Constructing strong ℓ-ifications

Fernando De Terán

Departamento de Matemáticas
Universidad Carlos III de Madrid
(Spain)

Joint work with Froilán M. Dopico and Paul Van Dooren

Outline

(1) Motivation. Basic definitions.
(2) New construction of strong ℓ-ifications
(3) Minimal index recovery
(4) The case where ℓ divides d

Outline

(1) Motivation. Basic definitions.

(2) New construction of strong ℓ-ifications

(3) Minimal index recovery
(4) The case where ℓ divides d

Notation

\mathbb{F} a field.
$\overline{\mathbb{F}}$: algebraic closure of \mathbb{F}.
$\mathbb{F}[\lambda]^{m \times n}$: ring of $m \times n$ matrices whose entries are polynomials in λ with coefficients over \mathbb{F} (matrix polynomials).
$P(\lambda)=\lambda^{d} P_{d}+\lambda^{d-1}+\cdots+\lambda P_{1}+P_{0} \in \mathbb{F}[\lambda]^{m \times n}$: a given $m \times n$ matrix polynomial of degree $d\left(P_{d} \neq 0\right)$.

Reversal polynomial of $P(\lambda)$: rev $P:=P_{d}+\lambda P_{d-1}+\cdots+\lambda^{d-1} P_{1}+\lambda^{d} P_{0}$

Why ℓ-fications?

(Companion) Linearizations have been quite useful in the Polynomial Eigenvalue Problem (PEP) but...

- They increase very much the size of the problem: $n \times n \longrightarrow(d n) \times(d n)$ (for all companion linearizations of square polynomials).
- Imposible to preserve certain structures using companion linearizations (for instance: T-palindromic for even degree polynomials)

Look for another constructions \leadsto C-ifications !!!

Why ℓ-fications?

(Companion) Linearizations have been quite useful in the Polynomial Eigenvalue Problem (PEP) but...

- They increase very much the size of the problem: $n \times n \longrightarrow(d n) \times(d n)$ (for all companion linearizations of square polynomials).
- Imposible to preserve certain structures using companion linearizations (for instance: T-palindromic for even degree polynomials).

Look for another constructions $\leadsto \ell$-ifications!!!

Why ℓ-fications?

(Companion) Linearizations have been quite useful in the Polynomial Eigenvalue Problem (PEP) but...

- They increase very much the size of the problem: $n \times n \longrightarrow(d n) \times(d n)$ (for all companion linearizations of square polynomials).
- Imposible to preserve certain structures using companion linearizations (for instance: T-palindromic for even degree polynomials).

吗 Look for another constructions $\leadsto \ell$-ifications !!!

Strong ℓ-ifications

Definition

$L(\lambda)$ a matrix polynomial of degree ℓ is an ℓ-ification of $P(\lambda)$ if

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right],
$$

for some $s, t \geq 0$ and $U(\lambda), V(\lambda)$ unimodular matrix polynomials (constant nonzero determinant).

If, in addition, $\operatorname{rev} L$ is an ℓ-ification of $\operatorname{rev} P$, then $L(\lambda)$ is a strong ℓ-ification.

噑 We are interested in the case $\ell<d$.

Strong ℓ-ifications

Definition

$L(\lambda)$ a matrix polynomial of degree ℓ is an ℓ-ification of $P(\lambda)$ if

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right],
$$

for some $s, t \geq 0$ and $U(\lambda), V(\lambda)$ unimodular matrix polynomials (constant nonzero determinant).

If, in addition, $\operatorname{rev} L$ is an ℓ-ification of $\operatorname{rev} P$, then $L(\lambda)$ is a strong ℓ-ification.

显 We are interested in the case $\ell<d$.

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular).
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular)
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular)
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular).
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular).
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular).
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular).
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Example:

$$
P(\lambda)=\left[\begin{array}{ccc}
\lambda^{2} & 1 & 0 \\
0 & 0 & \lambda^{2} \\
0 & 0 & 1
\end{array}\right], \quad \text { and } \quad L(\lambda)=\left[\begin{array}{cc}
\lambda & 1 \\
0 & 0
\end{array}\right]
$$

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular).
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Example:

$$
P(\lambda) \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } \quad L(\lambda) \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Main features of strong ℓ-ifications

$$
U(\lambda)\left[\begin{array}{ll}
I_{s} & \\
& L(\lambda)
\end{array}\right] V(\lambda)=\left[\begin{array}{ll}
I_{t} & \\
& P(\lambda)
\end{array}\right]
$$

- ℓ-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong ℓ-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of s, t can be always chosen to be zero.
- The size of $P(\lambda)$ can be larger than the size of $L(\lambda)$ (only if $P(\lambda)$ is singular).
- $U(\lambda), V(\lambda)$ are essentially row and column elementary transformations.

Example:

$$
P(\lambda) \sim\left[\begin{array}{ll}
1 & \\
& L(\lambda)
\end{array}\right] .
$$

Companion ℓ-fifcations

$\mathcal{P}(d, m \times n, \mathbb{F})=$ space of all $m \times n$ matrix polynomials of fixed degree d.

Definition (Companion ℓ-ification)

A companion ℓ-ification for matrix polynomials $P(\lambda)$ in $\mathcal{P}(d, m \times n, \mathbb{F})$ is of the form $C_{P}(\lambda)=\sum_{i=0}^{\ell} \lambda^{i} X_{i}$, satisfying:

- $C_{P}(\lambda)$ is a strong ℓ-ification for P for every $P \in \mathcal{P}(d, m \times n, \mathbb{F})$.
- Each entry of X_{i} is either a constant, or a constant multiple of just one of the entries of $P(\lambda)$.

Example [D., Dopico, Mackey, 2014]: If $d=\ell k$

Companion ℓ-fifications

$\mathcal{P}(d, m \times n, \mathbb{F})=$ space of all $m \times n$ matrix polynomials of fixed degree d.

Definition (Companion ℓ-ification)

A companion ℓ-ification for matrix polynomials $P(\lambda)$ in $\mathcal{P}(d, m \times n, \mathbb{F})$ is of the form $C_{P}(\lambda)=\sum_{i=0}^{\ell} \lambda^{i} X_{i}$, satisfying:

- $C_{P}(\lambda)$ is a strong ℓ-ification for P for every $P \in \mathcal{P}(d, m \times n, \mathbb{F})$.
- Each entry of X_{i} is either a constant, or a constant multiple of just one of the entries of $P(\lambda)$.

Example [D., Dopico, Mackey, 2014]: If $d=\ell k$,

$$
C_{1}^{\ell}(\lambda):=\left[\begin{array}{ccccc}
B_{k}(\lambda) & B_{k-1}(\lambda) & B_{k-2}(\lambda) & \cdots & B_{1}(\lambda) \\
-I_{n} & \lambda^{\ell} l_{n} & 0 & \cdots & 0 \\
& -I_{n} & \lambda^{\ell} l_{n} & \ddots & \vdots \\
& & \ddots & \ddots & 0 \\
& & & -I_{n} & \lambda^{\ell} I_{n}
\end{array}\right] \text { and } C_{2}^{\ell}(\lambda):=C_{1}^{\ell}(\lambda)^{\mathcal{B}}
$$

$$
B_{j}(\lambda):=\lambda^{l} P_{f j}+\lambda^{\ell-1} P_{f j-1}+\cdots+\lambda P_{\ell(j-1)+1}, \quad \text { for } j=2, \ldots, k .
$$

Minimal bases

$N(\lambda) \in \mathbb{F}[\lambda]^{m \times n} \leadsto N_{h}$: highest row degree coefficient matrix.
Definition: $N(\lambda)$ is row reduced if N_{h} is of full row rank.
(Similar definition of column reduced with the highest column degree coefficient matrix).

Definition
 The $m \times n$ matrix polynomial $N(\lambda)$, with $m \leq n$ is a minimal basis if: (a) $N(\lambda)$ has full row rank for all $\lambda \in \overline{\mathbb{F}}$, and (b) it is row reduced.

Remark: Similar definition with $m \geq n$, full column rank, and column reduced
Example:

Minimal bases

$N(\lambda) \in \mathbb{F}[\lambda]^{m \times n} \leadsto N_{h}$: highest row degree coefficient matrix.
Definition: $N(\lambda)$ is row reduced if N_{h} is of full row rank.
(Similar definition of column reduced with the highest column degree coefficient matrix).

Definition

The $m \times n$ matrix polynomial $N(\lambda)$, with $m \leq n$ is a minimal basis if:
(a) $N(\lambda)$ has full row rank for all $\lambda \in \overline{\mathbb{F}}$, and
(b) it is row reduced.

Remark: Similar definition with $m \geq n$, full column rank, and column reduced.
Example:
$N(\lambda)$ is a minimal basis

Minimal bases

$N(\lambda) \in \mathbb{F}[\lambda]^{m \times n} \leadsto N_{h}$: highest row degree coefficient matrix.
Definition: $N(\lambda)$ is row reduced if N_{h} is of full row rank.
(Similar definition of column reduced with the highest column degree coefficient matrix).

Definition

The $m \times n$ matrix polynomial $N(\lambda)$, with $m \leq n$ is a minimal basis if:
(a) $N(\lambda)$ has full row rank for all $\lambda \in \overline{\mathbb{F}}$, and
(b) it is row reduced.

Remark: Similar definition with $m \geq n$, full column rank, and column reduced.
Example:

$$
N(\lambda)=\left[\begin{array}{ccc}
\lambda^{3} & 1 & \lambda \\
\lambda & 3 \lambda^{2}+2 & \lambda+1
\end{array}\right] \leadsto N_{h}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0
\end{array}\right] .
$$

$N(\lambda)$ is a minimal basis.

Row/column degrees

An important feature of a minimal basis are its row/column degrees.
For instance, for minimal bases of the right (resp., left) nullspace of $P(\lambda) \in \mathbb{F}[\lambda]^{m \times n}, \mathcal{N}_{r}(P)\left(\right.$ resp. $\left.\mathcal{N}_{\ell}(P)\right)$:

$$
\begin{aligned}
& \mathcal{N}_{r}(P):=\left\{x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1}: P(\lambda) x(\lambda) \equiv 0\right\}, \\
& \mathcal{N}_{\ell}(P):=\left\{y(\lambda)^{T} \in \mathbb{F}(\lambda)^{1 \times m}: y(\lambda)^{T} P(\lambda) \equiv 0^{T}\right\},
\end{aligned}
$$

they are the right (resp. left) minimal indices of $P(\lambda)$.

Dual minimal bases and row degrees

Definition

$N_{1}(\lambda) \in \mathbb{F}[\lambda]^{m_{1} \times n}, N_{2}(\lambda) \in \mathbb{F}[\lambda]^{m_{2} \times n}$ are dual minimal bases if $N_{1}(\lambda)$ and $N_{2}(\lambda)$ are both minimal bases and:

$$
m_{1}+m_{2}=n, \quad \text { and } \quad N_{1}(\lambda) N_{2}(\lambda)^{T}=0 .
$$

Theorem (D., Dopico, Mackey, Van Dooren, 2015)

Then there always exist $N_{1}(\lambda) \in \mathbb{F}[\lambda]^{m_{1} \times n}$ and $N_{2}(\lambda) \in \mathbb{F}[\lambda]^{m_{2} \times n}$, with $n=m_{1}+m_{2}$, dual minimal bases whose row degrees are, respectively $\left(\eta_{1}, \ldots, \eta_{m_{1}}\right)$ and $\left(\varepsilon_{1}, \ldots, \varepsilon_{m_{2}}\right)$.

They can be built up using zigzag matrices.

Dual minimal bases and row degrees

Definition

$N_{1}(\lambda) \in \mathbb{F}[\lambda]^{m_{1} \times n}, N_{2}(\lambda) \in \mathbb{F}[\lambda]^{m_{2} \times n}$ are dual minimal bases if $N_{1}(\lambda)$ and $N_{2}(\lambda)$ are both minimal bases and:

$$
m_{1}+m_{2}=n, \quad \text { and } \quad N_{1}(\lambda) N_{2}(\lambda)^{T}=0 .
$$

Theorem (D., Dopico, Mackey, Van Dooren, 2015)
Let $\left(\eta_{1}, \ldots, \eta_{m_{1}}\right)$ and $\left(\varepsilon_{1}, \ldots, \varepsilon_{m_{2}}\right)$, with $\varepsilon_{i}, \eta_{j} \geq 0$ and:

$$
\sum_{j=1}^{m_{1}} \eta_{j}=\sum_{i=1}^{m_{2}} \varepsilon_{i}
$$

Then there always exist $N_{1}(\lambda) \in \mathbb{F}[\lambda]^{m_{1} \times n}$ and $N_{2}(\lambda) \in \mathbb{F}[\lambda]^{m_{2} \times n}$, with $n=m_{1}+m_{2}$, dual minimal bases whose row degrees are, respectively, $\left(\eta_{1}, \ldots, \eta_{m_{1}}\right)$ and $\left(\varepsilon_{1}, \ldots, \varepsilon_{m_{2}}\right)$.

Dual minimal bases and row degrees

Definition

$N_{1}(\lambda) \in \mathbb{F}[\lambda]^{m_{1} \times n}, N_{2}(\lambda) \in \mathbb{F}[\lambda]^{m_{2} \times n}$ are dual minimal bases if $N_{1}(\lambda)$ and $N_{2}(\lambda)$ are both minimal bases and:

$$
m_{1}+m_{2}=n, \quad \text { and } \quad N_{1}(\lambda) N_{2}(\lambda)^{T}=0 .
$$

Theorem (D., Dopico, Mackey, Van Dooren, 2015)
Let $\left(\eta_{1}, \ldots, \eta_{m_{1}}\right)$ and $\left(\varepsilon_{1}, \ldots, \varepsilon_{m_{2}}\right)$, with $\varepsilon_{i}, \eta_{j} \geq 0$ and:

$$
\sum_{j=1}^{m_{1}} \eta_{j}=\sum_{i=1}^{m_{2}} \varepsilon_{i}
$$

Then there always exist $N_{1}(\lambda) \in \mathbb{F}[\lambda]^{m_{1} \times n}$ and $N_{2}(\lambda) \in \mathbb{F}[\lambda]^{m_{2} \times n}$, with $n=m_{1}+m_{2}$, dual minimal bases whose row degrees are, respectively, $\left(\eta_{1}, \ldots, \eta_{m_{1}}\right)$ and $\left(\varepsilon_{1}, \ldots, \varepsilon_{m_{2}}\right)$.

啹 They can be built up using zigzag matrices.

Outline

(1) Motivation. Basic definitions.

(2) New construction of strong ℓ-ifications
(3) Minimal index recovery
(4) The case where ℓ divides d
cili

Basic quantities

四 We focus on the case $k \ell=n d$ (i.e., ℓ divides $n d$).
(Similar construction for the case where ℓ divides $m d$).
Note that $\ell\langle d \Rightarrow k\rangle n$
Set:
$(\widehat{n}+n) \ell=n d \Leftrightarrow \widehat{n} \ell=n \widehat{d}$

The ℓ-ification is going to have size $(\bar{n}+m) \times(\hat{n}+n)$

Basic quantities

We focus on the case $k \ell=n d$ (i.e., ℓ divides $n d$).
(Similar construction for the case where ℓ divides $m d$).
Note that $\ell\langle d \Rightarrow k\rangle n$
Set:

$$
\widehat{d}:=d-\ell, \quad k:=\widehat{n}+n \quad(\widehat{d}, \widehat{n}>0)
$$

Then:
$(\widehat{n}+n) \ell=n d \Leftrightarrow \widehat{n} \ell=n \widehat{d}$

The ℓ-ification is going to have size $(\bar{n}+m) \times(\hat{n}+n)$

Basic quantities

We focus on the case $k \ell=n d$ (i.e., ℓ divides $n d$).
(Similar construction for the case where ℓ divides $m d$).
Note that $\ell\langle d \Rightarrow k\rangle n$
Set:

$$
\widehat{d}:=d-\ell, \quad k:=\widehat{n}+n \quad(\widehat{d}, \widehat{n}>0)
$$

Then:

$$
(\widehat{n}+n) \ell=n d \Leftrightarrow \widehat{n} \ell=\widehat{d}
$$

The ℓ-ification is going to have size $(\bar{n}+m) \times(\hat{n}+n)$

Basic quantities

We focus on the case $k \ell=n d$ (i.e., ℓ divides $n d$).
(Similar construction for the case where ℓ divides $m d$).
Note that $\ell\langle d \Rightarrow k\rangle n$
Set:

$$
\widehat{d}:=d-\ell, \quad k:=\widehat{n}+n \quad(\widehat{d}, \widehat{n}>0)
$$

Then:

$$
(\widehat{n}+n) \ell=n d \Leftrightarrow \widehat{n} \ell=\widehat{d}
$$

The ℓ-ification is going to have size $(\hat{n}+m) \times(\hat{n}+n)$

Outline of construction

Step 1: Construct a pair of dual minimal bases $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\tilde{n}+n)}$ and $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\bar{n}+n)}$ such that:
(i) All row degrees of $\widehat{L}(\lambda)$ are equal to ℓ.
(ii) All row degrees of $\widehat{N}(\lambda)$ are equal to $\widehat{d}(=d-\ell)$.

Step 2: Find a solution, $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times(\sqrt{n}+n)}$, to

$$
\widetilde{L}(\lambda) \widehat{N}(\lambda)^{T}=P(\lambda)
$$

with $\operatorname{deg} \widetilde{L}(\lambda) \leq \ell$.

Outline of construction

Step 1: Construct a pair of dual minimal bases $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\bar{n}+n)}$ and $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\bar{n}+n)}$ such that:
(i) All row degrees of $\widehat{L}(\lambda)$ are equal to ℓ.
(ii) All row degrees of $\widehat{N}(\lambda)$ are equal to $\widehat{d}(=d-\ell)$.

Step 2: Find a solution, $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times(\bar{n}+n)}$, to

$$
\widetilde{L}(\lambda) \widehat{N}(\lambda)^{T}=P(\lambda)
$$

with $\operatorname{deg} \widetilde{L}(\lambda) \leq \ell$.

Theorem

If $\widetilde{L}(\lambda), \widetilde{L}(\lambda)$ are as above, then

$$
L(\lambda)=\left[\begin{array}{l}
\widehat{L}(\lambda) \\
\widetilde{L}(\lambda)
\end{array}\right] \in \mathbb{F}[\lambda]^{(\bar{n}+m) \times(\bar{n}+n)}
$$

is a strong ℓ-ification of $P(\lambda)$.

Outline of construction

Step 1: Construct a pair of dual minimal bases $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\bar{n}+n)}$ and $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\bar{n}+n)}$ such that:
(i) All row degrees of $\widehat{L}(\lambda)$ are equal to ℓ.
(ii) All row degrees of $\widehat{N}(\lambda)$ are equal to $\widehat{d}(=d-\ell)$.

Step 2: Find a solution, $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times(\bar{n}+n)}$, to

$$
\widetilde{L}(\lambda) \widehat{N}(\lambda)^{T}=P(\lambda)
$$

with $\operatorname{deg} \widetilde{L}(\lambda) \leq \ell$.

IDEA:

$$
\left.\begin{array}{l}
\widehat{L} \widehat{N}^{T}=0 \\
\mathcal{L} \widehat{N}^{T}=P
\end{array}\right\} \Rightarrow\left[\begin{array}{c}
\widehat{L} \\
\widetilde{L}
\end{array}\right] \overbrace{\left[\widetilde{N}^{T} \mid \widehat{N}^{T}\right]}^{\text {unimodular }}=\left[\begin{array}{cc}
1 & 0 \\
X & P
\end{array}\right]
$$

Outline of construction

Step 1: Construct a pair of dual minimal bases $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\bar{n}+n)}$ and $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\bar{n}+n)}$ such that:
(i) All row degrees of $\widehat{L}(\lambda)$ are equal to ℓ.
(ii) All row degrees of $\widehat{N}(\lambda)$ are equal to $\widehat{d}(=d-\ell)$.

Step 2: Find a solution, $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times(\bar{n}+n)}$, to

$$
\widetilde{L}(\lambda) \widehat{N}(\lambda)^{T}=P(\lambda)
$$

with $\operatorname{deg} \widetilde{L}(\lambda) \leq \ell$.

IDEA:

$$
\begin{aligned}
& \left.\begin{array}{c}
\widehat{L} \widehat{N}^{T}=0 \\
\widehat{N}^{T}=P
\end{array}\right\} \Rightarrow\left[\begin{array}{c}
\widehat{L} \\
\widetilde{L}
\end{array}\right] \overbrace{\left[\widetilde{N}^{T} \mid \widehat{N}^{T}\right]}^{\text {unimodular }}=\left[\begin{array}{cc}
1 & 0 \\
X & P
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
1 & 0 \\
-X & I
\end{array}\right]\left[\begin{array}{c}
\widehat{L} \\
\widetilde{L}
\end{array}\right]\left[\widetilde{N}^{T} \mid \widehat{N}^{T}\right]=\left[\begin{array}{ll}
I & \\
& P
\end{array}\right]
\end{aligned}
$$

Outline of construction

Step 1: Construct a pair of dual minimal bases $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\bar{n} \times(\bar{n}+n)}$ and $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\bar{n}+n)}$ such that:
(i) All row degrees of $\widehat{L}(\lambda)$ are equal to ℓ.
(ii) All row degrees of $\widehat{N}(\lambda)$ are equal to $\widehat{d}(=d-\ell)$.

Step 2: Find a solution, $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times(\bar{n}+n)}$, to

$$
\widetilde{L}(\lambda) \widehat{N}(\lambda)^{T}=P(\lambda)
$$

with $\operatorname{deg} \widetilde{L}(\lambda) \leq \ell$.

IDEA:

$$
\begin{aligned}
& \left.\begin{array}{c}
\widehat{L} \widehat{N}^{T}=0 \\
\widehat{N}^{T}=P
\end{array}\right\} \Rightarrow\left[\begin{array}{c}
\widehat{L} \\
\widetilde{L}
\end{array}\right] \overbrace{\left[\widetilde{N}^{T} \mid \widehat{N}^{T}\right]}^{\text {unimodular }}=\left[\begin{array}{cc}
1 & 0 \\
X & P
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
1 & 0 \\
-X & I
\end{array}\right]\left[\begin{array}{c}
\widehat{L} \\
\widetilde{L}
\end{array}\right]\left[\widetilde{N}^{T} \mid \widehat{N}^{T}\right]=\left[\begin{array}{ll}
I & \\
& P
\end{array}\right]
\end{aligned}
$$

(i)-(ii) guarantee that the ℓ-ification is strong.

Is it always possible to perform Step 1 and Step 2?

Step 1: $\widehat{n} \ell=\widehat{n d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\hat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\widehat{n}+n)}$ exist (by the inverse row degree theorem for dual minimal bases).

傕 One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

and write the convolution equation:
m
CIIII

It is always possible to perform Step 1 and Step 2:

Step 1: $\widehat{n} \ell=\widehat{n d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\hat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(n+n)}$ exist (by the inverse row degree theorem for dual minimal bases).

傕 One way to construct them is using zigzag matrices (recall Froilán's talk!).

Step 2: Set:

and write the convolution equation:

It is always possible to perform Step 1 and Step 2:

Step 1: $\widehat{n} \ell=\widehat{n d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\hat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\hat{n}+n)}$ exist (by the inverse row degree theorem for dual minimal bases).

㕷 One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$
\begin{aligned}
& \widetilde{L}(\lambda)=\lambda^{\ell} \widetilde{L}_{\ell}+\lambda^{\ell-1} \widetilde{L}_{\ell-1}+\cdots+\lambda \widetilde{L}_{1}+\widetilde{L}_{0}, \\
& \widehat{N}(\lambda)=\lambda^{\bar{a}} \widehat{N}_{d}+\lambda^{\bar{d}-1} \widehat{N}_{\tilde{d}-1}+\cdots+\lambda \widehat{N}_{1}+\widehat{N}_{0},
\end{aligned}
$$

and write the convolution equation:

It is always possible to perform Step 1 and Step 2:

Step 1: $\widehat{n} \ell=\widehat{n d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\hat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\hat{n}+n)}$ exist (by the inverse row degree theorem for dual minimal bases).

啹 One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$
\begin{aligned}
& \widetilde{L}(\lambda)=\lambda^{\ell} \widetilde{L}_{\ell}+\lambda^{\ell-1} \widetilde{L}_{\ell-1}+\cdots+\lambda \widetilde{L}_{1}+\widetilde{L}_{0}, \\
& \widehat{N}(\lambda)=\lambda^{\bar{d}} \widehat{N}_{d}+\lambda^{\bar{d}-1} \widehat{N}_{\tilde{d}-1}+\cdots+\lambda \widehat{N}_{1}+\widehat{N}_{0},
\end{aligned}
$$

and write the convolution equation:

$$
\left[\begin{array}{llll}
\widetilde{L}_{0} & \ldots & \widetilde{L}_{\ell-1} & \widetilde{L}_{\ell}
\end{array}\right]\left[\begin{array}{cccccc}
\widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T} & & & \\
& \widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T} & & \\
& & \ddots & & \ddots & \\
& & & \widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T}
\end{array}\right]=\left[\begin{array}{llll}
P_{0} & \ldots & P_{d-1} & P_{d}
\end{array}\right] .
$$

It is always possible to perform Step 1 and Step 2:

Step 1: $\widehat{n} \ell=\widehat{n d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\hat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\hat{n}+n)}$ exist (by the inverse row degree theorem for dual minimal bases).

啹 One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$
\begin{aligned}
& \widetilde{L}(\lambda)=\lambda^{\ell} \widetilde{L}_{\ell}+\lambda^{\ell-1} \widetilde{L}_{\ell-1}+\cdots+\lambda \widetilde{L}_{1}+\widetilde{L}_{0}, \\
& \widehat{N}(\lambda)=\lambda^{\bar{d}} \widehat{N}_{d}+\lambda^{\bar{d}-1} \widehat{N}_{\tilde{d}-1}+\cdots+\lambda \widetilde{N}_{1}+\widehat{N}_{0},
\end{aligned}
$$

and write the convolution equation:

$$
\left[\begin{array}{llll}
\widetilde{L}_{0} & \ldots & \tilde{L}_{\ell-1} & \tilde{L}_{\ell}
\end{array}\right]\left[\begin{array}{ccccc}
\widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T} & & \\
& \widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T} & \\
& & \ddots & & \ddots
\end{array}\right]=\left[\begin{array}{llll}
P_{0} & \ldots & P_{d-1} & P_{d}
\end{array}\right] \text {. }
$$

It is always possible to perform Step 1 and Step 2:

Step 1: $\widehat{n} \ell=\widehat{n d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\hat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\hat{n}+n)}$ exist (by the inverse row degree theorem for dual minimal bases).

啹 One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$
\begin{aligned}
& \widetilde{L}(\lambda)=\lambda^{\ell} \widetilde{L}_{\ell}+\lambda^{\ell-1} \widetilde{L}_{\ell-1}+\cdots+\lambda \widetilde{L}_{1}+\widetilde{L}_{0}, \\
& \widetilde{N}(\lambda)=\lambda^{\bar{a}} \bar{N}_{d}+\lambda^{\bar{d}-1} \widehat{N}_{\tilde{d}-1}+\cdots+\lambda \widetilde{N}_{1}+\widehat{N}_{0},
\end{aligned}
$$

and write the convolution equation:

$$
\left[\begin{array}{llll}
\widetilde{L}_{0} & \ldots & \widetilde{L}_{\ell-1} & \widetilde{L}_{\ell}
\end{array}\right]\left[\begin{array}{cccccc}
\widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T} & & & \widehat{N}_{d}^{T} \\
& \widehat{N}_{0}^{T} & \ldots & & \\
& & \ddots & & \ddots & \\
& & & \widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T}
\end{array}\right]=\left[\begin{array}{llll}
P_{0} & \ldots & P_{d-1} & P_{d}
\end{array}\right] .
$$

噜 It has infinitely many solutions.

It is always possible to perform Step 1 and Step 2:

Step 1: $\widehat{n} \ell=\widehat{n d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\hat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\hat{n}+n)}$ exist (by the inverse row degree theorem for dual minimal bases).

傕 One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$
\begin{aligned}
& \widetilde{L}(\lambda)=\lambda^{\ell} \widetilde{L}_{\ell}+\lambda^{\ell-1} \widetilde{L}_{\ell-1}+\cdots+\lambda \widetilde{L}_{1}+\widetilde{L}_{0}, \\
& \widetilde{N}(\lambda)=\lambda^{\bar{a}} \bar{N}_{d}+\lambda^{\bar{d}-1} \widehat{N}_{\tilde{d}-1}+\cdots+\lambda \widetilde{N}_{1}+\widehat{N}_{0},
\end{aligned}
$$

and write the convolution equation:

$$
\left[\begin{array}{llll}
\tilde{L}_{0} & \ldots & \tilde{L}_{\ell-1} & \tilde{L}_{\ell}
\end{array}\right]\left[\begin{array}{cccccc}
\widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T} & & & \widehat{N}_{d}^{T} \\
& \widehat{N}_{0}^{T} & \ldots & & \\
& & \ddots & & \ddots & \\
& & & \widehat{N}_{0}^{T} & \ldots & \widehat{N}_{d}^{T}
\end{array}\right]=\left[\begin{array}{llll}
P_{0} & \ldots & P_{d-1} & P_{d}
\end{array}\right] .
$$

(1asere First solve: $\widetilde{L}_{\ell} \widehat{N}_{d}^{T}=P_{d}\left(\widehat{N}_{d}^{T}\right.$ has full column rank).

It is always possible to perform Step 1 and Step 2:

Step 1: $\widehat{n} \ell=\widehat{n d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times(\hat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times(\hat{n}+n)}$ exist (by the inverse row degree theorem for dual minimal bases).

㕷 One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$
\begin{aligned}
& \widetilde{L}(\lambda)=\lambda^{\ell} \widetilde{L}_{\ell}+\lambda^{\ell-1} \widetilde{L}_{\ell-1}+\cdots+\lambda \widetilde{L}_{1}+\widetilde{L}_{0}, \\
& \widehat{N}(\lambda)=\lambda^{\bar{d}} \widehat{N}_{d}+\lambda^{\bar{d}-1} \widehat{N}_{\tilde{d}-1}+\cdots+\lambda \widetilde{N}_{1}+\widehat{N}_{0},
\end{aligned}
$$

and write the convolution equation: (1)

First solve: $\widetilde{L}_{\ell} \widehat{N}_{d}^{T}=P_{d}$ (\widehat{N}_{d}^{T} has full column rank).
[10웅 Then solve (1).

Example

$P(\lambda)$ of size $m \times 2$ and degree $d=3$, and $\ell=2$.

唋 Following the zigzag construction for dual minimal bases $\widehat{L}(\lambda), \widehat{N}(\lambda)$ in Step 1, and with an appropriate choice of \widetilde{L}_{2} in Step 2, we get the strong quadratification:

$$
\begin{aligned}
L(\lambda)=\left[\begin{array}{l}
\widehat{L}(\lambda) \\
\tilde{L}(\lambda)
\end{array}\right]= & \lambda^{2}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & P_{3} e_{1} & P_{3} e_{2}
\end{array}\right] \\
& +\lambda\left[\begin{array}{ccc}
0 & -1 & 0 \\
P_{1} e_{1}-P_{0} e_{2} & P_{2} e_{1} & P_{2} e_{2}-P_{3} e_{1}
\end{array}\right] \\
& +\left[\begin{array}{ccc}
0 & 0 & 1 \\
P_{0} e_{1} & P_{0} e_{2} & P_{1} e_{2}-P_{2} e_{1}
\end{array}\right] .
\end{aligned}
$$

Size

The size of the strong ℓ-ifications we construct is:

$$
(\hat{n}+m) \times(\widehat{n}+n) \quad(\text { if } \ell \mid n d)
$$

with

$$
\widehat{n}=\frac{n(d-\ell)}{\ell},
$$

or

$$
(\widehat{m}+m) \times(\widehat{m}+n) \quad(\text { if } \ell \mid m d)
$$

with

$$
\widehat{m}=\frac{m(d-\ell)}{\ell}
$$

(Compare with the size of companion linearizations:

$$
((d-1) s+m) \times((d-1) s+n),
$$

where $s=\min \{m, n\}$).

Outline

(1) Motivation. Basic definitions.

(2) New construction of strong ℓ-ifications

(3) Minimal index recovery
4. The case where ℓ divides d

CIIII

Minimal indices of $L(\lambda)$ and $P(\lambda)$

Theorem

When $\ell \mid n d$, the construction in Steps 1 and 2 always provides a strong ℓ-ification of $m \times n$ matrix polynomials of degree d. Moreover:
(i) If $\varepsilon_{1}, \ldots, \varepsilon_{p}$ are the right minimal indices of $P(\lambda)$, then the right minimal indices of $L(\lambda)$ are $\varepsilon_{1}+(d-\ell), \ldots, \varepsilon_{p}+(d-\ell)$.
(ii) If $\eta_{1}, \ldots, \eta_{q}$ are the left minimal indices of $P(\lambda)$, then the left minimal indices of $L(\lambda)$ are $\eta_{1}, \ldots, \eta_{q}$.

Remark: Similar result when $\ell \mid m d$, replacing the roles of left/right minimal indices.

Outline

(1) Motivation. Basic definitions.

(2) New construction of strong ℓ-ifications

(3) Minimal index recovery
(4) The case where ℓ divides d

Set $d=k \ell$. We can take:

$$
\widehat{L}(\lambda)=\left(\left[\begin{array}{cccc}
\lambda^{\ell} & -1 & & \\
& \ddots & \ddots & \\
& & \lambda^{\ell} & -1
\end{array}\right]_{(k-1) \times k}\right) \otimes I_{n}, \quad \text { and } \quad \widehat{N}(\lambda)^{T}=\left[\begin{array}{c}
1 \\
\lambda^{\ell} \\
\lambda^{2 \ell} \\
\vdots \\
\lambda^{(k-1) \ell}
\end{array}\right] \otimes I_{n} .
$$

and

$$
\tilde{L}_{\ell}=\left[\begin{array}{llll}
0 & \ldots & 0 & P_{d}
\end{array}\right] \in \mathbb{F}^{m \times n k},
$$

to get:

$$
L(\lambda)=\left[\begin{array}{cccc}
\lambda^{l} I_{n} & -I_{n} & & \\
& \ddots & \ddots & \\
& & \lambda^{\ell} I_{n} & -I_{n} \\
D_{0}(\lambda) & \ldots & D_{k-2}(\lambda) & D_{k-1}(\lambda)
\end{array}\right] \text {, }
$$

where

$$
\begin{aligned}
& D_{j}(\lambda)=P_{j \ell}+\lambda P_{j \ell+1}+\cdots+\lambda^{\ell-1} P_{(j+1) \ell-1} \\
& D_{k-1}(\lambda)=P_{(k-1) \ell}+\lambda P_{(k-1) \ell+1}+\cdots+\lambda^{\ell-1} P_{k \ell-1}+\lambda^{\ell} P_{k \ell .} .
\end{aligned} \quad(j=0, \ldots, k-2),
$$

Compare:

$$
L(\lambda)=\left[\begin{array}{cccc}
\lambda^{\ell} I_{n} & -I_{n} & & \\
& \ddots & \ddots & \\
& & \lambda^{\ell} I_{n} & -I_{n} \\
D_{0}(\lambda) & \ldots & D_{k-2}(\lambda) & D_{k-1}(\lambda)
\end{array}\right],
$$

$$
\begin{array}{ll}
D_{j}(\lambda)=P_{j \ell}+\lambda P_{j \ell+1}+\cdots+\lambda^{\ell-1} P_{(j+1) \ell-1} & \quad(j=0, \ldots, k-2), \\
D_{k-1}(\lambda)=P_{(k-1) \ell}+\lambda P_{(k-1) \ell+1}+\cdots+\lambda^{\ell-1} P_{k \ell-1}+\lambda^{\ell} P_{k \ell} &
\end{array}
$$

with
$C_{1}^{\ell}(\lambda)=\left[\begin{array}{ccccc}B_{k}(\lambda) & B_{k-1}(\lambda) & B_{k-2}(\lambda) & \cdots & B_{1}(\lambda) \\ -I_{n} & \lambda^{\ell} I_{n} & 0 & \cdots & 0 \\ & -I_{n} & \lambda^{\ell} I_{n} & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ & & & -I_{n} & \lambda^{\ell} I_{n}\end{array}\right]$

$$
\begin{aligned}
& B_{1}(\lambda):=\lambda^{\ell} P_{\ell}+\lambda^{\ell-1} P_{\ell-1}+\cdots+\lambda P_{1}+P_{0}, \\
& B_{j}(\lambda):=\lambda^{\ell} P_{\ell j}+\lambda^{\ell-1} P_{\ell j-1}+\cdots+\lambda P_{\ell(j-1)+1} \quad(j=2, \ldots, k) .
\end{aligned}
$$

Conclusions

- We have provided a general construction of strong ℓ-ifications, $L(\lambda)$, of $m \times n$ matrix polynomials of degree $d, P(\lambda)$, valid for all $\ell \mid m d$ or $\ell \mid n d$.
- If $\ell \mid n d$ (resp. $\ell \mid m d$) then:
- When $\ell \mid d$ we get companion ℓ-ifications.

Conclusions

- We have provided a general construction of strong ℓ-ifications, $L(\lambda)$, of $m \times n$ matrix polynomials of degree $d, P(\lambda)$, valid for all $\ell \mid m d$ or $\ell \mid n d$.
- If $\ell \mid n d$ (resp. $\ell \mid m d$) then:
- The left (resp., right) minimal indices of $L(\lambda)$ and $P(\lambda)$ coincide.
- The right (resp. left) minimal indices of $L(\lambda)$ are the ones of $P(\lambda)$ increased by $(d-\ell)$ (each).
- When $\ell \mid d$ we get companion ℓ-ifications.

Conclusions

- We have provided a general construction of strong ℓ-ifications, $L(\lambda)$, of $m \times n$ matrix polynomials of degree $d, P(\lambda)$, valid for all $\ell \mid m d$ or $\ell \mid n d$.
- If $\ell \mid n d$ (resp. $\ell \mid m d$) then:
- The left (resp., right) minimal indices of $L(\lambda)$ and $P(\lambda)$ coincide.
- The right (resp. left) minimal indices of $L(\lambda)$ are the ones of $P(\lambda)$ increased by $(d-\ell)$ (each).
- When Cld' we get companion C-ifications.

Conclusions

- We have provided a general construction of strong ℓ-ifications, $L(\lambda)$, of $m \times n$ matrix polynomials of degree $d, P(\lambda)$, valid for all $\ell \mid m d$ or $\ell \mid n d$.
- If $\ell \mid n d$ (resp. $\ell \mid m d$) then:
- The left (resp., right) minimal indices of $L(\lambda)$ and $P(\lambda)$ coincide.
- The right (resp. left) minimal indices of $L(\lambda)$ are the ones of $P(\lambda)$ increased by $(d-\ell)$ (each).
- When $\ell \mid d$ we get companion ℓ-ifications.

Conclusions

- We have provided a general construction of strong ℓ-ifications, $L(\lambda)$, of $m \times n$ matrix polynomials of degree $d, P(\lambda)$, valid for all $\ell \mid m d$ or $\ell \mid n d$.
- If $\ell \mid n d$ (resp. $\ell \mid m d$) then:
- The left (resp., right) minimal indices of $L(\lambda)$ and $P(\lambda)$ coincide.
- The right (resp. left) minimal indices of $L(\lambda)$ are the ones of $P(\lambda)$ increased by $(d-\ell)$ (each).
- When $\ell \mid d$ we get companion ℓ-ifications.

Bibliography

F. De Terán, F. M. Dopico, D. S. Mackey.

Spectral equivalence of matrix polynomials and the Index Sum Theorem.
Linear Algebra Appl., 459 (2014) 264-333.
國 F. De Terán, F. M. Dopico, D. S. Mackey, P. Van Dooren.
Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials.
Accepted in Linear Algebra Appl.
嗇 F. De Terán, F. M. Dopico, P. Van Dooren.
Constructing strong ℓ-ifications from dual minimal bases.
Submitted, 2015.
OBRIGADO

Bibliography

F. De Terán, F. M. Dopico, D. S. Mackey.

Spectral equivalence of matrix polynomials and the Index Sum Theorem.
Linear Algebra Appl., 459 (2014) 264-333.
围 F. De Terán, F. M. Dopico, D. S. Mackey, P. Van Dooren.
Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials.
Accepted in Linear Algebra Appl.
嗇 F. De Terán, F. M. Dopico, P. Van Dooren.
Constructing strong ℓ-ifications from dual minimal bases.
Submitted, 2015.

OBRIGADO !!!!!

