uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Uniqueness of solution of generalized Sylvester equations with rectangular coefficients

Fernando De Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

ETNA25 (May 28, 2019)

Joint work with:

Bruno lannazzo
 Federico Poloni
 Leonardo Robol

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

Fernando de Terán (UC3M)

Unique solution of generalized Sylvester equations

ETNA25 2/19

In this talk: No algorithms at all!

In this talk: No algorithms at all!

Theoretical characterization for the uniqueness of solution of generalized Sylvester equations

In this talk: No algorithms at all!

Theoretical characterization for the uniqueness of solution of generalized Sylvester equations **explicitly in terms of their coefficients**.

In this talk: No algorithms at all!

Theoretical characterization for the uniqueness of solution of generalized Sylvester equations **explicitly in terms of their coefficients**.

🖆 Just basic linear algebra techniques.

- (GS) $AXB + CXD = E \iff$ Generalized Sylvester equation.
- (GS*) $AXB + CX^*D = E \iff$ Generalized *-Sylvester equation (* = \top , *).
- $X \in \mathbb{C}^{m \times n}$ (unknown) A, B, C, D, E complex matrices with appropriate size.

(GS) $AXB + CXD = E \iff$ Generalized Sylvester equation.

(GS*) $AXB + CX^*D = E \iff$ Generalized *-Sylvester equation $(* = \top, *)$.

 $X \in \mathbb{C}^{m \times n}$ (unknown) A, B, C, D, E complex matrices with appropriate size.

(GS) is linear over \mathbb{C} .

(GST) is linear over \mathbb{C} .

(GS*) is linear over \mathbb{R} .

You can use (for $\star = \top$):

$$\operatorname{vec}(AXB - CX^{\top}D) = \operatorname{vec}(E) \Leftrightarrow M\operatorname{vec}(X) = \operatorname{vec}(E)$$

with

$$M = B^\top \otimes A + (D^\top \otimes C) \Pi$$

(Π is a permutation matrix associated with the transposition).

You can use (for $\star = \top$):

$$\operatorname{vec}(AXB - CX^{\top}D) = \operatorname{vec}(E) \Leftrightarrow M\operatorname{vec}(X) = \operatorname{vec}(E)$$

with

$$M = B^\top \otimes A + (D^\top \otimes C) \Pi$$

(Π is a permutation matrix associated with the transposition).

You'll need to keep track of the entries of A, B, C, D in M.

uc3m Universidad Carlos III de Madrid

You can use (for $\star = \top$):

$$\operatorname{vec}(AXB - CX^{\top}D) = \operatorname{vec}(E) \Leftrightarrow M\operatorname{vec}(X) = \operatorname{vec}(E)$$

with

$$M = B^{\top} \otimes A + (D^{\top} \otimes C) \Pi$$

(Π is a permutation matrix associated with the transposition).

You'll need to keep track of the entries of A, B, C, D in M.

We will not follow this approach.

Fernando de Terán (UC3M)

uc3m Universidad Carlos III de Madrid

(Eq)
$$AXB + CX^{\sigma}D = E$$
 $(\sigma = 1, \top, *)$

Solvability (S)	(Eq) has a solution,
Solvability (S)	for some given A, B, C, D, E .
Unique solvability (US)	(Eq) has a unique solution,
Unique solvability (US)	for given A, B, C, D, E .
Solvability for (SR)	(Eq) has a solution for any <i>E</i> ,
any right-hand side (Sh)	and given A, B, C, D
At most one solution, (OR)	(Eq) has at most one solution,
for any right-hand side (OR)	for any <i>E</i> , and given <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>
Exactly one solution, (UR)	(Eq) has unique solution,
for any right-hand side (UR)	for any E , and given A, B, C, D

(Eq)
$$AXB + CX^{\sigma}D = E$$
 $(\sigma = 1, \top, *)$

Solvability (S)	(Eq) has a solution,
Solvability (S)	for some given A, B, C, D, E .
Unique solvability (US)	(Eq) has a unique solution,
Unique Sulvability (US)	for given A, B, C, D, E .
Solvability for (SR)	(Eq) has a solution for any <i>E</i> ,
any right-hand side (Sh)	and given A, B, C, D
At most one solution, (OR)	(Eq) has at most one solution,
for any right-hand side (OR)	for any <i>E</i> , and given <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>
Exactly one solution, (UR)	(Eq) has unique solution,
for any right-hand side	for any <i>E</i> , and given <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>

(Eq)
$$AXB + CX^{\sigma}D = E$$
 $(\sigma = 1, \top, *)$

Solvability (S)	(Eq) has a solution,
Solvability (S)	for some given A, B, C, D, E .
Unique solvability (US)	(Eq) has a unique solution,
Unique Sulvability (US)	for given A, B, C, D, E .
Solvability for (SR)	(Eq) has a solution for any <i>E</i> ,
any right-hand side (Sh)	and given A, B, C, D
At most one solution, (OR)	(Eq) has at most one solution,
for any right-hand side (OR)	for any <i>E</i> , and given <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>
Exactly one solution, (UR)	(Eq) has unique solution,
for any right-hand side	for any <i>E</i> , and given <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>

 \Leftrightarrow The operator $X \mapsto AXB + CX^*D$ is invertible.

Characterization for S, US, SR, OR, UR, in terms of A, B, C, D, E:

-		AXB + CXD = E	AXB+C	$X^*D = E$
	square	general	square	general
	coefficients	coefficients	coefficients	coefficients
S	[DK, 2016]	[DK, 2016], [Košir, 1992]	[DK, 2016]	[DK, 2016]
US	[Chu, 1987]	[Košir, 1992]	[DI, 2016]	open
SR	same as US	[DIPR, 2018] (after [Košir, 1992])	same as US	open
OR	same as US	[Košir, 1996]	same as US	open
UR	same as US	[DIPR, 2018] (after [Košir, 1992])	same as US	[DIPR, 2018]

[DI, 2016]=[D-lannazzo, 2016] [DIPR, 2018]=[D-lannazzo-Poloni-Robol, 2018]

[DK, 2016]=[Dmytryshyn-Kågström, 2016]

[Byers-Kressner, 2006]: **US**, **UR** $\rightsquigarrow AX + X^{\top}D = E(A, D, X \in \mathbb{C}^{n \times n})$. [Kressner-Schröder-Watkins, 2009]: **US**, **UR** $\rightsquigarrow AX + X^*D = E(A, D, X \in \mathbb{C}^{n \times n})$.

 Universidad Carlos III de Mac Departmente de Matemáricos

Some history

Characterization for S, US, SR, OR, UR, in terms of A, B, C, D, E:

-		AXB + CXD = E	AXB+C	$X^*D = E$
	square	general	square	general
	coefficients	coefficients	coefficients	coefficients
S	[DK, 2016]	[DK, 2016], [Košir, 1992]	[DK, 2016]	[DK, 2016]
US	[Chu, 1987]	[Košir, 1992]	[DI, 2016]	open
SR	same as US	[DIPR, 2018] (after [Košir, 1992])	same as US	open
OR	same as US	[Košir, 1996]	same as US	open
UR	same as US	[DIPR, 2018] (after [Košir, 1992])	same as US	[DIPR, 2018]

[DI, 2016]=[D-lannazzo, 2016] [DIPR, 2018]=[D-lannazzo-Poloni-Robol, 2018]

[DK, 2016]=[Dmytryshyn-Kågström, 2016]

[Byers-Kressner, 2006]: **US**, **UR** $\rightsquigarrow AX + X^{\top}D = E(A, D, X \in \mathbb{C}^{n \times n})$. [Kressner-Schröder-Watkins, 2009]: **US**, **UR** $\rightsquigarrow AX + X^*D = E(A, D, X \in \mathbb{C}^{n \times n})$.

Departamento de Matemáticos

A matrix pencil $X + \lambda Y$ ($X, Y \in \mathbb{C}^{m \times n}$) is regular if m = n and det($X + \lambda Y$) $\neq 0$.

Some basic notions

A matrix pencil $X + \lambda Y$ ($X, Y \in \mathbb{C}^{m \times n}$) is regular if m = n and det($X + \lambda Y$) $\neq 0$.

Definition: If $X + \lambda Y$ is regular:

(1) $\Lambda(X + \lambda Y) := \{ \mu \in \mathbb{C} : \det(X + \mu Y) = 0 \} \cup \{ \infty \}$ (Spectrum of $X + \lambda Y$)

 $(\infty \in \Lambda(X + \lambda Y) \Leftrightarrow \mathsf{rank} \ Y < \textit{n}).$

(2) If $\mu \in \mathbb{C}$, then $m_{\mu}(X + \lambda Y) :=$ algebraic multiplicity of μ (as a root of det $(X + \lambda Y)$).

(3) $m_{\infty}(X + \lambda Y) := m_0(Y + \lambda X).$

Some basic notions

A matrix pencil $X + \lambda Y$ ($X, Y \in \mathbb{C}^{m \times n}$) is regular if m = n and det($X + \lambda Y$) $\neq 0$.

Definition: If $X + \lambda Y$ is regular:

(1) $\Lambda(X + \lambda Y) := \{ \mu \in \mathbb{C} : \det(X + \mu Y) = 0 \} \cup \{ \infty \}$ (Spectrum of $X + \lambda Y$)

 $(\infty \in \Lambda(X + \lambda Y) \Leftrightarrow \operatorname{rank} Y < n).$

(2) If $\mu \in \mathbb{C}$, then $m_{\mu}(X + \lambda Y) :=$ algebraic multiplicity of μ (as a root of det $(X + \lambda Y)$).

(3) $m_{\infty}(X + \lambda Y) := m_0(Y + \lambda X).$

Definition: $\mathscr{S} \subseteq \mathbb{C} \cup \{\infty\}$. Then \mathscr{S} is

(a) reciprocal free if $\lambda \neq \mu^{-1}$, for all $\lambda, \mu \in \mathscr{S}$;

(b) *-reciprocal free if $\lambda \neq (\overline{\mu})^{-1}$, for all $\lambda, \mu \in \mathscr{S}$.

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

Fernando de Terán (UC3M)

Unique solution of generalized Sylvester equations

ETNA25 8 / 19

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
AX + XD = E	$\Lambda(A)\cap\Lambda(-D)=\emptyset$	$A \in \mathbb{C}^{m \times m}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{mn \times mn}$	[Sylvester'1884]

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
AX + XD = E	$\Lambda(A)\cap\Lambda(-D)=\emptyset$	$A \in \mathbb{C}^{m \times m}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{mn \times mn}$	[Sylvester'1884]
$AX + X^*D = E$	$A - \lambda D^*$ is regular $\Lambda(A - \lambda D^*)$ is *-reciprocal free	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^2 \times mn}$	[Kressner-Schröder- Watkins'09]

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
AX + XD = E	$\wedge(A)\cap \wedge(-D)=\emptyset$	$A \in \mathbb{C}^{m \times m}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{m \times mn}$	[Sylvester'1884]
$AX + X^*D = E$	$A - \lambda D^*$ is regular $\Lambda(A - \lambda D^*)$ is *-reciprocal free	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^2 \times mn}$	[Kressner-Schröder- Watkins'09]
$AX + X^{\top}D = E$	$egin{aligned} & A - \lambda D^ op \mbox{ is regular} \ & \Lambda(A - \lambda D^ op) \setminus \{1\} \mbox{ is reciprocal free,} \ & m_1(A - \lambda D^ op) \leq 1 \end{aligned}$	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^2 \times mn}$	[Byers-Kressner'06]

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
AX + XD = E	$\Lambda(A)\cap\Lambda(-D)=\emptyset$	$A \in \mathbb{C}^{m \times m}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{m \times mn}$	[Sylvester'1884]
$AX + X^*D = E$	$A - \lambda D^*$ is regular $\Lambda(A - \lambda D^*)$ is *-reciprocal free	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^2 \times mn}$	[Kressner-Schröder- Watkins'09]
$AX + X^{\top}D = E$	$A - \lambda D^{ op}$ is regular $\Lambda(A - \lambda D^{ op}) \setminus \{1\}$ is reciprocal free, $m_1(A - \lambda D^{ op}) \leq 1$	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^2 \times mn}$	[Byers-Kressner'06]

 \Rightarrow *m* = *n*.

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

Fernando de Terán (UC3M)

Unique solution of generalized Sylvester equations

ETNA25 9 / 19

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
AXB + CXD = E	$A - \lambda C, B - \lambda D$ are regular, $\Lambda(A - \lambda C) \cap \Lambda(B - \lambda D) = \emptyset$	$A, C \in \mathbb{C}^{m \times m}$ $B, D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{mn \times mn}$	[Chu'87]

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
AXB + CXD = E	$A - \lambda C, B - \lambda D$ are regular, $\Lambda(A - \lambda C) \cap \Lambda(B - \lambda D) = \emptyset$	$A, C \in \mathbb{C}^{m \times m}$ $B, D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{m \times mn}$	[Chu'87]
$AXB + CX^*D = E$	$ \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} $ is regular, $ \Lambda \left(\begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \right) $ is *-reciprocal free	$A \in \mathbb{C}^{n \times n}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{n^2 \times n^2}$ $(m = n)$	[D-lannazzo'16]

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
AXB + CXD = E	$A - \lambda C, B - \lambda D$ are regular, $\Lambda(A - \lambda C) \cap \Lambda(B - \lambda D) = \emptyset$	$A, C \in \mathbb{C}^{m \times m}$ $B, D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{mn \times mn}$	[Chu'87]
$AXB + CX^*D = E$	$ \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} $ is regular, $ \Lambda \left(\begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \right) $ is *-reciprocal free	$A \in \mathbb{C}^{n \times n}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{n^2 \times n^2}$ $(m = n)$	[D-lannazzo'16]
$AXB + CX^{\top}D = E$	$ \begin{array}{c c} \lambda D^{\top} & B^{\top} \\ A & \lambda C \end{array}] \text{ is regular,} \\ \Lambda \left(\left[\begin{array}{c} \lambda D^{\top} & B^{\top} \\ A & \lambda C \end{array} \right] \right) \setminus \{\pm 1\} \text{ is reciprocal free,} \\ m_{\pm 1} (A - \lambda D^{\top}) \leq 1 \end{array} \right. $	$A \in \mathbb{C}^{n \times n}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{n^2 \times n^2}$ $(m = n)$	[D-lannazzo'16]

 $X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
AXB + CXD = E	$A - \lambda C, B - \lambda D$ are regular, $\Lambda(A - \lambda C) \cap \Lambda(B - \lambda D) = \emptyset$	$A, C \in \mathbb{C}^{m \times m}$ $B, D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{m \times mn}$	[Chu'87]
$AXB + CX^*D = E$	$ \begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} $ is regular, $ \Lambda \left(\begin{bmatrix} \lambda D^* & B^* \\ A & \lambda C \end{bmatrix} \right) $ is *-reciprocal free	$A \in \mathbb{C}^{n \times n}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{n^2 \times n^2}$ $(m = n)$	[D-lannazzo'16]
$AXB + CX^{\top}D = E$	$ \begin{array}{c c} \lambda D^{\top} & B^{\top} \\ A & \lambda C \end{array}] \text{ is regular,} \\ \Lambda \left(\left[\begin{array}{c} \lambda D^{\top} & B^{\top} \\ A & \lambda C \end{array} \right] \right) \setminus \{\pm 1\} \text{ is reciprocal free,} \\ m_{\pm 1} (A - \lambda D^{\top}) \leq 1 \end{array} \right. $	$A \in \mathbb{C}^{n \times n}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{n^2 \times n^2}$ $(m = n)$	[D-lannazzo'16]

What happens for A, B, C, D, E rectangular?

uc3m Universidad Carlos III de Madrid Depatamento de Matemáticos

Fernando de Terán (UC3M)

The characterization for **UR** in the "square" case depends on the eigenvalues of $\begin{bmatrix} \lambda D^{\top} & B^{\top} \\ A & \lambda C \end{bmatrix}$ (provided it's regular).

The characterization for **UR** in the "square" case depends on the eigenvalues of $\begin{bmatrix} \lambda D^{\top} & B^{\top} \\ A & \lambda C \end{bmatrix}$ (provided it's regular).

However, for "rectangular" coefficients this is not enough:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \Leftrightarrow x = 0$$
 Not **US** (1)

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \Leftrightarrow x = y = 0 \qquad \qquad \textbf{US} \qquad (2)$$

The characterization for **UR** in the "square" case depends on the eigenvalues of $\begin{bmatrix} \lambda D^{\top} & B^{\top} \\ A & \lambda C \end{bmatrix}$ (provided it's regular).

However, for "rectangular" coefficients this is not enough:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \Leftrightarrow x = 0$$
 Not **US** (1)

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \Leftrightarrow x = y = 0 \qquad \qquad \textbf{US} \qquad (2)$$

The associated pencils are:

$$\mathscr{Q}_1(\lambda) = \begin{bmatrix} \lambda & 0 & | & 0 \\ \hline 1 & 0 & \lambda \\ 0 & 1 & | & 0 \end{bmatrix}, \qquad \mathscr{Q}_2(\lambda) = \begin{bmatrix} \lambda & 0 & | & 1 \\ \hline 0 & 0 & \lambda \\ 0 & 1 & | & 0 \end{bmatrix}.$$

which are regular and with the same eigenstructure.

Carlos III de Madrid Departamento de Matemáricos

The characterization for **UR** in the "square" case depends on the eigenvalues of $\begin{bmatrix} \lambda D^{\top} & B^{\top} \\ A & \lambda C \end{bmatrix}$ (provided it's regular).

However, for "rectangular" coefficients this is not enough:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \Leftrightarrow x = 0$$
 Not **US** (1)

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 \Leftrightarrow x = y = 0 \qquad \qquad \textbf{US} \qquad (2)$$

The associated pencils are:

$$\mathscr{Q}_{1}(\lambda) = \begin{bmatrix} \lambda & 0 & 0 \\ 1 & 0 & \lambda \\ 0 & 1 & 0 \end{bmatrix}, \qquad \mathscr{Q}_{2}(\lambda) = \begin{bmatrix} \lambda & 0 & 1 \\ 0 & 0 & \lambda \\ 0 & 1 & 0 \end{bmatrix}.$$

which are regular and with the same eigenstructure.

The main result: previous considerations

$$\begin{aligned} & A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}, D \in \mathbb{C}^{m \times q}. \\ & \text{Set } \mathscr{Q}(\lambda) := \left[\begin{array}{c} \lambda D^{\star} & B^{\star} \\ A & \lambda C \end{array} \right] \in \mathbb{C}^{(q+p) \times (m+n)} \end{aligned}$$

uc3m Universidad Carlos III de Madrid Deparamento de Matemáticos

Fernando de Terán (UC3M)

Unique solution of generalized Sylvester equations

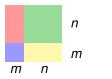
ETNA25 11/19

The main result: previous considerations

$$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}, D \in \mathbb{C}^{m \times q}.$$

Set $\mathscr{Q}(\lambda) := \begin{bmatrix} \lambda D^{\star} & B^{\star} \\ A & \lambda C \end{bmatrix} \in \mathbb{C}^{(q+p) \times (m+n)}$

• If p = m, q = n, then $m_{\infty}(\mathcal{Q}) \ge |m - n|$:



• If p = n, q = m, then $m_0(\mathscr{Q}) \ge |m - n|$:

or

Universidad Carlos III de Madria

If p = m, q = n, set:

$$\widehat{\Lambda}(\mathscr{Q}) := \left\{ \begin{array}{ll} \Lambda(\mathscr{Q}), & \text{if } m_{\infty}(\mathscr{Q}) > |m-n|, \\ \Lambda(\mathscr{Q}) \setminus \{\infty\}, & \text{if } m_{\infty}(\mathscr{Q}) = |m-n|. \end{array} \right.$$

If p = n, q = m, set:

$$\widetilde{\Lambda}(\mathscr{Q}) := \left\{ \begin{array}{ll} \Lambda(\mathscr{Q}), & \text{if } m_0(\mathscr{Q}) > |m-n|, \\ \Lambda(\mathscr{Q}) \setminus \{0\}, & \text{if } m_0(\mathscr{Q}) = |m-n|. \end{array} \right.$$

$$\overbrace{A}^{p \times m} \overbrace{X}^{m \times n} \overbrace{B}^{n \times q} + \overbrace{C}^{p \times n} \overbrace{X^{\star}}^{m \times m} \overbrace{D}^{m \times q} \overbrace{E}^{p \times q}$$

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

Fernando de Terán (UC3M)

Unique solution of generalized Sylvester equations

ETNA25 13 / 19

$$\overbrace{A}^{p \times m} \overbrace{X}^{m \times n} B + \overbrace{C}^{p \times n} \overbrace{X^{\star}}^{n \times m} D = \overbrace{E}^{p \times q} \Rightarrow \begin{cases} pq \text{ equations} \\ mn \text{ unknowns} \end{cases}$$

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

Fernando de Terán (UC3M)

Unique solution of generalized Sylvester equations

ETNA25 13 / 19

$$\overbrace{A \ X \ B}^{p \times m \ m \times n} + \overbrace{C \ X^{\star} \ D}^{p \times n \ m \times q} = \overbrace{E}^{p \times q} \Rightarrow \begin{cases} pq \text{ equations} \\ mn \text{ unknowns} \end{cases}$$

 $\mathsf{UR} \Rightarrow \boxed{\mathsf{pq} = \mathsf{mn}}$

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

イロト イヨト イヨト イヨト

Fernando de Terán (UC3M)

Unique solution of generalized Sylvester equations

ETNA25 13 / 19

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{array}{c} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array} ig].$$

Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any *E*, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

- (i) $p = m \neq n = q$, either m < n and A is invertible or m > n and B is invertible, and
 - If $\star = \top$, $\widehat{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
 - If $\star = *$, $\widehat{\Lambda}(\mathscr{Q})$ is *-reciprocal free.
- (ii) $p = n \neq m = q$, either m > n and *C* is invertible or m < n and *D* is invertible, and
 - If ⋆ = ⊤, Λ(𝔅) \ {±1} is reciprocal free and m₁(𝔅) = m₋₁(𝔅) ≤ 1.
 - If $\star = *$, $\widetilde{\Lambda}(\mathscr{Q})$ is *-reciprocal free.

(iii) p = m = n = q, and

- If $\star = \top$, $\Lambda(\mathcal{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathcal{Q}) = m_{-1}(\mathcal{Q}) \leq 1$.
- If ⋆ = ∗, Λ(𝒫) is ∗-reciprocal free.

aronierto de Materiolio

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{array}{c} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array} ig].$$

Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any *E*, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

- (i) $p = m \neq n = q$, either m < n and A is invertible or m > n and B is invertible, and
 - If $\star = \top$, $\widehat{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
 - If $\star = *$, $\widehat{\Lambda}(\mathscr{Q})$ is *-reciprocal free.
- (ii) $p = n \neq m = q$, either m > n and *C* is invertible or m < n and *D* is invertible, and
 - If ⋆ = ⊤, Λ(𝔅) \ {±1} is reciprocal free and m₁(𝔅) = m₋₁(𝔅) ≤ 1.
 - If $\star = *$, $\widetilde{\Lambda}(\mathscr{Q})$ is *-reciprocal free.

(iii) p = m = n = q, and

• If $\star = \top$, $\Lambda(\mathcal{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathcal{Q}) = m_{-1}(\mathcal{Q}) \leq 1$.

• If $\star = *$, $\Lambda(\mathscr{Q})$ is *-reciprocal free.

aronento de Matemotos

< <p>O > < <p>O >

ETNA25 14 / 19

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{array}{c} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array} ig].$$

Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any *E*, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

- (i) $p = m \neq n = q$, either m < n and A is invertible or m > n and B is invertible, and
 - If $\star = \top$, $\widehat{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
 - If $\star = *$, $\widehat{\Lambda}(\mathscr{Q})$ is *-reciprocal free.
- (ii) $p = n \neq m = q$, either m > n and *C* is invertible or m < n and *D* is invertible, and
 - If $\star = \top$, $\widetilde{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
 - If $\star = *$, $\tilde{\Lambda}(\mathscr{Q})$ is *-reciprocal free.

(iii) p = m = n = q, and

- If $\star = \top$, $\Lambda(\mathcal{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathcal{Q}) = m_{-1}(\mathcal{Q}) \leq 1$.
- If $\star = *$, $\Lambda(\mathscr{Q})$ is *-reciprocal free.

atomento de Matemoto

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{array}{c} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array} ig].$$

Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any *E*, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

- (i) $p = m \neq n = q$, either m < n and A is invertible or m > n and B is invertible, and
 - If $\star = \top$, $\widehat{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
 - If $\star = *$, $\widehat{\Lambda}(\mathscr{Q})$ is *-reciprocal free.
- (ii) $p = n \neq m = q$, either m > n and *C* is invertible or m < n and *D* is invertible, and
 - If $\star = \top$, $\widetilde{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
 - If $\star = *$, $\widetilde{\Lambda}(\mathscr{Q})$ is *-reciprocal free.

(iii) p = m = n = q, and

- If $\star = \top$, $\Lambda(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
- If ⋆ = ∗, Λ(𝒫) is ∗-reciprocal free.

aronento de Materiolio

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{array}{c} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array} ig].$$

Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any E, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

(i) $p = m \neq n = q$, either m < n and A is invertible or m > n and B is invertible, and

- If ⋆ = ⊤, Â(𝒫) \ {±1} is reciprocal free and m₁(𝒫) = m₋₁(𝒫) ≤ 1.
- If $\star = *$, $\widehat{\Lambda}(\mathscr{Q})$ is *-reciprocal free.

Universidad Carlos III de Madria

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{smallmatrix} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{smallmatrix} ig].$$

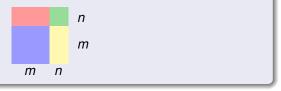
Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any E, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

(i) $p = m \neq n = q$, either m < n and A is invertible or m > n and B is invertible, and

- If $\star = \top$, $\widehat{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star = *$, $\widehat{\Lambda}(\mathscr{Q})$ is *-reciprocal free.



Universidad Carlos III de Madria

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{array}{c} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array} ig].$$

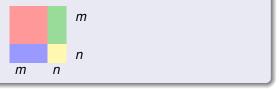
Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any *E*, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

(ii) $p = n \neq m = q$, either m > n and *C* is invertible or m < n and *D* is invertible, and

- If ⋆ = ⊤, Λ(𝔅) \ {±1} is reciprocal free and m₁(𝔅) = m₋₁(𝔅) ≤ 1.
- If $\star = *$, $\tilde{\Lambda}(\mathscr{Q})$ is *-reciprocal free.



Universidad Carlos III de Madria

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{smallmatrix} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{smallmatrix} ig].$$

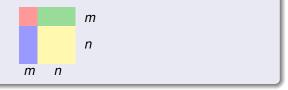
Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any *E*, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

(ii) $p = n \neq m = q$, either m > n and *C* is invertible or m < n and *D* is invertible, and

- If ⋆ = ⊤, Λ(𝔅) \ {±1} is reciprocal free and m₁(𝔅) = m₋₁(𝔅) ≤ 1.
- If $\star = *$, $\tilde{\Lambda}(\mathscr{Q})$ is *-reciprocal free.



uc3m Universidad Carlos III de Madria

$$A \in \mathbb{C}^{p imes m}, B \in \mathbb{C}^{n imes q}, C \in \mathbb{C}^{p imes n}, ext{ and } D \in \mathbb{C}^{m imes q}, \ \mathscr{Q}(\lambda) := ig[egin{array}{c} \lambda D^{\star} & B^{\star} \ A & \lambda C \end{array} ig].$$

Theorem (**UR** for $AXB + CX^*D = E$)

[D-lannazzo-Poloni-Robol'18]

 $AXB + CX^*D = E$ has a unique solution, for any *E*, iff $\mathcal{Q}(\lambda)$ is regular and one of the following holds:

- (i) $p = m \neq n = q$, either m < n and A is invertible or m > n and B is invertible, and
 - If $\star = \top$, $\widehat{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
 - If $\star = *$, $\widehat{\Lambda}(\mathscr{Q})$ is *-reciprocal free.
- (ii) $p = n \neq m = q$, either m > n and *C* is invertible or m < n and *D* is invertible, and
 - If $\star = \top$, $\widetilde{\Lambda}(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
 - If $\star = *$, $\widetilde{\Lambda}(\mathscr{Q})$ is *-reciprocal free.

(iii) p = m = n = q, and

- If $\star = \top$, $\Lambda(\mathscr{Q}) \setminus \{\pm 1\}$ is reciprocal free and $m_1(\mathscr{Q}) = m_{-1}(\mathscr{Q}) \leq 1$.
- If ⋆ = ∗, Λ(𝒫) is ∗-reciprocal free.

aronento de Materiolio

Proof: some ideas

- p < min{m, n}. ∃u, v ≠ 0 such that Au = 0 = Cv (because of the dimensions of A, C). Then X = uv^{*} is a nonzero solution of AXB + CX*D = 0.
- If $p > \max\{m, n\}$: $mn = pq \Rightarrow q < \min\{m, n\} \Rightarrow \exists u, v \neq 0$ such that $v^*B = 0 = u^*D$, and $X = uv^*$ is a nonzero solution of $AXB + CX^*D = 0$.
- ◎ $m and <math>mn = pq \Rightarrow m < q < n \Rightarrow m < \min\{p,q\} \Rightarrow \exists u, v \neq 0$ such that $u^{\top}A = v^{\top}D^{\top} = 0$. For $\star = \top$:

 $AXB + CX^{\top}D = 0 \Leftrightarrow M \operatorname{vec}(X) = 0, \qquad M = B^{\top} \otimes A + (D^{\top} \otimes C)\Pi.$

Then, $(v^{\top} \otimes u^{\top})M = 0$, so *M* is singular and $AXB + CX^{\top}D = 0$ has a nonzero solution.

- $n . By setting <math>Y = X^{\top}$, $AXB + CX^{\top}D = 0 \Leftrightarrow CYD + AY^{\top}B = 0$, so we use the previous result.
- So The case mn = pq and $p \in \{m, n\}$, with $m \neq n$ is more involved.

Decotronisto de Matemáticos

Theorem

[D-lannazzo-Poloni-Robol'18]

AXB - CXD = E has **exactly** one solution, for **all** E, iff:

• $A - \lambda C$ and $D^{\top} - \lambda B^{\top}$ are regular and $\Lambda(A - \lambda C) \cap \Lambda(D^{\top} - \lambda B^{\top}) = \emptyset$, or

• there is some $s \in \mathbb{Z}^+$ such that $\text{KCF}(A - \lambda C) = \bigoplus L_s$ and $\text{KCF}(B^\top - \lambda D^\top) = \bigoplus L_s^\top$ or viceversa.

(KCF: Kronecker canonical form, $L_s =$

$$\left[egin{array}{cccc} \lambda & 1 & & \ & \ddots & \ddots & \ & & \lambda & 1 \end{array}
ight]_{s imes(s+1)}$$
)

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

Some observation on the $\star = *$ case

Lemma

 $AXB + CX^*D = 0$ has a unique solution iff

 $\begin{aligned} & AXB+CYD=0,\\ & D^*XC^*+B^*YA^*=0, \end{aligned}$

has a unique solution.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos

- We have provided necessary and sufficient conditions for $AXB + CX^*D = E$ (with $* = *, \top$) to have a unique solution, for all *E*, and allowing *A*, *B*, *C*, *D*, *E* to be rectangular \rightsquigarrow In terms of properties of $\begin{bmatrix} \lambda D^* B^* \\ A & \lambda C \end{bmatrix}$.
- Interesting differences with the case of A, B, C, D, E being square:
 - Spectral information is not enough.
 - Some invertibility conditions on *A*, *B*, *C*, *D* arise.
- We have also provided conditions for AXB CXD = E to have a unique solution, for all $E \rightsquigarrow$ Depend on the **KCF** of $A \lambda C$ and $B^{\top} \lambda D^{\top}$.

ur3m Liniversided Codes III de Madrid

R. Byers, D. Kressner.

Structured condition numbers for invariant subspaces. SIMAX 28 (2006) 326–347.

K.W. E. Chu.

The solution of the matrix equations AXB - CXD = E and (YA - DZ, YC - BZ) = (E, F). LAA 93 (1987) 93–105.

F. De Terán, B. lannazzo.

Uniqueness of solution of a generalized *****-Sylvester matrix equation. LAA 493 (2016) 323–335.

F. De Terán, B. Iannazzo, F. Poloni, L. Robol.

Solvability and uniqueness criteria for generalized Sylvester-type equations. LAA 542 (2018) 501–521.

A. Dmytryshyn, B. Kågström.

Coupled Sylvester-type matrix equations and block diagonalization. SIMAX 36 (2016) 580–593.

T. Košir.

Kronecker bases for linear matrix equations, with application to two-parameter eigenvalue problems. LAA 249 (1996) 259–288.

D. Kressner, C. Schröder, D. S. Watkins.

Implicit QR algorithms for palindromic and even eigenvalue problems. Numer. Algorithms 51 (2009) 209–238.

uc3m Universidad Carlos III de Madrid Departamento de Matemáticos