Flanders' theorem for many matrices under commutativity assumptions

Fernando de Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

Collaborators and remembrance

Co-authors:

D. E. Shaw Research-Simulation Tools

Dedicated to the memory of:

Harley Flanders
Sept 13,1925 -July 26,2013
Harley Flanders
Sept 13,1925 -July 26, 2013
The University of Manchester

Yuji Nakatsukasa The University of Tokyo

Outline

(1) Framework

(2) The case of three matrices
(3) More than three matrices

Outline

(2) The case of three matrices

(3) More than three matrices

$\operatorname{JCF}(A B)$ vs $\operatorname{JCF}(B A)$

Notation:

- JCF $(M)=$ Jordan Canonical Form of M
- $\mathcal{S}_{\lambda}(M)=\left(n_{1}, n_{2}, \ldots, 0,0, \ldots\right)=$ Segré characteristic of M at $\lambda \in \mathbb{C}$ (infinite sequence of ordered sizes $n_{1} \geq n_{2} \geq \ldots$ of Jordan blocks at λ in $\operatorname{JCF}(M)$)

Theorem (Flanders, 1951)

 \qquad

$\operatorname{JCF}(A B)$ vs $\operatorname{JCF}(B A)$

Notation:

- JCF $(M)=$ Jordan Canonical Form of M
- $\mathcal{S}_{\lambda}(M)=\left(n_{1}, n_{2}, \ldots, 0,0, \ldots\right)=$ Segré characteristic of M at $\lambda \in \mathbb{C}$ (infinite sequence of ordered sizes $n_{1} \geq n_{2} \geq \ldots$ of Jordan blocks at λ in $\operatorname{JCF}(M)$)

Theorem (Flanders, 1951)

Given $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$, set $M=A B, N=B A$.
(i) $\mathcal{S}_{\lambda}(M)=S_{\lambda}(N)$ for all $\lambda \neq 0$.
(ii) $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty} \leq 1$.

Conversely, if $M \in \mathbb{C}^{m \times m}$ and $N \in \mathbb{C}^{n \times n}$ satisfy (i)-(ii), then $M=A B$ and $N=B A$, for some A, B.

In plain words: $\operatorname{JCF}(A B)$ and $\operatorname{JCF}(B A)$ can only differ in the J-blocks at 0 , and the corresponding sizes differ, at most, by 1 , and this happens only for matrices of the form $A B$ and $B A$.

Some history

Proved in:

H. Flanders

The elementary divisors of $A B$ and $B A$.
Proc. Am. Math. Soc. 2 (1951) 871-874.

And later in:

W. V. Parker, B. E. Mitchell.

Elementary divisors of certain matrices.
Duke Math. J. 19 (1952) 483-485.
R. C. Thompson.

On the matrices $A B$ and $B A$.
Linear Algebra Appl. 1 (1968) 43-58.

S. Bernau, A. Abian.

Jordan canonical forms of matrices $A B$ and $B A$.
Rend. Istit. Mat. Univ. Trieste. 20 (1988) 101-108.

C. R. Johnson, E. S. Schreiner.

The relationship between $A B$ and $B A$.
Amer. Math. Monthly 103 (1996) 578-581.
R. A. Lippert, G. Strang.

The Jordan form of $A B$ and $B A$.
Electron. J. Linear Algebra 18 (2009) 281-288.

Flanders again: exhaustivity

Moreover:

Theorem (Flanders, 1951)

Let $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots\right)$, and $\boldsymbol{\mu}^{\prime}=\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots\right)$ be two lists of integers with $\mu_{1} \geq \mu_{2} \geq \ldots \geq 0$, and $\mu_{1}^{\prime} \geq \mu_{2}^{\prime} \geq \ldots \geq 0$, with:
(i) $\left\|\boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\|_{\infty} \leq 1$, and
(ii) $\|\boldsymbol{\mu}\|_{1}=m,\left\|\boldsymbol{\mu}^{\prime}\right\|_{1}=n$.

Then, there are $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$ with $\mathcal{S}_{0}(A B)=\mu$ and $\mathcal{S}_{0}(B A)=\boldsymbol{\mu}^{\prime}$.

The problem

What happens for more than two matrices?

JCF (ABC) and JCF(CBA) can be arbitrarily different !!

Notation:

Example

$A=\operatorname{diag}(1,1 / 2, \ldots, 1 / n), B=-J_{n}(-1)^{\top}, C=(A B)^{-1} J_{n}(0)$. Then:

- $A B C=J_{n}(0)$
- The e-vals of CBA are: $0, \lambda_{1}, \ldots, \lambda_{n-1}$, with $\lambda_{1} \cdots \lambda_{n-1} \neq 0$.

傕 We need to impose some extra conditions on A, B, C.

Which ones?

The problem

What happens for more than two matrices?
$\mathrm{JCF}(A B C)$ and $\mathrm{JCF}(C B A)$ can be arbitrarily different !!

Notation:

$$
J_{n}(\lambda)=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right]_{n \times n}
$$

Example

$A=\operatorname{diag}(1,1 / 2, \ldots, 1 / n), B=-J_{n}(-1)^{T}, C=(A B)^{-1} J_{n}(0)$. Then:

- $A B C=J_{n}(0)$.
- The e-vals of CBA are: $0, \lambda_{1}, \ldots, \lambda_{n-1}$, with $\lambda_{1} \cdots \lambda_{n-1} \neq 0$.

㖪 We need to impose some extra conditions on A, B, C.

The problem

What happens for more than two matrices?
$\mathrm{JCF}(A B C)$ and $\mathrm{JCF}(C B A)$ can be arbitrarily different !!

Notation:

$$
J_{n}(\lambda)=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right]_{n \times n}
$$

Example

$A=\operatorname{diag}(1,1 / 2, \ldots, 1 / n), B=-J_{n}(-1)^{T}, C=(A B)^{-1} J_{n}(0)$. Then:

- $A B C=J_{n}(0)$.
- The e-vals of CBA are: $0, \lambda_{1}, \ldots, \lambda_{n-1}$, with $\lambda_{1} \cdots \lambda_{n-1} \neq 0$.

뭅우 We need to impose some extra conditions on A, B, C.

The problem

What happens for more than two matrices?
$\mathrm{JCF}(A B C)$ and $\mathrm{JCF}(C B A)$ can be arbitrarily different !!

Notation:

$$
J_{n}(\lambda)=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right]_{n \times n}
$$

Example

$A=\operatorname{diag}(1,1 / 2, \ldots, 1 / n), B=-J_{n}(-1)^{T}, C=(A B)^{-1} J_{n}(0)$. Then:

- $A B C=J_{n}(0)$.
- The e-vals of CBA are: $0, \lambda_{1}, \ldots, \lambda_{n-1}$, with $\lambda_{1} \cdots \lambda_{n-1} \neq 0$.

뭅우 We need to impose some extra conditions on A, B, C.
Which ones ?

Flanders pairs and bridges

Set $M \in \mathbb{C}^{m \times m}, N \in \mathbb{C}^{n \times n}$.

Definition

(M, N) is a Flanders pair if $M=A B, N=B A$, for some $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$. There is a Flanders bridge between M and N if (M, N) is a Flanders pair.

Note: Not transitive !!!

> Sequences of Flanders pairs allow us to relate the JCF of two matrices

Flanders pairs and bridges

Set $M \in \mathbb{C}^{m \times m}, N \in \mathbb{C}^{n \times n}$.

Definition

(M, N) is a Flanders pair if $M=A B, N=B A$, for some $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$. There is a Flanders bridge between M and N if (M, N) is a Flanders pair.

Note: Not transitive !!!

Corollary (of Flanders' Theorem)

If $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, then:
(i) $\mathcal{S}_{\lambda}\left(M_{1}\right)=\mathcal{S}_{\lambda}\left(M_{d+1}\right)$, for all $\lambda \neq 0$.
(ii) $\left\|\mathcal{S}_{0}\left(M_{1}\right)-\mathcal{S}_{0}\left(M_{d+1}\right)\right\|_{\infty} \leq d$.

Sequences of Flanders pairs allow us to relate the JCF of two matrices

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):

- Question 1: Find necessary and sufficient conditions on A_{1}, \ldots, A_{k} such that:
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$ and all $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$, and
(ii) $\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq d$, for any $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ and $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty}=d$, for some $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$.
- Question 2: If M, N satisfy (i)-(ii), then $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$, for some A_{1}, \ldots, A_{k} satisfying the conditions obtained in Question 1?
- Question 3 (exhaustivity): Given two nonincreasing sequences of nonnegative integers μ, μ^{\prime} such that $\left\|\mu-\mu^{\prime}\right\|_{\infty}=d$, find A_{1}, \ldots, A_{k} satisfying the conditions obtained in Question 1 and such that

$$
\mathcal{S}_{0}\left(\Pi_{1}\right)=\boldsymbol{\mu}, \mathcal{S}_{0}\left(\Pi_{2}\right)=\boldsymbol{\mu}^{\prime}, \text { for some } \Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right) .
$$

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):
© Question 1: Find necessary and sufficient conditions on A_{1}, \ldots, A_{k} such that:
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$ and all $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$, and
(ii) $\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq d$, for any $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ and $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty}=d$, for some $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$.
© Question 2: If M, N satisfy (i)-(ii), then $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$, for some A_{1}, \ldots, A_{k} satisfying the conditions obtained in Question 1?
© Question 3 (exhaustivity): Given two nonincreasing sequences of nonnegative integers μ, μ^{\prime} such that $\left\|\mu-\mu^{\prime}\right\|_{\infty}=d$, find A_{1}, \ldots, A_{k} satisfying the conditions obtained in Question 1 and such that

$$
\mathcal{S}_{0}\left(\Pi_{1}\right)=\boldsymbol{\mu}, \mathcal{S}_{0}\left(\Pi_{2}\right)=\boldsymbol{\mu}^{\prime}, \text { for some } \Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)
$$

Outline

(1) Framework

2 The case of three matrices

(3) More than three matrices

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

$\mathcal{P}(A, B, C)=\{A B C, A C B, B C A, B A C, C B A, C A B\}$

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

$$
\mathcal{P}(A, B, C)=\{A B C, A C B, B C A, B A C, C B A, C A B\}
$$

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

Commutativity relations

If at least two of A, B, C commute then, for any $\Pi_{1}, \Pi_{2} \in \mathcal{P}(A, B, C)$:
(i) $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
(ii) $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq 2$.

맚ㅇ commutativity of (A, B) or (A, C), or (B, C) is the answer to Question 1 for three matrices.

筫 Moreover, it is the answer to Question 3:

Theorem

Let μ, μ^{\prime} be two nonincreasing sequences of nonnegative integers such that
(i) $\left\|\boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\|_{\infty} \leq 2$, and
(ii) $\|\mu\|_{1}=\left\|\mu^{\prime}\right\|_{1}=n$.

Then, there are three matrices $A, B, C \in \mathbb{C}^{n \times n}$, such that $A C=C A$ and

Commutativity relations

If at least two of A, B, C commute then, for any $\Pi_{1}, \Pi_{2} \in \mathcal{P}(A, B, C)$:
(i) $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
(ii) $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq 2$.

四 commutativity of (A, B) or (A, C), or (B, C) is the answer to Question 1 for three matrices.

몾ㄱ Moreover, it is the answer to Question 3

Theorem

Let $\boldsymbol{\mu}, \boldsymbol{\mu}^{\prime}$ be two nonincreasing sequences of nonnegative integers such that
(i) $\left\|\mu-\mu^{\prime}\right\|_{\infty} \leq 2$, and
(ii) $\left\|\mu_{1}\right\|_{1}=\left\|\mu^{\prime}\right\|_{1}=n$.

Then, there are three matrices $A, B, C \in \mathbb{C}^{n \times n}$, such that $A C=C A$ and

Commutativity relations

If at least two of A, B, C commute then, for any $\Pi_{1}, \Pi_{2} \in \mathcal{P}(A, B, C)$:
(i) $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
(ii) $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq 2$.

鲒 commutativity of (A, B) or (A, C), or (B, C) is the answer to Question 1 for three matrices.

喛 Moreover, it is the answer to Question 3:

Theorem

Let $\boldsymbol{\mu}, \boldsymbol{\mu}^{\prime}$ be two nonincreasing sequences of nonnegative integers such that
(i) $\left\|\boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\|_{\infty} \leq 2$, and
(ii) $\|\boldsymbol{\mu}\|_{1}=\left\|\boldsymbol{\mu}^{\prime}\right\|_{1}=n$.

Then, there are three matrices $A, B, C \in \mathbb{C}^{n \times n}$, such that $A C=C A$ and

$$
\mathcal{S}_{0}(A B C)=\boldsymbol{\mu}, \quad \text { and } \quad \mathcal{S}_{0}(C B A)=\boldsymbol{\mu}^{\prime} .
$$

Answer to Question 2?

As for Question 2, we have:

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to CBA.

Answer to Question 2?

As for Question 2, we have:

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to CBA.

Not necessarily: $M=A B C$ and $N=C B A!!!$

Outline

(1) Framework

2 The case of three matrices

(3) More than three matrices

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length is the number of edges.

Forest: A graph containing no cycles.

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length is the number of edges.

Forest: A graph containing no cycles.

Example:

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length is the number of edges.

Forest: A graph containing no cycles.
Example: - - -- Path (of length 4)

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length is the number of edges.

Forest: A graph containing no cycles.
Example: - - -- Path (of length 4)

Definition

The graph of non-commutativity relations of A_{1}, \ldots, A_{k} is the graph $\mathcal{G}=(V, E)$ with $V=\{1,2, \ldots, k\}$, such that $\{i, j\} \in E$ if and only if $A_{i} A_{j} \neq A_{j} A_{i}$, for $1 \leq i, j \leq k$ with $i \neq j$.

Sequences of Flanders bridges

Definition

$M_{1}, M_{d+1} \in \mathbb{C}^{n \times n}$ are connected by a sequence of Flanders bridges if $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, for some M_{2}, \ldots, M_{d}.
\mathcal{G} : the graph of non-commutativity relations of A_{1}, \ldots, A_{k}.
Then, if products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are considered as formal products:
Theorem
Any two products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are related by a sequence of Flanders bridges $\Leftrightarrow \mathcal{G}$ is a forest.

Hence: If \mathcal{G} is a forest $\left(\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)\right)$:

- $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
- $\left\|S_{0}\left(\Pi_{1}\right)-S_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d$.

Sequences of Flanders bridges

Definition

$M_{1}, M_{d+1} \in \mathbb{C}^{n \times n}$ are connected by a sequence of Flanders bridges if $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, for some M_{2}, \ldots, M_{d}.
\mathcal{G} : the graph of non-commutativity relations of A_{1}, \ldots, A_{k}.
Then, if products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are considered as formal products:

Theorem

Any two products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are related by a sequence of Flanders bridges $\Leftrightarrow \mathcal{G}$ is a forest.

Hence: If \mathcal{G} is a forest $\left(\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)\right)$:

- $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
- $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d$.

Sequences of Flanders bridges

Definition

$M_{1}, M_{d+1} \in \mathbb{C}^{n \times n}$ are connected by a sequence of Flanders bridges if $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, for some M_{2}, \ldots, M_{d}.
\mathcal{G} : the graph of non-commutativity relations of A_{1}, \ldots, A_{k}.
Then, if products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are considered as formal products:

Theorem

Any two products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are related by a sequence of Flanders bridges $\Leftrightarrow \mathcal{G}$ is a forest.

Hence: If \mathcal{G} is a forest $\left(\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)\right)$:

- $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
- $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d$.

Sequences of Flanders bridges

Definition

$M_{1}, M_{d+1} \in \mathbb{C}^{n \times n}$ are connected by a sequence of Flanders bridges if $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, for some M_{2}, \ldots, M_{d}.
\mathcal{G} : the graph of non-commutativity relations of A_{1}, \ldots, A_{k}.
Then, if products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are considered as formal products:

Theorem

Any two products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are related by a sequence of Flanders bridges $\Leftrightarrow \mathcal{G}$ is a forest.

Hence: If \mathcal{G} is a forest $\left(\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)\right)$:

- $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
- $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d . \quad \ldots d$?

The main result

Theorem

\mathcal{G} a forest. Set $d=$ length of the longest path in \mathcal{G}. Given $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$:

$$
\begin{equation*}
\left\|S_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d \tag{1}
\end{equation*}
$$

This bound is attainable: Let \mathcal{G} be any forest with k vertices, and let $d \leq k$ be the length of the longest path in \mathcal{G}. Then there are $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$ whose graph of non-commutativity relations is \mathcal{G}, and $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ with

$$
\left\|S_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty}=d
$$

Comment on the Proof:

- For (1): Uses tools from theory of permutations and graph theory.
- For the attainability: Constructive, just matrix manipulations.

The main result

Theorem

\mathcal{G} a forest. Set $d=$ length of the longest path in \mathcal{G}. Given $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$:

$$
\begin{equation*}
\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d \tag{1}
\end{equation*}
$$

This bound is attainable: Let \mathcal{G} be any forest with k vertices, and let $d \leq k$ be the length of the longest path in \mathcal{G}. Then there are $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$ whose graph of non-commutativity relations is \mathcal{G}, and $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ with

$$
\left\|S_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty}=d
$$

Comment on the Proof:

- For (1): Uses tools from theory of permutations and graph theory.
- For the attainability: Constructive, just matrix manipulations.

Example

Set:

$$
\begin{array}{lll}
A_{1}=\operatorname{diag}\left(\widetilde{A}_{1}, I_{8}\right), & A_{2}=\operatorname{diag}\left(I_{7}, D_{2}^{(2)}, I_{4}\right), & A_{3}=\operatorname{diag}\left(\widetilde{A}_{3}, D_{3}^{(1)}, D_{3}^{(2)}, D_{3}^{(3)}, I_{2}\right), \\
A_{4}=\operatorname{diag}\left(I_{11}, D_{4}^{(4)}\right), & A_{5}=\operatorname{diag}\left(I_{9}, D_{5}^{(3)}, D_{5}^{(4)}\right), & A_{6}=\operatorname{diag}\left(I_{5}, D_{6}^{(1)}, I_{6}\right), \\
A_{7}=\operatorname{diag}\left(\widetilde{A}_{7}, D_{2}^{(2)}, I_{4}\right), & A_{8}=\operatorname{diag}\left(\widetilde{A}_{8}, I_{8}\right), & A_{9}=\left(\widetilde{A}_{9}, I_{8}\right),
\end{array}
$$

with:

$$
\begin{array}{lll}
\widetilde{A}_{9}=\operatorname{diag}\left(I_{3}, J_{2}(0)\right) & \widetilde{A}_{1}=\operatorname{diag}\left(I_{2}, J_{2}(0), 1\right), & \widetilde{A}_{3}=\operatorname{diag}\left(1, J_{2}(0), I_{2}\right), \\
\widetilde{A}_{8}=\operatorname{diag}\left(J_{2}(0), I_{3}\right), & \widetilde{A}_{7}=\operatorname{diag}\left(0, I_{4}\right), & \widetilde{A}_{i}=I_{5}, \text { for } i \neq 1,3,7,8,9,
\end{array}
$$

and $D_{j}^{(i)} \in \mathbb{C}^{2 \times 2}$ nonsingular such that $D_{3}^{(1)} D_{6}^{(1)} \neq D_{6}^{(1)} D_{3}^{(1)}, D_{3}^{(2)} D_{2}^{(2)} \neq D_{2}^{(2)} D_{3}^{(2)}$, $D_{3}^{(3)} D_{5}^{(3)} \neq D_{5}^{(3)} D_{3}^{(3)}$, and $D_{4}^{(4)} D_{5}^{(4)} \neq D_{5}^{(4)} D_{4}^{(4)}$. Then:
$\Pi_{1}=\left(A_{9} A_{1} A_{3} A_{8} A_{7}\right) A_{6} A_{2} A_{5} A_{4}=\operatorname{diag}\left(J_{5}(0), J\right), \Pi_{2}=\left(A_{7} A_{8} A_{3} A_{1} A_{9}\right) A_{6} A_{2} A_{5} A_{4}=\operatorname{diag}\left(0_{5}, J\right)$,
with $J=\operatorname{diag}\left(D_{3}^{(1)} D_{6}^{(1)}, D_{3}^{(2)} D_{2}^{(2)}, D_{3}^{(3)} D_{5}^{(3)}, D_{5}^{(4)} D_{4}^{(4)}\right)$, nonsingular.
Hence: $\mathcal{S}_{0}\left(\Pi_{1}\right)=(5)$ and $\mathcal{S}_{0}\left(\Pi_{2}\right)=(1,1,1,1,1)$, so $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty}=4$.

Open Problems

- Given $d \geq 4$ and two nonincreasing sequences $\boldsymbol{\mu}, \boldsymbol{\mu}^{\prime}$ of nonnegative integers such that $\left\|\boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\|_{\infty} \leq d-1$, is it always possible to find d matrices, A_{1}, \ldots, A_{d}, such that \mathcal{G} is a path, and $\mathcal{S}_{0}\left(A_{1} \cdots A_{d}\right)=\mu$, $\mathcal{S}_{0}\left(A_{d} \cdots A_{1}\right)=\mu^{\prime}$?
(2) If $M, Q \in \mathbb{C}^{n \times n}$ are such that $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(Q)$, for all $\lambda \neq 0$, and $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(Q)\right\|_{\infty} \leq 2$, are there three matrices $A, B, C \in \mathbb{C}^{n \times n}$ with $A C=C A$, such that $M=A B C$ and $Q=C B A$?

Bibliography

F. De Terán, R. A. Lippert, Y. Nakatsukasa, and V. Noferini.

Flanders' theorem for many matrices under commutativity assumptions.
Linear Algebra Appl. 443 (2014) 120-138.
Related work:
S. Furtado, C. R. Johnson.

Order invariant spectral properties for several matrices.
Linear Algebra Appl. 432 (2010) 1950-1960.

S. Furtado, C. R. Johnson.

On the similarity classes among products of m nonsingular matrices in various orders.
Linear Algebra Appl. 450 (2014) 217-242.J. Gelonch, C. R. Johnson.

Genrelization of Flanders' theorem to matrix triples.
Linear Algebra Appl. 380 (2004) 151-171.J. Gelonch, C. R. Johnson, P Rubió.

An extension of Flanders theorem to several matrices.
Lin. Multili. Algebra 43 (1997) 181-200.

THANK YOU

