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Generalized ?-Sylvester equation

Given A,B,C,D,E ∈ Cn×n

Goal: Find necessary and sufficient conditions for the equation

AXB + CX ?D = E generalized ?-Sylvester equation

to have a unique solution.

(X ∈ Cn×n, unknown)

(? =>or ∗)
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Motivation

Natural extension of AX + X ?D = E .
Numerical methods for palindromic eigenvalue problems
[Byers-Kressner’06], [Kressner-Schröder-Watkins’09],
[Dmytryshyn-Kågstöm’15]
Congruence orbits (D = A,E = 0) [D.-Dopico’11]

Closely related to AXB + CXD = E [Chu’87]

Iterative algorithms for solving
r

∑
i=1

AiXBi +
s

∑
j=1

CjX>Dj = E

[Wang-Cheng-Wei’07], [Xie-Ding-Ding’09], [Li-Wang-Zhou-Duan’10],
[Song-Chen’11], [Song-Chen-Zhao’11], [Song-Feng-Whang-Zhao’14],...
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Which kind of characterization are we looking for?

Λ(A−λB) = Spectrum of A−λB

Theorem (Uniqueness of solution for generalized Sylvester) [Chu’87]

The equation AXB−CXD = E has a unique solution iff A−λC and D−λB
are regular and Λ(A−λC)∩Λ(D−λB) = /0.

(A,C ∈ Rm×m; B,D ∈ Rn×n)

Theorem (Uniqueness of solution for ?-Sylvester) [Byers-Kressener’06,

Kressner-Schröder-Watkins’09]

AX + X ?D = E has unique solution iff A−λD? is regular and:
? = ∗ : If λ ∈ Λ(A−λD∗), then (1/λ ) 6∈ Λ(A−λD∗).

? => : If 1 6= λ ∈ Λ(A−λD>), then (1/λ ) 6∈ Λ(A−λD>), and
m1(A−λD>)≤ 1.

mµ (A−λB) : algebraic multiplicity of µ in A−λB
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Which kind of characterization are we looking for?
(cont.)

� Know conditions for AXB−CXD = E and AX + X ?D = E :
in terms of spectral properties of matrix pencils constructed
from the coefficient matrices.

Q: Analogous characterization for AXB + CX ?D = E ??
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The vec approach

vec(AXB + CX ?D) = vec(E) leads to

? => :
[
B>⊗A + Π(C⊗D>)

]
vec(X ) = vec(E)

Linear over C X

? = ∗ : (B>⊗A)vec(X ) + Π(C⊗D>)vec(X ) = vec(E)

 vec(X ) = [vec(ReX ); vec(ImX )]

�AXB + CX ?D = E can be written as a linear system MY = b:

Y =

{
vec(X ), if ? =>
[vec(ReX ); vec(ImX )] , if ? = ∗
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The vec approach (cont.)

M ∈

{
Cn2×n2

, if ? =>,
R(2n2)×(2n2), if ? = ∗

AXB + CX ?D = E has a unique solution⇔ M is nonsingular

AXB + CX ?D = E has a unique solution
m

AXB + CX ?D = 0 has a unique solution

�We only need to look at the homogeneous equation!
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Reduction to a ?-Sylvester equation

Two basic preparatory results

Lemma 1
If AXB + CX ?D = 0 has a unique solution, then
(a) At least one of A,C is invertible.
(b) At least one of B,D is invertible.

+

Lemma 2
AXB + X ? = 0 has a unique solution⇔ AB?Y + Y ? = 0 has a unique solution

⇓
Corollary ?-Sylvester!!!
AXB + CX ?D = 0 has a unique solution if and only if
(a) A is invertible and D?A−1CY + Y ?B = 0 has a unique solution, or
(b) C is invertible and B?C−1AY + Y ?D = 0 has a unique solution.
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Reduction to a ?-Sylvester equation

Characterization for ?-Sylvester (again)

Theorem (Uniqueness of solution for ?-Sylvester) [Byers-Kressner’06,

Kressner-Schröder-Watkins’09]

AX + X ?D = E has unique solution if and only if A−λD? is regular and:
? = ∗ : If λ ∈ Λ(A−λD∗), then (1/λ ) 6∈ Λ(A−λD∗).

? => : If 1 6= λ ∈ Λ(A−λD>), then (1/λ ) 6∈ Λ(A−λD>), and
m1(A−λD>)≤ 1.

S ⊆ C∪{∞} is
reciprocal free if λ 6= µ−1 for all λ ,µ ∈ S
∗-reciprocal free if λ 6= (µ)−1 for all λ ,µ ∈ S
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The main result

Characterization of uniqueness of solution

Theorem (Uniqueness for generalized ?-Sylvester)

AXB + CX ?D = E has a unique solution if and only if the pencil

P(λ ) :=

 λD? B?

A λC


is regular and:

? = ∗ : Λ(P) is ∗-reciprocal free.

? => : Λ(P)\{±1} is reciprocal free and m1(P) = m−1(P)≤ 1.

Remark: mλ (P) = m−λ (P)
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The main result

Proof of the main result

AXB + CX ?D = E
has unique sol. ⇔P(λ) :=

[
λD? B?

A λC

]
regular and

? = ∗ Λ(P) ∗-rec, free
?=> Λ(P)\{±1} rec. free, m±1(P)≤ 1

Proof:

A invertible: detP(λ ) =±det(A)det(B?−λ 2D?A−1C)[
0 I
I −λD?A−1

][
λD∗ B?

A λC

]
=

[
A λC
0 B?−λ 2D?A−1C

]
.

C invertible: detP(λ ) =±det(C)det(B?C−1A−λ 2D?)

Recall:

AXB + CX ?D = 0 has a unique so-
lution iff

(a) A is invertible and
D?A−1CY + Y ?B = 0 has a
unique solution, or

(b) C is invertible and
B?C−1AY + Y ?D = 0 has a
unique solution.

AX + X ?D = E has unique solution iff
A−λD? is regular and:

? = ∗ : Λ(A−λD∗) is ∗-reciprocal
free.

? => : Λ(A−λD>)\{1} is
reciprocal free, and m1(A−λD>)≤ 1.

�
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An algorithmic approach

The periodic Schur decomposition

Theorem [Bojanczyk-Golub-Van Dooren’92]

There are U1,U2,V1,V2 unitary such that

U1AV1 = TA, U1CV2 = TC ,
U2B?V1 = T ?

B, U2D?V2 = T ?
D,

with TA,T ?
B,TC ,T ?

D upper triangular.

Connection with the pencil P(λ ):[
U2

U1

][
λD? B?

A λC

][
V1

V2

]
=

[
λT ?

D T ?
B

TA λTC

]

Fernando de Terán (UC3M) Unique solution of generalized ?-Sylvester equations ALAMA, June 2016 12 / 15



Logo-dpto

An algorithmic approach

The periodic Schur decomposition

Theorem [Bojanczyk-Golub-Van Dooren’92]

There are U1,U2,V1,V2 unitary such that

U1AV1 = TA, U1CV2 = TC ,
U2B?V1 = T ?

B, U2D?V2 = T ?
D,

with TA,T ?
B,TC ,T ?

D upper triangular.

Connection with the pencil P(λ ):[
U2

U1

][
λD? B?

A λC

][
V1

V2

]
=

[
λT ?

D T ?
B

TA λTC

]

Fernando de Terán (UC3M) Unique solution of generalized ?-Sylvester equations ALAMA, June 2016 12 / 15



Logo-dpto

An algorithmic approach

An O(n3) algorithm
(Based on the algorithm in [D-Dopico’11] for AX + X>D = E , outlined in
[Chiang-Chu-Lin’12])

TA · X · TB
+ TC · X> · TD = E
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...

. . .
...
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An O(n3) algorithm
(Based on the algorithm in [D-Dopico’11] for AX + X>D = E , outlined in
[Chiang-Chu-Lin’12])
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Ongoing work

Systems of generalized ?-Sylvester equations

Goal 1:
Obtain necessary and sufficient conditions for uniqueness of solution of
systems of equations of the form AXB + CX ?D = E (with both X = Y or
X 6= Y ) and ? = 1,>,∗.

Goal 2:
Write an algorithm to compute the unique solution.

(Ongoing work with B. Iannazzo, F. Poloni, and L. Robol)

� More on this at the forthcoming ILAS2016 Conference in Leuven
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