Uniqueness of solution of generalized Sylvester equations with rectangular coefficients

Fernando De Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

ETNA25 (May 28, 2019)		Bruno lannazzo	
	Joint work with:	Federico Poloni	
		Leonardo Robol	

What is this talk about?

MS1: Matrix equations: analysis and algorithms.

What is this talk about?

MS1: Matrix equations: analysis and algorithms.
In this talk: No algorithms at all!

What is this talk about?

MS1: Matrix equations: analysis and algorithms.
In this talk: No algorithms at all!
뭉ํ Theoretical characterization for the uniqueness of solution of generalized Sylvester equations

What is this talk about?

MS1: Matrix equations: analysis and algorithms.
In this talk: No algorithms at all!
19 Theoretical characterization for the uniqueness of solution of generalized Sylvester equations explicitly in terms of their coefficients.

What is this talk about?

MS1: Matrix equations: analysis and algorithms.
In this talk: No algorithms at all!
1979 Theoretical characterization for the uniqueness of solution of generalized Sylvester equations explicitly in terms of their coefficients.
IT Just basic linear algebra techniques.

Generalized Sylvester equations

(GS) $A X B+C X D=E \rightsquigarrow$ Generalized Sylvester equation.
(GS*) $A X B+C X^{\star} D=E \rightsquigarrow$ Generalized \star-Sylvester equation $\quad(\star=\top, *)$.
$X \in \mathbb{C}^{m \times n}$ (unknown) $\quad A, B, C, D, E$ complex matrices with appropriate size.

Generalized Sylvester equations

(GS) $A X B+C X D=E \rightsquigarrow$ Generalized Sylvester equation.
(GS*) $A X B+C X^{\star} D=E \rightsquigarrow$ Generalized \star-Sylvester equation $\quad(\star=\top, *)$.
$X \in \mathbb{C}^{m \times n}$ (unknown) $\quad A, B, C, D, E$ complex matrices with appropriate size.
(GS) is linear over \mathbb{C}.
(GST) is linear over \mathbb{C}.
(GS*) is linear over \mathbb{R}.

The vec approach

You can use (for $\star=T$):

$$
\operatorname{vec}\left(A X B-C X^{\top} D\right)=\operatorname{vec}(E) \Leftrightarrow M \operatorname{vec}(X)=\operatorname{vec}(E)
$$

with

$$
M=B^{\top} \otimes A+\left(D^{\top} \otimes C\right) \Pi
$$

(Π is a permutation matrix associated with the transposition).

The vec approach

You can use (for $\star=T$):

$$
\operatorname{vec}\left(A X B-C X^{\top} D\right)=\operatorname{vec}(E) \Leftrightarrow M \operatorname{vec}(X)=\operatorname{vec}(E)
$$

with

$$
M=B^{\top} \otimes A+\left(D^{\top} \otimes C\right) \Pi
$$

(Π is a permutation matrix associated with the transposition).
1,3 You'll need to keep track of the entries of A, B, C, D in M.

The vec approach

You can use (for $\star=T$):

$$
\operatorname{vec}\left(A X B-C X^{\top} D\right)=\operatorname{vec}(E) \Leftrightarrow M \operatorname{vec}(X)=\operatorname{vec}(E)
$$

with

$$
M=B^{\top} \otimes A+\left(D^{\top} \otimes C\right) \Pi
$$

(Π is a permutation matrix associated with the transposition).
1,3 You'll need to keep track of the entries of A, B, C, D in M.
We will not follow this approach.

Existence and uniqueness of solution

(Eq)
$A X B+C X^{\sigma} D=E \quad(\sigma=1, \top, *)$

Solvability (S)	(Eq) has a solution, for some given A, B, C, D, E.
Unique solvability (US)	(Eq) has a unique solution, for given A, B, C, D, E.
Solvability for any right-hand side$(\mathbf{S R})$	(Eq) has a solution for any E, and given A, B, C, D
At most one solution, (OR) for any right-hand side	(Eq) has at most one solution, for any E, and given A, B, C, D
Exactly one solution, (UR) for any right-hand side	(Eq) has unique solution, for any E, and given A, B, C, D

Existence and uniqueness of solution

(Eq)

$$
A X B+C X^{\sigma} D=E \quad(\sigma=1, \top, *)
$$

Solvability (S)	(Eq) has a solution, for some given A, B, C, D, E.
Unique solvability (US)	(Eq) has a unique solution, for given A, B, C, D, E.
Solvability for any right-hand side (SR)	(Eq) has a solution for any E, and given A, B, C, D
At most one solution, (OR) for any right-hand side	(Eq) has at most one solution, for any E, and given A, B, C, D
Exactly one solution, (UR) for any right-hand side	(Eq) has unique solution, for any E, and given A, B, C, D

Existence and uniqueness of solution

(Eq)

$$
A X B+C X^{\sigma} D=E \quad(\sigma=1, \top, *)
$$

Solvability (S)	(Eq) has a solution, for some given A, B, C, D, E.
Unique solvability (US)	(Eq) has a unique solution, for given A, B, C, D, E.
Solvability for any right-hand side (SR)	(Eq) has a solution for any E, and given A, B, C, D
At most one solution, (OR) for any right-hand side	(Eq) has at most one solution, for any E, and given A, B, C, D
Exactly one solution, (Eq) has unique solution, for any right-hand side (UR)	(Er any E, and given A, B, C, D

\Leftrightarrow The operator $X \mapsto A X B+C X^{\star} D$ is invertible.

Some history

Characterization for $\mathbf{S}, \mathbf{U S}, \mathbf{S R}, \mathbf{O R}, \mathbf{U R}$, in terms of A, B, C, D, E :

	$A X B+C X D=E$		$A X B+C X^{\star} D=E$	
	square coefficients	general	square coefficients	general coefficients
S	$[D K, 2016]$	$[D K, 2016],[$ Košir, 1992]	$[D K, 2016]$	[DK, 2016]
US	[Chu, 1987]	$[K o s ̌ i r, 1992]$	[DI, 2016]	open
SR	same as US	[DIPR, 2018] (after [Košir, 1992])	same as US	open
OR	same as US	[Košir, 1996]	same as US	open
UR	same as US	[DIPR, 2018] (after [Košir, 1992])	same as US	[DIPR, 2018]

[DI, 2016]=[D-lannazzo, 2016]
[DIPR, 2018]=[D-lannazzo-Poloni-Robol, 2018]
[DK, 2016]=[Dmytryshyn-Kågström, 2016]
[Byers-Kressner, 2006]: US, UR $\rightsquigarrow A X+X^{\top} D=E\left(A, D, X \in \mathbb{C}^{n \times n}\right)$.
[Kressner-Schröder-Watkins, 2009]: US, UR $\rightsquigarrow A X+X^{*} D=E\left(A, D, X \in \mathbb{C}^{n \times n}\right)$.
uc3m $\left\lvert\, \begin{aligned} & \text { Universidad Carlos III de Madrid } \\ & \text { Departamentio de Matemàicas }\end{aligned}\right.$

Some history

Characterization for $\mathbf{S}, \mathbf{U S}, \mathbf{S R}, \mathbf{O R}, \mathbf{U R}$, in terms of A, B, C, D, E :

	square	$A X B+C X D=E$	$A X B+C X^{\star} D=E$	
	coefficients	general coefficients	square coefficients	general coefficients
S	$[D K, 2016]$	$[D K, 2016],[K o s ̌ i r, 1992]$	$[D K, 2016]$	[DK, 2016]
US	[Chu, 1987]	[Košir, 1992]	[DI, 2016]	open
SR	same as US	[DIPR, 2018] (after [Košir, 1992])	same as US	open
OR	same as US	[Košir, 1996]	same as US	open
UR	same as US	[DIPR, 2018] (after [Košir, 1992])	same as US	[DIPR, 2018]

[DI, 2016]=[D-lannazzo, 2016]
[DIPR, 2018]=[D-lannazzo-Poloni-Robol, 2018]
[DK, 2016]=[Dmytryshyn-Kågström, 2016]
[Byers-Kressner, 2006]: US, UR $\rightsquigarrow A X+X^{\top} D=E\left(A, D, X \in \mathbb{C}^{n \times n}\right)$.
[Kressner-Schröder-Watkins, 2009]: US, UR $\rightsquigarrow A X+X^{*} D=E\left(A, D, X \in \mathbb{C}^{n \times n}\right)$.
uc3m $\left\lvert\, \begin{aligned} & \text { Universidad Carlos III de Madrid } \\ & \text { Departamentio de Matemàicas }\end{aligned}\right.$

Some basic notions

A matrix pencil $X+\lambda Y\left(X, Y \in \mathbb{C}^{m \times n}\right)$ is regular if $m=n$ and $\operatorname{det}(X+\lambda Y) \not \equiv 0$.

Some basic notions

A matrix pencil $X+\lambda Y\left(X, Y \in \mathbb{C}^{m \times n}\right)$ is regular if $m=n$ and $\operatorname{det}(X+\lambda Y) \not \equiv 0$.
Definition: If $X+\lambda Y$ is regular:
(1) $\quad \Lambda(X+\lambda Y):=\{\mu \in \mathbb{C}: \operatorname{det}(X+\mu Y)=0\} \cup\{\infty\} \quad$ (Spectrum of $X+\lambda Y$)
$(\infty \in \Lambda(X+\lambda Y) \Leftrightarrow \operatorname{rank} Y<n)$.
(2) If $\mu \in \mathbb{C}$, then $m_{\mu}(X+\lambda Y):=$ algebraic multiplicity of μ (as a root of $\operatorname{det}(X+\lambda Y))$.
(3) $m_{\infty}(X+\lambda Y):=m_{0}(Y+\lambda X)$.

Some basic notions

A matrix pencil $X+\lambda Y\left(X, Y \in \mathbb{C}^{m \times n}\right)$ is regular if $m=n$ and $\operatorname{det}(X+\lambda Y) \not \equiv 0$.
Definition: If $X+\lambda Y$ is regular:
(1) $\quad \Lambda(X+\lambda Y):=\{\mu \in \mathbb{C}: \operatorname{det}(X+\mu Y)=0\} \cup\{\infty\} \quad$ (Spectrum of $X+\lambda Y$)
$(\infty \in \Lambda(X+\lambda Y) \Leftrightarrow \operatorname{rank} Y<n)$.
(2) If $\mu \in \mathbb{C}$, then $m_{\mu}(X+\lambda Y):=$ algebraic multiplicity of μ (as a root of $\operatorname{det}(X+\lambda Y))$.
(3) $m_{\infty}(X+\lambda Y):=m_{0}(Y+\lambda X)$.

Definition: $\mathscr{S} \subseteq \mathbb{C} \cup\{\infty\}$. Then \mathscr{S} is
(a) reciprocal free if $\lambda \neq \mu^{-1}$, for all $\lambda, \mu \in \mathscr{S}$;
(b) $*$-reciprocal free if $\lambda \neq(\bar{\mu})^{-1}$, for all $\lambda, \mu \in \mathscr{S}$.

Previous results: Sylvester equations

$X \in \mathbb{C}^{m \times n}$
Characterization for UR:

Previous results: Sylvester equations

$X \in \mathbb{C}^{m \times n}$
Characterization for UR:

Equation	Conditions	Sizes	Ref.
$A X+X D=E$	$\Lambda(A) \cap \Lambda(-D)=\emptyset$	$A \in \mathbb{C}^{m \times m}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{m n \times m n}$	[Sylvester'1884]

Previous results: Sylvester equations

$X \in \mathbb{C}^{m \times n}$
Characterization for UR:

Equation	Conditions	Sizes	Ref.
$A X+X D=E$	$\Lambda(A) \cap \Lambda(-D)=\emptyset$	$A \in \mathbb{C}^{m \times m}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{m n \times m n}$	[Sylvester'1884]
$A X+X^{*} D=E$	$A-\lambda D^{*}$ is regular $\Lambda\left(A-\lambda D^{*}\right)$ is $*$-reciprocal free	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n 2} \times m n$	[Kressner-Schröder-
		Watkins'09]	

Previous results: Sylvester equations

$X \in \mathbb{C}^{m \times n}$
Characterization for UR:

Equation	Conditions	Sizes	Ref.
$A X+X D=E$	$\Lambda(A) \cap \Lambda(-D)=\emptyset$	$A \in \mathbb{C}^{m \times m}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{m n \times m n}$	[Sylvester'1884]
$A X+X^{*} D=E$	$A-\lambda D^{*}$ is regular $\Lambda\left(A-\lambda D^{*}\right)$ is $*$-reciprocal free	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^{2} \times m n}$	[Kressner-Schröder-
Watkins'09]			
$A X+X^{\top} D=E$	$A-\lambda D^{\top}$ is regular $A\left(A-\lambda D^{\top}\right) \backslash\{1\}$ is reciarocal free, $m_{1}\left(A-\lambda D^{\top}\right) \leq 1$	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^{2} \times m n}$	[Byers-Kressner'06]

Previous results: Sylvester equations

$X \in \mathbb{C}^{m \times n}$
Characterization for UR:

Equation	Conditions	Sizes	Ref.
$A X+X D=E$	$\Lambda(A) \cap \Lambda(-D)=\emptyset$	$A \in \mathbb{C}^{m \times m}$ $D \in \mathbb{C}^{n \times n}$ $M \in \mathbb{C}^{m n \times m n}$	[Sylvester'1884]
$A X+X^{*} D=E$	$A-\lambda D^{*}$ is regular $\Lambda\left(A-\lambda D^{*}\right)$ is $*$-reciprocal free	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^{2} \times m n}$	[Kressner-Schröder-
Watkins'09]			
$A X+X^{\top} D=E$	$A-\lambda D^{\top}$ is regular $A\left(A-\lambda D^{\top}\right) \backslash\{1\}$ is reciarocal free, $m_{1}\left(A-\lambda D^{\top}\right) \leq 1$	$A \in \mathbb{C}^{m \times n}$ $D \in \mathbb{C}^{n \times m}$ $M \in \mathbb{C}^{n^{2} \times m n}$	[Byers-Kressner'06]

$\Rightarrow m=n$.

Previous results: generalized Sylvester equations

$X \in \mathbb{C}^{m \times n}$
Characterization for UR:

Previous results: generalized Sylvester equations

$X \in \mathbb{C}^{m \times n}$
Characterization for UR:

Equation	Conditions	Sizes	Ref.
$A X B+C X D=E$	$A-\lambda C, B-\lambda D$ are regular,	$\begin{array}{c}A, C \in \mathbb{C}^{m \times m} \\ B, D \in \mathbb{C}^{n \times n} \\ M \in \mathbb{C}^{m n \times m n}\end{array}$	[Chu'87]
	$\Lambda(A-\lambda C) \cap \Lambda(B-\lambda D)=\emptyset$		

Previous results: generalized Sylvester equations

$X \in \mathbb{C}^{m \times n}$
Characterization for UR:

Equation	Conditions	Sizes	Ref.		
$A X B+C X D=E$	$A-\lambda C, B-\lambda D$ are regular,	$\begin{array}{c}A, C \in \mathbb{C}^{m \times m} \\ B, D \in \mathbb{C}^{n \times n} \\ \\ A X B+C X^{*} D=E\end{array}$	$\Lambda(A-\lambda C) \cap \Lambda(B-\lambda D)=\emptyset$	$]$ [Chu'87]	
:---:					

Previous results: generalized Sylvester equations

$x \in \mathbb{C}^{m \times n}$
Characterization for UR:

Equation	Conditions	Sizes	Ref.
$A X B+C X D=E$	$A-\lambda C, B-\lambda D$ are regular, $\Lambda(A-\lambda C) \cap \Lambda(B-\lambda D)=\emptyset$	$\begin{gathered} A, C \in \mathbb{C}^{m \times m} \\ B, D \in \mathbb{C}^{n \times n} \\ M \in \mathbb{C}^{m n \times m n} \end{gathered}$	[Chu'87]
$A X B+C X^{*} D=E$	$\left[\begin{array}{cc}\lambda D^{*} & B^{*} \\ A & \lambda C\end{array}\right]$ is regular, $\wedge\left(\left[\begin{array}{cc}\lambda D^{*} & B^{*} \\ A & \lambda C\end{array}\right]\right)$ is *-reciprocal free	$\begin{gathered} A \in \mathbb{C}^{n \times n} \\ D \in \mathbb{C}^{n \times n} \\ M \in \mathbb{C}^{n^{2} \times n^{2}} \\ (m=n) \\ \hline \end{gathered}$	[D-lannazzo'16]
$A X B+C X^{\top} D=E$	$\quad\left[\begin{array}{cc}\lambda D^{\top} & B^{\top} \\ A & \lambda C\end{array}\right]$ is regular, $\wedge\left(\left[\begin{array}{cl}\lambda D^{\top} & B^{\top} \\ A & \lambda C\end{array}\right]\right) \backslash\{ \pm 1\}$ is reciprocal free, $m_{ \pm 1}\left(A-\lambda D^{\top}\right) \leq 1$	$\begin{gathered} A \in \mathbb{C}^{n \times n} \\ D \in \mathbb{C}^{n \times n} \\ M \in \mathbb{C}^{n^{2} \times n^{2}} \\ (m=n) \end{gathered}$	[D-lannazzo'16]

Previous results: generalized Sylvester equations

$X \in \mathbb{C}^{m \times n}$

Characterization for UR:

Equation	Conditions	Sizes	Ref.
$A X B+C X D=E$	$A-\lambda C, B-\lambda D$ are regular, $\Lambda(A-\lambda C) \cap \Lambda(B-\lambda D)=\emptyset$	$\begin{aligned} & A, C \in \mathbb{C}^{m \times m} \\ & B, D \in \mathbb{C}^{n \times n} \\ & M \in \mathbb{C}^{m n \times m n} \end{aligned}$	[Chu'87]
$A X B+C X^{*} D=E$	$\left[\begin{array}{cc}\lambda D^{*} & B^{*} \\ A & \lambda C\end{array}\right]$ is regular, $\wedge\left(\left[\begin{array}{cc}\lambda D^{*} & B^{*} \\ A & \lambda C\end{array}\right]\right)$ is *-reciprocal free	$\begin{gathered} A \in \mathbb{C}^{n \times n} \\ D \in \mathbb{C}^{n \times n} \\ M \in \mathbb{C}^{n^{2} \times n^{2}} \\ (m=n) \\ \hline \end{gathered}$	[D-lannazzo'16]
$A X B+C X^{\top} D=E$	$\left.\quad \begin{array}{cc}\lambda D^{\top} & B^{\top} \\ A & \lambda C\end{array}\right]$ is regular, $\Lambda\left(\left[\begin{array}{cl}\lambda D^{\top} & B^{\top} \\ A & \lambda C\end{array}\right]\right) \backslash\{ \pm 1\}$ is reciprocal free, $m_{ \pm 1}\left(A-\lambda D^{\top}\right) \leq 1$	$\begin{gathered} A \in \mathbb{C}^{n \times n} \\ D \in \mathbb{C}^{n \times n} \\ M \in \mathbb{C}^{n^{2} \times n^{2}} \\ (m=n) \end{gathered}$	[D-lannazzo'16]

What happens for A, B, C, D, E rectangular?

Conditions on the eigenvalues are not enough

The characterization for UR in the "square" case depends on the eigenvalues of $\left[\begin{array}{cc}\lambda D^{\top} & B^{\top} \\ A & \lambda C\end{array}\right]$ (provided it's regular).

Conditions on the eigenvalues are not enough

The characterization for UR in the "square" case depends on the eigenvalues of $\left[\begin{array}{cc}\lambda D^{\top} & B^{\top} \\ A & \lambda C\end{array}\right]$ (provided it's regular).

㧝 However, for "rectangular" coefficients this is not enough:

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right][0]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=0 \Leftrightarrow x=0} & \text { Not US } \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right][1]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=0 \Leftrightarrow x=y=0} & \text { US }
\end{array}
$$

ve3m \mid Universidad Carlos III de Madrid

Conditions on the eigenvalues are not enough

The characterization for UR in the "square" case depends on the eigenvalues of $\left[\begin{array}{cc}\lambda D^{\top} & B^{\top} \\ A & \lambda C\end{array}\right]$ (provided it's regular).

1 However, for "rectangular" coefficients this is not enough:

$$
\begin{align*}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right][0]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=0 \Leftrightarrow x=0} \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right][1]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=0 \Leftrightarrow x=y=0} \tag{2}
\end{align*}
$$

Not US

US

The associated pencils are:

$$
\mathscr{Q}_{1}(\lambda)=\left[\begin{array}{cc|c}
\lambda & 0 & 0 \\
\hline 1 & 0 & \lambda \\
0 & 1 & 0
\end{array}\right], \quad \mathscr{Q}_{2}(\lambda)=\left[\begin{array}{cc|c}
\lambda & 0 & 1 \\
\hline 0 & 0 & \lambda \\
0 & 1 & 0
\end{array}\right] .
$$

which are regular and with the same eigenstructure.

Conditions on the eigenvalues are not enough

The characterization for UR in the "square" case depends on the eigenvalues of $\left[\begin{array}{cc}\lambda D^{\top} & B^{\top} \\ A & \lambda C\end{array}\right]$ (provided it's regular).

1 However, for "rectangular" coefficients this is not enough:

$$
\begin{align*}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right][0]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=0 \Leftrightarrow x=0} \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right][1]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=0 \Leftrightarrow x=y=0} \tag{2}
\end{align*}
$$

Not US

US

The associated pencils are:

$$
\mathscr{Q}_{1}(\lambda)=\left[\begin{array}{cc|c}
\lambda & 0 & 0 \\
\hline 1 & 0 & \lambda \\
0 & 1 & 0
\end{array}\right], \quad \mathscr{Q}_{2}(\lambda)=\left[\begin{array}{cc|c}
\lambda & 0 & 1 \\
\hline 0 & 0 & \lambda \\
0 & 1 & 0
\end{array}\right] .
$$

which are regular and with the same eigenstructure.

The main result: previous considerations

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}, D \in \mathbb{C}^{m \times q}$. Set $\mathscr{Q}(\lambda):=\left[\begin{array}{cc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right] \in \mathbb{C}^{(q+p) \times(m+n)}$

The main result: previous considerations

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}, D \in \mathbb{C}^{m \times q}$.
Set $\mathscr{Q}(\lambda):=\left[\begin{array}{cc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right] \in \mathbb{C}^{(q+p) \times(m+n)}$

- If $p=m, q=n$, then $m_{\infty}(\mathscr{Q}) \geq|m-n|$:

- If $p=n, q=m$, then $m_{0}(\mathscr{Q}) \geq|m-n|$:

Removing the "dimension induced" $0 / \infty e$ evals

If $p=m, q=n$, set:

$$
\widehat{\Lambda}(\mathscr{Q}):=\left\{\begin{array}{cl}
\Lambda(\mathscr{Q}), & \text { if } m_{\infty}(\mathscr{Q})>|m-n|, \\
\Lambda(\mathscr{Q}) \backslash\{\infty\}, & \text { if } m_{\infty}(\mathscr{Q})=|m-n| .
\end{array}\right.
$$

If $p=n, q=m$, set:

$$
\tilde{\Lambda}(\mathscr{Q}):=\left\{\begin{array}{cl}
\wedge(\mathscr{Q}), & \text { if } m_{0}(\mathscr{Q})>|m-n|, \\
\Lambda(\mathscr{Q}) \backslash\{0\}, & \text { if } m_{0}(\mathscr{Q})=|m-n| .
\end{array}\right.
$$

Size constraints

Size constraints

$\overbrace{A}^{p \times m} \overbrace{X}^{m \times n} \overbrace{B}^{n \times q}+\overbrace{C}^{p \times n} \overbrace{X^{\star}}^{n \times m} \overbrace{D}^{m \times q}=\overbrace{E}^{p \times q} \Rightarrow\left\{\begin{array}{l}p q \text { equations } \\ m n \text { unknowns }\end{array}\right.$

Size constraints

$$
\overbrace{A}^{p \times m} \overbrace{X}^{m \times n} \overbrace{B}^{n \times q}+\overbrace{C}^{p \times n} \overbrace{X^{\star}}^{n \times m} \overbrace{D}^{m \times q}=\overbrace{E}^{p \times q} \Rightarrow\left\{\begin{array}{l}
p q \text { equations } \\
m n \text { unknowns }
\end{array}\right.
$$

$$
\mathbf{U R} \Rightarrow p q=m n
$$

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(i) $p=m \neq n=q$, either $m<n$ and A is invertible or $m>n$ and B is invertible, and

- If $\star=\mathrm{T}, \widehat{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \widehat{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(ii) $p=n \neq m=q$, either $m>n$ and C is invertible or $m<n$ and D is invertible, and
- If $\star=\mathrm{T}, \tilde{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \tilde{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(iii) $p=m=n=q$, and
- If $\star=\mathrm{T}, \wedge(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \Lambda(\mathscr{Q})$ is $*$-reciprocal free.

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(i) $p=m \neq n=q$, either $m<n$ and A is invertible or $m>n$ and B is invertible, and

- If $\star=\mathrm{T}, \widehat{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \widehat{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(ii) $p=n \neq m=q$, either $m>n$ and C is invertible or $m<n$ and D is invertible, and
- If $\star=\mathrm{T}, \tilde{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \tilde{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(iii) $p=m=n=q$, and
- If $\star=\mathrm{T}, \wedge(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \Lambda(\mathscr{Q})$ is $*$-reciprocal free.

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(i) $p=m \neq n=q$, either $m<n$ and A is invertible or $m>n$ and B is invertible, and

- If $\star=\mathrm{T}, \widehat{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \widehat{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(ii) $p=n \neq m=q$, either $m>n$ and C is invertible or $m<n$ and D is invertible, and
- If $\star=\mathrm{T}, \tilde{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \tilde{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(iii) $p=m=n=q$, and
- If $\star=\mathrm{T}, \wedge(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \Lambda(\mathscr{Q})$ is $*$-reciprocal free.

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(i) $p=m \neq n=q$, either $m<n$ and A is invertible or $m>n$ and B is invertible, and

- If $\star=\mathrm{T}, \widehat{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \widehat{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(ii) $p=n \neq m=q$, either $m>n$ and C is invertible or $m<n$ and D is invertible, and
- If $\star=\mathrm{T}, \tilde{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \tilde{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(iii) $p=m=n=q$, and
- If $\star=\mathrm{T}, \wedge(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \Lambda(\mathscr{Q})$ is $*$-reciprocal free.

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(i) $p=m \neq n=q$, either $m<n$ and A is invertible or $m>n$ and B is invertible, and

- If $\star=\top, \widehat{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \widehat{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(i) $p=m \neq n=q$, either $m<n$ and A is invertible or $m>n$ and B is invertible, and

- If $\star=\top, \widehat{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \widehat{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(ii) $p=n \neq m=q$, either $m>n$ and C is invertible or $m<n$ and D is invertible, and

- If $\star=\top, \widetilde{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \tilde{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(ii) $p=n \neq m=q$, either $m>n$ and C is invertible or $m<n$ and D is invertible, and

- If $\star=\top, \widetilde{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \widetilde{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.

The main result: statement

$A \in \mathbb{C}^{p \times m}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$, and $D \in \mathbb{C}^{m \times q}, \mathscr{Q}(\lambda):=\left[\begin{array}{ccc}\lambda D^{\star} & B^{\star} \\ A & \lambda C\end{array}\right]$.
Theorem (UR for $A X B+C X^{\star} D=E$)
$A X B+C X^{\star} D=E$ has a unique solution, for any E, iff $\mathscr{Q}(\lambda)$ is regular and one of the following holds:
(i) $p=m \neq n=q$, either $m<n$ and A is invertible or $m>n$ and B is invertible, and

- If $\star=\mathrm{T}, \widehat{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \widehat{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(ii) $p=n \neq m=q$, either $m>n$ and C is invertible or $m<n$ and D is invertible, and
- If $\star=\mathrm{T}, \tilde{\Lambda}(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \tilde{\Lambda}(\mathscr{Q})$ is $*$-reciprocal free.
(iii) $p=m=n=q$, and
- If $\star=\mathrm{T}, \wedge(\mathscr{Q}) \backslash\{ \pm 1\}$ is reciprocal free and $m_{1}(\mathscr{Q})=m_{-1}(\mathscr{Q}) \leq 1$.
- If $\star=*, \Lambda(\mathscr{Q})$ is $*$-reciprocal free.

Proof: some ideas

(1) $p<\min \{m, n\} . \exists u, v \neq 0$ such that $A u=0=C v$ (because of the dimensions of A, C). Then $X=u v^{\star}$ is a nonzero solution of $A X B+C X^{\star} D=0$.
(2) If $p>\max \{m, n\}: m n=p q \Rightarrow q<\min \{m, n\} \Rightarrow \exists u, v \neq 0$ such that $v^{\star} B=0=u^{\star} D$, and $X=u v^{\star}$ is a nonzero solution of $A X B+C X^{\star} D=0$.
(3) $m<p<n$ and $m n=p q \Rightarrow m<q<n \Rightarrow m<\min \{p, q\} \Rightarrow \exists u, v \neq 0$ such that $u^{\top} A=v^{\top} D^{\top}=0$.
For $\star=\mathrm{T}$:
$A X B+C X^{\top} D=0 \Leftrightarrow M \operatorname{vec}(X)=0, \quad M=B^{\top} \otimes A+\left(D^{\top} \otimes C\right) \Pi$.
Then, $\left(v^{\top} \otimes u^{\top}\right) M=0$, so M is singular and $A X B+C X^{\top} D=0$ has a nonzero solution.
(4) $n<p<m$. By setting $Y=X^{\top}, A X B+C X^{\top} D=0 \Leftrightarrow C Y D+A Y^{\top} B=0$, so we use the previous result.
(3) The case $m n=p q$ and $p \in\{m, n\}$, with $m \neq n$ is more involved.

The equation $A X B-C X D=E$

Theorem

$A X B-C X D=E$ has exactly one solution, for all E, iff:

- $A-\lambda C$ and $D^{\top}-\lambda B^{\top}$ are regular and $\Lambda(A-\lambda C) \cap \Lambda\left(D^{\top}-\lambda B^{\top}\right)=\emptyset$, or
- there is some $s \in \mathbb{Z}^{+}$such that $\operatorname{KCF}(A-\lambda C)=\oplus L_{s}$ and $\operatorname{KCF}\left(B^{\top}-\lambda D^{\top}\right)=\oplus L_{s}^{\top}$ or viceversa.
(KCF: Kronecker canonical form, $\left.L_{s}=\left[\begin{array}{cccc}\lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1\end{array}\right]_{s \times(s+1)}\right)$.

Some observation on the $\star=*$ case

Lemma

$A X B+C X^{*} D=0$ has a unique solution iff

$$
\begin{aligned}
A X B+C Y D & =0, \\
D^{*} X C^{*}+B^{*} Y A^{*} & =0,
\end{aligned}
$$

has a unique solution.

Summary

- We have provided necessary and sufficient conditions for $A X B+C X^{\star} D=E$ (with $\star=*, T$) to have a unique solution, for all E, and allowing A, B, C, D, E to be rectangular \rightsquigarrow In terms of properties of $\left[\begin{array}{ccc}\lambda D^{*} & B^{*} \\ A & \lambda C\end{array}\right]$.
- Interesting differences with the case of A, B, C, D, E being square:
- Spectral information is not enough.
- Some invertibility conditions on A, B, C, D arise.
- We have also provided conditions for $A X B-C X D=E$ to have a unique solution, for all $E \rightsquigarrow$ Depend on the KCF of $A-\lambda C$ and $B^{\top}-\lambda D^{\top}$.
R. Byers, D. Kressner.

Structured condition numbers for invariant subspaces.
SIMAX 28 (2006) 326-347.
K.W. E. Chu.

The solution of the matrix equations $A X B-C X D=E$ and $(Y A-D Z, Y C-B Z)=(E, F)$. LAA 93 (1987) 93-105.
F. De Terán, B. Iannazzo.

Uniqueness of solution of a generalized \star-Sylvester matrix equation. LAA 493 (2016) 323-335.
F. De Terán, B. Iannazzo, F. Poloni, L. Robol.

Solvability and uniqueness criteria for generalized Sylvester-type equations.
LAA 542 (2018) 501-521.
A. Dmytryshyn, B. Kågström.

Coupled Sylvester-type matrix equations and block diagonalization.
SIMAX 36 (2016) 580-593.
T. Košir.

Kronecker bases for linear matrix equations, with application to two-parameter eigenvalue problems. LAA 249 (1996) 259-288.
D. Kressner, C. Schröder, D. S. Watkins.

Implicit QR algorithms for palindromic and even eigenvalue problems. Numer. Algorithms 51 (2009) 209-238.

