\section*{| m |
| :---: |
| CIII |}

Uniqueness of solution of a generalized *-Sylvester equation

Fernando de Terán
Departamento de Matemáticas Universidad Carlos III de Madrid

Generalized \star-Sylvester equation

Given $A, B, C, D, E \in \mathbb{C}^{n \times n}$

Goal: Find necessary and sufficient conditions for the equation

$A X B+C X^{\star} D=E$
 generalized \star-Sylvester equation

to have a unique solution.
$\left(X \in \mathbb{C}^{n \times n}\right.$, unknown)
($\star=\mathrm{T}$ or $*$)

Motivation

- Natural extension of $A X+X^{\star} D=E$.
- Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09],
[Dmytryshyn-Kågstöm'15]
- Congruence orbits $(D=A, E=0)$ [D.-Dopico'11]
- Closely related to $A X B+C X D=E$ [Chu'87]
- Iterative algorithms for solving $\sum_{i=1}^{r} A_{i} X B_{i}+\sum_{j=1}^{s} C_{j} X^{\top} D_{j}=E$ [Wang-Cheng-Wei'07], [Xie-Ding-Ding'09], [Li-Wang-Zhou-Duan'10], [Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14],.

Motivation

- Natural extension of $A X+X^{\star} D=E$.
- Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]

```
- Congruence orbits ( }D=A,E=0)[D.-Dopico'11]
```

- Closely related to $A X B+C X D=E$ [Chu'87]

Iterative algorithms for solving $\sum_{i=1}^{r} A_{i} X B_{i}+\sum_{j=1}^{s} C_{j} X^{\top} D_{j}=E$
[Wang-Cheng-Wei'07], [Xie-Ding-Ding'09], [Li-Wang-Zhou-Duan'10],
[Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14],

Motivation

- Natural extension of $A X+X^{\star} D=E$.
- Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]
- Congruence orbits ($D=A, E=0$) [D.-Dopico'11]
- Closely related to $A X B+C X D=E$ [Chu'87]

Iterative algorithms for solving $\sum_{i=1}^{r} A_{i} X B_{i}+\sum_{j=1}^{s} C_{j} X^{\top} D_{j}=E$
[Wang-Cheng-Wei'07], [Xie-Ding-Ding'09], [Li-Wang-Zhou-Duan'10],
[Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14],

Motivation

- Natural extension of $A X+X^{\star} D=E$.
- Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]
- Congruence orbits ($D=A, E=0$) [D.-Dopico'11]
- Closely related to $A X B+C X D=E$ [Chu'87]

Motivation

- Natural extension of $A X+X^{\star} D=E$.
- Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]
- Congruence orbits ($D=A, E=0$) [D.-Dopico'11]
- Closely related to $A X B+C X D=E$ [Chu'87]
- Iterative algorithms for solving $\sum_{i=1}^{r} A_{i} X B_{i}+\sum_{j=1}^{s} C_{j} X^{\top} D_{j}=E$
[Wang-Cheng-Wei'07], [Xie-Ding-Ding'09], [Li-Wang-Zhou-Duan'10], [Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14],...

Which kind of characterization are we looking for?

$\Lambda(A-\lambda B)=$ Spectrum of $A-\lambda B$

Theorem (Uniqueness of solution for generalized Sylvester) [Chu'87]

The equation $A X B-C X D=E$ has a unique solution iff $A-\lambda C$ and $D-\lambda B$ are regular and $\wedge(A-\lambda C) \cap \wedge(D-\lambda B)=\emptyset$.

```
(A,C\in\mathbb{R}
```

Theorem (Uniqueness of solution for *-Sylvester) [Byers-Kressener'06, Kressner-Schröder-Watkins'09]

$m_{\mu}(A-\lambda B)$: algebraic multiplicity of μ in $A-\lambda B$

Which kind of characterization are we looking for?

$$
\Lambda(A-\lambda B)=\text { Spectrum of } A-\lambda B
$$

Theorem (Uniqueness of solution for generalized Sylvester) [Chu'87]
The equation $A X B-C X D=E$ has a unique solution iff $A-\lambda C$ and $D-\lambda B$ are regular and $\Lambda(A-\lambda C) \cap \Lambda(D-\lambda B)=\emptyset$.

Theorem (Uniqueness of solution for *-Sylvester) [Byers-Kressener'06, Kressner-Schröder-Watkins'09]

Which kind of characterization are we looking for?

$$
\Lambda(A-\lambda B)=\text { Spectrum of } A-\lambda B
$$

Theorem (Uniqueness of solution for generalized Sylvester) [Chu'87]
The equation $A X B-C X D=E$ has a unique solution iff $A-\lambda C$ and $D-\lambda B$ are regular and $\wedge(A-\lambda C) \cap \wedge(D-\lambda B)=\emptyset$.
$\left(A, C \in \mathbb{R}^{m \times m} ; \quad B, D \in \mathbb{R}^{n \times n}\right)$

Which kind of characterization are we looking for?

$\Lambda(A-\lambda B)=$ Spectrum of $A-\lambda B$
Theorem (Uniqueness of solution for generalized Sylvester) [Chu'87]
The equation $A X B-C X D=E$ has a unique solution iff $A-\lambda C$ and $D-\lambda B$ are regular and $\wedge(A-\lambda C) \cap \wedge(D-\lambda B)=\emptyset$.
$\left(A, C \in \mathbb{R}^{m \times m} ; \quad B, D \in \mathbb{R}^{n \times n}\right)$
Theorem (Uniqueness of solution for *-Sylvester) [Byers-Kressener'06,
Kressner-Schröder-Watkins'09]
$A X+X^{\star} D=E$ has unique solution iff $A-\lambda D^{\star}$ is regular and:

- $\star=*$: If $\lambda \in \Lambda\left(A-\lambda D^{*}\right)$, then $(1 / \bar{\lambda}) \notin \Lambda\left(A-\lambda D^{*}\right)$.
- $\star=\top$: If $1 \neq \lambda \in \Lambda\left(A-\lambda D^{\top}\right)$, then $(1 / \lambda) \notin \Lambda\left(A-\lambda D^{\top}\right)$, and $m_{1}\left(A-\lambda D^{\top}\right) \leq 1$.
$m_{\mu}(A-\lambda B)$: algebraic multiplicity of μ in $A-\lambda B$

Which kind of characterization are we looking for? (cont.)

1ㅏ북 Know conditions for $A X B-C X D=E$ and $A X+X^{\star} D=E$: in terms of spectral properties of matrix pencils constructed from the coefficient matrices.

Which kind of characterization are we looking for? (cont.)

喁 Know conditions for $A X B-C X D=E$ and $A X+X^{\star} D=E$: in terms of spectral properties of matrix pencils constructed from the coefficient matrices.

Q: Analogous characterization for $A X B+C X^{\star} D=E$??

The vec approach

$\operatorname{vec}\left(A X B+C X^{\star} D\right)=\operatorname{vec}(E) \quad$ leads to

- $\star=\top:\left[B^{\top} \otimes A+\Pi\left(C \otimes D^{\top}\right)\right] \operatorname{vec}(X)=\operatorname{vec}(E)$
- $\star=*:\left(B^{\top} \otimes A\right) \operatorname{vec}(X)+\Pi\left(C \otimes D^{\top}\right) \operatorname{vec}(\bar{X})=\operatorname{vec}(E)$

The vec approach

$\operatorname{vec}\left(A X B+C X^{\star} D\right)=\operatorname{vec}(E) \quad$ leads to

- $\star=\top:\left[B^{\top} \otimes A+\Pi\left(C \otimes D^{\top}\right)\right] \operatorname{vec}(X)=\operatorname{vec}(E)$

Linear over $\mathbb{C} \checkmark$

- $\star=*:\left(B^{\top} \otimes A\right) \operatorname{vec}(X)+\Pi\left(C \otimes D^{\top}\right) \operatorname{vec}(\bar{X})=\operatorname{vec}(E)$

The vec approach

$\operatorname{vec}\left(A X B+C X^{\star} D\right)=\operatorname{vec}(E) \quad$ leads to

- $\star=\mathrm{T}:\left[B^{\top} \otimes A+\Pi\left(C \otimes D^{\top}\right)\right] \operatorname{vec}(X)=\operatorname{vec}(E)$

Linear over $\mathbb{C} \checkmark$

- $\star=*:\left(B^{\top} \otimes A\right) \operatorname{vec}(X)+\Pi\left(C \otimes D^{\top}\right) \operatorname{vec}(\bar{X})=\operatorname{vec}(E)$

Not linear over \mathbb{C}

The vec approach

$\operatorname{vec}\left(A X B+C X^{\star} D\right)=\operatorname{vec}(E) \quad$ leads to

- $\star=\mathrm{T}:\left[B^{\top} \otimes A+\Pi\left(C \otimes D^{\top}\right)\right] \operatorname{vec}(X)=\operatorname{vec}(E)$

Linear over $\mathbb{C} \checkmark$

- $\star=*:\left(B^{\top} \otimes A\right) \operatorname{vec}(X)+\Pi\left(C \otimes D^{\top}\right) \operatorname{vec}(\bar{X})=\operatorname{vec}(E)$ Not linear over $\mathbb{C} \rightsquigarrow \operatorname{vec}(X)=[\operatorname{vec}(\operatorname{Re} X) ; \operatorname{vec}(\operatorname{Im} X)]$

The vec approach

$\operatorname{vec}\left(A X B+C X^{\star} D\right)=\operatorname{vec}(E) \quad$ leads to

- $\star=\mathrm{T}:\left[B^{\top} \otimes A+\Pi\left(C \otimes D^{\top}\right)\right] \operatorname{vec}(X)=\operatorname{vec}(E)$

Linear over $\mathbb{C} \checkmark$

- $\star=*:\left(B^{\top} \otimes A\right) \operatorname{vec}(X)+\Pi\left(C \otimes D^{\top}\right) \operatorname{vec}(\bar{X})=\operatorname{vec}(E)$

Linear over $\mathbb{R} \checkmark \rightsquigarrow \operatorname{vec}(X)=[\operatorname{vec}(\operatorname{Re} X) ; \operatorname{vec}(\operatorname{lm} X)]$

The vec approach

$\operatorname{vec}\left(A X B+C X^{\star} D\right)=\operatorname{vec}(E) \quad$ leads to

- $\star=\mathrm{T}:\left[B^{\top} \otimes A+\Pi\left(C \otimes D^{\top}\right)\right] \operatorname{vec}(X)=\operatorname{vec}(E)$

Linear over $\mathbb{C} \checkmark$

- $\star=*:\left(B^{\top} \otimes A\right) \operatorname{vec}(X)+\Pi\left(C \otimes D^{\top}\right) \operatorname{vec}(\bar{X})=\operatorname{vec}(E)$

Linear over $\mathbb{R} \checkmark \rightsquigarrow \operatorname{vec}(X)=[\operatorname{vec}(\operatorname{Re} X) ; \operatorname{vec}(\operatorname{lm} X)]$
무ํ $A X B+C X^{\star} D=E$ can be written as a linear system $M Y=b$:

$$
Y= \begin{cases}\operatorname{vec}(X), & \text { if } \star=\top \\ {[\operatorname{vec}(\operatorname{Re} X) ; \operatorname{vec}(\operatorname{lm} X)],} & \text { if } \star=*\end{cases}
$$

The vec approach (cont.)

$M \in\left\{\begin{array}{cc}\mathbb{C}^{n^{2} \times n^{2}}, & \text { if } \star=\mathrm{T}, \\ \mathbb{R}^{\left(2 n^{2}\right) \times\left(2 n^{2}\right)}, & \text { if } \star=*\end{array}\right.$

The vec approach (cont.)

$$
M \in\left\{\begin{array}{cc}
\mathbb{C}^{n^{2} \times n^{2}}, & \text { if } \star=T, \\
\mathbb{R}^{\left(2 n^{2}\right) \times\left(2 n^{2}\right),} & \text { if } \star=*
\end{array}\right.
$$

© Too large!

The vec approach (cont.)

$$
M \in\left\{\begin{array}{cc}
\mathbb{C}^{n^{2} \times n^{2}}, & \text { if } \star=T, \\
\mathbb{R}^{\left(2 n^{2}\right) \times\left(2 n^{2}\right),}, & \text { if } \star=*
\end{array}\right.
$$

© Too large!
© Not easy to handle with

The vec approach (cont.)

$M \in\left\{\begin{array}{cc}\mathbb{C}^{n^{2} \times n^{2}}, & \text { if } \star=T, \\ \mathbb{R}^{\left(2 n^{2}\right) \times\left(2 n^{2}\right),} & \text { if } \star=*\end{array}\right.$
© Too large!
© Not easy to handle with
$A X B+C X^{\star} D=E$ has a unique solution $\Leftrightarrow M$ is nonsingular

The vec approach (cont.)

$$
M \in\left\{\begin{array}{cll}
\mathbb{C}^{n^{2} \times n^{2}}, & \text { if } \star=T, & \text { © Too large! } \\
\mathbb{R}^{\left(2 n^{2}\right) \times\left(2 n^{2}\right),} & \text { if } \star=* & \text { © Not easy to handle with }
\end{array}\right.
$$

$A X B+C X^{\star} D=E$ has a unique solution $\Leftrightarrow M$ is nonsingular

$$
A X B+C X^{\star} D=E \text { has a unique solution }
$$

$A X B+C X^{\star} D=0$ has a unique solution

The vec approach (cont.)

$$
M \in\left\{\begin{array}{cll}
\mathbb{C}^{n^{2} \times n^{2}}, & \text { if } \star=T, & \oplus \text { Too large! } \\
\mathbb{R}^{\left(2 n^{2}\right) \times\left(2 n^{2}\right),} & \text { if } \star=* & \oplus \text { Not easy to handle with }
\end{array}\right.
$$

$A X B+C X^{\star} D=E$ has a unique solution $\Leftrightarrow M$ is nonsingular

$$
A X B+C X^{\star} D=E \text { has a unique solution }
$$

$A X B+C X^{\star} D=0$ has a unique solution
맚ㅇ We only need to look at the homogeneous equation!

Two basic preparatory results

Lemma 1
If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Two basic preparatory results

Lemma 1
If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Proof. (a) If A, C both singular, then $A u=0=C v$, with $u, v \neq 0 \Rightarrow X=u v^{\star}$ is a nonzero solution.
(b) If B, D both singular, then $u^{\star} D=v^{\star} B=0$ with $u, v \neq 0 \Rightarrow X=u v^{\star}$ is a nonzero solution $\quad \square$

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Proof. (a) If A, C both singular, then $A u=0=C v$, with $u, v \neq 0 \Rightarrow X=u v^{\star}$ is a nonzero solution.
(b) If B, D both singular, then $u^{\star} D=v^{\star} B=0$ with $u, v \neq 0 \Rightarrow X=u v^{\star}$ is a nonzero solution $\quad \square$

구웅 If both A, C or both B, D are singular, then $A X B+C X^{\star} D=0$ has a rank-1 solution

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Proof. (a) If A, C both singular, then $A u=0=C v$, with $u, v \neq 0 \Rightarrow X=u v^{\star}$ is a nonzero solution.
(b) If B, D both singular, then $u^{\star} D=v^{\star} B=0$ with $u, v \neq 0 \Rightarrow X=u v^{\star}$ is a nonzero solution

구웅 If both A, C or both B, D are singular, then $A X B+C X^{\star} D=0$ has a rank-1 solution

We will see that also one of A, D, and one of B, C must be invertible!

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

We can restrict ourselves to:
If A, B invertible: $X+A^{-1} C X^{\star} D B^{-1}=0 \rightsquigarrow *$-Stein

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

We can restrict ourselves to:
If A, B invertible: $X+A^{-1} C X^{\star} D B^{-1}=0 \rightsquigarrow *$-Stein
If A, D invertible: $X B D^{-1}+A^{-1} C X^{\star}=0 \rightsquigarrow \star$-Sylvester

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

We can restrict ourselves to:
If A, B invertible: $X+A^{-1} C X^{\star} D B^{-1}=0 \rightsquigarrow *$-Stein
If A, D invertible: $X B D^{-1}+A^{-1} C X^{\star}=0 \rightsquigarrow \star$-Sylvester If C, B invertible: $C^{-1} A X+X^{\star} D B^{-1}=0 \rightsquigarrow \star$-Sylvester

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

We can restrict ourselves to:
If A, B invertible: $X+A^{-1} C X^{\star} D B^{-1}=0 \rightsquigarrow *$-Stein
If A, D invertible: $X B D^{-1}+A^{-1} C X^{\star}=0 \rightsquigarrow \star$-Sylvester If C, B invertible: $C^{-1} A X+X^{\star} D B^{-1}=0 \rightsquigarrow \star$-Sylvester If C, D invertible: $C^{-1} A X B D^{-1}+X^{\star}=0 \rightsquigarrow \star$-Stein

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Lemma 2

$A X B+X^{\star}=0$ has a unique solution $\Leftrightarrow A B^{\star} Y+Y^{\star}=0$ has a unique solution

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

Lemma 2

$A X B+X^{\star}=0$ has a unique solution $\Leftrightarrow A B^{\star} Y+Y^{\star}=0$ has a unique solution
Proof. $(\Leftarrow): A X B+X^{\star}=0(X \neq 0) \Rightarrow\left(A B^{\star}\right)\left(X^{\star} A^{\star}\right)+A X=0$, so $Y=(A X)^{\star} \neq 0$ is solution of $A B^{\star} Y+Y^{\star}=0$.
$(\Rightarrow): A B^{\star} Y+Y^{\star}=0(Y \neq 0) \Rightarrow X=B^{\star} Y \neq 0$ is a solution of $A X B+X^{\star}=0 . \square$

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

$+$

Lemma 2

$A X B+X^{\star}=0$ has a unique solution $\Leftrightarrow A B^{\star} Y+Y^{\star}=0$ has a unique solution

\Downarrow

Corollary

$A X B+C X^{\star} D=0$ has a unique solution if and only if
(a) A is invertible and $D^{\star} A^{-1} C Y+Y^{\star} B=0$ has a unique solution, or
(b) C is invertible and $B^{\star} C^{-1} A Y+Y^{\star} D=0$ has a unique solution.

Two basic preparatory results

Lemma 1

If $A X B+C X^{\star} D=0$ has a unique solution, then
(a) At least one of A, C is invertible.
(b) At least one of B, D is invertible.

$+$

Lemma 2

$A X B+X^{\star}=0$ has a unique solution $\Leftrightarrow A B^{\star} Y+Y^{\star}=0$ has a unique solution

\Downarrow

Corollary

$A X B+C X^{\star} D=0$ has a unique solution if and only if
(a) A is invertible and $D^{\star} A^{-1} C Y+Y^{\star} B=0$ has a unique solution, or
(b) C is invertible and $B^{\star} C^{-1} A Y+Y^{\star} D=0$ has a unique solution.

Characterization for *-Sylvester (again)

Theorem (Uniqueness of solution for x-Sylvester) [Byers-Kressner'06, Kressner-Schröder-Watkins'09]
$A X+X^{\star} D=E$ has unique solution if and only if $A-\lambda D^{\star}$ is regular and:

- $\star=*$: If $\lambda \in \Lambda\left(A-\lambda D^{*}\right)$, then $(1 / \bar{\lambda}) \notin \Lambda\left(A-\lambda D^{*}\right)$.
- $\star=\top$: If $1 \neq \lambda \in \Lambda\left(A-\lambda D^{\top}\right)$, then $(1 / \lambda) \notin \Lambda\left(A-\lambda D^{\top}\right)$, and $m_{1}\left(A-\lambda D^{\top}\right) \leq 1$.

Characterization for *-Sylvester (again)

Theorem (Uniqueness of solution for $*$-Sylvester) [Byers-Kressner'06, Kressner-Schröder-Watkins'09]
$A X+X^{\star} D=E$ has unique solution if and only if $A-\lambda D^{\star}$ is regular and:

- $\star=*$: If $\lambda \in \Lambda\left(A-\lambda D^{*}\right)$, then $(1 / \bar{\lambda}) \notin \Lambda\left(A-\lambda D^{*}\right)$.
- $\star=\mathrm{T}$: If $1 \neq \lambda \in \Lambda\left(A-\lambda D^{\top}\right)$, then $(1 / \lambda) \notin \Lambda\left(A-\lambda D^{\top}\right)$, and $m_{1}\left(A-\lambda D^{\top}\right) \leq 1$.

Two different proofs:

- [BK'06] ($\star=T$): Relies on some continuity arguments of operators. [KSW'09] ($\star=*$)
- [D-Dopico-Guillery-Montealegre-Reyes'11]: Using The Kronecker canonical form of $A+\lambda B^{\star}$.

Characterization for *-Sylvester (again)

Theorem (Uniqueness of solution for x-Sylvester) [Byers-Kressner'06, Kressner-Schröder-Watkins'09]
$A X+X^{\star} D=E$ has unique solution if and only if $A-\lambda D^{\star}$ is regular and:

- $\star=*$: If $\lambda \in \Lambda\left(A-\lambda D^{*}\right)$, then $(1 / \lambda) \notin \Lambda\left(A-\lambda D^{*}\right)$.
- $\star=\top$: If $1 \neq \lambda \in \Lambda\left(A-\lambda D^{\top}\right)$, then $(1 / \lambda) \notin \Lambda\left(A-\lambda D^{\top}\right)$, and $m_{1}\left(A-\lambda D^{\top}\right) \leq 1$.
$S \subseteq \mathbb{C} \cup\{\infty\}$ is
- reciprocal free if $\lambda \neq \mu^{-1}$ for all $\lambda, \mu \in S$
- $*$-reciprocal free if $\lambda \neq(\bar{\mu})^{-1}$ for all $\lambda, \mu \in S$

Characterization for *-Sylvester (again)

Theorem (Uniqueness of solution for $\begin{gathered} \\ \text {-Sylvester) [Byers-Kressner'06, }\end{gathered}$ Kressner-Schröder-Watkins'09]
$A X+X^{\star} D=E$ has unique solution if and only if $A-\lambda D^{\star}$ is regular and:

- $\star=*: ~ \Lambda\left(A-\lambda D^{*}\right)$ is $*$-reciprocal free.
- $\star=\mathrm{T}: \wedge\left(A-\lambda D^{\top}\right) \backslash\{1\}$ is reciprocal free, and $m_{1}\left(A-\lambda D^{\top}\right) \leq 1$.
$S \subseteq \mathbb{C} \cup\{\infty\}$ is
- reciprocal free if $\lambda \neq \mu^{-1}$ for all $\lambda, \mu \in S$
- $*$-reciprocal free if $\lambda \neq(\bar{\mu})^{-1}$ for all $\lambda, \mu \in S$

Characterization of uniqueness of solution

Theorem (Uniqueness for generalized \star-Sylvester)

$A X B+C X^{\star} D=E$ has a unique solution if and only if the pencil

$$
P(\lambda):=\left[\begin{array}{cc}
\lambda D^{\star} & B^{\star} \\
A & \lambda C
\end{array}\right]
$$

is regular and:

- $\star=*: ~ \Lambda(P)$ is $*$-reciprocal free.
- $\star=\mathrm{T}: \wedge(P) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(P)=m_{-1}(P) \leq 1$.

Remark: $m_{\lambda}(P)=m_{-\lambda}(P)$

Characterization of uniqueness of solution

Theorem (Uniqueness for generalized \star-Sylvester)

$A X B+C X^{\star} D=E$ has a unique solution if and only if the pencil

$$
P(\lambda):=\left[\begin{array}{cc}
\lambda D^{\star} & B^{\star} \\
A & \lambda C
\end{array}\right]
$$

is regular and:

- $\star=*: ~ \Lambda(P)$ is $*$-reciprocal free.
- $\star=\top: \wedge(P) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(P)=m_{-1}(P) \leq 1$.

Remark: $m_{\lambda}(P)=m_{-\lambda}(P)$

Proof of the main result

$$
\begin{gathered}
A X B+C X^{\star} D=E \\
\text { has unique sol. }
\end{gathered} \Leftrightarrow P(\lambda):=\left[\begin{array}{rrr}
\lambda D^{\star} & B^{\star} \\
A & \lambda C
\end{array}\right] \text { regular and } \begin{array}{cc}
\star=* & \wedge(P) * \text {-rec, free } \\
\begin{array}{|c|c|}
\star=T & \\
\hline
\end{array}(P) \backslash\{ \pm 1\} \text { rec. free, } m_{ \pm 1}(P) \leq 1
\end{array}
$$

Proof:

- A invertible: $\operatorname{det} P(\lambda)= \pm \operatorname{det}(A) \operatorname{det}\left(B^{\star}-\lambda^{2} D^{\star} A^{-1} C\right)$

$$
\left[\begin{array}{cc}
0 & I \\
I & -\lambda D^{\star} A^{-1}
\end{array}\right]\left[\begin{array}{cc}
\lambda D^{*} & B^{\star} \\
A & \lambda C
\end{array}\right]=\left[\begin{array}{cc}
A & \lambda C \\
0 & B^{\star}-\lambda^{2} D^{\star} A^{-1} C
\end{array}\right] .
$$

- C invertible: $\operatorname{det} P(\lambda)= \pm \operatorname{det}(C) \operatorname{det}\left(B^{\star} C^{-1} A-\lambda^{2} D^{*}\right)$

Proof of the main result

$$
\begin{gathered}
A X B+C X^{\star} D=E \\
\text { has unique sol. }
\end{gathered} \Leftrightarrow P(\lambda):=\left[\begin{array}{rrr}
\lambda D^{\star} & B^{\star} \\
A & \lambda C
\end{array}\right] \text { regular and } \begin{array}{cc}
\star=* & \wedge(P) * \text {-rec, free } \\
\begin{array}{|c|c|}
\star=T & \\
\hline
\end{array}(P) \backslash\{ \pm 1\} \text { rec. free, } m_{ \pm 1}(P) \leq 1
\end{array}
$$

Proof:

- A invertible: $\operatorname{det} P(\lambda)= \pm \operatorname{det}(A) \operatorname{det}\left(B^{\star}-\lambda^{2} D^{\star} A^{-1} C\right)$
- C invertible: $\operatorname{det} P(\lambda)= \pm \operatorname{det}(C) \operatorname{det}\left(B^{\star} C^{-1} A-\lambda^{2} D^{\star}\right)$

$$
\left[\begin{array}{cc}
\lambda I & -\lambda B^{\star} C^{-1} \\
0 & I
\end{array}\right] \cdot\left[\begin{array}{cc}
\lambda D^{\star} & B^{\star} \\
A & \lambda C
\end{array}\right]=\left[\begin{array}{cc}
\lambda^{2} D^{\star}-B^{\star} C^{-1} A & 0 \\
A & \lambda C
\end{array}\right] .
$$

Proof of the main result

$$
\begin{aligned}
& A X B+C X^{\star} D=E \\
& \text { has unique sol. }
\end{aligned} \Leftrightarrow P(\lambda):=\left[\begin{array}{rr}
\lambda D^{\star} & B^{\star} \\
A & \lambda C
\end{array}\right] \text { regular and } \begin{array}{|c|c|}
\star=* & \wedge(P) * \text {-rec, free } \\
\begin{array}{|c|}
\star=\top
\end{array}(P) \backslash\{ \pm 1\} \text { rec. free, } m_{ \pm 1}(P) \leq 1
\end{array}
$$

Proof:

- A invertible: $\operatorname{det} P(\lambda)= \pm \operatorname{det}(A) \operatorname{det}\left(B^{\star}-\lambda^{2} D^{\star} A^{-1} C\right)$
- C invertible: $\operatorname{det} P(\lambda)= \pm \operatorname{det}(C) \operatorname{det}\left(B^{\star} C^{-1} A-\lambda^{2} D^{\star}\right)$

Proof of the main result

Proof:

- A invertible: $\operatorname{det} P(\lambda)= \pm \operatorname{det}(A) \operatorname{det}\left(B^{\star}-\lambda^{2} D^{\star} A^{-1} C\right)$
- C invertible: $\operatorname{det} P(\lambda)= \pm \operatorname{det}(C) \operatorname{det}\left(B^{\star} C^{-1} A-\lambda^{2} D^{\star}\right)$

Recall:
$A X B+C X^{\star} D=0$ has a unique solution iff
(a) A is invertible and $D^{\star} A^{-1} C Y+Y^{\star} B=0$ has a unique solution, or
(b) C is invertible and $B^{\star} C^{-1} A Y+Y^{\star} D=0$ has a unique solution.
$A X+X^{\star} D=E$ has unique solution iff $A-\lambda D^{\star}$ is regular and:
$\star=*$
free.

- $\wedge\left(A-\lambda D^{*}\right)$ is $*$-reciprocal
- $\star=\mathrm{T}: \wedge\left(A-\lambda D^{\top}\right) \backslash\{1\}$ is
reciprocal free, and $m_{1}\left(A-\lambda D^{\top}\right) \leq 1$.

The periodic Schur decomposition

Theorem [Bojanczyk-Golub-Van Dooren'92]

There are $U_{1}, U_{2}, V_{1}, V_{2}$ unitary such that

$$
\begin{array}{cc}
U_{1} A V_{1}=T_{A}, & U_{1} C V_{2}=T_{C}, \\
U_{2} B^{\star} V_{1}=T_{B}^{\star}, & U_{2} D^{\star} V_{2}=T_{D}^{\star},
\end{array}
$$

with $T_{A}, T_{B}^{\star}, T_{C}, T_{D}^{\star}$ upper triangular.

The periodic Schur decomposition

Theorem [Bojanczyk-Golub-Van Dooren'92]

There are $U_{1}, U_{2}, V_{1}, V_{2}$ unitary such that

$$
\begin{array}{cc}
U_{1} A V_{1}=T_{A}, & U_{1} C V_{2}=T_{C}, \\
U_{2} B^{\star} V_{1}=T_{B}^{\star}, & U_{2} D^{\star} V_{2}=T_{D}^{\star},
\end{array}
$$

with $T_{A}, T_{B}^{\star}, T_{C}, T_{D}^{\star}$ upper triangular.

Connection with the pencil $P(\lambda)$:

$$
\left[\begin{array}{ll}
U_{2} & \\
& U_{1}
\end{array}\right]\left[\begin{array}{cc}
\lambda D^{\star} & B^{\star} \\
A & \lambda C
\end{array}\right]\left[\begin{array}{ll}
V_{1} & \\
& V_{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda T_{D}^{\star} & T_{B B}^{\star} \\
T_{A} & \lambda T_{C}
\end{array}\right]
$$

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

X_{11}	\ldots	$X_{1, k-1}$	$X_{1 k}$
\vdots	\ddots	\vdots	\vdots
$X_{k-1,1}$	\ldots	$X_{k-1, k-1}$	$X_{k-1, k}$
$X_{k 1}$	\ldots	$X_{k, k-1}$	$X_{k k}$

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

$$
\begin{array}{|cccc|}
\hline X_{11} & \ldots & X_{1, k-1} & X_{1 k} \\
\vdots & \ddots & \vdots & \vdots \\
X_{k-1,1} & \ldots & X_{k-1, k-1} & X_{k-1, k} \\
X_{k 1} & \ldots & X_{k, k-1} & X_{k k} \\
\hline
\end{array}
$$

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

X_{11}	\ldots	$X_{1, k-1}$	$X_{1 k}$
\vdots	\ddots	\vdots	\vdots
$X_{k-1,1}$	\ldots	$X_{k-1, k-1}$	$X_{k-1, k}$
$X_{k 1}$	\ldots	$X_{k, k-1}$	$X_{k k}$

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

X_{11}	\ldots	$X_{1, k-1}$	$X_{1 k}$
\vdots	\ddots	\vdots	\vdots
$X_{k-1,1}$	\ldots	$X_{k-1, k-1}$	$X_{k-1, k}$
$X_{k 1}$	\ldots	$X_{k, k-1}$	$X_{k k}$

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

X_{11}	\ldots	$X_{1, k-1}$	$X_{1 k}$
\vdots	\ddots	\vdots	\vdots
$X_{k-1,1}$	\ldots	$X_{k-1, k-1}$	$X_{k-1, k}$
$X_{k 1}$	\ldots	$X_{k, k-1}$	$X_{k k}$

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

X_{11}	\ldots	$X_{1, k-i}$	\ldots	$X_{1 k}$
\vdots	\ddots	\vdots	\vdots	\vdots
$X_{k-i, 1}$	\ldots	$X_{k-i, k-i}$	\ldots	$X_{k-i, k}$
\vdots	\ddots	\vdots	\ddots	\vdots
$X_{k 1}$	\ldots	$X_{k, k-1}$	\ldots	$X_{k k}$

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

X_{11}	\ldots	$X_{1, k-i}$	\ldots	$X_{1 k}$
\vdots	\ddots	\vdots	\vdots	\vdots
$X_{k-i, 1}$	\ldots	$X_{k-i, k-i}$	\ldots	$X_{k-i, k}$
\vdots	\ddots	\vdots	\ddots	\vdots
$X_{k 1}$	\ldots	$X_{k, k-1}$	\ldots	$X_{k k}$

An $O\left(n^{3}\right)$ algorithm

(Based on the algorithm in [D-Dopico'11] for $A X+X^{\top} D=E$, outlined in [Chiang-Chu-Lin'12])

X_{11}	\ldots	$X_{1, k-i}$	\ldots	$X_{1 k}$
\vdots	\ddots	\vdots	\vdots	\vdots
$X_{k-i, 1}$	\ldots	$X_{k-i, k-i}$	\ldots	$X_{k-i, k}$
\vdots	\ddots	\vdots	\ddots	\vdots
$X_{k 1}$	\ldots	$X_{k, k-1}$	\ldots	$X_{k k}$

Systems of generalized \star-Sylvester equations

Goal 1:

Obtain necessary and sufficient conditions for uniqueness of solution of systems of equations of the form $A X B+C X^{\star} D=E$ (with both $X=Y$ or $X \neq Y$) and $\star=1, \top, *$.

Goal 2:

Write an algorithm to compute the unique solution.

Systems of generalized \star-Sylvester equations

Goal 1:

Obtain necessary and sufficient conditions for uniqueness of solution of systems of equations of the form $A X B+C X^{\star} D=E$ (with both $X=Y$ or $X \neq Y$) and $\star=1, \top, *$.

Goal 2:

Write an algorithm to compute the unique solution.
(Ongoing work with B. Iannazzo, F. Poloni, and L. Robol)

Systems of generalized \star-Sylvester equations

Goal 1:

Obtain necessary and sufficient conditions for uniqueness of solution of systems of equations of the form $A X B+C X^{\star} D=E$ (with both $X=Y$ or $X \neq Y$) and $\star=1, \top, *$.

Goal 2:

Write an algorithm to compute the unique solution.
(Ongoing work with B. Iannazzo, F. Poloni, and L. Robol)

F．De Terán，B．Iannazzo，Uniqueness of solution of a generalized ＊－Sylvester matrix equation，LAA 493 （2016）

圊 R．Byers，D．Kressner，Structured condition numbers for invariant subspaces，SIMAX 28 （2）（2006）

目 C．－Y．Chiang，K．－W．E．Chu，W．－W．Lin，On the $*$－Sylvester equation $A X \pm X^{\star} B=C$ ，AMC 218 （2012）

園 F．De Terán，F．M．Dopico，Consistency and efficient solution of the Sylvester equation for ＊－congruence，ELA 22 （2011）
目 F．De Terán，F．M．Dopico，N．Guillery，D．Montealegre，N．Z． ReYEs，The solution of the equation $A X+X^{\star} B=0$ ，LAA 438 （2011）
D．Kressner，C．Schröder，D．S．Watkins，Implicit QR algorithms for palindromic and even eigenvalue problems，NA 51（2）（2009）

F．De Terán，B．Iannazzo，Uniqueness of solution of a generalized ＊－Sylvester matrix equation，LAA 493 （2016）

圊 R．Byers，D．Kressner，Structured condition numbers for invariant subspaces，SIMAX 28 （2）（2006）

目 C．－Y．Chiang，K．－W．E．Chu，W．－W．Lin，On the $*$－Sylvester equation $A X \pm X^{\star} B=C$ ，AMC 218 （2012）

園 F．De Terán，F．M．Dopico，Consistency and efficient solution of the Sylvester equation for \star－congruence，ELA 22 （2011）
围 F．De Terán，F．M．Dopico，N．Guillery，D．Montealegre，N．Z． ReYEs，The solution of the equation $A X+X^{\star} B=0$ ，LAA 438 （2011）
D．Kressner，C．Schröder，D．S．Watkins，Implicit QR algorithms for palindromic and even eigenvalue problems，NA 51（2）（2009）

THANKS FOR YOUR ATTENTION ！！！！！

