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Spectral structure and equivalence relations on matrix polynomials. Unimodular equivalence. Linearizations.

Basic notions

Matrix polynomial:

P(λ ) = λ
k Ak +λ

k−1Ak−1 + · · ·+λA1 +A0, Ai ∈ Fm×n

F and arbitrary field

k = 1: matrix “pencil"

k is the grade of P (non unique!!)

Ak 6= 0: P has degree k

P is regular if m = n and detP 6≡ 0, and it is singular otherwise

P is unimodular if detP(λ ) = c 6= 0 (m = n)

P(λ ) ∈ F[λ ]m×n ⊆ F(λ )m×n, where

F(λ ) =
{

p(λ )
q(λ )

: p,q ∈ F[λ ]
}

, field of rational functions
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Spectral structure and equivalence relations on matrix polynomials. Unimodular equivalence. Linearizations.

Spectral structure (scalar)
Regular structure:

Finite elementary divisors (e.d) of P:
(λ −λi)

αi ,1 , . . . ,(λ −λi)
αi ,gi , αi ,j > 0, i = 1, . . . ,s

λ1, . . . ,λs ∈ F eigenvalues of P (F: algebraic closure of F)
αi ,j , j = 1 : gi  partial multiplicities (p.m.) at λi
Infinite elementary divisors of P: Elementary divisors at 0 of
revP := λ k P(1/λ ) Depend on the grade!

Singular structure:
Right minimal basis of P: Polynomial basis, {x1(λ ), . . . ,xp(λ )}, of

Nr (P) = {x(λ ) ∈ F(λ )n : P(λ )x(λ )≡ 0}

whose sum of degrees is minimal among all polynomial bases.
Right minimal indices (m. i.) of P: Sequence of degrees of a minimal
basis. Invariant of P ! (Forney, 1975)
Left minimal basis / indices: Same for

Nl(P) = {y(λ ) ∈ F(λ )m : P(λ )T y(λ )≡ 0)}.
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Spectral structure and equivalence relations on matrix polynomials. Unimodular equivalence. Linearizations.

Linearizations

Associated Differential-Algebraic Equation:

P
(

d
dt

)
x(t) =

(
Ak

(
d
dt

)k

+Ak−1

(
d
dt

)k−1
+ · · ·+A1

d
dt

+A0

)
x(t) = f (t), Ai ∈ Fm×n

Spectral structure: Relevant to know about the solvability and the behavior
of the solutions (if any).

Question: Computation of the spectral structure?

Standard way: Using Linearizations

Definition (classical linearization)
P(λ ) ∈ F[λ ]n×n of degree k . A pencil L(λ ) ∈ F[λ ]nk×nk is a linearization of P if

U(λ )L(λ )V (λ ) = diag(P(λ ), I(k−1)n),

for some U(λ ),V (λ ) unimodular.
L is a strong linearization if, in addition, revL is a linearization of revP.
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Spectral structure and equivalence relations on matrix polynomials. Unimodular equivalence. Linearizations.

Properties of linearizations

Advantages:
Preserve part of the spectral structure: finite and infinite (strong) e. d.
Numerical methods available to compute the eigenvalues of pencils
(GEP).

Drawbacks:
Classical linearizations (Frobenius companion forms) do not preserve
any of the structure that the polynomial may have (symmetric,
palindromic, hermitian, etc.), which arise frequently in applications.
The size of the problem increases too much! (n×n −→ nk ×nk ).
NOT ALL the spectral structure is preserved (minimal indices??).

Then...
I Look for new (structured) linearizations.
I Look for another constructions (with smaller size).
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Spectral structure and equivalence relations on matrix polynomials. Unimodular equivalence. Linearizations.

Unimodular equivalence (classical)

Definition
P,Q with the same size m×n. Then P ∼ue Q (unimodularly equivalent) if:

Q(λ ) = U(λ )P(λ )V (λ ),

U,V unimodular.

Hence:
L linearization of P ⇔ L∼ue diag(P, I(k−1)n).
L strong linearization if, in addition, revL∼ue diag(revP, I(k−1)n).

Theorem
P ∼ue Q⇔ P,Q have the same finite e. d. and the same rank. (Smith form)

∼ue: Preserves finite e.d. + rank + size
Different size? Linearizations!!
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Spectral structure and equivalence relations on matrix polynomials. New equivalence relations. `-ifications.

Extended unimodular and spectral equivalences

P ∈ F[λ ]m×n,Q ∈ F[λ ]p×q are:

P `Q ⇔ diag(P, Ir )∼ue diag(Q, Is), extended unimodularly
for some r ,s ≥ 0 equivalent

P �Q ⇔ P `Q and revP ` revQ spectrally equivalent

I Allow for different size and degree of P and Q!... but m+q = n+p

If degQ = `, then Q is an `-ification (resp. strong `-ification) of P if P `Q
(resp. P �Q).

Particular cases:
`= 1 (pencil) (strong) linearization of P
`= 2 (quadratic) (strong) quadratification of P
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Spectral structure and equivalence relations on matrix polynomials. New equivalence relations. `-ifications.

Spectral characterization of P `Q and P �Q

Theorem

P`Q ⇔
{

(a) P,Q have the same finite e. d.
(b)dimNr (P) = dimNr (Q) and dimNl(P) = dimNl(Q)

Theorem

P�Q ⇔
{

(a) P,Q have the same finite and infinite e. d.
(b)dimNr (P) = dimNr (Q) and dimNl(P) = dimNl(Q)

Note: (b) 6⇒ rank(P) = rank(Q), since P,Q may have different size!

� preserves: regular spectral structure + little bit of singular structure

(dimNr =# right m. i. dimNl =# left m. i.)

Minimal indices are not preserved!!
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Companion forms

Definition and basic examples
P(k ,m×n): Class of all matrix polynomials of fixed grade k and size m×n.

P(λ ) = ∑
k
i=0 λ iAi ∈P(k ,m×n)

Companion form: Uniform template for building a pencil CP(λ ) directly from
Ai , without any matrix operations, such that CP(λ ) is a strong linearization
for every P ∈P(k ,m×n), regular or singular, over any field.

Example: Fiedler pencils:

First
Frobenius

companion form:
C1(λ ) = λ


Ak

In
. . .

In

+


Ak−1 Ak−2 · · · A0
−In 0 · · · 0

. . .
. . .

...
0 −In 0



Another Fiedler: F (λ ) = λ


Ak

In
. . .

Im

+


Ak−1 Ak−2 · · · −Im
−In 0 · · · 0

. . .
. . .

...
0 A0 0


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Ai , without any matrix operations, such that CP(λ ) is a strong linearization
for every P ∈P(k ,m×n), regular or singular, over any field.

Example: Fiedler pencils:

First
Frobenius

companion form:
C1(λ ) = λ


Ak

In
. . .

In

+


Ak−1 Ak−2 · · · A0
−In 0 · · · 0

. . .
. . .

...
0 −In 0



Another Fiedler: F (λ ) = λ


Ak

In
. . .

Im

+


Ak−1 Ak−2 · · · −Im
−In 0 · · · 0

. . .
. . .

...
0 A0 0


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Logo-dpto

Companion forms

Structured companion forms

Structured companion form: Companion form that shares some particular
structure of P (symmetric, palindromic, alternating, etc.)  symmetric /
palindromic / alternating companion form

Fiedler pencils are not structured, but they are the source of structured
companion forms.

Known structured companion forms for:
Symmetric (odd degree; even degree: nonsingular leading coeff.)
(Ai = AT

i , i = 0 : k )
Skew-symmetric (odd degree)
(Ai =−AT

i , i = 0 : k )
T -palindromic (odd degree)
(PT = revP).

What happens for arbitrary degree/grade???
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Logo-dpto

Companion forms

`-ifications

Similar templates for `-ifications (“Companion `-ifications") ???

C`
1(λ ) :=


P`(λ ) Ak−`−1 · · · A0
−In λ In · · · 0

. . .
. . .

...

0 −In λ In


and

C`
2(λ ) :=


P`(λ ) −Im 0

Ak−`−1 λ Im
. . .

...
...

. . . −Im
A0 λ Im


are `-ifications (for all `≤ k ) of P = ∑

k
i=0 λ iAi (even for P rectangular).

P`(λ) = λ `Ak +λ `−1Ak−1 + · · ·+Ak−` (` th Horner shift of P).

But... NOT always strong `-ifications !!!!

Are there strong `-ifications for arbitrary `≤ k ???
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Logo-dpto

The Index Sum Theorem

Outline

1 Spectral structure and equivalence relations on matrix polynomials.
Unimodular equivalence. Linearizations.
New equivalence relations. `-ifications.

2 Companion forms

3 The Index Sum Theorem

4 Consequences of the Index Sum Theorem
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Logo-dpto

The Index Sum Theorem

Size, rank and spectral structure
δfin(P) = ∑ (finite partial multiplicities), δ∞(P) = ∑ (infinite partial multiplicities)
µ(P) := ∑(left+right minimal indices)

Index Sum Theorem [Praagman 1991]

δfin(P)+δ∞(P)+µ(P) = grade(P) · rank(P)

Proof: Let C1 be the first Frobenius companion form of P. Set k = grade(P).
Then

rank(C1) = δfin(C1)+δ∞(C1)+µ(C1)
= δfin(P)+δ∞(P)+µ(P)+(n− rank(P))(k −1).

Since C1 ` diag(P, In(k−1)):

rank(C1) = rank(P)+n(k −1).

Equating:
δfin(P)+δ∞(P)+µ(P) = k · rank(P).

�
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Logo-dpto

Consequences of the Index Sum Theorem

Outline

1 Spectral structure and equivalence relations on matrix polynomials.
Unimodular equivalence. Linearizations.
New equivalence relations. `-ifications.

2 Companion forms

3 The Index Sum Theorem

4 Consequences of the Index Sum Theorem
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Consequences of the Index Sum Theorem

Companion forms and `-ifications

Index Sum Th.: δfin(P)+δ∞(P)+µ(P) = grade(P) · rank(P)

Consequences on companion forms (P ∈P(k ,n×n)):
1 P is regular⇔ δfin(P)+δ∞(P) = kn
2 Any companion form must have size kn×kn.
3 If L� P and L is nk ×nk , then µ(L)−µ(P) = (k −1)(n− rank(P)).
4 No companion form can preserve all minimal indices of P.

P regular with grade k , Q a strong `-ification of P⇒ ` rankQ = kn . Then:

1 ` divides kn.
2 For k ,n odd there are no strong quadratifications of P.
3 “Companion" strong `-ifications do not always exist (for all k )!!

Fernando de Terán (UC3M) Spectral equivalence of Matrix Polynomials CEDYA 2013 18 / 22
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Logo-dpto

Consequences of the Index Sum Theorem

Strong companion `-ifications (when ` divides k )
P(λ) = ∑

k
i=0 λ i Ai . Let ` be a divisor of k (k = `s). Define:

B1(λ) := λ
`A`+λ

`−1A`−1 + · · ·+λA1 +A0 ,(1)

Bj (λ) := λ
`A`j +λ

`−1A`j−1 + · · ·+λA`(j−1)+1, j = 2, . . . ,s.(2)

Then

C`
1(λ) :=


Bs(λ) Bs−1(λ) Bs−2(λ) · · · B1(λ)

−In λ `In 0 · · · 0

−In λ `In
. . .

...
. . .

. . . 0
−In λ `In

 ∈ F[λ ](m+(s−1)n)×sn

and

C`
2(λ) :=


Bs(λ) −Im

Bs−1(λ) λ `Im −Im
Bs−2(λ) 0 λ `Im

. . .
...

...
. . .

. . . −Im
B1(λ) 0 . . . 0 λ `Im

 ∈ F[λ ]sm×(n+(s−1)m)

Are always strong `-ifications of P.
Moreover: The minimal indices of P can be easily recovered from the ones of C`

1 or C`
2
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Consequences of the Index Sum Theorem

Structured linearizations

P(λ ) = ∑
k
i=0 λ iAi (n×n), then P?(λ ) = ∑

k
i=0 λ iA?

i . P is said to be:
(a) ?-symmetric if P?(λ ) = P(λ ).
(b) ?-alternating if P?(λ ) =±P(−λ ).
(c) ?-palindromic if P?(λ ) =±revP(λ ).
(d) ?-skew-symmetric if P?(λ ) =−P(λ ) and all diagonal entries of P are zero

when ?= T .
P (singular) with any of these structures, and ε1 ≤ . . .≤ εp, η1 ≤ . . .≤ ηp its
right / left m. i. Then ε1 = η1, . . . ,εp = ηp

Corollary (of Index Sum Theorem)
P is n×n with even grade whose left and right m. i. coincide, and having an
nk ×nk linearization whose left and right m. i. also coincide. Then P has an
even number of left m. i. and also an even number of right m. i.
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Consequences of the Index Sum Theorem

Structured linearizations (II)

S : any of the previous structures (symmetric, skew-symmetric, alternating,
palindromic)
Psing(k ,n×n,S ): Set of n×n singular polynomials of grade k with the
structure S

Corollary
For k even, the set of singular matrix polynomials in P(k ,n×n,S ) having a
structured linearization is contained in:

Psing(k ,n×n,S )∩{P ∈P(k ,n×n) : rankP ≤ n−2}

(“Generically", there are no structured linearizations for structured singular
matrix polynomials of even grade!)

Corollary
There are no structured companion forms for polynomials with even grade.
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Consequences of the Index Sum Theorem

Conclusions

We have introduced two equivalence relations on matrix polynomials (`
and �) that allow for different sizes and degrees.

The invariants of � are: regular spectral structure + dimension of the right
and left null spaces.

We have introduced the Index Sum Theorem, an elementary relation
between partial multiplicites (finite and infinite), sum of minimal indices,
and the grade and rank of an arbitrary matrix polynomial.

We have reviewed some strong consequences of the Index Sum
Theorem, related to the size of companion forms, and to the existence of
strong `-ifications and structured companion forms.

We have presented strong companion `-ifications of a matrix polynomial
of degree k . For all possible `, namely, for every divisor ` of k .
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