

Uniqueness of solution of a generalized *-Sylvester equation

Fernando de Terán

Departamento de Matemáticas Universidad Carlos III de Madrid

ALAMA2016, León June 20–22, 2016 Joint work with B. lannazzo

Fernando de Terán (UC3M)

Unique solution of generalized *-Sylvester equations

ALAMA, June 2016 1 / 15

Generalized *****-Sylvester equation

Given $A, B, C, D, E \in \mathbb{C}^{n \times n}$

Goal: Find necessary and sufficient conditions for the equation

 $AXB + CX^*D = E$

generalized ***-Sylvester** equation

to have a unique solution.

 $(X \in \mathbb{C}^{n \times n}, \text{ unknown})$

 $(\star = \top \text{ or } \ast)$

• Natural extension of $AX + X^*D = E$.

- Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]
- Congruence orbits (D = A, E = 0) [D.-Dopico'11]
- Closely related to AXB + CXD = E [Chu'87]
- Iterative algorithms for solving $\sum_{i=1}^{r} A_i X B_i + \sum_{j=1}^{s} C_j X^{\top} D_j = E$ [Wang-Cheng-Wei'07] [Xie-Ding-Ding'09] [Li-Wang-Zhou-Duan'10]

[Wang-Cheng-Weilor], [Xie-Ding-Ding 09], [Li-Wang-Zhou-Duan 10], [Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14],...

• Natural extension of $AX + X^*D = E$.

 Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]

Congruence orbits (D = A, E = 0) [D.-Dopico'11]

- Closely related to AXB + CXD = E [Chu'87]
- Iterative algorithms for solving $\sum_{i=1}^{r} A_i X B_i + \sum_{j=1}^{s} C_j X^{\top} D_j = E$

[Wang-Cheng-Wei'07], [Xie-Ding-Ding'09], [Li-Wang-Zhou-Duan'10], [Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14],...

• Natural extension of $AX + X^*D = E$.

- Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]
- Congruence orbits (D = A, E = 0) [D.-Dopico'11]
- Closely related to AXB + CXD = E [Chu'87]
- Iterative algorithms for solving $\sum_{i=1}^{r} A_i X B_i + \sum_{j=1}^{s} C_j X^{\top} D_j = E$

[Wang-Cheng-Wei'07], [Xie-Ding-Ding'09], [Li-Wang-Zhou-Duan'10], [Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14],...

- Natural extension of $AX + X^*D = E$.
 - Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]
 - Congruence orbits (D = A, E = 0) [D.-Dopico'11]
- Closely related to AXB + CXD = E [Chu'87]
- Iterative algorithms for solving $\sum_{i=1}^{r} A_i X B_i + \sum_{j=1}^{s} C_j X^{\top} D_j = E$

[Wang-Cheng-Wei'07], [Xie-Ding-Ding'09], [Li-Wang-Zhou-Duan'10], [Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14],...

- Natural extension of $AX + X^*D = E$.
 - Numerical methods for palindromic eigenvalue problems [Byers-Kressner'06], [Kressner-Schröder-Watkins'09], [Dmytryshyn-Kågstöm'15]
 - Congruence orbits (*D* = *A*, *E* = 0) [D.-Dopico'11]
- Closely related to AXB + CXD = E [Chu'87]
- Iterative algorithms for solving $\sum_{i=1}^{r} A_i X B_i + \sum_{j=1}^{s} C_j X^{\top} D_j = E$ [Wang-Cheng-Wei'07], [Xie-Ding-Ding'09], [Li-Wang-Zhou-Duan'10], [Song-Chen'11], [Song-Chen-Zhao'11], [Song-Feng-Whang-Zhao'14]....

$\Lambda(A - \lambda B) = \text{Spectrum of } A - \lambda B$

Theorem (Uniqueness of solution for generalized Sylvester) [Chu'87]

The equation AXB - CXD = E has a **unique solution** iff $A - \lambda C$ and $D - \lambda B$ are **regular** and $\Lambda(A - \lambda C) \cap \Lambda(D - \lambda B) = \emptyset$.

 $(A, C \in \mathbb{R}^{m \times m}; B, D \in \mathbb{R}^{n \times n})$

Theorem (Uniqueness of solution for *-Sylvester) [Byers-Kressener'06, Kressner-Schröder-Watkins'09]

 $AX + X^*D = E$ has unique solution iff $A - \lambda D^*$ is **regular** and:

• $\star = \star$: If $\lambda \in \Lambda(A - \lambda D^*)$, then $(1/\overline{\lambda}) \notin \Lambda(A - \lambda D^*)$.

• $\star = \top$: If $1 \neq \lambda \in \Lambda(A - \lambda D^{\top})$, then $(1/\lambda) \notin \Lambda(A - \lambda D^{\top})$, and $m_1(A - \lambda D^{\top}) \leq 1$.

 $m_{\mu}(A - \lambda B)$: algebraic multiplicity of μ in $A - \lambda B$

< □ > < 同

 $\Lambda(A - \lambda B) = \text{Spectrum of } A - \lambda B$

Theorem (Uniqueness of solution for generalized Sylvester) [Chu'87]

The equation AXB - CXD = E has a **unique solution** iff $A - \lambda C$ and $D - \lambda B$ are **regular** and $\Lambda(A - \lambda C) \cap \Lambda(D - \lambda B) = \emptyset$.

 $(A, C \in \mathbb{R}^{m \times m}; B, D \in \mathbb{R}^{n \times n})$

Theorem (Uniqueness of solution for *-Sylvester) [Byers-Kressener'06, Kressner-Schröder-Watkins'09]

 $AX + X^*D = E$ has unique solution iff $A - \lambda D^*$ is **regular** and:

• $\star = \star$: If $\lambda \in \Lambda(A - \lambda D^*)$, then $(1/\overline{\lambda}) \notin \Lambda(A - \lambda D^*)$.

• $\star = \top$: If $1 \neq \lambda \in \Lambda(A - \lambda D^{\top})$, then $(1/\lambda) \notin \Lambda(A - \lambda D^{\top})$, and $m_1(A - \lambda D^{\top}) \leq 1$.

 $m_{\mu}(A - \lambda B)$: algebraic multiplicity of μ in $A - \lambda B$

 $\Lambda(A - \lambda B) = \text{Spectrum of } A - \lambda B$

Theorem (Uniqueness of solution for generalized Sylvester) [Chu'87]

The equation AXB - CXD = E has a **unique solution** iff $A - \lambda C$ and $D - \lambda B$ are **regular** and $\Lambda(A - \lambda C) \cap \Lambda(D - \lambda B) = \emptyset$.

 $(A, C \in \mathbb{R}^{m \times m}; B, D \in \mathbb{R}^{n \times n})$

Theorem (Uniqueness of solution for *-Sylvester) [Byers-Kressener'06, Kressner-Schröder-Watkins'09]

 $AX + X^*D = E$ has unique solution iff $A - \lambda D^*$ is **regular** and:

• $\star = \star$: If $\lambda \in \Lambda(A - \lambda D^*)$, then $(1/\overline{\lambda}) \notin \Lambda(A - \lambda D^*)$.

• $\star = \top$: If $1 \neq \lambda \in \Lambda(A - \lambda D^{\top})$, then $(1/\lambda) \notin \Lambda(A - \lambda D^{\top})$, and $m_1(A - \lambda D^{\top}) \leq 1$.

 $m_{\mu}(A - \lambda B)$: algebraic multiplicity of μ in $A - \lambda B$

• • • • • • • • • • • •

 $\Lambda(A - \lambda B) = \text{Spectrum of } A - \lambda B$

Theorem (Uniqueness of solution for generalized Sylvester) [Chu'87]

The equation AXB - CXD = E has a **unique solution** iff $A - \lambda C$ and $D - \lambda B$ are **regular** and $\Lambda(A - \lambda C) \cap \Lambda(D - \lambda B) = \emptyset$.

 $(A, C \in \mathbb{R}^{m \times m}; B, D \in \mathbb{R}^{n \times n})$

Theorem (Uniqueness of solution for *-Sylvester) [Byers-Kressener'06, Kressner-Schröder-Watkins'09]

 $AX + X^*D = E$ has unique solution iff $A - \lambda D^*$ is regular and:

•
$$\star = \star$$
: If $\lambda \in \Lambda(A - \lambda D^*)$, then $(1/\overline{\lambda}) \notin \Lambda(A - \lambda D^*)$.

•
$$\star = \top$$
: If $1 \neq \lambda \in \Lambda(A - \lambda D^{\top})$, then $(1/\lambda) \notin \Lambda(A - \lambda D^{\top})$, and $m_1(A - \lambda D^{\top}) \leq 1$.

 $m_{\mu}(A - \lambda B)$: algebraic multiplicity of μ in $A - \lambda B$

For Know conditions for AXB - CXD = E and $AX + X^*D = E$: in terms of **spectral properties** of **matrix pencils** constructed from the coefficient matrices.

For Know conditions for AXB - CXD = E and $AX + X^*D = E$: in terms of **spectral properties** of **matrix pencils** constructed from the coefficient matrices.

Q: Analogous characterization for $AXB + CX^*D = E$??

•
$$\star = \top$$
: $[B^{\top} \otimes A + \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$

• $\star = \star$: $(B^{\top} \otimes A) \operatorname{vec}(X) + \Pi(C \otimes D^{\top}) \operatorname{vec}(\overline{X}) = \operatorname{vec}(E)$

• $\star = \top$: $[B^{\top} \otimes A + \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$ Linear over $\mathbb{C} \checkmark$

•
$$\star = \star$$
: $(B^{\top} \otimes A)$ vec $(X) + \Pi(C \otimes D^{\top})$ vec $(\overline{X}) =$ vec (E)

- $\star = \top$: $[B^{\top} \otimes A + \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$ Linear over $\mathbb{C} \checkmark$
- $\star = \star$: $(B^{\top} \otimes A)$ vec $(X) + \Pi(C \otimes D^{\top})$ vec $(\overline{X}) =$ vec (E)Not linear over \mathbb{C}

- $\star = \top$: $[B^{\top} \otimes A + \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$ Linear over $\mathbb{C} \checkmark$
- $\star = \star$: $(B^{\top} \otimes A)$ vec $(X) + \Pi(C \otimes D^{\top})$ vec $(\overline{X}) =$ vec (E)Not linear over $\mathbb{C} \rightarrow$ vec (X) = [vec (Re X); vec (Im X)]

- $\star = \top$: $[B^{\top} \otimes A + \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$ Linear over $\mathbb{C} \checkmark$
- $\star = \star$: $(B^{\top} \otimes A)$ vec $(X) + \Pi(C \otimes D^{\top})$ vec $(\overline{X}) =$ vec (E)Linear over $\mathbb{R} \checkmark \to$ vec (X) = [vec $(\operatorname{Re} X)$; vec $(\operatorname{Im} X)$]

•
$$\star = \top$$
: $[B^{\top} \otimes A + \Pi(C \otimes D^{\top})] \operatorname{vec}(X) = \operatorname{vec}(E)$
Linear over $\mathbb{C} \checkmark$

•
$$\star = \star$$
: $(B^{\top} \otimes A)$ vec $(X) + \Pi(C \otimes D^{\top})$ vec $(\overline{X}) =$ vec (E)
Linear over $\mathbb{R} \checkmark \to$ vec $(X) = [$ vec $(\operatorname{Re} X)$; vec $(\operatorname{Im} X)$ $]$

 $\mathbb{P}^{T}AXB + CX^{*}D = E$ can be written as a linear system MY = b:

$$Y = \begin{cases} \operatorname{vec}(X), & \text{if } \star = \top \\ [\operatorname{vec}(\operatorname{\mathsf{Re}} X); \operatorname{vec}(\operatorname{\mathsf{Im}} X)], & \text{if } \star = \ast \end{cases}$$

The vec approach (cont.)

$$M \in \begin{cases} \mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \ast \end{cases}$$

$$M \in \begin{cases} \mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \ast \end{cases}$$

© Too large!

$$M \in \begin{cases} \mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \ast \end{cases}$$

© Too large!

© Not easy to handle with

$$M \in \begin{cases} \mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \star \end{cases} \quad \textcircled{O} \text{ Too large!} \\ \textcircled{O} \text{ Not easy to handle with } \end{cases}$$

 $AXB + CX^*D = E$ has a unique solution $\Leftrightarrow M$ is nonsingular

$$M \in \begin{cases} \mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = \star \end{cases}$$
 \textcircled{O} Too large!
 \textcircled{O} Not easy to handle with

 $AXB + CX^*D = E$ has a unique solution $\Leftrightarrow M$ is nonsingular

$$AXB + CX^*D = E$$
 has a unique solution
$$(AXB + CX^*D = 0$$
 has a unique solution

$$M \in \begin{cases} \mathbb{C}^{n^2 \times n^2}, & \text{if } \star = \top, \\ \mathbb{R}^{(2n^2) \times (2n^2)}, & \text{if } \star = * \end{cases}$$
 \bigcirc Too large!
 \bigcirc Not easy to handle with

 $AXB + CX^*D = E$ has a unique solution $\Leftrightarrow M$ is nonsingular

$$AXB + CX^*D = E$$
 has a unique solution
$$(AXB + CX^*D = 0$$
 has a unique solution

We only need to look at the homogeneous equation!

- If $AXB + CX^*D = 0$ has a unique solution, then
- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

Reduction to a *-Sylvester equation

Two basic preparatory results

- If $AXB + CX^*D = 0$ has a unique solution, then
- (a) At least one of *A*, *C* is **invertible**.
- (b) At least one of *B*, *D* is **invertible**.

Reduction to a *-Sylvester equation

Two basic preparatory results

- If $AXB + CX^*D = 0$ has a unique solution, then
- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

- If $AXB + CX^*D = 0$ has a unique solution, then
- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.

(b) At least one of *B*, *D* is **invertible**.

Proof. (a) If *A*, *C* both singular, then Au = 0 = Cv, with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution. (b) If *B*, *D* both singular, then $u^*D = v^*B = 0$ with $u, v \neq 0 \Rightarrow X = uv^*$ is a

(b) If *B*, *D* both singular, then $u^*D = v^*B = 0$ with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.

(b) At least one of *B*, *D* is **invertible**.

Proof. (a) If *A*, *C* both singular, then Au = 0 = Cv, with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution. (b) If *B*, *D* both singular, then $u^*D = v^*B = 0$ with $u, v \neq 0 \Rightarrow X = uv^*$ is a

nonzero solution

If both A, C or both B, D are singular, then $AXB + CX^*D = 0$ has a **rank-1** solution

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

(a) At least one of A, C is invertible.

(b) At least one of *B*, *D* is **invertible**.

Proof. (a) If *A*, *C* both singular, then Au = 0 = Cv, with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution. (b) If *B*, *D* both singular, then $u^*D = v^*B = 0$ with $u, v \neq 0 \Rightarrow X = uv^*$ is a nonzero solution

If both A, C or both B, D are singular, then $AXB + CX^*D = 0$ has a rank-1 solution

We will see that also one of *A*, *D*, and one of *B*, *C* must be **invertible**!

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

We can restrict ourselves to:

If A, B invertible: $X + A^{-1}CX^*DB^{-1} = 0 \rightsquigarrow *-Stein$

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

We can restrict ourselves to:

If A, B invertible: $X + A^{-1}CX^*DB^{-1} = 0 \rightsquigarrow \star\text{-Stein}$ If A, D invertible: $XBD^{-1} + A^{-1}CX^* = 0 \rightsquigarrow \star\text{-Sylvester}$

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

We can restrict ourselves to:

If *A*, *B* invertible: $X + A^{-1}CX^*DB^{-1} = 0 \rightarrow \text{*-Stein}$ If *A*, *D* invertible: $XBD^{-1} + A^{-1}CX^* = 0 \rightarrow \text{*-Sylvester}$ If *C*, *B* invertible: $C^{-1}AX + X^*DB^{-1} = 0 \rightarrow \text{*-Sylvester}$

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

We can restrict ourselves to:

If A, B invertible: $X + A^{-1}CX^*DB^{-1} = 0 \rightsquigarrow *-Stein$

- If A, D invertible: $XBD^{-1} + A^{-1}CX^{\star} = 0 \rightsquigarrow \star -Sylvester$
- If C, B invertible: $C^{-1}AX + X^*DB^{-1} = 0 \rightsquigarrow *-Sylvester$
- If C, D invertible: $C^{-1}AXBD^{-1} + X^* = 0 \rightsquigarrow *-Stein$

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

Lemma 2

 $AXB + X^* = 0$ has a unique solution $\Leftrightarrow AB^*Y + Y^* = 0$ has a unique solution

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

Lemma 2

 $AXB + X^* = 0$ has a unique solution $\Leftrightarrow AB^*Y + Y^* = 0$ has a unique solution

Proof. (
$$\Leftarrow$$
): $AXB + X^* = 0$ ($X \neq 0$) \Rightarrow (AB^*)(X^*A^*) + $AX = 0$, so
 $Y = (AX)^* \neq 0$ is solution of $AB^*Y + Y^* = 0$.
(\Rightarrow): $AB^*Y + Y^* = 0$ ($Y \neq 0$) $\Rightarrow X = B^*Y \neq 0$ is a solution of $AXB + X^* = 0$.

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

t

Lemma 2

 $AXB + X^* = 0$ has a unique solution $\Leftrightarrow AB^*Y + Y^* = 0$ has a unique solution

V

Corollary

 $AXB + CX^*D = 0$ has a unique solution if and only if

- (a) A is invertible and $D^*A^{-1}CY + Y^*B = 0$ has a unique solution, or
- (b) *C* is **invertible** and $B^*C^{-1}AY + Y^*D = 0$ has a unique solution.

< □ > < 同

Lemma 1

If $AXB + CX^*D = 0$ has a unique solution, then

- (a) At least one of A, C is invertible.
- (b) At least one of *B*, *D* is **invertible**.

t

Lemma 2

 $AXB + X^* = 0$ has a unique solution $\Leftrightarrow AB^*Y + Y^* = 0$ has a unique solution

\Downarrow

Corollary

*-Sylvester!!!

 $AXB + CX^*D = 0$ has a unique solution if and only if

- (a) A is invertible and $D^*A^{-1}CY + Y^*B = 0$ has a unique solution, or
- (b) *C* is **invertible** and $B^*C^{-1}AY + Y^*D = 0$ has a unique solution.

Theorem (Uniqueness of solution for *****-Sylvester) [Byers-Kressner'06, Kressner-Schröder-Watkins'09]

 $AX + X^*D = E$ has unique solution if and only if $A - \lambda D^*$ is regular and:

- $\star = \star$: If $\lambda \in \Lambda(A \lambda D^*)$, then $(1/\overline{\lambda}) \notin \Lambda(A \lambda D^*)$.
- $\star = \top$: If $1 \neq \lambda \in \Lambda(A \lambda D^{\top})$, then $(1/\lambda) \notin \Lambda(A \lambda D^{\top})$, and $m_1(A \lambda D^{\top}) \leq 1$.

Theorem (Uniqueness of solution for *-Sylvester) [Byers-Kressner'06, Kressner-Schröder-Watkins'09]

 $AX + X^*D = E$ has unique solution if and only if $A - \lambda D^*$ is regular and:

- $\star = \star$: If $\lambda \in \Lambda(A \lambda D^*)$, then $(1/\overline{\lambda}) \notin \Lambda(A \lambda D^*)$.
- $\star = \top$: If $1 \neq \lambda \in \Lambda(A \lambda D^{\top})$, then $(1/\lambda) \notin \Lambda(A \lambda D^{\top})$, and $m_1(A \lambda D^{\top}) \leq 1$.

Two different proofs:

- [BK'06] (* = T): Relies on some continuity arguments of operators. [KSW'09] (* = *)
- [D-Dopico-Guillery-Montealegre-Reyes'11]: Using The Kronecker canonical form of $A + \lambda B^*$.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶

Theorem (Uniqueness of solution for *****-Sylvester) [Byers-Kressner'06, Kressner-Schröder-Watkins'09]

 $AX + X^*D = E$ has unique solution if and only if $A - \lambda D^*$ is regular and:

• $\star = \star$: If $\lambda \in \Lambda(A - \lambda D^*)$, then $(1/\overline{\lambda}) \notin \Lambda(A - \lambda D^*)$.

• $\star = \top$: If $1 \neq \lambda \in \Lambda(A - \lambda D^{\top})$, then $(1/\lambda) \notin \Lambda(A - \lambda D^{\top})$, and $m_1(A - \lambda D^{\top}) \leq 1$.

 $S \subseteq \mathbb{C} \cup \{\infty\}$ is

- reciprocal free if $\lambda \neq \mu^{-1}$ for all $\lambda, \mu \in S$
- *-reciprocal free if $\lambda \neq (\overline{\mu})^{-1}$ for all $\lambda, \mu \in S$

Theorem (Uniqueness of solution for *****-Sylvester) [Byers-Kressner'06, Kressner-Schröder-Watkins'09]

 $AX + X^*D = E$ has unique solution if and only if $A - \lambda D^*$ is **regular** and:

- $\star = *$: $\wedge (A \lambda D^*)$ is *-reciprocal free.
- $\star = \top$: $\Lambda(A \lambda D^{\top}) \setminus \{1\}$ is reciprocal free, and $m_1(A \lambda D^{\top}) \leq 1$.

$S \subseteq \mathbb{C} \cup \{\infty\}$ is

- reciprocal free if $\lambda \neq \mu^{-1}$ for all $\lambda, \mu \in S$
- *-reciprocal free if $\lambda \neq (\overline{\mu})^{-1}$ for all $\lambda, \mu \in S$

Characterization of uniqueness of solution

Theorem (Uniqueness for generalized *-Sylvester)

 $AXB + CX^{\star}D = E$ has a unique solution if and only if the pencil

$$P(\lambda) := \left[egin{array}{cc} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array}
ight]$$

is **regular** and:

- $\star = *$: $\Lambda(P)$ is *-reciprocal free.
- $\star = \top$: $\Lambda(P) \setminus \{\pm 1\}$ is reciprocal free and $m_1(P) = m_{-1}(P) \le 1$.

Remark: $m_{\lambda}(P) = m_{-\lambda}(P)$

Characterization of uniqueness of solution

Theorem (Uniqueness for generalized *-Sylvester)

 $AXB + CX^*D = E$ has a unique solution if and only if the pencil

$$P(\lambda) := \left[egin{array}{cc} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array}
ight]$$

is **regular** and:

- $\star = *$: $\Lambda(P)$ is *-reciprocal free.
- $\star = \top$: $\Lambda(P) \setminus \{\pm 1\}$ is reciprocal free and $m_1(P) = m_{-1}(P) \le 1$.

Remark: $m_{\lambda}(P) = m_{-\lambda}(P)$

The main result

Proof of the main result

 $\begin{array}{l} AXB + CX^*D = E \\ \text{has unique sol.} \end{array} \Leftrightarrow P(\lambda) := \begin{bmatrix} \lambda D^* \ B^* \\ A \ \lambda C \end{bmatrix} \text{ regular and } \begin{array}{l} \underbrace{\star = \ast}_{\star = \top} \Lambda(P) \text{ } \ast \text{-rec, free} \\ \hline \star = \top \\ \Lambda(P) \setminus \{\pm 1\} \text{ rec. free, } m_{\pm 1}(P) \leq 1 \end{array}$

Proof:

• A invertible: det $P(\lambda) = \pm \det(A) \det(B^* - \lambda^2 D^* A^{-1} C)$

$$\begin{bmatrix} 0 & I \\ I & -\lambda D^* A^{-1} \end{bmatrix} \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} = \begin{bmatrix} A & \lambda C \\ 0 & B^* - \lambda^2 D^* A^{-1} C \end{bmatrix}.$$

• *C* invertible: det $P(\lambda) = \pm det(C) det(B^*C^{-1}A - \lambda^2 D^*)$

Proof of the main result

$$\begin{array}{l} AXB + CX^{\star}D = E \\ \text{has unique sol.} \end{array} \Leftrightarrow P(\lambda) := \begin{bmatrix} \lambda D^{\star} B^{\star} \\ A \lambda C \end{bmatrix} \text{ regular and } \boxed{\begin{array}{l} \star = \star \\ \star = \top \end{array}} \Lambda(P) \text{ \star-rec, free} \\ \hline \star = \top \\ \Lambda(P) \setminus \{\pm 1\} \text{ rec. free, } m_{\pm 1}(P) \leq 1 \end{array}$$

Proof:

- A invertible: det $P(\lambda) = \pm \det(A) \det(B^* \lambda^2 D^* A^{-1} C)$
- *C* invertible: det $P(\lambda) = \pm \det(C) \det(B^*C^{-1}A \lambda^2 D^*)$

$$\begin{bmatrix} \lambda I & -\lambda B^* C^{-1} \\ 0 & I \end{bmatrix} \cdot \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} = \begin{bmatrix} \lambda^2 D^* - B^* C^{-1} A & 0 \\ A & \lambda C \end{bmatrix}.$$

Proof of the main result

$$\begin{array}{l} AXB + CX^{\star}D = E \\ \text{has unique sol.} \end{array} \Leftrightarrow P(\lambda) := \begin{bmatrix} \lambda D^{\star} B^{\star} \\ A \lambda C \end{bmatrix} \text{ regular and } \boxed{\begin{array}{c} \star = \ast \\ \star = \top \end{array}} \Lambda(P) \times \text{-rec, free} \\ \hline \star = \top \\ \Lambda(P) \setminus \{\pm 1\} \text{ rec. free, } m_{\pm 1}(P) \leq 1 \end{array}$$

Proof:

- A invertible: det $P(\lambda) = \pm \det(A) \det(B^* \lambda^2 D^* A^{-1} C)$
- *C* invertible: det $P(\lambda) = \pm \det(C) \det(B^*C^{-1}A \lambda^2 D^*)$

Proof of the main result

$$\begin{array}{l} AXB + CX^{\star}D = E \\ \text{has unique sol.} \end{array} \Leftrightarrow P(\lambda) := \begin{bmatrix} \lambda D^{\star} B^{\star} \\ A \ \lambda C \end{bmatrix} \text{ regular and } \begin{array}{l} \underbrace{\star = \ast}_{\star = \top} \Lambda(P) \text{ } \ast \text{-rec, free} \\ \underbrace{\star = \top}_{\star = \top} \Lambda(P) \setminus \{\pm 1\} \text{ rec. free, } m_{\pm 1}(P) \leq 1 \end{array}$$

Proof:

- A invertible: det $P(\lambda) = \pm \det(A) \det(B^* \lambda^2 D^* A^{-1} C)$
- *C* invertible: det $P(\lambda) = \pm \det(C) \det(B^*C^{-1}A \lambda^2 D^*)$

Recall:

 $AXB + CX^*D = 0$ has a unique solution iff

- (a) *A* is **invertible** and $D^*A^{-1}CY + Y^*B = 0$ has a unique solution, or
- (b) *C* is **invertible** and $B^*C^{-1}AY + Y^*D = 0$ has a unique solution.

 $AX + X^*D = E$ has unique solution iff $A - \lambda D^*$ is **regular** and:

• $\star = \star$: $\Lambda(A - \lambda D^*)$ is *-reciprocal free.

•
$$\star = \top$$
: $\Lambda(A - \lambda D^{\top}) \setminus \{1\}$ is reciprocal free, and $m_1(A - \lambda D^{\top}) \le 1$.

The periodic Schur decomposition

Theorem [Bojanczyk-Golub-Van Dooren'92]

There are U_1, U_2, V_1, V_2 unitary such that

$$U_1 A V_1 = T_A, \quad U_1 C V_2 = T_C, \\ U_2 B^* V_1 = T_B^*, \quad U_2 D^* V_2 = T_D^*, \end{cases}$$

with $T_A, T_B^{\star}, T_C, T_D^{\star}$ upper triangular.

The periodic Schur decomposition

Theorem [Bojanczyk-Golub-Van Dooren'92]

There are U_1, U_2, V_1, V_2 unitary such that

$$U_1 A V_1 = T_A, \quad U_1 C V_2 = T_C, \\ U_2 B^* V_1 = T_B^*, \quad U_2 D^* V_2 = T_D^*,$$

with $T_A, T_B^{\star}, T_C, T_D^{\star}$ upper triangular.

Connection with the pencil $P(\lambda)$:

$$\begin{bmatrix} U_2 \\ U_1 \end{bmatrix} \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} \lambda T_D^* & T_B^* \\ T_A & \lambda T_C \end{bmatrix}$$

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

$$T_A \cdot X \cdot T_B + T_C \cdot X^{\top} \cdot T_D = E$$

Fernando de Terán (UC3M)

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

$$T_A \cdot X \cdot T_B + T_C \cdot X^{\top} \cdot T_D = E$$

Fernando de Terán (UC3M)

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

$$T_{A} \cdot X \cdot T_{B} + T_{C} \cdot X^{T} \cdot T_{D} = E$$

Fernando de Terán (UC3M)

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

Fernando de Terán (UC3M)

Unique solution of generalized *****-Sylvester equations

ALAMA, June 2016 13 / 15

(Based on the algorithm in [D-Dopico'11] for $AX + X^{\top}D = E$, outlined in [Chiang-Chu-Lin'12])

$$O(n^3)$$

Fernando de Terán (UC3M)

Systems of generalized *****-Sylvester equations

Goal 1: Obtain **necessary and sufficient conditions** for uniqueness of solution of systems of equations of the form $AXB + CX^*D = E$ (with both X = Y or $X \neq Y$) and $* = 1, \top, *$.

Goal 2: Write an **algorithm** to compute the unique solution.

Systems of generalized *****-Sylvester equations

Goal 1: Obtain **necessary and sufficient conditions** for uniqueness of solution of systems of equations of the form $AXB + CX^*D = E$ (with both X = Y or $X \neq Y$) and $* = 1, \top, *$.

Goal 2: Write an **algorithm** to compute the unique solution.

(Ongoing work with B. lannazzo, F. Poloni, and L. Robol)

Systems of generalized *****-Sylvester equations

Goal 1: Obtain **necessary and sufficient conditions** for uniqueness of solution of systems of equations of the form $AXB + CX^*D = E$ (with both X = Y or $X \neq Y$) and $* = 1, \top, *$.

Goal 2: Write an **algorithm** to compute the unique solution.

(Ongoing work with B. lannazzo, F. Poloni, and L. Robol)

More on this at the forthcoming ILAS2016 Conference in Leuven

- F. DE TERÁN, B. IANNAZZO, Uniqueness of solution of a generalized *-Sylvester matrix equation, LAA 493 (2016)
- R. BYERS, D. KRESSNER, Structured condition numbers for invariant subspaces, SIMAX 28 (2) (2006)
- C.-Y. CHIANG, K.-W. E. CHU, W.-W. LIN, On the \star -Sylvester equation $AX \pm X^{\star}B = C$, AMC 218 (2012)
- F. DE TERÁN, F. M. DOPICO, Consistency and efficient solution of the Sylvester equation for *-congruence, ELA 22 (2011)
- F. DE TERÁN, F. M. DOPICO, N. GUILLERY, D. MONTEALEGRE, N. Z. REYES, *The solution of the equation* $AX + X^*B = 0$, LAA 438 (2011)
- D. KRESSNER, C. SCHRÖDER, D. S. WATKINS, *Implicit QR algorithms for palindromic and even eigenvalue problems*, NA 51(2) (2009)

- F. DE TERÁN, B. IANNAZZO, *Uniqueness of solution of a generalized *-Sylvester matrix equation*, LAA 493 (2016)
- R. BYERS, D. KRESSNER, Structured condition numbers for invariant subspaces, SIMAX 28 (2) (2006)
- C.-Y. CHIANG, K.-W. E. CHU, W.-W. LIN, On the \star -Sylvester equation $AX \pm X^{\star}B = C$, AMC 218 (2012)
- F. DE TERÁN, F. M. DOPICO, Consistency and efficient solution of the Sylvester equation for *-congruence, ELA 22 (2011)
- F. DE TERÁN, F. M. DOPICO, N. GUILLERY, D. MONTEALEGRE, N. Z. REYES, *The solution of the equation* $AX + X^*B = 0$, LAA 438 (2011)
- D. KRESSNER, C. SCHRÖDER, D. S. WATKINS, *Implicit QR algorithms for palindromic and even eigenvalue problems*, NA 51(2) (2009)

THANKS FOR YOUR ATTENTION !!!!!