

#### Constructing strong *l*-ifications

#### Fernando De Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

Joint work with Froilán M. Dopico and Paul Van Dooren



Fernando De Terán (UC3M)

Constructing strong *l*-ifications

Mattriad 2015 1 / 2

- Motivation. Basic definitions.
- 2 New construction of strong *l*-ifications
- 3 Minimal index recovery
- 4) The case where  $\ell$  divides d



#### Outline



New construction of strong *l*-ifications

- 3 Minimal index recovery
- 4) The case where  $\ell$  divides d



#### Notation

**F** a field.

 $\overline{\mathbb{F}}$ : algebraic closure of  $\mathbb{F}$ .

 $\mathbb{F}[\lambda]^{m \times n}$ : ring of  $m \times n$  matrices whose entries are polynomials in  $\lambda$  with coefficients over  $\mathbb{F}$  (matrix polynomials).

 $P(\lambda) = \lambda^d P_d + \lambda^{d-1} + \dots + \lambda P_1 + P_0 \in \mathbb{F}[\lambda]^{m \times n}$ : a given  $m \times n$  matrix polynomial of degree d ( $P_d \neq 0$ ).

Reversal polynomial of  $P(\lambda)$ : rev  $P := P_d + \lambda P_{d-1} + \cdots + \lambda^{d-1} P_1 + \lambda^d P_0$ 



# Why *l*-ifications?

(Companion) Linearizations have been quite useful in the Polynomial Eigenvalue Problem (PEP) but...

- They increase very much the size of the problem:  $n \times n \longrightarrow (dn) \times (dn)$  (for all companion linearizations of square polynomials).
- Imposible to preserve certain structures using companion linearizations (for instance: *T*-palindromic for even degree polynomials).

If Look for another constructions  $\sim \ell$ -ifications !!!

# Why *l*-ifications?

(Companion) Linearizations have been quite useful in the Polynomial Eigenvalue Problem (PEP) but...

- They increase very much the size of the problem:  $n \times n \longrightarrow (dn) \times (dn)$  (for all companion linearizations of square polynomials).
- Imposible to preserve certain structures using companion linearizations (for instance: *T*-palindromic for even degree polynomials).

Solutions  $\sim \ell$ -ifications !!!

# Why *l*-ifications?

(Companion) Linearizations have been quite useful in the Polynomial Eigenvalue Problem (PEP) but...

- They increase very much the size of the problem:  $n \times n \longrightarrow (dn) \times (dn)$  (for all companion linearizations of square polynomials).
- Imposible to preserve certain structures using companion linearizations (for instance: *T*-palindromic for even degree polynomials).

<sup>IMP</sup> Look for another constructions  $\rightsquigarrow \ell$ -ifications !!!

# Strong *l*-ifications

#### Definition

 $L(\lambda)$  a matrix polynomial of degree  $\ell$  is an  $\ell$ -ification of  $P(\lambda)$  if

$$U(\lambda) \begin{bmatrix} I_s \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_t \\ P(\lambda) \end{bmatrix},$$

for some  $s, t \ge 0$  and  $U(\lambda), V(\lambda)$  **unimodular** matrix polynomials (constant nonzero determinant).

If, in addition, rev *L* is an  $\ell$ -ification of rev *P*, then  $L(\lambda)$  is a strong  $\ell$ -ification.

Solution We are interested in the case  $\ell < d$ .

# Strong *l*-ifications

#### Definition

 $L(\lambda)$  a matrix polynomial of degree  $\ell$  is an  $\ell$ -ification of  $P(\lambda)$  if

$$U(\lambda) \begin{bmatrix} I_s \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_t \\ P(\lambda) \end{bmatrix},$$

for some  $s, t \ge 0$  and  $U(\lambda), V(\lambda)$  **unimodular** matrix polynomials (constant nonzero determinant).

If, in addition, rev *L* is an  $\ell$ -ification of rev *P*, then  $L(\lambda)$  is a strong  $\ell$ -ification.

<sup>IMP</sup> We are interested in the case  $\ell < d$ .

$$U(\lambda) \begin{bmatrix} I_s \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_t \\ P(\lambda) \end{bmatrix}$$

(*l*-ification)

# • *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices

- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.

Image: Image:

CII

$$U(\lambda) \begin{bmatrix} I_{s} \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_{t} \\ P(\lambda) \end{bmatrix}$$

(*l*-ification)

- *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.

CII

$$U(\lambda) \begin{bmatrix} I_s \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_t \\ P(\lambda) \end{bmatrix}$$

(*l*-ification)

- *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.

$$U(\lambda) \begin{bmatrix} I_s \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_t \\ P(\lambda) \end{bmatrix}$$

(*l*-ification)

- *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.

 $U(\lambda) \begin{bmatrix} I_{s} \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_{t} \\ P(\lambda) \end{bmatrix}$ 

(*l*-ification)

- *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.

 $U(\lambda) \begin{bmatrix} I_{s} \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_{t} \\ P(\lambda) \end{bmatrix}$ 

(*l*-ification)

- *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.



$$U(\lambda) \begin{bmatrix} I_s \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_t \\ P(\lambda) \end{bmatrix}$$

(*l*-ification)

- *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.

Example:

$$P(\lambda) = \begin{bmatrix} \lambda^2 & 1 & 0 \\ 0 & 0 & \lambda^2 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{and} \quad L(\lambda) = \begin{bmatrix} \lambda & 1 \\ 0 & 0 \end{bmatrix}.$$

$$U(\lambda) \begin{bmatrix} I_s \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_t \\ P(\lambda) \end{bmatrix}$$

(*l*-ification)

- *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.

Example:

$$P(\lambda) \sim \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \quad \text{and} \quad L(\lambda) \sim \left[ \begin{array}{ccc} 1 & 0 \\ 0 & 0 \end{array} \right].$$

$$U(\lambda) \begin{bmatrix} I_s \\ L(\lambda) \end{bmatrix} V(\lambda) = \begin{bmatrix} I_t \\ P(\lambda) \end{bmatrix}$$

(*l*-ification)

- *l*-ifications preserve: finite partial multiplicities + number of left / right minimal indices
- Strong *l*-ifications also preserve the infinite partial multiplicities.
- However, the minimal indices are not necessarily preserved (and this is usually the case).
- One of *s*, *t* can be **always** chosen to be **zero**.
- The size of P(λ) can be larger than the size of L(λ) (only if P(λ) is singular).
- $U(\lambda)$ ,  $V(\lambda)$  are essentially row and column elementary transformations.

Example:

$$P(\lambda) \sim \begin{bmatrix} 1 & \\ & L(\lambda) \end{bmatrix}.$$

# Companion *l*-ifications

 $\mathcal{P}(d, m \times n, \mathbb{F})$  = space of all  $m \times n$  matrix polynomials of fixed degree d.

#### Definition (Companion *l*-ification)

A companion  $\ell$ -ification for matrix polynomials  $P(\lambda)$  in  $\mathcal{P}(d, m \times n, \mathbb{F})$  is of the form  $C_P(\lambda) = \sum_{i=0}^{\ell} \lambda^i X_i$ , satisfying:

•  $C_P(\lambda)$  is a strong  $\ell$ -ification for P for every  $P \in \mathcal{P}(d, m \times n, \mathbb{F})$ .

Each entry of X<sub>i</sub> is either a constant, or a constant multiple of just one of the entries of P(λ).



## Companion $\ell$ -ifications

 $\mathcal{P}(d, m \times n, \mathbb{F})$  = space of all  $m \times n$  matrix polynomials of fixed degree d.

#### Definition (Companion *l*-ification)

A companion  $\ell$ -ification for matrix polynomials  $P(\lambda)$  in  $\mathcal{P}(d, m \times n, \mathbb{F})$  is of the form  $C_P(\lambda) = \sum_{i=0}^{\ell} \lambda^i X_i$ , satisfying:

- $C_P(\lambda)$  is a strong  $\ell$ -ification for P for every  $P \in \mathcal{P}(d, m \times n, \mathbb{F})$ .
- Each entry of X<sub>i</sub> is either a constant, or a constant multiple of just one of the entries of P(λ).

**Example** [D., Dopico, Mackey, 2014]: If  $d = \ell \mathbf{k}$ ,

$$C_{1}^{\ell}(\lambda) := \begin{bmatrix} B_{k}(\lambda) & B_{k-1}(\lambda) & B_{k-2}(\lambda) & \cdots & B_{1}(\lambda) \\ -I_{n} & \lambda^{\ell}I_{n} & 0 & \cdots & 0 \\ & -I_{n} & \lambda^{\ell}I_{n} & \ddots & \vdots \\ & \ddots & \ddots & 0 \\ & & -I_{n} & \lambda^{\ell}I_{n} \end{bmatrix} \text{ and } C_{2}^{\ell}(\lambda) := C_{1}^{\ell}(\lambda)^{\mathcal{B}}$$
with : 
$$B_{1}(\lambda) := \lambda^{\ell}P_{\ell} + \lambda^{\ell-1}P_{\ell-1} + \cdots + \lambda P_{1} + P_{0},$$

$$B_{j}(\lambda) := \lambda^{\ell}P_{\ell j} + \lambda^{\ell-1}P_{\ell j-1} + \cdots + \lambda P_{\ell(j-1)+1}, \quad \text{for } j = 2, \dots, k.$$

#### Minimal bases

 $N(\lambda) \in \mathbb{F}[\lambda]^{m \times n} \rightsquigarrow N_h$ : highest row degree coefficient matrix.

**Definition:**  $N(\lambda)$  is row reduced if  $N_h$  is of full row rank.

(Similar definition of column reduced with the highest column degree coefficient matrix).

#### Definition

The  $m \times n$  matrix polynomial  $N(\lambda)$ , with  $m \le n$  is a minimal basis if: (a)  $N(\lambda)$  has **full row rank** for all  $\lambda \in \overline{\mathbb{F}}$ , and (b) it is **row reduced**.

**Remark**: Similar definition with  $m \ge n$ , full column rank, and column reduced. **Example**:

$$N(\lambda) = \begin{bmatrix} \lambda^3 & 1 & \lambda \\ \lambda & 3\lambda^2 + 2 & \lambda + 1 \end{bmatrix} \implies N_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$

 $N(\lambda)$  is a minimal basis.

Fernando De Terán (UC3M)

#### Minimal bases

 $N(\lambda) \in \mathbb{F}[\lambda]^{m \times n} \rightsquigarrow N_h$ : highest row degree coefficient matrix.

**Definition:**  $N(\lambda)$  is row reduced if  $N_h$  is of full row rank.

(Similar definition of column reduced with the highest column degree coefficient matrix).

#### Definition

The  $m \times n$  matrix polynomial  $N(\lambda)$ , with  $m \le n$  is a minimal basis if:

- (a)  $N(\lambda)$  has **full row rank** for all  $\lambda \in \overline{\mathbb{F}}$ , and
- (b) it is row reduced.

**Remark**: Similar definition with  $m \ge n$ , full column rank, and column reduced. Example:

$$N(\lambda) = \begin{bmatrix} \lambda^3 & 1 & \lambda \\ \lambda & 3\lambda^2 + 2 & \lambda + 1 \end{bmatrix} \implies N_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$

 $N(\lambda)$  is a minimal basis

## Minimal bases

 $N(\lambda) \in \mathbb{F}[\lambda]^{m \times n} \rightsquigarrow N_h$ : highest row degree coefficient matrix.

**Definition:**  $N(\lambda)$  is row reduced if  $N_h$  is of full row rank.

(Similar definition of column reduced with the highest column degree coefficient matrix).

#### Definition

The  $m \times n$  matrix polynomial  $N(\lambda)$ , with  $m \le n$  is a minimal basis if:

(a) 
$$N(\lambda)$$
 has **full row rank** for all  $\lambda \in \overline{\mathbb{F}}$ , and

(b) it is row reduced.

**Remark**: Similar definition with  $m \ge n$ , full column rank, and column reduced. **Example:** 

$$N(\lambda) = \begin{bmatrix} \lambda^3 & 1 & \lambda \\ \lambda & 3\lambda^2 + 2 & \lambda + 1 \end{bmatrix} \rightsquigarrow N_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}.$$

 $N(\lambda)$  is a minimal basis.

Fernando De Terán (UC3M)



An important feature of a minimal basis are its row/column degrees.

For instance, for minimal bases of the right (resp., left) nullspace of  $P(\lambda) \in \mathbb{F}[\lambda]^{m \times n}$ ,  $\mathcal{N}_r(P)$  (resp.  $\mathcal{N}_\ell(P)$ ):

$$\begin{split} \mathcal{N}_r(P) &:= & \left\{ x(\lambda) \in \mathbb{F}(\lambda)^{n \times 1} : P(\lambda) x(\lambda) \equiv 0 \right\}, \\ \mathcal{N}_\ell(P) &:= & \left\{ y(\lambda)^T \in \mathbb{F}(\lambda)^{1 \times m} : y(\lambda)^T P(\lambda) \equiv 0^T \right\}, \end{split}$$

they are the right (resp. left) minimal indices of  $P(\lambda)$ .

Motivation. Basic definitions.

## Dual minimal bases and row degrees

#### Definition

 $N_1(\lambda) \in \mathbb{F}[\lambda]^{m_1 \times n}$ ,  $N_2(\lambda) \in \mathbb{F}[\lambda]^{m_2 \times n}$  are dual minimal bases if  $N_1(\lambda)$  and  $N_2(\lambda)$  are both minimal bases and:

 $m_1 + m_2 = n$ , and  $N_1(\lambda)N_2(\lambda)^T = 0$ .

**Theorem** (D., Dopico, Mackey, Van Dooren, 2015)

Let  $(\eta_1, \ldots, \eta_{m_1})$  and  $(\varepsilon_1, \ldots, \varepsilon_{m_2})$ , with  $\varepsilon_i, \eta_j \ge 0$  and:

$$\sum_{j=1}^{m_1} \eta_j = \sum_{i=1}^{m_2} \varepsilon_i \,.$$

Then there always exist  $N_1(\lambda) \in \mathbb{F}[\lambda]^{m_1 \times n}$  and  $N_2(\lambda) \in \mathbb{F}[\lambda]^{m_2 \times n}$ , with  $n = m_1 + m_2$ , **dual minimal bases** whose row degrees are, respectively,  $(\eta_1, \ldots, \eta_{m_1})$  and  $(\varepsilon_1, \ldots, \varepsilon_{m_2})$ .

They can be built up using zigzag matrices

Fernando De Terán (UC3M)

Constructing strong *l*-ifications

(日)

Ö

Motivation. Basic definitions.

## Dual minimal bases and row degrees

#### Definition

 $N_1(\lambda) \in \mathbb{F}[\lambda]^{m_1 \times n}$ ,  $N_2(\lambda) \in \mathbb{F}[\lambda]^{m_2 \times n}$  are dual minimal bases if  $N_1(\lambda)$  and  $N_2(\lambda)$  are both minimal bases and:

$$m_1 + m_2 = n$$
, and  $N_1(\lambda)N_2(\lambda)^T = 0$ .

Theorem (D., Dopico, Mackey, Van Dooren, 2015)

Let  $(\eta_1, \ldots, \eta_{m_1})$  and  $(\varepsilon_1, \ldots, \varepsilon_{m_2})$ , with  $\varepsilon_i, \eta_j \ge 0$  and:

$$\sum_{j=1}^{m_1} \eta_j = \sum_{i=1}^{m_2} \varepsilon_i \,.$$

Then there always exist  $N_1(\lambda) \in \mathbb{F}[\lambda]^{m_1 \times n}$  and  $N_2(\lambda) \in \mathbb{F}[\lambda]^{m_2 \times n}$ , with  $n = m_1 + m_2$ , **dual minimal bases** whose row degrees are, respectively,  $(\eta_1, \ldots, \eta_{m_1})$  and  $(\varepsilon_1, \ldots, \varepsilon_{m_2})$ .

They can be built up using zigzag matrices

・ロン ・日ン ・ヨン・

Motivation. Basic definitions.

## Dual minimal bases and row degrees

#### Definition

 $N_1(\lambda) \in \mathbb{F}[\lambda]^{m_1 \times n}$ ,  $N_2(\lambda) \in \mathbb{F}[\lambda]^{m_2 \times n}$  are dual minimal bases if  $N_1(\lambda)$  and  $N_2(\lambda)$  are both minimal bases and:

$$m_1 + m_2 = n$$
, and  $N_1(\lambda)N_2(\lambda)^T = 0$ .

Theorem (D., Dopico, Mackey, Van Dooren, 2015)

Let  $(\eta_1, \ldots, \eta_{m_1})$  and  $(\varepsilon_1, \ldots, \varepsilon_{m_2})$ , with  $\varepsilon_i, \eta_j \ge 0$  and:

$$\sum_{j=1}^{m_1} \eta_j = \sum_{i=1}^{m_2} \varepsilon_i \,.$$

Then there always exist  $N_1(\lambda) \in \mathbb{F}[\lambda]^{m_1 \times n}$  and  $N_2(\lambda) \in \mathbb{F}[\lambda]^{m_2 \times n}$ , with  $n = m_1 + m_2$ , **dual minimal bases** whose row degrees are, respectively,  $(\eta_1, \ldots, \eta_{m_1})$  and  $(\varepsilon_1, \ldots, \varepsilon_{m_2})$ .

They can be built up using **zigzag matrices**.

#### Outline



2 New construction of strong *l*-ifications

- 3 Minimal index recovery
- 4) The case where  $\ell$  divides d



We focus on the case  $k\ell = nd$  (i.e.,  $\ell$  **divides** nd). (Similar construction for the case where  $\ell$  divides md).

Solution Note that  $\ell < d \Rightarrow k > n$ 

Set:  

$$\widehat{d} := d - \ell, \quad k := \widehat{n} + n \quad (\widehat{d}, \widehat{n} > 0)$$

Then:

$$(\widehat{n}+n)\ell = nd \Leftrightarrow \widehat{n}\ell = n\widehat{d}$$

The  $\ell$ -ification is going to have size  $(\widehat{n} + m) \times (\widehat{n} + n)$ 

We focus on the case  $k\ell = nd$  (i.e.,  $\ell$  **divides** nd). (Similar construction for the case where  $\ell$  divides md).

Solution Note that  $\ell < d \Rightarrow k > n$ 

Set:

$$\widehat{d} := d - \ell, \qquad k := \widehat{n} + n \qquad (\widehat{d}, \widehat{n} > 0)$$

Then:

$$(\widehat{n}+n)\ell = nd \Leftrightarrow \widehat{n}\ell = n\widehat{d}$$

The  $\ell$ -ification is going to have size  $(\widehat{n} + m) \times (\widehat{n} + n)$ 

We focus on the case  $k\ell = nd$  (i.e.,  $\ell$  **divides** nd). (Similar construction for the case where  $\ell$  divides md).

Solution Note that  $\ell < d \Rightarrow k > n$ 

Set:

$$\widehat{d} := d - \ell, \qquad k := \widehat{n} + n \qquad (\widehat{d}, \widehat{n} > 0)$$

Then:

$$(\widehat{n}+n)\ell = nd \Leftrightarrow \widehat{n\ell} = n\widehat{d}$$

For the  $\ell$ -ification is going to have size  $(\widehat{n} + m) \times (\widehat{n} + n)$ 

We focus on the case  $k\ell = nd$  (i.e.,  $\ell$  **divides** nd). (Similar construction for the case where  $\ell$  divides md).

Solution Note that  $\ell < d \Rightarrow k > n$ 

Set:

$$\widehat{d} := d - \ell, \qquad k := \widehat{n} + n \qquad (\widehat{d}, \widehat{n} > 0)$$

Then:

$$(\widehat{n}+n)\ell = nd \Leftrightarrow \widehat{n\ell} = n\widehat{d}$$

The *l*-ification is going to have size  $(\hat{n} + m) \times (\hat{n} + n)$ 

**Step 1**: Construct a pair of **dual minimal bases**  $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}$  and  $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  such that: (i) All row degrees of  $\widehat{L}(\lambda)$  are equal to  $\ell$ .

(ii) All row degrees of  $\widehat{N}(\lambda)$  are equal to  $\widehat{d} (= d - \ell)$ .

**Step 2:** Find a solution,  $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times (\widehat{n}+n)}$ , to

 $\widetilde{L}(\lambda)\widehat{N}(\lambda)^{T}=P(\lambda),$ 

with deg  $\widetilde{L}(\lambda) \leq \ell$ .

**Step 1**: Construct a pair of **dual minimal bases**  $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}$  and  $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  such that:

(i) All row degrees of  $\widehat{L}(\lambda)$  are equal to  $\ell$ .

(ii) All row degrees of  $\widehat{N}(\lambda)$  are equal to  $\widehat{d} (= d - \ell)$ .

**Step 2:** Find a solution,  $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times (\widehat{n}+n)}$ , to

 $\widetilde{L}(\lambda)\widehat{N}(\lambda)^{T}=P(\lambda),$ 

with deg  $\widetilde{L}(\lambda) \leq \ell$ .

#### Theorem

If  $\widehat{L}(\lambda)$ ,  $\widetilde{L}(\lambda)$  are as above, then

$$\mathcal{L}(\lambda) = \begin{bmatrix} \widehat{\mathcal{L}}(\lambda) \\ \widetilde{\mathcal{L}}(\lambda) \end{bmatrix} \in \mathbb{F}[\lambda]^{(\widehat{n}+m) \times (\widehat{n}+n)}$$

is a strong  $\ell$ -ification of  $P(\lambda)$ .

**Step 1**: Construct a pair of **dual minimal bases**  $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}$  and  $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  such that:

(i) All row degrees of  $\widehat{L}(\lambda)$  are equal to  $\ell$ .

(ii) All row degrees of  $\widehat{N}(\lambda)$  are equal to  $\widehat{d} (= d - \ell)$ .

**Step 2:** Find a solution,  $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times (\widehat{n}+n)}$ , to

 $\widetilde{L}(\lambda)\widehat{N}(\lambda)^{T}=P(\lambda),$ 

with deg  $\widetilde{L}(\lambda) \leq \ell$ .

IDEA:

$$\begin{array}{c} \widehat{L} \, \widehat{N}^{T} = 0 \\ \widetilde{L} \, \widehat{N}^{T} = P \end{array} \end{array} \right\} \Rightarrow \left[ \begin{array}{c} \widehat{L} \\ \widetilde{L} \end{array} \right] \overbrace{\left[ \begin{array}{c} \widetilde{N}^{T} \\ \widetilde{L} \end{array} \right]}^{unimodular} = \left[ \begin{array}{c} I & 0 \\ X & P \end{array} \right]$$



**Step 1**: Construct a pair of **dual minimal bases**  $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}$  and  $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  such that:

(i) All row degrees of  $\widehat{L}(\lambda)$  are equal to  $\ell$ .

(ii) All row degrees of  $\widehat{N}(\lambda)$  are equal to  $\widehat{d} (= d - \ell)$ .

**Step 2:** Find a solution,  $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times (\widehat{n}+n)}$ , to

$$\widetilde{L}(\lambda)\widehat{N}(\lambda)^{T}=P(\lambda),$$

with deg  $\widetilde{L}(\lambda) \leq \ell$ .

IDEA:

$$\begin{aligned} \widehat{L} \widehat{N}^{T} &= 0 \\ \widetilde{L} \widehat{N}^{T} &= P \end{aligned} \right\} \Rightarrow \begin{bmatrix} \widehat{L} \\ \widetilde{L} \end{bmatrix} \underbrace{\left[ \begin{array}{c} \widetilde{N}^{T} & | & \widehat{N}^{T} \end{array} \right]}_{\left[ \begin{array}{c} \widetilde{N}^{T} & | & \widehat{N}^{T} \end{array} \right]} &= \begin{bmatrix} I & 0 \\ X & P \end{bmatrix} \\ \Rightarrow \begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} \begin{bmatrix} \widehat{L} \\ \widetilde{L} \end{bmatrix} \begin{bmatrix} \widetilde{N}^{T} & | & \widehat{N}^{T} \end{bmatrix} = \begin{bmatrix} I \\ P \end{bmatrix} \end{aligned}$$

# Outline of construction

**Step 1**: Construct a pair of **dual minimal bases**  $\widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}$  and  $\widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  such that:

(i) All row degrees of  $\widehat{L}(\lambda)$  are equal to  $\ell$ .

(ii) All row degrees of  $\widehat{N}(\lambda)$  are equal to  $\widehat{d} (= d - \ell)$ .

**Step 2:** Find a solution,  $\widetilde{L}(\lambda) \in \mathbb{F}[\lambda]^{m \times (\widehat{n}+n)}$ , to

$$\widetilde{L}(\lambda)\widehat{N}(\lambda)^{T}=P(\lambda),$$

with deg  $\widetilde{L}(\lambda) \leq \ell$ .

IDEA:

$$\begin{aligned} \widehat{L} \widehat{N}^{T} &= 0 \\ \widetilde{L} \widehat{N}^{T} &= P \end{aligned} \} \Rightarrow \begin{bmatrix} \widehat{L} \\ \widetilde{L} \end{bmatrix} \underbrace{\left[ \begin{array}{c} \widetilde{N}^{T} & | \end{array} \right]^{T}}_{\left[ \begin{array}{c} \widetilde{N}^{T} & | \end{array} \right]^{T}} = \begin{bmatrix} I & 0 \\ X & P \end{bmatrix} \\ \Rightarrow \begin{bmatrix} I & 0 \\ -X & I \end{bmatrix} \begin{bmatrix} \widehat{L} \\ \widetilde{L} \end{bmatrix} \begin{bmatrix} \widetilde{N}^{T} & | \end{array} ]^{T} = \begin{bmatrix} I \\ P \end{bmatrix} \end{aligned}$$

(i)–(ii) guarantee that the  $\ell$ -ification is strong.

Fernando De Terán (UC3M)

**Step 1:**  $\widehat{n\ell} = n\widehat{d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  exist (by the inverse row degree theorem for dual minimal bases).

One way to construct them is using zigzag matrices (recall Froilán's talk!).

Step 2: Set:

$$\widetilde{L}(\lambda) = \lambda^{\ell} \widetilde{L}_{\ell} + \lambda^{\ell-1} \widetilde{L}_{\ell-1} + \dots + \lambda \widetilde{L}_{1} + \widetilde{L}_{0},$$
  
$$\widehat{N}(\lambda) = \lambda^{\widehat{d}} \widehat{N}_{\widehat{d}} + \lambda^{\widehat{d}-1} \widehat{N}_{\widehat{d}-1} + \dots + \lambda \widehat{N}_{1} + \widehat{N}_{0},$$

and write the convolution equation:



**Step 1:**  $\widehat{n\ell} = n\widehat{d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  exist (by the inverse row degree theorem for dual minimal bases).

One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$\widetilde{L}(\lambda) = \lambda^{\ell} \widetilde{L}_{\ell} + \lambda^{\ell-1} \widetilde{L}_{\ell-1} + \dots + \lambda \widetilde{L}_{1} + \widetilde{L}_{0},$$
  
$$\widehat{N}(\lambda) = \lambda^{\widehat{d}} \widehat{N}_{\widehat{d}} + \lambda^{\widehat{d}-1} \widehat{N}_{\widehat{d}-1} + \dots + \lambda \widehat{N}_{1} + \widehat{N}_{0},$$

and write the convolution equation:



**Step 1:**  $\widehat{n\ell} = n\widehat{d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  exist (by the inverse row degree theorem for dual minimal bases).

One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$\begin{split} \widetilde{L}(\lambda) &= \lambda^{\ell} \widetilde{L}_{\ell} + \lambda^{\ell-1} \widetilde{L}_{\ell-1} + \dots + \lambda \widetilde{L}_{1} + \widetilde{L}_{0}, \\ \widehat{N}(\lambda) &= \lambda^{\widehat{d}} \widehat{N}_{\widehat{d}} + \lambda^{\widehat{d}-1} \widehat{N}_{\widehat{d}-1} + \dots + \lambda \widehat{N}_{1} + \widehat{N}_{0}, \end{split}$$

and write the convolution equation:



**Step 1:**  $\widehat{n\ell} = n\widehat{d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  exist (by the inverse row degree theorem for dual minimal bases).

One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$\widetilde{L}(\lambda) = \lambda^{\ell} \widetilde{L}_{\ell} + \lambda^{\ell-1} \widetilde{L}_{\ell-1} + \dots + \lambda \widetilde{L}_{1} + \widetilde{L}_{0},$$
  
$$\widehat{N}(\lambda) = \lambda^{\widehat{d}} \widehat{N}_{\widehat{d}} + \lambda^{\widehat{d}-1} \widehat{N}_{\widehat{d}-1} + \dots + \lambda \widehat{N}_{1} + \widehat{N}_{0},$$

and write the convolution equation:

$$\begin{bmatrix} \widetilde{L}_0 & \dots & \widetilde{L}_{\ell-1} & \widetilde{L}_{\ell} \end{bmatrix} \begin{bmatrix} \widehat{N}_0^T & \dots & \widehat{N}_{\overline{d}}^T & \dots \\ & \widehat{N}_0^T & \dots & \widehat{N}_{\overline{d}}^T & \dots \\ & & \ddots & & \ddots & \\ & & & & \widehat{N}_0^T & \dots & \widehat{N}_{\overline{d}}^T \end{bmatrix} = \begin{bmatrix} P_0 & \dots & P_{d-1} & P_d \end{bmatrix}.$$

**Step 1:**  $\widehat{n\ell} = n\widehat{d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  exist (by the inverse row degree theorem for dual minimal bases).

One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$\widetilde{L}(\lambda) = \lambda^{\ell} \widetilde{L}_{\ell} + \lambda^{\ell-1} \widetilde{L}_{\ell-1} + \dots + \lambda \widetilde{L}_{1} + \widetilde{L}_{0},$$
  
$$\widehat{N}(\lambda) = \lambda^{\widehat{d}} \widehat{N}_{\widehat{d}} + \lambda^{\widehat{d}-1} \widehat{N}_{\widehat{d}-1} + \dots + \lambda \widehat{N}_{1} + \widehat{N}_{0},$$

and write the convolution equation:

$$\begin{bmatrix} \widetilde{L}_{0} & \dots & \widetilde{L}_{\ell-1} & \widetilde{L}_{\ell} \end{bmatrix} \begin{bmatrix} \widehat{N}_{0}^{T} & \dots & \widehat{N}_{d}^{T} \\ & \widehat{N}_{0}^{T} & \dots & \widehat{N}_{d}^{T} \\ & & \ddots & \ddots \\ & & \ddots & \ddots \\ & & & \widehat{N}_{0}^{T} & \dots & \widehat{N}_{d}^{T} \end{bmatrix}_{r} = \begin{bmatrix} P_{0} & \dots & P_{d-1} & P_{d} \end{bmatrix}.$$
$$(\widehat{n} + n)(\ell + 1) \times n(d + 1)$$
$$(\widehat{n} \text{ more rows than columns})$$

**Step 1:**  $\widehat{n\ell} = n\widehat{d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  exist (by the inverse row degree theorem for dual minimal bases).

One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$\widetilde{L}(\lambda) = \lambda^{\ell} \widetilde{L}_{\ell} + \lambda^{\ell-1} \widetilde{L}_{\ell-1} + \dots + \lambda \widetilde{L}_{1} + \widetilde{L}_{0},$$
  
$$\widehat{N}(\lambda) = \lambda^{\widehat{d}} \widehat{N}_{\widehat{d}} + \lambda^{\widehat{d}-1} \widehat{N}_{\widehat{d}-1} + \dots + \lambda \widehat{N}_{1} + \widehat{N}_{0},$$

and write the convolution equation:

$$\begin{bmatrix} \widetilde{L}_0 & \dots & \widetilde{L}_{\ell-1} & \widetilde{L}_{\ell} \end{bmatrix} \begin{bmatrix} \widehat{N}_0^T & \dots & \widehat{N}_{\widehat{d}}^T & & \\ & \widehat{N}_0^T & \dots & \widehat{N}_{\widehat{d}}^T & & \\ & & \ddots & & \ddots & \\ & & & & \widehat{N}_0^T & \dots & \widehat{N}_{\widehat{d}}^T \end{bmatrix} = \begin{bmatrix} P_0 & \dots & P_{d-1} & P_d \end{bmatrix}.$$

It has infinitely many solutions.

**Step 1:**  $\widehat{n\ell} = n\widehat{d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  exist (by the inverse row degree theorem for dual minimal bases).

One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$\widetilde{L}(\lambda) = \lambda^{\ell} \widetilde{L}_{\ell} + \lambda^{\ell-1} \widetilde{L}_{\ell-1} + \dots + \lambda \widetilde{L}_{1} + \widetilde{L}_{0},$$
  
$$\widehat{N}(\lambda) = \lambda^{\widehat{d}} \widehat{N}_{\widehat{d}} + \lambda^{\widehat{d}-1} \widehat{N}_{\widehat{d}-1} + \dots + \lambda \widehat{N}_{1} + \widehat{N}_{0},$$

and write the convolution equation:

$$\begin{bmatrix} \widetilde{L}_0 & \dots & \widetilde{L}_{\ell-1} & \widetilde{L}_{\ell} \end{bmatrix} \begin{bmatrix} \widehat{N}_0^T & \dots & \widehat{N}_{\widehat{d}}^T & & \\ & \widehat{N}_0^T & \dots & \widehat{N}_{\widehat{d}}^T & & \\ & & \ddots & & \ddots & \\ & & & & \widehat{N}_0^T & \dots & \widehat{N}_{\widehat{d}}^T \end{bmatrix} = \begin{bmatrix} P_0 & \dots & P_{d-1} & P_d \end{bmatrix}.$$

First solve:  $\widetilde{L}_{\ell} \widehat{N}_{\widehat{d}}^{T} = P_d$  ( $\widehat{N}_{\widehat{d}}^{T}$  has full column rank).

**Step 1:**  $\widehat{n\ell} = n\widehat{d} \Rightarrow \widehat{L}(\lambda) \in \mathbb{F}[\lambda]^{\widehat{n} \times (\widehat{n}+n)}, \widehat{N}(\lambda) \in \mathbb{F}[\lambda]^{n \times (\widehat{n}+n)}$  exist (by the inverse row degree theorem for dual minimal bases).

One way to construct them is using zigzag matrices (recall Froilán's talk!).
Step 2: Set:

$$\widetilde{L}(\lambda) = \lambda^{\ell} \widetilde{L}_{\ell} + \lambda^{\ell-1} \widetilde{L}_{\ell-1} + \dots + \lambda \widetilde{L}_{1} + \widetilde{L}_{0},$$
  
$$\widehat{N}(\lambda) = \lambda^{\widehat{d}} \widehat{N}_{\widehat{d}} + \lambda^{\widehat{d}-1} \widehat{N}_{\widehat{d}-1} + \dots + \lambda \widehat{N}_{1} + \widehat{N}_{0},$$

and write the convolution equation:

$$\begin{bmatrix} \tilde{L}_0 & \dots & \tilde{L}_{\ell-1} \end{bmatrix} \begin{bmatrix} \widehat{N}_0^T & \dots & \widehat{N}_d^T \\ & \widehat{N}_0^T & \dots & \widehat{N}_d^T \\ & & \ddots & & \ddots \\ & & & \ddots & \ddots \\ & & & & \widehat{N}_0^T & \dots & \widehat{N}_d^T \end{bmatrix} = \begin{bmatrix} P_0 & P_1 & \dots & P_{d-1} \end{bmatrix} - \tilde{L}_\ell \begin{bmatrix} 0 \dots 0 & \widehat{N}_0^T & \dots & \widehat{N}_{d-1}^T \end{bmatrix}$$

<sup>IGF</sup> First solve:  $\widetilde{L}_{\ell} \widehat{N}_{\widehat{d}}^{T} = P_d$  ( $\widehat{N}_{\widehat{d}}^{T}$  has full column rank).

Then solve (1).

#### Example

 $P(\lambda)$  of size  $m \times 2$  and degree d = 3, and  $\ell = 2$ .

<sup>EP</sup> Following the **zigzag** construction for dual minimal bases  $\widehat{L}(\lambda)$ ,  $\widehat{N}(\lambda)$  in **Step 1**, and with an appropriate choice of  $\widetilde{L}_2$  in **Step 2**, we get the strong quadratification:

$$L(\lambda) = \begin{bmatrix} \widehat{L}(\lambda) \\ \widetilde{L}(\lambda) \end{bmatrix} = \lambda^2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & P_3 e_1 & P_3 e_2 \end{bmatrix} \\ +\lambda \begin{bmatrix} 0 & -1 & 0 \\ P_1 e_1 - P_0 e_2 & P_2 e_1 & P_2 e_2 - P_3 e_1 \end{bmatrix} \\ + \begin{bmatrix} 0 & 0 & 1 \\ P_0 e_1 & P_0 e_2 & P_1 e_2 - P_2 e_1 \end{bmatrix}.$$



#### Size

The size of the strong  $\ell$ -ifications we construct is:

 $(\widehat{n}+m) \times (\widehat{n}+n)$  (if  $\ell | nd$ )

with

 $\widehat{n}=\frac{n(d-\ell)}{\ell},$ 

or

$$(\widehat{m}+m)\times(\widehat{m}+n)$$

(if *ℓ*|*md*)

イロト イヨト イヨト イヨト

with

$$\widehat{m}=\frac{m(d-\ell)}{\ell}.$$

(Compare with the size of companion linearizations:

$$((d-1)s+m) \times ((d-1)s+n),$$

where  $s = \min\{m, n\}$ ).



#### Outline



New construction of strong *l*-ifications



4) The case where  $\ell$  divides d



# Minimal indices of $L(\lambda)$ and $P(\lambda)$

#### Theorem

When  $\ell | nd$ , the construction in **Steps 1** and **2** always provides a strong  $\ell$ -ification of  $m \times n$  matrix polynomials of degree *d*. Moreover:

- (i) If ε<sub>1</sub>,..., ε<sub>p</sub> are the right minimal indices of P(λ), then the right minimal indices of L(λ) are ε<sub>1</sub> + (d − ℓ),..., ε<sub>p</sub> + (d − ℓ).
- (ii) If η<sub>1</sub>,..., η<sub>q</sub> are the left minimal indices of P(λ), then the left minimal indices of L(λ) are η<sub>1</sub>,..., η<sub>q</sub>.

**Remark:** Similar result when  $\ell | md$ , replacing the roles of left/right minimal indices.

CIII

#### Outline

- Motivation. Basic definitions.
- 2) New construction of strong *l*-ifications
- 3 Minimal index recovery
- 4) The case where  $\ell$  divides d



Set  $d = k\ell$ . We can take:

$$\widehat{L}(\lambda) = \begin{pmatrix} \lambda^{\ell} & -1 & \\ & \ddots & \ddots & \\ & & \lambda^{\ell} & -1 \end{pmatrix}_{(k-1) \times k} \otimes I_n, \text{ and } \widehat{N}(\lambda)^T = \begin{bmatrix} 1 & \\ \lambda^{\ell} & \\ \lambda^{2\ell} & \\ \vdots & \\ \lambda^{(k-1)\ell} \end{bmatrix} \otimes I_n.$$

and

$$\widetilde{L}_{\ell} = \begin{bmatrix} 0 & \dots & 0 & P_d \end{bmatrix} \in \mathbb{F}^{m \times nk},$$

to get:

$$L(\lambda) = \begin{bmatrix} \lambda^{\ell} I_n & -I_n & & \\ & \ddots & \ddots & \\ & & \lambda^{\ell} I_n & -I_n \\ D_0(\lambda) & \dots & D_{k-2}(\lambda) & D_{k-1}(\lambda) \end{bmatrix},$$

where

$$D_{j}(\lambda) = P_{j\ell} + \lambda P_{j\ell+1} + \dots + \lambda^{\ell-1} P_{(j+1)\ell-1} \qquad (j = 0, \dots, k-2),$$
  
$$D_{k-1}(\lambda) = P_{(k-1)\ell} + \lambda P_{(k-1)\ell+1} + \dots + \lambda^{\ell-1} P_{k\ell-1} + \lambda^{\ell} P_{k\ell}.$$

Fernando De Terán (UC3M)

#### Compare:

$$L(\lambda) = \begin{bmatrix} \lambda^{\ell} I_n & -I_n & & \\ & \ddots & \ddots & \\ & & \lambda^{\ell} I_n & -I_n \\ D_0(\lambda) & \dots & D_{k-2}(\lambda) & D_{k-1}(\lambda) \end{bmatrix}$$

$$D_{j}(\lambda) = P_{j\ell} + \lambda P_{j\ell+1} + \dots + \lambda^{\ell-1} P_{(j+1)\ell-1} \qquad (j = 0, \dots, k-2), D_{k-1}(\lambda) = P_{(k-1)\ell} + \lambda P_{(k-1)\ell+1} + \dots + \lambda^{\ell-1} P_{k\ell-1} + \lambda^{\ell} P_{k\ell}$$

with

$$C_{1}^{\ell}(\lambda) = \begin{bmatrix} B_{k}(\lambda) & B_{k-1}(\lambda) & B_{k-2}(\lambda) & \cdots & B_{1}(\lambda) \\ -I_{n} & \lambda^{\ell}I_{n} & 0 & \cdots & 0 \\ & & -I_{n} & \lambda^{\ell}I_{n} & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ & & & & -I_{n} & \lambda^{\ell}I_{n} \end{bmatrix}$$

$$B_{1}(\lambda) := \lambda^{\ell} P_{\ell} + \lambda^{\ell-1} P_{\ell-1} + \dots + \lambda P_{1} + P_{0},$$
  

$$B_{j}(\lambda) := \lambda^{\ell} P_{\ell j} + \lambda^{\ell-1} P_{\ell j-1} + \dots + \lambda P_{\ell (j-1)+1} \qquad (j = 2, \dots, k).$$

- We have provided a general construction of strong *ℓ*-ifications, *L*(*λ*), of *m*× *n* matrix polynomials of degree *d*, *P*(*λ*), valid for all *ℓ*|*md* or *ℓ*|*nd*.
- If  $\ell | nd$  (resp.  $\ell | md$ ) then:
  - The left (resp., right) minimal indices of  $L(\lambda)$  and  $P(\lambda)$  coincide.
  - The right (resp. left) minimal indices of L(λ) are the ones of P(λ) increased by (d − ℓ) (each).
- When  $\ell | d$  we get companion  $\ell$ -ifications.

- We have provided a general construction of strong *l*-ifications, *L*(*λ*), of *m*× *n* matrix polynomials of degree *d*, *P*(*λ*), valid for all *l*|*md* or *l*|*nd*.
- If  $\ell | nd$  (resp.  $\ell | md$ ) then:
  - The left (resp., right) minimal indices of  $L(\lambda)$  and  $P(\lambda)$  coincide.
  - The right (resp. left) minimal indices of  $L(\lambda)$  are the ones of  $P(\lambda)$  increased by  $(d \ell)$  (each).
- When  $\ell | d$  we get companion  $\ell$ -ifications.

CIII

- We have provided a general construction of strong *l*-ifications, *L*(*λ*), of *m*× *n* matrix polynomials of degree *d*, *P*(*λ*), valid for all *l*|*md* or *l*|*nd*.
- If  $\ell | nd$  (resp.  $\ell | md$ ) then:
  - The left (resp., right) minimal indices of  $L(\lambda)$  and  $P(\lambda)$  coincide.
  - The right (resp. left) minimal indices of L(λ) are the ones of P(λ) increased by (d − ℓ) (each).
- When  $\ell | d$  we get companion  $\ell$ -ifications.

- We have provided a general construction of strong *l*-ifications, *L*(*λ*), of *m*× *n* matrix polynomials of degree *d*, *P*(*λ*), valid for all *l*|*md* or *l*|*nd*.
- If  $\ell | nd$  (resp.  $\ell | md$ ) then:
  - The left (resp., right) minimal indices of  $L(\lambda)$  and  $P(\lambda)$  coincide.
  - The right (resp. left) minimal indices of L(λ) are the ones of P(λ) increased by (d − ℓ) (each).
- When  $\ell | d$  we get companion  $\ell$ -ifications.

- We have provided a general construction of strong *l*-ifications, *L*(*λ*), of *m*× *n* matrix polynomials of degree *d*, *P*(*λ*), valid for all *l*|*md* or *l*|*nd*.
- If  $\ell | nd$  (resp.  $\ell | md$ ) then:
  - The left (resp., right) minimal indices of  $L(\lambda)$  and  $P(\lambda)$  coincide.
  - The right (resp. left) minimal indices of L(λ) are the ones of P(λ) increased by (d − ℓ) (each).
- When  $\ell | d$  we get companion  $\ell$ -ifications.

## Bibliography

- F. De Terán, F. M. Dopico, D. S. Mackey.

Spectral equivalence of matrix polynomials and the Index Sum Theorem. Linear Algebra Appl., 459 (2014) 264–333.

- F. De Terán, F. M. Dopico, D. S. Mackey, P. Van Dooren. Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials. Accepted in Linear Algebra Appl.
- F. De Terán, F. M. Dopico, P. Van Dooren. Constructing strong *l*-ifications from dual minimal bases. Submitted, 2015.

# OBRIGADO !!!!!

## Bibliography

- F. De Terán, F. M. Dopico, D. S. Mackey.

Spectral equivalence of matrix polynomials and the Index Sum Theorem. Linear Algebra Appl., 459 (2014) 264–333.

- F. De Terán, F. M. Dopico, D. S. Mackey, P. Van Dooren. Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials. Accepted in Linear Algebra Appl.
- F. De Terán, F. M. Dopico, P. Van Dooren. Constructing strong *l*-ifications from dual minimal bases. Submitted, 2015.

# OBRIGADO !!!!!