

The Sylvester equation for congruence and some related equations

Fernando De Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

Joint work with:	F. M. Dopico (UC3M-ICMAT)	
	N. Guillery	
	D. Montealegre	
	N. Z. Reyes	

Leganés, June 29th, 2012

Definition. Goals. Related equations and some history.

2 Motivation

Outline

Definition. Goals. Related equations and some history.

2 Motivation

3 Necessary and sufficient conditions

4 The solution of $AX + X^*B = 0$

< 🗇 🕨 < 🖃 >

Sylvester equation for congruence

$$A \in \mathbb{F}^{m imes n}, B \in \mathbb{F}^{n imes m}, C \in \mathbb{F}^{m imes m}$$
 (\mathbb{F} an arbitrary field)

$$AX + X^*B = C$$

Sylvester equation for *****-congruence

 $X \in \mathbb{F}^{n \times m}$, unknown

 $(\star = T \text{ or } \ast)$

(Other name in the literature: "Sylvester-transpose matrix equation")

Solution of Sylvester equation for congruence

 $AX + X^*B = C$ (* = T or *) Sylvester equation for congruence

GOALS:

- Find necessary and sufficient conditions for consistency.
- Find the dimension of the solution space.
- Find an expression for the solution.
- Find necessary and sufficient conditions for uniqueness of the solution.
- Find an (efficient) algorithm to compute the solution (when unique).

Related equations and history

 $AX + X^*B = C$ (* = T or *) Sylvester equation for congruence

(a) Sylvester equation: AX + XB = C (A, B must be square!!)

- Solution know since (at least) the 1950's (Gantmacher).
- Characterization of consistency and uniqueness of solution already known (Roth, Gantmacher).
- Efficient algorithm for the unique solution already known (Bartels-Stewart).
- Mathscinet:
 - 83 references containing "Sylvester equation" in the title.
 - 44 references containing "Sylvester matrix equation" in the title.
 - 227 references containing "Sylvester equation" anywhere.
 - 91 references containing "Sylvester matrix equation" anywhere.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Related equations and history (II)

(b) $AX \pm X^*A^* = C$, $A \in \mathbb{F}^{m \times n}, C \in \mathbb{F}^{m \times m}$:

- Hodges (1957): Solution over finite fields.
- Taussky-Wielandt (1962): Eigenvalues of $g(X) = A^T X + X^T A$.
- Lancaster-Rozsa (1983), Braden (1999): Necessary and sufficient conditions for consistency. Closed-form formula for the solution (using projectors and generalized inverses) and dimension of the solution space.
- Djordjević (2007): Extends Lancaster-Rozsa to *A*, *C*, *X* bounded linear operators on Hilbert spaces (with closed rank).

(c) $AX + X^*A = C$, $A, C \in \mathbb{C}^{n \times n}$:

- Ballantine (1969): $H = PA + AP^*$, with *H* hermitian and *A*, *P* with certain structure.
- DT-Dopico (2011): Complete solution for C = 0. Related to the theory of (congruence) orbits.

ALAMA 2012

7/23

Related equations and history (III)

(d) The Sylvester equation for congruence: $AX + X^*B = C$:

- Necessary and sufficient conditions for consistency: Wimmer (1994), Piao-Zhang-Wang (2007, involved), DT-Dopico (2011, another proof of Wimmer's).
- Necessary and sufficient conditions for unique solution: Byers
 -Kressner (2006, * = T), Kressner-Schröder-Watkins (2009, * = *).
- **Formula** for the solution: Piao-Zhang-Wang (2007, involved), Cvetković-Ilić (2008, operators with certain restrictions), DT-Dopico-Guillery-Montealegre-Reyes (submitted, *C* = 0).
- Algorithm for the (unique) solution: DT-Dopico (2011, *O*(*n*³)), Vorontsov-Ivanov (2011), Chiang-Chu-Lin (2012).

(e) $AXB + CX^*D = E$:

 Numerical iterative methods to find the solution (when unique) or some structured solutions: Wang-Chen-Wei (2007), Hajarian-Mehghan (2010), Xie-Liu-Yang (2010), Song-Chen (2011).

Outline

Definition. Goals. Related equations and some history.

2 Motivation

3 Necessary and sufficient conditions

4 The solution of $AX + X^*B = 0$

A (1) > A (2) > A

Orbit theory

$$XA + AX^{\star} = 0, \qquad A \in \mathbb{C}^{n \times n}$$

Set:

$$\mathcal{O}(A) = \{ PAP^T : P \text{ nonsingular} \}$$

$$\mathcal{O}_s(A) = \{ PAP^{-1} : P \text{ nonsingular} \}$$
Congruence orbit of A
Similarity orbit of A

Then:

 $\begin{aligned} & \mathcal{T}_{\mathscr{O}(\mathcal{A})}(\mathcal{A}) = \left\{ X\mathcal{A} + \mathcal{A}X^T : \ X \in \mathbb{C}^{n \times n} \right\} & \text{Tangent space of } \mathscr{O}(\mathcal{A}) \text{ at } \mathcal{A} \\ & \mathcal{T}_{\mathscr{O}_{\mathcal{S}}(\mathcal{A})}(\mathcal{A}) = \left\{ X\mathcal{A} - \mathcal{A}X : \ X \in \mathbb{C}^{n \times n} \right\} & \text{Tangent space of } \mathscr{O}_{\mathcal{S}}(\mathcal{A}) \text{ at } \mathcal{A} \end{aligned}$

(a) codim $\mathscr{O}(A) = \operatorname{codim} T_{\mathscr{O}(A)}(A) = \operatorname{dim}(\operatorname{solution} \operatorname{space} \operatorname{of} XA + AX^T = 0)$

(b) codim $\mathcal{O}_s(A) = \operatorname{codim} T_{\mathcal{O}_s(A)}(A) = \operatorname{dim}(\operatorname{solution} \operatorname{space} \operatorname{of} XA - AX = 0$

ALAMA 2012 10 / 23

CIII

Orbit theory

$$XA + AX^{\star} = 0, \qquad A \in \mathbb{C}^{n \times n}$$

Set:

$$\mathcal{O}(A) = \{ PAP^T : P \text{ nonsingular} \}$$
 Congruence orbit of A
$$\mathcal{O}_s(A) = \{ PAP^{-1} : P \text{ nonsingular} \}$$
Similarity orbit of A

Then:

$$T_{\mathscr{O}(A)}(A) = \{ XA + AX^T : X \in \mathbb{C}^{n \times n} \} \text{ Tangent space of } \mathscr{O}(A) \text{ at } A$$

$$T_{\mathscr{O}_{\mathcal{S}}(A)}(A) = \{ XA - AX : X \in \mathbb{C}^{n \times n} \} \text{ Tangent space of } \mathscr{O}_{\mathcal{S}}(A) \text{ at } A$$

(a) codim $\mathscr{O}(A) = \operatorname{codim} T_{\mathscr{O}(A)}(A) = \operatorname{dim}(\operatorname{solution} \operatorname{space} \operatorname{of} XA + AX^T = 0)$

(b) codim $\mathcal{O}_{s}(A) = \operatorname{codim} T_{\mathcal{O}_{s}(A)}(A) = \operatorname{dim}(\operatorname{solution} \operatorname{space} \operatorname{of} XA - AX = 0$

CIII

10/23

э

ALAMA 2012

イロト 不得 トイヨト イヨト

Orbit theory

$$XA + AX^{\star} = 0, \qquad A \in \mathbb{C}^{n \times n}$$

Set:

$$\mathcal{O}(A) = \{ PAP^T : P \text{ nonsingular} \}$$
 Congruence orbit of A
$$\mathcal{O}_s(A) = \{ PAP^{-1} : P \text{ nonsingular} \}$$
 Similarity orbit of A

Then:

$$T_{\mathscr{O}(A)}(A) = \{ XA + AX^T : X \in \mathbb{C}^{n \times n} \} \text{ Tangent space of } \mathscr{O}(A) \text{ at } A$$

$$T_{\mathscr{O}_{\mathcal{S}}(A)}(A) = \{ XA - AX : X \in \mathbb{C}^{n \times n} \} \text{ Tangent space of } \mathscr{O}_{\mathcal{S}}(A) \text{ at } A$$

(a) codim $\mathcal{O}(A) = \text{codim } T_{\mathcal{O}(A)}(A) = \text{dim}(\text{solution space of } XA + AX^T = 0)$

(b) codim $\mathcal{O}_{s}(A) = \text{codim } T_{\mathcal{O}_{s}(A)}(A) = \text{dim}(\text{solution space of } XA - AX = 0)$

Ċ

Reduction by congruence to anti-triangular form

$$\overbrace{\begin{bmatrix} X^{\star} & I \\ I & 0 \end{bmatrix}}^{P} \left[\begin{array}{c} 0 & A_{12} \\ A_{21} & A_{22} \end{array} \right] \overbrace{\begin{bmatrix} X & I \\ I & 0 \end{bmatrix}}^{P^{\star}} = \left[\begin{array}{c} 0 & A_{12} \\ A_{21} & 0 \end{array} \right]$$
$$\Leftrightarrow A_{21}X + X^{\star}A_{12} = -A_{22}.$$

Application: Anti-triangular form of palindromic pencils $A + \lambda A^*$.

(Analogous to:

$$\overbrace{\begin{bmatrix} I & X \\ 0 & I \end{bmatrix}}^{P} \left[\begin{array}{c} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right] \overbrace{\begin{bmatrix} I & -X \\ 0 & I \end{bmatrix}}^{P^{-1}} = \left[\begin{array}{c} A_{11} & 0 \\ 0 & A_{22} \end{array} \right]$$
$$\Leftrightarrow A_{11}X - XA_{22} = A_{12} \rightsquigarrow \text{Sylvester equation})$$

ALAMA 2012 11 / 23

• • • • • • • • • • • • •

Reduction by congruence to anti-triangular form

$$\overbrace{\begin{bmatrix} X^{\star} & I \\ I & 0 \end{bmatrix}}^{P} \left[\begin{array}{c} 0 & A_{12} \\ A_{21} & A_{22} \end{array} \right] \overbrace{\begin{bmatrix} X & I \\ I & 0 \end{bmatrix}}^{P^{\star}} = \left[\begin{array}{c} 0 & A_{12} \\ A_{21} & 0 \end{array} \right]$$
$$\Leftrightarrow A_{21}X + X^{\star}A_{12} = -A_{22}.$$

Application: Anti-triangular form of palindromic pencils $A + \lambda A^*$.

(Analogous to:

$$\overbrace{\begin{bmatrix} I & X \\ 0 & I \end{bmatrix}}^{P} \left[\begin{array}{c} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right] \overbrace{\begin{bmatrix} I & -X \\ 0 & I \end{array}}^{P^{-1}} = \left[\begin{array}{c} A_{11} & 0 \\ 0 & A_{22} \end{array} \right]$$
$$\Leftrightarrow A_{11}X - XA_{22} = A_{12} \rightsquigarrow \text{Sylvester equation}$$

ALAMA 2012 11 / 23

Reduction by congruence to anti-triangular form

$$\overbrace{\begin{bmatrix} X^{\star} & I \\ I & 0 \end{bmatrix}}^{P} \left[\begin{array}{cc} 0 & A_{12} \\ A_{21} & A_{22} \end{array} \right] \overbrace{\begin{bmatrix} X & I \\ I & 0 \end{bmatrix}}^{P^{\star}} = \left[\begin{array}{cc} 0 & A_{12} \\ A_{21} & 0 \end{array} \right]$$
$$\Leftrightarrow A_{21}X + X^{\star}A_{12} = -A_{22}.$$

Application: Anti-triangular form of palindromic pencils $A + \lambda A^*$.

(Analogous to:

$$\overbrace{\begin{bmatrix} I & X \\ 0 & I \end{bmatrix}}^{P} \left[\begin{array}{c} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right] \overbrace{\begin{bmatrix} I & -X \\ 0 & I \end{array}}^{P^{-1}} = \left[\begin{array}{c} A_{11} & 0 \\ 0 & A_{22} \end{array} \right]$$
$$\Leftrightarrow A_{11}X - XA_{22} = A_{12} \rightsquigarrow \text{Sylvester equation})$$

ALAMA 2012 11 / 23

A D M A A A M M

Outline

Definition. Goals. Related equations and some history.

2 Motivation

4 The solution of $AX + X^*B = 0$

▲ 同 ▶ → 三 ▶

Consistency

Theorem (Wimmer 1994, DT-Dopico 2011)

Let \mathbb{F} be a field with char $\mathbb{F} \neq 2$, $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{n \times m}$, $C \in \mathbb{F}^{m \times m}$. Then

 $AX + X^*B = C$ is consistent

if and only if

$$\boldsymbol{P}^{\star} \left[\begin{array}{cc} \boldsymbol{C} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{0} \end{array} \right] \boldsymbol{P} = \left[\begin{array}{cc} \boldsymbol{0} & \boldsymbol{A} \\ \boldsymbol{B} & \boldsymbol{0} \end{array} \right],$$

for some nonsingular P.

De Terán, Dopico, Guillery, Montealegre, Reye

🗇 🕨 🖉 🕨 🖉 🖻

Consistency

Theorem (Wimmer 1994, DT-Dopico 2011)

Let \mathbb{F} be a field with char $\mathbb{F} \neq 2$, $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{n \times m}$, $C \in \mathbb{F}^{m \times m}$. Then

 $AX + X^*B = C$ is consistent

if and only if

$$\mathbf{P}^{\star} \left[\begin{array}{cc} C & A \\ B & 0 \end{array} \right] \mathbf{P} = \left[\begin{array}{cc} 0 & A \\ B & 0 \end{array} \right],$$

for some nonsingular P.

(Compare with Roth's criterion:

"AX - XB = C is consistent if and only if

$$\boldsymbol{P}^{-1}\left[\begin{array}{cc}\boldsymbol{A} & \boldsymbol{C}\\ \boldsymbol{0} & \boldsymbol{B}\end{array}\right]\boldsymbol{P} = \left[\begin{array}{cc}\boldsymbol{A} & \boldsymbol{0}\\ \boldsymbol{0} & \boldsymbol{B}\end{array}\right],$$

for some nonsingular $P^{"}$.)

Consistency: proof

Wimmer's proof: Dimensionality arguments. DT-Dopico's proof: Based on:

Theorem (Wimmer 1994, Syrmos-Lewis 1994, Beitia-Gracia 1996)

 $A_1, A_2 \in \mathbb{F}^{m imes n}, B_1, B_2 \in \mathbb{F}^{p imes k}, C_1, C_2 \in \mathbb{F}^{m imes k}.$ Then

$$A_1X + YB_1 = C_1$$

 $A_2X + YB_2 = C_2$ is consistent

if and only if

$$P\begin{bmatrix} A_1 - \lambda A_2 & C_1 - \lambda C_2 \\ 0 & B_1 - \lambda B_2 \end{bmatrix} Q = \begin{bmatrix} A_1 - \lambda A_2 & 0 \\ 0 & B_1 - \lambda B_2 \end{bmatrix},$$

for some *P*, *Q* nonsingular.

Uniqueness of solution

Theorem (Byers-Kressner 2006, Kressner-Schröder-Watkins 2009)

 $A, B \in \mathbb{C}^{n \times n}$. Then

$$AX + X^*B = C$$
 has a unique solution

if and only if

(1) $A + \lambda B^*$ is regular, and

(2)
$$\star = T$$
: If $\mu \in \text{Spec}(A + \lambda B^T) \setminus \{-1\}$, then
 $1/\mu \notin \text{Spec}(A + \lambda B^T) \setminus \{-1\}$ and, if $-1 \in \text{Spec}(A + \lambda B^T)$, then it
has algebraic multiplicity one.

 \star = *: If μ ∈ Spec (A + λB^*), then 1/ $\overline{\mu} \notin$ Spec (A + λB^*).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Uniqueness of solution: Algorithm

Using vec and Gaussian elimination: $M \cdot \text{vec} X = \text{vec} C \rightsquigarrow O(n^6)$!!!!

Algorithm 1 (Solution of $AX + X^*B = C$)

 $A, B \in \mathbb{C}^{n imes n}, A + \lambda B^{\star}$ regular

Step 1. Compute the generalized Schur decomposition of $A + \lambda B^*$ (with the QZ algorithm):

$$A = URV, \qquad B^* = USV.$$

Step 2. Compute $E = U^* C(U^*)^*$. **Step 3.** Solve $RW + W^* S^* = E$. **Step 4.** Compute $X = V^* WU^*$.

Cost of Algorithm 1: $76n^3 + O(n^2)$

Outline

Definition. Goals. Related equations and some history.

2 Motivation

3 Necessary and sufficient conditions

17/23

A (1) > A (2) > A

ALAMA 2012

The pencil $A + \lambda B^*$

Notation:
$$\mathscr{S}(A, B) = \{X : AX + X^*B = 0\}$$

Lemma

If $P(A + \lambda B^*)Q = \widetilde{A} + \lambda \widetilde{B}^*$ then there is a one-to-one linear map:

$$egin{array}{rcl} \mathscr{S}(A,B) & o & \mathscr{S}(\widetilde{A},\widetilde{B}) \ X & \mapsto & Y = Q^{-1}XP^{\star} \end{array}$$

IDEA: Reduce $A + \lambda B^*$ to its Kronecker Canonical Form (KCF), $K_1 + \lambda K_2^*$, and solve $K_1 X + X^* K_2 = 0$.

(Compare:

AX - XB = 0: Depends on the Jordan canonical form of A, B

 $AX + X^*B = 0$: Depends on the KCF of $A + \lambda B^*$.)

The pencil $A + \lambda B^*$

Notation:
$$\mathscr{S}(A, B) = \{X : AX + X^*B = 0\}$$

Lemma

If $P(A + \lambda B^*)Q = \widetilde{A} + \lambda \widetilde{B}^*$ then there is a one-to-one linear map:

$$egin{array}{rcl} \mathscr{S}(A,B) & o & \mathscr{S}(\widetilde{A},\widetilde{B}) \ X & \mapsto & Y = Q^{-1}XP^{\star} \end{array}$$

IDEA: Reduce $A + \lambda B^*$ to its Kronecker Canonical Form (KCF), $K_1 + \lambda K_2^*$, and solve $K_1 X + X^* K_2 = 0$.

(Compare:

AX - XB = 0: Depends on the Jordan canonical form of A, B

 $AX + X^*B = 0$: Depends on the KCF of $A + \lambda B^*$.)

Partition into blocks

Lemma

Let $E = \text{diag}(E_1, \dots, E_d)$ and $F^* = \text{diag}(F_1^*, \dots, F_d^*)$, and partition $X = [X_{ij}]_{i,j=1:d}$. Then $EX + X^*F = 0$

EX + X F = 0

is equivalent to the set of equations

 $E_i X_{ij} + X_{ij}^{\star} F_j = 0$ $E_j X_{ji} + X_{ij}^{\star} F_i = 0,$

for i, j = 1, ..., d.

Note that we have:

$$i = j \rightarrow E_i X_{ii} + X_{ii}^* F_i = 0 \qquad (1 \text{ equation})$$

$$i \neq j \rightarrow \begin{cases} E_i X_{ij} + X_{ji}^* F_j = 0 \\ E_j X_{ji} + X_{ij}^* F_i = 0 \end{cases} \qquad (\text{system of 2 equations})$$

ALAMA 2012

19/23

<u>De Terán,</u> Dopico, Guillery, Montealegre, Reye

Sylvester equation for *-congruence

Partition into blocks

Lemma

Let
$$E = \text{diag}(E_1, \dots, E_d)$$
 and $F^* = \text{diag}(F_1^*, \dots, F_d^*)$, and partition $X = [X_{ij}]_{i,j=1:d}$. Then
 $EX + X^*F = 0$

is equivalent to the set of equations

$$\begin{aligned} &E_i X_{ij} + X_{ij}^{\star} F_j = 0\\ &E_j X_{ji} + X_{ij}^{\star} F_i = 0, \end{aligned}$$

for i, j = 1, ..., d.

Note that we have:

$$i = j \rightarrow E_i X_{ii} + X_{ii}^* F_i = 0 \qquad (1 \text{ equation})$$

$$i \neq j \rightarrow \begin{cases} E_i X_{ij} + X_{ji}^* F_j = 0 \\ E_j X_{ji} + X_{ij}^* F_i = 0 \end{cases} \qquad (\text{system of 2 equations})$$

ALAMA 2012

19/23

<u>De Terán</u>, Dopico, Guillery, Montealegre, Reye S

Sylvester equation for *-congruence

Using the KCF

By particularizing to $F + \lambda F^*$ as the KCF of $A + \lambda B^*$, i.e.: direct sum of blocks:

Type 1: "finite blocks": $J_k(\lambda_i) + \lambda I_k$

Type 2: "infinite blocks": $\lambda J_m(0) + I_m$

Type 3: "right singular blocks": L_{ε}

Type 4: "left singular blocks": L_n

we have to solve:

(a) $EX + X^*F = 0$, with $E + \lambda F^*$ of **type 1–4** \rightsquigarrow **4** equations (b) $\begin{array}{c} E_i X + Y^*F_j = 0\\ E_j Y + X^*F_i = 0 \end{array}$, with $E_i + \lambda F_i^*$, $E_j + \lambda F_j^*$ of **type 1–4** \rightsquigarrow **10** systems

The KCF of $A + \lambda B^{\star}$

Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{n \times m}$, set $A + \lambda B^*$ with Kronecker canonical form

$$\begin{split} \mathcal{K}_{1} + \lambda \mathcal{K}_{2}^{\star} &= \mathcal{L}_{\varepsilon_{1}} \oplus \mathcal{L}_{\varepsilon_{2}} \oplus \cdots \oplus \mathcal{L}_{\varepsilon_{a}} \\ &\oplus \mathcal{L}_{\eta_{1}}^{T} \oplus \mathcal{L}_{\eta_{2}}^{T} \oplus \cdots \oplus \mathcal{L}_{\eta_{b}}^{T} \\ &\oplus (\lambda \mathcal{J}_{u_{1}}(0) + \mathcal{I}_{u_{1}}) \oplus (\lambda \mathcal{J}_{u_{2}}(0) + \mathcal{I}_{u_{2}}) \oplus \cdots \oplus (\lambda \mathcal{J}_{u_{c}}(0) + \mathcal{I}_{u_{c}}) \\ &\oplus (\mathcal{J}_{k_{1}}(\mu_{1}) + \lambda \mathcal{I}_{k_{1}}) \oplus (\mathcal{J}_{k_{2}}(\mu_{2}) + \lambda \mathcal{I}_{k_{2}}) \oplus \cdots \oplus (\mathcal{J}_{k_{d}}(\mu_{d}) + \lambda \mathcal{I}_{k_{d}}), \end{split}$$

where $\varepsilon_1 \leq \varepsilon_2 \leq \cdots \leq \varepsilon_a$, $\eta_1 \leq \eta_2 \leq \cdots \leq \eta_b$, and $u_1 \leq u_2 \leq \cdots \leq u_c$. Then the dimension of the solution space of the matrix equation

$$AX + X^*B = 0$$

depends only on $K_1 + \lambda K_2^{\star}$.

Codimension count

Theorem

The **dimension** of the solution space of $AX + X^T B = 0$ is:

$$\dim \mathscr{S}(A,B) = \sum_{i=1}^{a} \varepsilon_i + \sum_{\mu_i=1} \lfloor k_i/2 \rfloor + \sum_{\substack{\mu_j=-1 \\ i < j}} \lceil k_j/2 \rceil + \sum_{\substack{i,j=1 \\ i < j}} (\varepsilon_i + \varepsilon_j) + \sum_{\substack{i < j \\ \mu_i \mu_j = 1}} \min\{k_i, k_j\} + \sum_{\substack{i,j \\ \mu_j = 0}} \lfloor \eta_j - \varepsilon_i + 1 \rfloor + \sum_{\substack{i,j \\ \mu_j = 0}} \min\{u_i, k_j\}$$

э

イロト イヨト イヨト イヨト

The solution of $AX + X^*B = 0$

Solution of $AX + X^*B = 0$

• Explicit formulas available. Depend on *P*, *Q*, *K*₁, *K*₂, where

$\boldsymbol{P}(\boldsymbol{A} + \lambda \boldsymbol{B}^{\star})\boldsymbol{Q} = \boldsymbol{K}_{1} + \lambda \boldsymbol{K}_{2}^{\star},$

the *KCF* of $A + \lambda B^*$.

• Solution (and codimension count) over C.

23/23

< (17) > < (17) > (17)

ALAMA 2012

The solution of $AX + X^*B = 0$

Solution of $AX + X^*B = 0$

• Explicit formulas available. Depend on P, Q, K_1, K_2 , where

$$P(A+\lambda B^{\star})Q = K_1 + \lambda K_2^{\star},$$

23/23

ALAMA 2012

the *KCF* of $A + \lambda B^*$.

• Solution (and codimension count) over C.

De Terán, Dopico, Guillery, Montealegre, Reye Sylvester equation for *-congruence

- M. A. BEITIA, J.-M. GRACIA, *Sylvester matrix equation for matrix pencils*, LAA 232 (1996).
- H. W. BRADEN, *The equations* $A^T X \pm X^T A = B$, SIMAX 20 (1998).

- F. DE TERÁN, F. M. DOPICO, The solution of the equation $XA + AX^T = 0$ and ts application to the theory of orbits, LAA 434 (2011).
- F. DE TERÁN, F. M. DOPICO, *The equation* $AX + X^*B = 0$ and the dimension of **congruence orbits*, ELA 22 (2011).
 - F. DE TERÁN, F. M. DOPICO, Consistency and efficient solution of the Sylvester equation for \star -congruence: $AX + X^*B = C$, ELA 22 (2011).

- F. DE TERÁN, F. M. DOPICO, N. GUILLERY, D. MONTEALEGRE, N. Z. REYES, The solution of the equation $AX + X^*B = 0$, submitted.
- D. KRESSNER, C. SCHRÖDER, D. S. WATKINS, Implicit QR algorithms for palindromic and even eigenvalue problems, NA 51(2) (2009).

