
 CIII
 The Sylvester equation for congruence and some related equations

Fernando De Terán

Departamento de Matemáticas
Universidad Carlos III de Madrid (Spain)

Joint work with: F. M. Dopico (UC3M-ICMAT)
N. Guillery
D. Montealegre
N. Z. Reyes

Outline

(1) Definition. Goals. Related equations and some history.
(2) Motivation
(3) Necessary and sufficient conditions
(4) The solution of $A X+X^{\star} B=0$

Outline

(1) Definition. Goals. Related equations and some history.
(2) Motivation
(3) Necessary and sufficient conditions
(4) The solution of $A X+X^{\star} B=0$

Sylvester equation for congruence

$A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times m}(\mathbb{F}$ an arbitrary field)

$A X+X^{\star} B=C$
 Sylvester equation for \star-congruence

$X \in \mathbb{F}^{n \times m}$, unknown
($\star=T$ or $*)$
(Other name in the literature: "Sylvester-transpose matrix equation")

Solution of Sylvester equation for congruence

$A X+X^{\star} B=C \quad(\star=T$ or $*) \quad$ Sylvester equation for congruence

GOALS:

- Find necessary and sufficient conditions for consistency.
- Find the dimension of the solution space.
- Find an expression for the solution.
- Find necessary and sufficient conditions for uniqueness of the solution.
- Find an (efficient) algorithm to compute the solution (when unique).

Related equations and history

$A X+X^{\star} B=C \quad(\star=T$ or $*) \quad$ Sylvester equation for congruence
(a) Sylvester equation: $A X+X B=C$ (A, B must be square!!)

- Solution know since (at least) the 1950's (Gantmacher).
- Characterization of consistency and uniqueness of solution already known (Roth, Gantmacher).
- Efficient algorithm for the unique solution already known (Bartels-Stewart).
- Mathscinet:
- 83 references containing "Sylvester equation" in the title.
- 44 references containing "Sylvester matrix equation" in the title.
- 227 references containing "Sylvester equation" anywhere.
- 91 references containing "Sylvester matrix equation" anywhere.

Related equations and history (II)

(b) $A X \pm X^{\star} A^{\star}=C, \quad A \in \mathbb{F}^{m \times n}, C \in \mathbb{F}^{m \times m}$:

- Hodges (1957): Solution over finite fields.
- Taussky-Wielandt (1962): Eigenvalues of $g(X)=A^{T} X+X^{\top} A$.
- Lancaster-Rozsa (1983), Braden (1999): Necessary and sufficient conditions for consistency. Closed-form formula for the solution (using projectors and generalized inverses) and dimension of the solution space.
- Djordjević (2007): Extends Lancaster-Rozsa to A, C, X bounded linear operators on Hilbert spaces (with closed rank).
(c) $A X+X^{\star} A=C, \quad A, C \in \mathbb{C}^{n \times n}$:
- Ballantine (1969): $H=P A+A P^{*}$, with H hermitian and A, P with certain structure.
- DT-Dopico (2011): Complete solution for $C=0$. Related to the theory of (congruence) orbits.

Related equations and history (III)

(d) The Sylvester equation for congruence: $A X+X^{\star} B=C$:

- Necessary and sufficient conditions for consistency: Wimmer (1994), Piao-Zhang-Wang (2007, involved), DT-Dopico (2011, another proof of Wimmer's).
- Necessary and sufficient conditions for unique solution: Byers -Kressner (2006, $\star=T$), Kressner-Schröder-Watkins (2009, $\star=*$).
- Formula for the solution: Piao-Zhang-Wang (2007, involved), Cvetković-llić (2008, operators with certain restrictions), DT-Dopico-Guillery-Montealegre-Reyes (submitted, $C=0$).
- Algorithm for the (unique) solution: DT-Dopico (2011, $O\left(n^{3}\right)$), Vorontsov-Ivanov (2011), Chiang-Chu-Lin (2012).
(e) $A X B+C X^{\star} D=E$:
- Numerical iterative methods to find the solution (when unique) or some structured solutions: Wang-Chen-Wei (2007), HajarianMehghan (2010), Xie-Liu-Yang (2010), Song-Chen (2011).

Outline

(1) Definition. Goals. Related equations and some history.

(2) Motivation

3 Necessary and sufficient conditions

Orbit theory

$X A+A X^{\star}=0, \quad A \in \mathbb{C}^{n \times n}$
Set:

$$
\begin{array}{rll}
\mathscr{O}(A) & =\left\{P A P^{T}: P \text { nonsingular }\right\} & \text { Congruence orbit of } A \\
\mathscr{O}_{s}(A) & =\left\{P A P^{-1}: P \text { nonsingular }\right\} & \text { Similarity orbit of } A
\end{array}
$$

Then:

Orbit theory

$X A+A X^{\star}=0, \quad A \in \mathbb{C}^{n \times n}$
Set:

$$
\begin{array}{rll}
\mathscr{O}(A) & =\left\{P A P^{T}: P \text { nonsingular }\right\} & \text { Congruence orbit of } A \\
\mathscr{O}_{s}(A) & =\left\{P A P^{-1}: P \text { nonsingular }\right\} & \text { Similarity orbit of } A
\end{array}
$$

Then:

$$
\begin{array}{cl}
T_{\mathscr{O}(A)}(A)=\left\{X A+A X^{T}: X \in \mathbb{C}^{n \times n}\right\} & \text { Tangent space of } \mathscr{O}(A) \text { at } A \\
T_{\mathscr{O}_{s}(A)}(A)=\left\{X A-A X: X \in \mathbb{C}^{n \times n}\right\} & \text { Tangent space of } \mathscr{O}_{s}(A) \text { at } A
\end{array}
$$

Orbit theory

$X A+A X^{\star}=0, \quad A \in \mathbb{C}^{n \times n}$
Set:

$$
\begin{array}{cl}
\mathscr{O}(A)=\left\{P A P^{T}: P \text { nonsingular }\right\} & \text { Congruence orbit of } A \\
\mathscr{O}_{s}(A)=\left\{P A P^{-1}: P \text { nonsingular }\right\} & \text { Similarity orbit of } A
\end{array}
$$

Then:

$$
\begin{array}{cl}
T_{\mathscr{O}(A)}(A)=\left\{X A+A X^{T}: X \in \mathbb{C}^{n \times n}\right\} & \text { Tangent space of } \mathscr{O}(A) \text { at } A \\
T_{\mathscr{O}_{s}(A)}(A)=\left\{X A-A X: X \in \mathbb{C}^{n \times n}\right\} & \text { Tangent space of } \mathscr{O}_{s}(A) \text { at } A
\end{array}
$$

(a) $\operatorname{codim} \mathscr{O}(A)=\operatorname{codim} T_{\mathscr{O}(A)}(A)=\operatorname{dim}$ (solution space of $\left.X A+A X^{T}=0\right)$
(b) $\operatorname{codim} \mathscr{O}_{s}(A)=\operatorname{codim} T_{\mathscr{O}_{s}(A)}(A)=\operatorname{dim}$ (solution space of $X A-A X=0$)

Reduction by congruence to anti-triangular form

$$
\begin{gathered}
\overbrace{\left[\begin{array}{cc}
X^{\star} & 1 \\
1 & 0
\end{array}\right]}^{P}\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \overbrace{\left[\begin{array}{cc}
X & 1 \\
1 & 0
\end{array}\right]}^{P *}=\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right] \\
\Leftrightarrow A_{21} X+X^{\star} A_{12}=-A_{22} .
\end{gathered}
$$

Application: Anti-triangular form of palindromic pencils $A+\lambda A^{*}$.

(Analogous to:

Reduction by congruence to anti-triangular form

$$
\begin{gathered}
\overbrace{\left[\begin{array}{cc}
X^{\star} & I \\
1 & 0
\end{array}\right]}^{P}\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \overbrace{\left[\begin{array}{cc}
X & 1 \\
1 & 0
\end{array}\right]}^{P *}=\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right] \\
\Leftrightarrow A_{21} X+X^{\star} A_{12}=-A_{22} .
\end{gathered}
$$

Application: Anti-triangular form of palindromic pencils $A+\lambda A^{\star}$.

(Analogous to:

Reduction by congruence to anti-triangular form

$$
\begin{gathered}
\overbrace{\left[\begin{array}{cc}
X^{\star} & I \\
1 & 0
\end{array}\right]}^{P}\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \overbrace{\left[\begin{array}{ll}
X & 1 \\
1 & 0
\end{array}\right]}^{P \star}=\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right] \\
\Leftrightarrow A_{21} X+X^{\star} A_{12}=-A_{22} .
\end{gathered}
$$

Application: Anti-triangular form of palindromic pencils $A+\lambda A^{\star}$.
(Analogous to:

$$
\begin{aligned}
& \overbrace{\left[\begin{array}{cc}
l & X \\
0 & l
\end{array}\right]}^{P}\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] \overbrace{\left[\begin{array}{cc}
l & -X \\
0 & I
\end{array}\right]}^{P-1}=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right] \\
& \left.\Leftrightarrow A_{11} X-X A_{22}=A_{12} \rightsquigarrow \text { Sylvester equation }\right)
\end{aligned}
$$

Outline

(1) Definition. Goals. Related equations and some history.

(2) Motivation
(3) Necessary and sufficient conditions
(4) The solution of $A X+X^{\star} B=0$

Consistency

Theorem (Wimmer 1994, DT-Dopico 2011)

Let \mathbb{F} be a field with char $\mathbb{F} \neq 2, A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times m}$. Then

$$
A X+X^{\star} B=C \quad \text { is consistent }
$$

if and only if

$$
P^{\star}\left[\begin{array}{ll}
C & A \\
B & 0
\end{array}\right] P=\left[\begin{array}{ll}
0 & A \\
B & 0
\end{array}\right]
$$

for some nonsingular P.

(Compare with Roth's criterion:
 " $A X-X B=C$ is consistent if and only if

for some nonsingular $P^{\prime \prime}$.)

Consistency

Theorem (Wimmer 1994, DT-Dopico 2011)

Let \mathbb{F} be a field with char $\mathbb{F} \neq 2, A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times m}$. Then

$$
A X+X^{\star} B=C \quad \text { is consistent }
$$

if and only if

$$
P^{\star}\left[\begin{array}{ll}
C & A \\
B & 0
\end{array}\right] P=\left[\begin{array}{ll}
0 & A \\
B & 0
\end{array}\right]
$$

for some nonsingular P.
(Compare with Roth's criterion:
" $A X-X B=C$ is consistent if and only if

$$
P^{-1}\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right] P=\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

for some nonsingular $P^{\prime \prime}$.)

Consistency: proof

Wimmer's proof: Dimensionality arguments.
DT-Dopico's proof: Based on:
Theorem (Wimmer 1994, Syrmos-Lewis 1994, Beitia-Gracia 1996)
$A_{1}, A_{2} \in \mathbb{F}^{m \times n}, B_{1}, B_{2} \in \mathbb{F}^{p \times k}, C_{1}, C_{2} \in \mathbb{F}^{m \times k}$. Then

$$
\begin{aligned}
& A_{1} X+Y B_{1}=C_{1} \\
& A_{2} X+Y B_{2}=C_{2}
\end{aligned} \quad \text { is consistent }
$$

if and only if

$$
P\left[\begin{array}{cc}
A_{1}-\lambda A_{2} & C_{1}-\lambda C_{2} \\
0 & B_{1}-\lambda B_{2}
\end{array}\right] Q=\left[\begin{array}{cc}
A_{1}-\lambda A_{2} & 0 \\
0 & B_{1}-\lambda B_{2}
\end{array}\right]
$$

for some P, Q nonsingular.

Uniqueness of solution

Theorem (Byers-Kressner 2006, Kressner-Schröder-Watkins 2009)
$A, B \in \mathbb{C}^{n \times n}$. Then

$$
A X+X^{\star} B=C \quad \text { has a unique solution }
$$

if and only if
(1) $A+\lambda B^{\star}$ is regular, and
(2) $\star=T$: If $\mu \in \operatorname{Spec}\left(A+\lambda B^{T}\right) \backslash\{-1\}$, then
$1 / \mu \notin \operatorname{Spec}\left(A+\lambda B^{T}\right) \backslash\{-1\}$ and, if $-1 \in \operatorname{Spec}\left(A+\lambda B^{T}\right)$, then it has algebraic multiplicity one.
$\star=*$: If $\mu \in \operatorname{Spec}\left(A+\lambda B^{*}\right)$, then $1 / \bar{\mu} \notin \operatorname{Spec}\left(A+\lambda B^{*}\right)$.

Uniqueness of solution: Algorithm

Using vec and Gaussian elimination: $M \cdot \operatorname{vec} X=\operatorname{vec} C \rightsquigarrow \mathbf{O}\left(\mathbf{n}^{6}\right)!!!!$

Algorithm 1 (Solution of $A X+X^{\star} B=C$)
 $A, B \in \mathbb{C}^{n \times n}, A+\lambda B^{\star}$ regular

Step 1. Compute the generalized Schur decomposition of $A+\lambda B^{\star}$ (with the QZ algorithm):

$$
A=U R V, \quad B^{\star}=U S V .
$$

Step 2. Compute $E=U^{*} C\left(U^{\star}\right)^{*}$.
Step 3. Solve $R W+W^{\star} S^{\star}=E$.
Step 4. Compute $X=V^{*} W U^{\star}$.

$$
\text { Cost of Algorithm 1:76n }+O\left(n^{2}\right)
$$

Outline

(1) Definition. Goals. Related equations and some history.

(2) Motivation
3) Necessary and sufficient conditions
(4) The solution of $A X+X^{\star} B=0$

The pencil $A+\lambda B^{\star}$

Notation: $\mathscr{S}(A, B)=\left\{X: A X+X^{\star} B=0\right\}$

Lemma

If $P\left(A+\lambda B^{\star}\right) Q=\widetilde{A}+\lambda \widetilde{B}^{\star}$ then there is a one-to-one linear map:

$$
\begin{array}{clc}
\mathscr{S}(A, B) & \rightarrow & \mathscr{S}(\widetilde{A}, \widetilde{B}) \\
X & \mapsto & Y=Q^{-1} X P^{\star}
\end{array}
$$

IDEA: Reduce $A+\lambda B^{\star}$ to its Kronecker Canonical Form (KCF), $K_{1}+\lambda K_{2}^{\star}$, and solve $K_{1} X+X^{\star} K_{2}=0$.
(Compare:
$A X-X B=0$: Depends on the Jordan canonical form of A, B
\square

The pencil $A+\lambda B^{\star}$

Notation: $\mathscr{S}(A, B)=\left\{X: A X+X^{\star} B=0\right\}$

Lemma

If $P\left(A+\lambda B^{\star}\right) Q=\widetilde{A}+\lambda \widetilde{B}^{\star}$ then there is a one-to-one linear map:

$$
\begin{array}{clc}
\mathscr{S}(A, B) & \rightarrow & \mathscr{S}(\widetilde{A}, \widetilde{B}) \\
X & \mapsto & \mapsto=Q^{-1} X P^{\star} .
\end{array}
$$

IDEA: Reduce $A+\lambda B^{\star}$ to its Kronecker Canonical Form (KCF), $K_{1}+\lambda K_{2}^{\star}$, and solve $K_{1} X+X^{\star} K_{2}=0$.
(Compare:
$A X-X B=0$: Depends on the Jordan canonical form of A, B
$A X+X^{\star} B=0$: Depends on the KCF of $A+\lambda B^{\star}$.)

Partition into blocks

Lemma

Let $E=\operatorname{diag}\left(E_{1}, \ldots, E_{d}\right)$ and $F^{\star}=\operatorname{diag}\left(F_{1}^{\star}, \ldots, F_{d}^{\star}\right)$, and partition $X=\left[X_{i j}\right]_{i, j=1: d}$. Then

$$
E X+X^{\star} F=0
$$

is equivalent to the set of equations

$$
\begin{aligned}
& E_{i} X_{i j}+X_{i j}^{\star} F_{j}=0 \\
& E_{j} X_{j i}+X_{i j}^{\star} F_{i}=0,
\end{aligned}
$$

for $i, j=1, \ldots, d$.
Note that we have:

(1 equation)

Partition into blocks

Lemma

Let $E=\operatorname{diag}\left(E_{1}, \ldots, E_{d}\right)$ and $F^{\star}=\operatorname{diag}\left(F_{1}^{\star}, \ldots, F_{d}^{\star}\right)$, and partition $X=\left[X_{i j}\right]_{i, j=1: d}$. Then

$$
E X+X^{\star} F=0
$$

is equivalent to the set of equations

$$
\begin{aligned}
& E_{i} X_{i j}+X_{i j}^{\star} F_{j}=0 \\
& E_{j} X_{j i}+X_{i j}^{\star} F_{i}=0,
\end{aligned}
$$

for $i, j=1, \ldots, d$.
Note that we have:

$$
\begin{aligned}
i & =j \rightarrow E_{i} X_{i i}+X_{i i}^{\star} F_{i}=0 \\
i & \neq j \rightarrow\left\{\begin{array}{l}
E_{i} X_{i j}+X_{j i}^{\star} F_{j}=0 \\
E_{j} X_{j i}+X_{i j}^{\star} F_{i}=0
\end{array}\right. \text { (system of 2 equat }
\end{aligned}
$$

Using the KCF

By particularizing to $F+\lambda F^{\star}$ as the KCF of $A+\lambda B^{\star}$, i.e.: direct sum of blocks:

Type 1: "finite blocks": $J_{k}\left(\lambda_{i}\right)+\lambda I_{k}$
Type 2: "infinite blocks": $\lambda J_{m}(0)+I_{m}$
Type 3: "right singular blocks": L_{ε}
Type 4: "left singular blocks": L_{η}
we have to solve:
(a) $E X+X^{\star} F=0$, with $E+\lambda F^{\star}$ of type 1-4 $\rightsquigarrow 4$ equations
(b) $\begin{gathered}E_{i} X+Y^{\star} F_{j}=0 \\ E_{j} Y+X^{\star} F_{i}=0\end{gathered}$, with $E_{i}+\lambda F_{i}^{\star}, E_{j}+\lambda F_{j}^{\star}$ of type 1-4 $\rightsquigarrow 10$ systems

The KCF of $A+\lambda B^{\star}$

Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$, set $A+\lambda B^{\star}$ with Kronecker canonical form

$$
\begin{aligned}
K_{1}+\lambda K_{2}^{\star}= & L_{\varepsilon_{1}} \oplus L_{\varepsilon_{2}} \oplus \cdots \oplus L_{\varepsilon_{a}} \\
& \oplus L_{\eta_{1}}^{T} \oplus L_{\eta_{2}}^{T} \oplus \cdots \oplus L_{\eta_{b}}^{T} \\
& \oplus\left(\lambda J_{u_{1}}(0)+I_{u_{1}}\right) \oplus\left(\lambda J_{u_{2}}(0)+I_{u_{2}}\right) \oplus \cdots \oplus\left(\lambda J_{u_{c}}(0)+I_{u_{c}}\right) \\
& \oplus\left(J_{k_{1}}\left(\mu_{1}\right)+\lambda I_{k_{1}}\right) \oplus\left(J_{k_{2}}\left(\mu_{2}\right)+\lambda I_{k_{2}}\right) \oplus \cdots \oplus\left(J_{k_{d}}\left(\mu_{d}\right)+\lambda I_{k_{d}}\right),
\end{aligned}
$$

where $\varepsilon_{1} \leq \varepsilon_{2} \leq \cdots \leq \varepsilon_{a}, \eta_{1} \leq \eta_{2} \leq \cdots \leq \eta_{b}$, and $u_{1} \leq u_{2} \leq \cdots \leq u_{c}$. Then the dimension of the solution space of the matrix equation

$$
A X+X^{\star} B=0
$$

depends only on $K_{1}+\lambda K_{2}^{\star}$.

Codimension count

Theorem

The dimension of the solution space of $A X+X^{\top} B=0$ is:

$$
\begin{aligned}
\operatorname{dim} \mathscr{S}(A, B)= & \sum_{i=1}^{a} \varepsilon_{i}+\sum_{\mu_{i}=1}\left\lfloor k_{i} / 2\right\rfloor+\sum_{\mu_{j}=-1}\left\lceil k_{j} / 2\right\rceil+ \\
& \sum_{\substack{i, j=1 \\
i<j}}^{a}\left(\varepsilon_{i}+\varepsilon_{j}\right)+\sum_{\substack{i<j \\
\mu_{i} \mu_{j}=1}} \min \left\{k_{i}, k_{j}\right\} \\
& +\sum_{i, j}\left(\eta_{j}-\varepsilon_{i}+1\right)+ \\
& a \sum_{i=1}^{c} u_{i}+a \sum_{i=1}^{d} k_{i}+\sum_{\substack{i, j \\
\mu_{j}=0}} \min \left\{u_{i}, k_{j}\right\}
\end{aligned}
$$

Solution of $A X+X^{\star} B=0$

- Explicit formulas available. Depend on P, Q, K_{1}, K_{2}, where

$$
P\left(A+\lambda B^{\star}\right) Q=K_{1}+\lambda K_{2}^{\star},
$$

the KCF of $A+\lambda B^{\star}$.

- Solution (and codimension count) over \mathbb{C}.

Solution of $A X+X^{\star} B=0$

- Explicit formulas available. Depend on P, Q, K_{1}, K_{2}, where

$$
P\left(A+\lambda B^{\star}\right) Q=K_{1}+\lambda K_{2}^{\star},
$$

the KCF of $A+\lambda B^{\star}$.

- Solution (and codimension count) over \mathbb{C}.
M. A. Beitia, J.-M. Gracia, Sylvester matrix equation for matrix pencils, LAA 232 (1996).
回 H. W. Braden, The equations $A^{\top} X \pm X^{\top} A=B$, SIMAX 20 (1998).
R. Byers, D. Kressner, Structured condition numbers for invariant subspaces, SIMAX 28 (2) (2006).
R. De Terán, F. M. Dopico, The solution of the equation $X A+A X^{\top}=0$ and ts application to the theory of orbits, LAA 434 (2011).
埥 F. De Terán, F. M. Dopico, The equation $A X+X^{*} B=0$ and the dimension of *congruence orbits, ELA 22 (2011).
R. De Terán, F. M. Dopico, Consistency and efficient solution of the Sylvester equation for \star-congruence: $A X+X^{\star} B=C$, ELA 22 (2011).
fing De Terán, F. M. Dopico, N. Guillery, D. Montealegre, N. Z. Reyes, The solution of the equation $A X+X^{\star} B=0$, submitted.
D. Kressner, C. Schröder, D. S. Watkins, Implicit QR algorithms for palindromic and even eigenvalue problems, NA 51(2) (2009).
R. K. WIMMER, Roth's Theorems for matrix equations with symmetry constraints, LAA 199 (1994).

