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Framework

JCF(AB) vs JCF(BA)

Notation:

JCF(M)=Jordan Canonical Form of M

Sλ(M) = (n1,n2, . . . ,0,0, . . .) = Segré characteristic of M at λ ∈ C (infinite
sequence of ordered sizes n1 ≥ n2 ≥ . . . of Jordan blocks at λ in JCF(M))

Theorem (Flanders, 1951)
Given A ∈ Cm×n,B ∈ Cn×m, set M = AB,N = BA.

(i) Sλ(M) = Sλ(N) for all λ , 0.

(ii) ‖S0(M) − S0(N)‖∞ ≤ 1 .

Conversely, if M ∈ Cm×m and N ∈ Cn×n satisfy (i)–(ii), then M = AB and
N = BA, for some A,B.

In plain words: JCF(AB) and JCF(BA) can only differ in the J-blocks at 0, and
the corresponding sizes differ, at most, by 1, and this happens only for
matrices of the form AB and BA.
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Flanders again: exhaustivity

Moreover:

Theorem (Flanders, 1951)
Let µµµ = (µ1, µ2, . . .), and µµµ′ = (µ′1, µ

′
2, . . .) be two lists of integers with

µ1 ≥ µ2 ≥ . . . ≥ 0, and µ′1 ≥ µ
′
2 ≥ . . . ≥ 0, with:

(i) ‖µµµ − µµµ′‖∞ ≤ 1 , and

(ii) ‖µµµ‖1 = m, ‖µµµ′‖1 = n.

Then, there are A ∈ Cm×n,B ∈ Cn×m with S0(AB) = µµµ and S0(BA) = µµµ′.

Fernando de Terán (UC3M) Flanders’ theorem for many matrices ALAMA2014 7 / 22



Logo-dpto

Framework

The problem

What happens for more than two matrices?
JCF(ABC) and JCF(CBA) can be arbitrarily different !!

Notation: Jn(λ) =



λ 1

λ
. . .

. . . 1
λ


n×n

.

Example
A = diag(1,1/2, . . . ,1/n),B = −Jn(−1)T ,C = (AB)−1Jn(0). Then:

ABC = Jn(0).

The e-vals of CBA are: 0, λ1, . . . , λn−1, with λ1 · · · λn−1 , 0.

�We need to impose some extra conditions on A,B,C.

Which ones ?
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Flanders pairs and bridges

Set M ∈ Cm×m,N ∈ Cn×n.

Definition
(M ,N) is a Flanders pair if M = AB,N = BA, for some A ∈ Cm×n,B ∈ Cn×m.
There is a Flanders bridge between M and N if (M ,N) is a Flanders pair.

Note: Not transitive !!!

Corollary (of Flanders’ Theorem)
If (M1,M2), (M2,M3), . . . , (Md ,Md+1) are Flanders pairs, then:

(i) Sλ(M1) = Sλ(Md+1), for all λ , 0.
(ii) ‖S0(M1) − S0(Md+1)‖∞ ≤ d .

Sequences of Flanders pairs allow us to relate the JCF of two matrices
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The problems
Given A1, . . . ,Ak ∈ C

n×n, we set:
P(A1, . . . ,Ak ) := {Ai1 · · ·Aik : (i1, . . . , ik ) a permutation of (1, . . . , k)}

(”Permuted products" of A1, . . . ,Ak )

Three questions (after Flanders’ Theorem):
Question 1: Find necessary and sufficient conditions on A1, . . . ,Ak such
that:

(i) Sλ(M) = Sλ(N) , for all λ , 0 and all M ,N ∈ P(A1, . . . ,Ak ), and

(ii) ‖S0(M) − S0(N)‖∞ ≤ d , for any M ,N ∈ P(A1, . . . ,Ak ) and

‖S0(M) − S0(N)‖∞ = d , for some M ,N ∈ P(A1, . . . ,Ak ).

Question 2: If M ,N satisfy (i)–(ii), then M ,N ∈ P(A1, . . . ,Ak ), for some
A1, . . . ,Ak satisfying the conditions obtained in Question 1?

Question 3 (exhaustivity): Given two nonincreasing sequences of
nonnegative integers µµµ,µµµ′ such that ‖µµµ − µµµ′‖∞ = d , find A1, . . . ,Ak
satisfying the conditions obtained in Question 1 and such that
S0(Π1) = µµµ, S0(Π2) = µµµ′ , for some Π1,Π2 ∈ P(A1, . . . ,Ak ).
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The case of three matrices

Permuted products of A,B,C ∈ Cn×n

P(A,B,C) = {ABC,ACB,BCA,BAC,CBA,CAB}

↙ ↘

Flanders pairs
ABC

CAB BCA

Flanders pairs
ACB

BAC CBA

If (CA)B = (AC)B:

CAB = ACB

ABC

BCA

BAC

CBA
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The case of three matrices

Commutativity relations

If at least two of A,B,C commute then, for any Π1,Π2 ∈ P(A,B,C) :

(i) Sλ(Π1) = Sλ(Π2), for all λ , 0.
(ii) ‖S0(Π1) − S0(Π2)‖∞ ≤ 2.

� commutativity of (A,B) or (A,C), or (B,C) is the answer to Question 1 for
three matrices.

� Moreover, it is the answer to Question 3:

Theorem
Let µµµ,µµµ′ be two nonincreasing sequences of nonnegative integers such that

(i) ‖µµµ − µµµ′‖∞ ≤ 2, and
(ii) ‖µµµ‖1 = ‖µµµ′‖1 = n.

Then, there are three matrices A,B,C ∈ Cn×n, such that AC = CA and

S0(ABC) = µµµ, and S0(CBA) = µµµ′.
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The case of three matrices

Answer to Question 2?

As for Question 2, we have:

Corollary
Let M ,N ∈ Cn×n. Then the following are equivalent:
(a) There is Q ∈ Cn×n such that (M ,Q) and (Q,N) are Flanders pairs.
(b) Sλ(M) = Sλ(N), for all λ , 0, and ‖S0(M) − S0(N)‖∞ ≤ 2.
(c) There are A,B,C ∈ Cn×n such that AC = CA, M is similar to ABC, and N

is similar to CBA.

Not necessarily: M = ABC and N = CBA !!!
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More than three matrices

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length
is the number of edges.

Forest: A graph containing no cycles.

Definition
The graph of non-commutativity relations of A1, . . . ,Ak is the graph G = (V ,E)
with V = {1,2, . . . , k }, such that {i , j} ∈ E if and only if AiAj , AjAi , for
1 ≤ i , j ≤ k with i , j .
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More than three matrices

Sequences of Flanders bridges

Definition
M1,Md+1 ∈ C

n×n are connected by a sequence of Flanders bridges if
(M1,M2), (M2,M3), . . . , (Md ,Md+1) are Flanders pairs, for some M2, . . . ,Md .

G: the graph of non-commutativity relations of A1, . . . ,Ak .

Then, if products in P(A1, . . . ,Ak ) are considered as formal products:

Theorem
Any two products in P(A1, . . . ,Ak ) are related by a sequence of Flanders
bridges⇔ G is a forest.

Hence: If G is a forest (Π1,Π2 ∈ P(A1, . . . ,Ak )):
Sλ(Π1) = Sλ(Π2), for all λ , 0.
‖S0(Π1) − S0(Π2)‖∞ ≤ d . ...d?
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‖S0(Π1) − S0(Π2)‖∞ ≤ d . ...d?
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The main result

Theorem
G a forest. Set d= length of the longest path in G.
Given Π1,Π2 ∈ P(A1, . . . ,Ak ):

(1) ‖S0(Π1) − S0(Π2)‖∞ ≤ d .

This bound is attainable: Let G be any forest with k vertices, and let d ≤ k be
the length of the longest path in G. Then there are A1, . . . ,Ak ∈ C

n×n whose
graph of non-commutativity relations is G, and Π1,Π2 ∈ P(A1, . . . ,Ak ) with

‖S0(Π1) − S0(Π2)‖∞ = d .

Comment on the Proof:

For (1): Uses tools from theory of permutations and graph theory.
For the attainability: Constructive, just matrix manipulations.
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Example

1

2

39 8

5 4

7

6

Set:
A1 = diag(Ã1, I8), A2 = diag(I7,D

(2)
2 , I4), A3 = diag(Ã3,D

(1)
3 ,D(2)

3 ,D(3)
3 , I2),

A4 = diag(I11,D
(4)
4 ), A5 = diag(I9,D

(3)
5 ,D(4)

5 ), A6 = diag(I5,D
(1)
6 , I6),

A7 = diag(Ã7,D
(2)
2 , I4), A8 = diag(Ã8, I8), A9 = (Ã9, I8),

with:
Ã9 = diag(I3, J2(0)) Ã1 = diag(I2, J2(0),1), Ã3 = diag(1, J2(0), I2),

Ã8 = diag(J2(0), I3), Ã7 = diag(0, I4), Ãi = I5, for i , 1,3,7,8,9,

and D(i)
j ∈ C

2×2 nonsingular such that D(1)
3 D(1)

6 , D(1)
6 D(1)

3 , D(2)
3 D(2)

2 , D(2)
2 D(2)

3 ,

D(3)
3 D(3)

5 , D(3)
5 D(3)

3 , and D(4)
4 D(4)

5 , D(4)
5 D(4)

4 . Then:

Π1 = (A9A1A3A8A7)A6A2A5A4 = diag(J5(0), J),Π2 = (A7A8A3A1A9)A6A2A5A4 = diag(05, J),

with J = diag
(
D(1)

3 D(1)
6 ,D(2)

3 D(2)
2 ,D(3)

3 D(3)
5 ,D(4)

5 D(4)
4

)
, nonsingular.

Hence: S0(Π1) = (5) and S0(Π2) = (1,1,1,1,1), so ‖S0(Π1) − S0(Π2)‖∞ = 4 .
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Open Problems

1 Given d ≥ 4 and two nonincreasing sequences µµµ,µµµ′ of nonnegative
integers such that ‖µµµ − µµµ′‖∞ ≤ d − 1, is it always possible to find d
matrices, A1, . . . ,Ad , such that G is a path, and S0(A1 · · ·Ad ) = µµµ,
S0(Ad · · ·A1) = µµµ′?

2 If M ,Q ∈ Cn×n are such that Sλ(M) = Sλ(Q), for all λ , 0, and
‖S0(M) − S0(Q)‖∞ ≤ 2, are there three matrices A,B,C ∈ Cn×n with
AC = CA, such that M = ABC and Q = CBA?
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