strong ℓ-ification of $P \Rightarrow$ $\ell \operatorname{rank} Q=k n$. Then:
(1) ℓ divides kn.
(2) For k, n odd there are no strong quadratifications of P.
(3) "Companion" strong ℓ-ifications do not always exist (for all k)!!

Companion forms and ℓ-fifications

Index Sum Th.: $\delta_{\text {fin }}(P)+\delta_{\infty}(P)+\mu(P)=\operatorname{grade}(P) \cdot \operatorname{rank}(P)$
Consequences on companion forms ($P \in \mathscr{P}(k, n \times n)$):
(1) P is regular $\Leftrightarrow \delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)=k n$
(2) Any companion form must have size $k n \times k n$.
(3) If $L \asymp P$ and L is $n k \times n k$, then $\mu(L)-\mu(P)=(k-1)(n-\operatorname{rank}(P))$.
(9) No companion form can preserve all minimal indices of P.
P regular with grade k, Q a strong ℓ-ification of $P \Rightarrow \ell$ rank $Q=k n$. Then:
(l divides kn.
(2) For k, n odd there are no strong quadratifications of P.

3 "Companion" strong ℓ-ifications do not alwavs exist (for all k)!!

Companion forms and ℓ-ifications

Index Sum Th.: $\delta_{\text {fin }}(P)+\delta_{\infty}(P)+\mu(P)=\operatorname{grade}(P) \cdot \operatorname{rank}(P)$
Consequences on companion forms ($P \in \mathscr{P}(k, n \times n)$):
(1) P is regular $\Leftrightarrow \delta_{\mathrm{fin}}(P)+\delta_{\infty}(P)=k n$
(2) Any companion form must have size $k n \times k n$.
(3) If $L \asymp P$ and L is $n k \times n k$, then $\mu(L)-\mu(P)=(k-1)(n-\operatorname{rank}(P))$.
(9) No companion form can preserve all minimal indices of P.
P regular with grade k, Q a strong ℓ-ification of $P \Rightarrow \ell$ rank $Q=k n$. Then:
(1) ℓ divides kn.
(2) For k, n odd there are no strong quadratifications of P.
(3) "Companion" strong ℓ-ifications do not always exist (for all k)!!

Strong companion ℓ-ifications (when ℓ divides k)

$P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{j}$. Let ℓ be a divisor of $k(k=\ell s)$. Define:

$$
\begin{align*}
B_{1}(\lambda) & :=\lambda^{\ell} A_{\ell}+\lambda^{\ell-1} A_{\ell-1}+\cdots+\lambda A_{1}+A_{0}, \tag{1}\\
B_{j}(\lambda) & :=\lambda^{\ell} A_{\ell j}+\lambda^{\ell-1} A_{\ell j-1}+\cdots+\lambda A_{\ell(j-1)+1}, \quad j=2, \ldots, s . \tag{2}
\end{align*}
$$

Then
and

Strong companion ℓ-ifications (when ℓ divides k)

$P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}$. Let ℓ be a divisor of $k(k=\ell s)$. Define:

$$
\begin{align*}
B_{1}(\lambda) & :=\lambda^{\ell} A_{\ell}+\lambda^{\ell-1} A_{\ell-1}+\cdots+\lambda A_{1}+A_{0}, \tag{1}\\
B_{j}(\lambda) & :=\lambda^{\ell} A_{\ell j}+\lambda^{\ell-1} A_{\ell j-1}+\cdots+\lambda A_{\ell(j-1)+1}, \quad j=2, \ldots, s . \tag{2}
\end{align*}
$$

Then

$$
C_{1}^{\ell}(\lambda):=\left[\begin{array}{ccccc}
B_{s}(\lambda) & B_{s-1}(\lambda) & B_{s-2}(\lambda) & \cdots & B_{1}(\lambda) \\
-I_{n} & \lambda^{\ell} I_{n} & 0 & \cdots & 0 \\
& -I_{n} & \lambda^{\ell} I_{n} & \ddots & \vdots \\
& & \ddots & \ddots & 0 \\
& & & -I_{n} & \lambda^{\ell} I_{n}
\end{array}\right] \in \mathbb{F}[\lambda]^{(m+(s-1) n) \times s n}
$$

and

$$
C_{2}^{\ell}(\lambda):=\left[\begin{array}{ccccc}
B_{s}(\lambda) & -I_{m} & & & \\
B_{s-1}(\lambda) & \lambda^{\ell} I_{m} & -I_{m} & & \\
B_{s-2}(\lambda) & 0 & \lambda^{\ell} I_{m} & \ddots & \\
\vdots & \vdots & \ddots & \ddots & -I_{m} \\
B_{1}(\lambda) & 0 & \cdots & 0 & \lambda^{\ell} I_{m}
\end{array}\right] \in \mathbb{F}[\lambda]^{s m \times(n+(s-1) m)}
$$

Are always strong ℓ-ifications of P.
Moreover: The minimal indices of P can be easily recovered from the ones of C_{1}^{ℓ} or C_{2}^{ℓ}

Structured linearizations

$P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}(n \times n)$, then $P^{\star}(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}^{\star} . P$ is said to be:
(a) \star-symmetric if $P^{\star}(\lambda)=P(\lambda)$.
(b) \star-alternating if $P^{\star}(\lambda)= \pm P(-\lambda)$.
(c) \star-palindromic if $P^{\star}(\lambda)= \pm \operatorname{rev} P(\lambda)$.
(d) *-skew-symmetric if $P^{\star}(\lambda)=-P(\lambda)$ and all diagonal entries of P are zero when $\star=T$.

Corollary (of Index Sum Theorem)
P is $n \times n$ with even grade whose left and right m. i. coincide, and having an $n k \times n k$ linearization whose left and right m. i. also coincide. Then P has an even number of left m . i . and also an even number of right m . i.

Structured linearizations

$P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}(n \times n)$, then $P^{\star}(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}^{\star} . P$ is said to be:
(a) \star-symmetric if $P^{\star}(\lambda)=P(\lambda)$.
(b) \star-alternating if $P^{\star}(\lambda)= \pm P(-\lambda)$.
(c) \star-palindromic if $P^{\star}(\lambda)= \pm \operatorname{rev} P(\lambda)$.
(d) \star-skew-symmetric if $P^{\star}(\lambda)=-P(\lambda)$ and all diagonal entries of P are zero when $\star=T$.
P (singular) with any of these structures, and $\varepsilon_{1} \leq \ldots \leq \varepsilon_{p}, \eta_{1} \leq \ldots \leq \eta_{p}$ its right / left m . \mathbf{i}. Then $\varepsilon_{1}=\eta_{1}, \ldots, \varepsilon_{p}=\eta_{p}$

Corollary (of Index Sum Theorem)
P is $n \times n$ with even grade whose left and right m . i. coincide, and having an $n k \times n k$ linearization whose left and right m . i. also coincide. Then P has an even number of left $\mathrm{m} . \mathrm{i}$. and also an even number of right m . i.

Structured linearizations

$P(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}(n \times n)$, then $P^{\star}(\lambda)=\sum_{i=0}^{k} \lambda^{i} A_{i}^{\star} . P$ is said to be:
(a) \star-symmetric if $P^{\star}(\lambda)=P(\lambda)$.
(b) \star-alternating if $P^{\star}(\lambda)= \pm P(-\lambda)$.
(c) \star-palindromic if $P^{\star}(\lambda)= \pm \operatorname{rev} P(\lambda)$.
(d) \star-skew-symmetric if $P^{\star}(\lambda)=-P(\lambda)$ and all diagonal entries of P are zero when $\star=T$.
P (singular) with any of these structures, and $\varepsilon_{1} \leq \ldots \leq \varepsilon_{p}, \eta_{1} \leq \ldots \leq \eta_{p}$ its right / left m . i. Then $\varepsilon_{1}=\eta_{1}, \ldots, \varepsilon_{p}=\eta_{p}$

Corollary (of Index Sum Theorem)

P is $n \times n$ with even grade whose left and right m . i. coincide, and having an $n k \times n k$ linearization whose left and right m . i. also coincide. Then P has an even number of left m . i . and also an even number of right m . i .

Structured linearizations (II)

\mathscr{S} : any of the previous structures (symmetric, skew-symmetric, alternating, palindromic)
$\mathscr{P}_{\text {sing }}(k, n \times n, \mathscr{S})$: Set of $n \times n$ singular polynomials of grade k with the structure \mathscr{S}

Corollary

For k even, the set of singular matrix polynomials in $\mathscr{P}(k, n \times n, \mathscr{S})$ having a structured linearization is contained in:

$$
\mathscr{P}_{\text {sing }}(k, n \times n, \mathscr{S}) \cap\{P \in \mathscr{P}(k, n \times n): \operatorname{rank} P \leq n-2\}
$$

("Generically", there are no structured linearizations for structured singular matrix polynomials of even grade!)

Structured linearizations (II)

\mathscr{S} : any of the previous structures (symmetric, skew-symmetric, alternating, palindromic)
$\mathscr{P}_{\text {sing }}(k, n \times n, \mathscr{S})$: Set of $n \times n$ singular polynomials of grade k with the structure \mathscr{S}

Corollary

For k even, the set of singular matrix polynomials in $\mathscr{P}(k, n \times n, \mathscr{S})$ having a structured linearization is contained in:

$$
\mathscr{P}_{\text {sing }}(k, n \times n, \mathscr{S}) \cap\{P \in \mathscr{P}(k, n \times n): \operatorname{rank} P \leq n-2\}
$$

("Generically", there are no structured linearizations for structured singular matrix polynomials of even grade!)

Corollary

There are no structured companion forms for polynomials with even grade.

Conclusions

- We have introduced two equivalence relations on matrix polynomials (\smile and \asymp) that allow for different sizes and degrees.
- The invariants of \asymp are: regular spectral structure + dimension of the right and left null spaces.
- We have introduced the Index Sum Theorem, an elementary relation between partial multiplicites (finite and infinite), sum of minimal indices, and the grade and rank of an arbitrary matrix polynomial.
- We have reviewed some strong consequences of the Index Sum Theorem, related to the size of companion forms, and to the existence of strong ℓ-ifications and structured companion forms.
- We have presented strong companion ℓ-ifications of a matrix polynomial of degree k. For all possible ℓ, namely, for every divisor ℓ of k.

[^0]: $\sim_{u e}$: Preserves finite e.d. + rank + size Different size? \rightsquigarrow Linearizations!!

