Flanders' Theorem for many matrices under commutativity assumptions

Fernando De Terán

Departamento de Matemáticas
Universidad Carlos III de Madrid
(Spain)

Outline

(1) Framework
(2) The case of three matrices
(3) More than three matrices

4 Motivation: Fiedler matrices

Outline

(2) The case of three matrices

(3) More than three matrices

4 Motivation: Fiedler matrices

$\operatorname{JCF}(A B)$ vs $\operatorname{JCF}(B A)$

Notation:

- JCF $(M)=$ Jordan Canonical Form of M.
- $\mathcal{S}_{\lambda}(M)=\left(n_{1}, n_{2}, \ldots, 0,0, \ldots\right)=$ Segré characteristic of M at $\lambda \in \mathbb{C}$ (infinite sequence of ordered sizes $n_{1} \geq n_{2} \geq \ldots$ of Jordan blocks at λ in $\operatorname{JCF}(M)$).

$\operatorname{JCF}(A B)$ vs $\operatorname{JCF}(B A)$

Notation:

- $\operatorname{JCF}(M)=$ Jordan Canonical Form of M.
- $\mathcal{S}_{\lambda}(M)=\left(n_{1}, n_{2}, \ldots, 0,0, \ldots\right)=$ Segré characteristic of M at $\lambda \in \mathbb{C}$ (infinite sequence of ordered sizes $n_{1} \geq n_{2} \geq \ldots$ of Jordan blocks at λ in $\left.\operatorname{JCF}(M)\right)$.

Theorem (Flanders, 1951)

Given $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$, set $M=A B, N=B A$.
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$ for all $\lambda \neq 0$.
(ii) $\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 1$.

Conversely, if $M \in \mathbb{C}^{m \times m}$ and $N \in \mathbb{C}^{n \times n}$ satisfy (i)-(ii), then $M=A B$ and $N=B A$, for some A, B.

In plain words: $\operatorname{JCF}(A B)$ and $\operatorname{JCF}(B A)$ can only differ in the J -blocks at 0 , and the corresponding sizes differ, at most, by 1, and this happens only for matrices of the form $A B$ and $B A$.

Some history

Proved in:

H. Flanders

The elementary divisors of $A B$ and $B A$.
Proc. Am. Math. Soc. 2 (1951) 871-874.

And later in:

\square W. V. Parker, B. E. Mitchell.

Elementary divisors of certain matrices.
Duke Math. J. 19 (1952) 483-485.
R. C. Thompson.

On the matrices $A B$ and $B A$.
Linear Algebra Appl. 1 (1968) 43-58.
S. Bernau, A. Abian.

Jordan canonical forms of matrices $A B$ and $B A$.
Rend. Istit. Mat. Univ. Trieste. 20 (1988) 101-108.
C. R. Johnson, E. S. Schreiner.

The relationship between $A B$ and $B A$.
Amer. Math. Monthly 103 (1996) 578-581.
R
R. A. Lippert, G. Strang.

The Jordan form of $A B$ and $B A$.
Electron. J. Linear Algebra 18 (2009) 281-288.

Flanders again: exhaustivity

Moreover:

Theorem (Flanders, 1951)

Let $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots\right)$, and $\boldsymbol{\mu}^{\prime}=\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots\right)$ be two lists of integers with $\mu_{1} \geq \mu_{2} \geq \ldots \geq 0$, and $\mu_{1}^{\prime} \geq \mu_{2}^{\prime} \geq \ldots \geq 0$, with:
(i) $\left\|\mu-\boldsymbol{\mu}^{\prime}\right\|_{\infty} \leq 1$, and
(ii) $\|\boldsymbol{\mu}\|_{1}=m,\left\|\boldsymbol{\mu}^{\prime}\right\|_{1}=n$.

Then, there are $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$ with $\mathcal{S}_{0}(A B)=\mu$ and $\mathcal{S}_{0}(B A)=\boldsymbol{\mu}^{\prime}$.

More than two matrices? Size.

What happens for products (in different orders) of more than two matrices?

More than two matrices? Size.

What happens for products (in different orders) of more than two matrices?

Three matrices: $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{p \times a}, C \in \mathbb{C}^{r \times s}$ of "appropriate" sizes. What dose this mean?:

- $A B C$ must be defined $(m \times n) \cdot(p \times q) \cdot(r \times s) \Rightarrow n=p, q=r$.
- ACB must be defined $(m \times n) \cdot(r \times s) \cdot(p \times q) \Rightarrow n=r, s=p$.
- CAB must be defined $(r \times s) \cdot(m \times n) \cdot(p \times q) \Rightarrow s=m, n=p$.

More than two matrices? Size.

What happens for products (in different orders) of more than two matrices?

Three matrices: $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{p \times a}, C \in \mathbb{C}^{r \times s}$ of "appropriate" sizes. What dose this mean?:

- $A B C$ must be defined $(m \times n) \cdot(p \times q) \cdot(r \times s) \Rightarrow n=p, q=r$.
- ACB must be defined $(m \times n) \cdot(r \times s) \cdot(p \times q) \Rightarrow n=r, s=p$.
- CAB must be defined $(r \times s) \cdot(m \times n) \cdot(p \times q) \Rightarrow s=m, n=p$.

Then: $m=n=p=q=r=s$.

More than two matrices? Cyclic permutations.

Three matrices: $A, B, C \in \mathbb{C}^{n \times n}$. Then

- $\mathcal{S}_{1}=\{A B C, C A B, B C A\}$: Any two here satisfy Flanders' Theorem.
- $\mathcal{S}_{2}=\{A C B, B A C, C B A\}$: Any two here satisfy Flanders' Theorem.

More than two matrices? Cyclic permutations.

Three matrices: $A, B, C \in \mathbb{C}^{n \times n}$. Then

- $\mathcal{S}_{1}=\{A B C, C A B, B C A\}$: Any two here satisfy Flanders' Theorem.
- $\mathcal{S}_{2}=\{A C B, B A C, C B A\}$: Any two here satisfy Flanders' Theorem.

Q: What happens with one from \mathcal{S}_{1} and another one from \mathcal{S}_{2} ?

More than two matrices? "Anything" may happen with nonzero e-vals.

$(\Lambda(M)$: Spectrum of $M)$.

More than two matrices? "Anything" may happen with nonzero e-vals.

$(\Lambda(M)$: Spectrum of $M)$.
$\wedge(A B C)$ and $\wedge(C B A)$ can be (almost) arbitrarily different !!

More than two matrices? "Anything" may happen with nonzero e-vals.

$(\Lambda(M)$: Spectrum of $M)$.
䰹 $\wedge(A B C)$ and $\wedge(C B A)$ can be (almost) arbitrarily different !!

Theorem

Let

$$
\Lambda_{1}=\left\{\lambda_{11}, \ldots, \lambda_{n 1}\right\}, \quad \Lambda_{2}=\left\{\lambda_{12}, \ldots, \lambda_{n 2}\right\}
$$

be two sets of n nonzero complex numbers (with possible repetitions). If $\lambda_{11} \cdots \lambda_{n 1}=\lambda_{12} \cdots \lambda_{n 2}$, there are $A, B, C \in \mathbb{C}^{n \times n}$, such that

$$
\Lambda(A B C)=\Lambda_{1}, \quad \Lambda(C B A)=\Lambda_{2}
$$

More than two matrices? Anything may happen with the zero e-val.

园 The sizes of Jordan blocks at 0 in $\operatorname{JCF}(A B C)$ and $\operatorname{JCF}(C B A)$ can be arbitrarily different !!

$$
\left.\begin{array}{rl}
A=\left[\begin{array}{llll}
1 & & & \\
& 1 / 2 & & \\
& & \ddots & \\
& & 1 / n
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & & \\
-1 & \ddots & \\
& \ddots & \\
& & 1 \\
\hline
\end{array}\right], \quad C=(A B)^{-1}\left[\begin{array}{cccc}
0 & 1 & & \\
& \ddots & \ddots & \\
& & 0 & 1 \\
& & & 0
\end{array}\right] . \\
& \\
& \\
& \\
& \\
& \ddots
\end{array}\right)
$$

$$
\text { - The e-vals of CBA are: } 0, \lambda_{1}, \ldots, \lambda_{n-1} \text {, with } \lambda_{1} \cdots \lambda_{n-1} \neq 0 \text {. }
$$

More than two matrices? Anything may happen with the zero e-val.

맚ㅇ The sizes of Jordan blocks at 0 in $\operatorname{JCF}(A B C)$ and $\operatorname{JCF}(C B A)$ can be arbitrarily different !!
$A=\left[\begin{array}{llll}1 & & & \\ & 1 / 2 & & \\ & & \ddots & \\ & & & 1 / n\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & & \\ -1 & \ddots & \\ & \ddots & 1 \\ & & -1\end{array}\right], \quad C=(A B)^{-1}\left[\begin{array}{ccccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0\end{array}\right]$.

- $A B C=\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0\end{array}\right]\left(=J_{n}(0)\right)$.
- The e-vals of CBA are: $0, \lambda_{1}, \ldots, \lambda_{n-1}$, with $\lambda_{1} \cdots \lambda_{n-1} \neq 0$.
(IDEA: 0 is a simple eigenvalue of $C B A: \operatorname{rank}(C B A)=n-1$ and $(C B A)[12 \ldots n]^{\top}=0$. But (CBA) $v_{1}=[12 \cdots n]^{\top}$ is impossible, since this would imply $C w=[12 \ldots n]^{\top}$, but the last two entries of $C w$ must coincide, since the last two rows of C are the same.)

More than two matrices? Anything may happen with the zero e-val.

园 The sizes of Jordan blocks at 0 in $\operatorname{JCF}(A B C)$ and $\operatorname{JCF}(C B A)$ can be arbitrarily different !!
$A=\left[\begin{array}{llll}1 & & & \\ & 1 / 2 & & \\ & & \ddots & \\ & & & 1 / n\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & & \\ -1 & \ddots & \\ & \ddots & 1 \\ & & -1\end{array}\right], \quad C=(A B)^{-1}\left[\begin{array}{ccccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0\end{array}\right]$.

- $A B C=\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0\end{array}\right]\left(=J_{n}(0)\right)$.
- The e-vals of CBA are: $0, \lambda_{1}, \ldots, \lambda_{n-1}$, with $\lambda_{1} \cdots \lambda_{n-1} \neq 0$.

48 We need to impose some extra conditions on A, B, C.

More than two matrices? Anything may happen with the zero e-val.

图 The sizes of Jordan blocks at 0 in $\operatorname{JCF}(A B C)$ and $\operatorname{JCF}(C B A)$ can be arbitrarily different !!
$A=\left[\begin{array}{cccc}1 & & & \\ & 1 / 2 & & \\ & & \ddots & \\ & & & 1 / n\end{array}\right], \quad B=\left[\begin{array}{cccc}1 & & & \\ -1 & \ddots & \\ & \ddots & 1 & \\ & & -1 & 1\end{array}\right], \quad C=(A B)^{-1}\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0\end{array}\right]$.

- $A B C=\left[\begin{array}{llll}0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0\end{array}\right]\left(=J_{n}(0)\right)$.
- The e-vals of CBA are: $0, \lambda_{1}, \ldots, \lambda_{n-1}$, with $\lambda_{1} \cdots \lambda_{n-1} \neq 0$.

豩 We need to impose some extra conditions on A, B, C.

Which ones ?

Flanders pairs and bridges

Set $M \in \mathbb{C}^{m \times m}, N \in \mathbb{C}^{n \times n}$.

Definition

(M, N) is a Flanders pair if $M=A B, N=B A$, for some $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$. There is a Flanders bridge between M and N if (M, N) is a Flanders pair.

Note: Not transitive !!!

Flanders pairs and bridges

Set $M \in \mathbb{C}^{m \times m}, N \in \mathbb{C}^{n \times n}$.

Definition

(M, N) is a Flanders pair if $M=A B, N=B A$, for some $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$. There is a Flanders bridge between M and N if (M, N) is a Flanders pair.

Note: Not transitive !!!

Example:

$M=J_{3}(0), Q=\operatorname{diag}\left(J_{2}(0), J_{1}(0)\right), N=\operatorname{diag}\left(J_{1}(0), J_{1}(0), J_{1}(0)\right) \equiv 0_{3 \times 3}$.
Then (M, Q) and (Q, N) are Flanders pairs, but (M, N) is not.

Flanders pairs and bridges

Set $M \in \mathbb{C}^{m \times m}, N \in \mathbb{C}^{n \times n}$.

Definition

(M, N) is a Flanders pair if $M=A B, N=B A$, for some $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$. There is a Flanders bridge between M and N if (M, N) is a Flanders pair.

Note: Not transitive !!!

Corollary (of Flanders' Theorem)

If $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, then:
(i) $\mathcal{S}_{\lambda}\left(M_{1}\right)=\mathcal{S}_{\lambda}\left(M_{d+1}\right)$, for all $\lambda \neq 0$.
(ii) $\left\|S_{0}\left(M_{1}\right)-\mathcal{S}_{0}\left(M_{d+1}\right)\right\|_{\infty} \leq d$.

Sequences of Flanders pairs allow us to relate the JCF of two matrices

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):
Question 1: Find necessary and sufficient conditions on A_{1}, \ldots, A_{k} such that:
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$ and all $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$, and
(ii) $\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq d$, for any $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ and
$\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty}=d$, for some $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$.

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):
Question 1: Find necessary and sufficient conditions on A_{1}, \ldots, A_{k} such that:
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$ and all $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$, and
(ii) $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty} \leq d$, for any $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ and
$\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty}=d$, for some $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$.

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):
Question 2: If M, N satisfy
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N), \forall \lambda \neq 0$, and
(ii) $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty} \leq d$,
then $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$, for some A_{1}, \ldots, A_{k} satisfying the conditions obtained in Question 1?

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):
Question 2: If M, N satisfy
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N), \forall \lambda \neq 0$, and
(ii) $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty} \leq d$,
then $M, N \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$, for some A_{1}, \ldots, A_{k} satisfying the conditions obtained in Question 1?

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):
Question 3 (exhaustivity):
Given: two non-increasing sequences of nonnegative integers $\boldsymbol{\mu}, \boldsymbol{\mu}^{\prime}$ such that $\left\|\boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\|_{\infty}=d$, are there: A_{1}, \ldots, A_{k} satisfying the conditions obtained in Question 1 and $\mathcal{S}_{0}\left(\Pi_{1}\right)=\boldsymbol{\mu}, \mathcal{S}_{0}\left(\Pi_{2}\right)=\mu^{\prime}$, for some $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$?

The problems

Given $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$, we set:
$\mathcal{P}\left(A_{1}, \ldots, A_{k}\right):=\left\{A_{i_{1}} \cdots A_{i_{k}}:\left(i_{1}, \ldots, i_{k}\right)\right.$ a permutation of $\left.(1, \ldots, k)\right\}$
("Permuted products" of A_{1}, \ldots, A_{k})
Three questions (after Flanders' Theorem):
Question 3 (exhaustivity):
Given: two non-increasing sequences of nonnegative integers $\boldsymbol{\mu}, \boldsymbol{\mu}^{\prime}$ such that $\left\|\boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\|_{\infty}=d$, are there: A_{1}, \ldots, A_{k} satisfying the conditions obtained in Question 1 and $\mathcal{S}_{0}\left(\Pi_{1}\right)=\boldsymbol{\mu}, \mathcal{S}_{0}\left(\Pi_{2}\right)=\mu^{\prime}$, for some $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$?
(Only for $k=3$).

Questions 2 and 3 are related

If the answer to Question 3 is affirmative:

Questions 2 and 3 are related

If the answer to Question 3 is affirmative:
Given M and N with
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N), \forall \lambda \neq 0$, and
(ii) $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq d$,
then

$$
\begin{aligned}
& M \sim\left[\begin{array}{c|c}
J_{\neq 0}(M) & 0 \\
\hline 0 & J_{0}(M) \\
N \sim\left[\begin{array}{cc|c}
J_{\neq 0}(M) & 0 \\
\hline 0 & J_{0}(N)
\end{array}\right] \sim\left[\begin{array}{cc}
J_{\neq 0}(M) & 0 \\
\hline 0 & \Pi_{1} \\
\hline J_{\neq 0}(M) & 0 \\
\hline 0 & \Pi_{2}
\end{array}\right]=\widetilde{\Pi}_{1},
\end{array} .=\widetilde{\Pi}_{2} .\right.
\end{aligned}
$$

(~: similar).

Questions 2 and 3 are related

If the answer to Question 3 is affirmative:
Given M and N with
(i) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N), \forall \lambda \neq 0$, and
(ii) $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq d$,
then

$$
\begin{aligned}
& M \sim\left[\begin{array}{c|c}
J_{\neq 0}(M) & 0 \\
\hline 0 & J_{0}(M) \\
N \sim\left[\begin{array}{cc|c}
J_{\neq 0}(M) & 0 \\
\hline 0 & J_{0}(N)
\end{array}\right] \sim\left[\begin{array}{cc}
J_{\neq 0}(M) & 0 \\
\hline 0 & \Pi_{1} \\
\hline J_{\neq 0}(M) & 0 \\
\hline 0 & \Pi_{2}
\end{array}\right]=\widetilde{\Pi}_{1},
\end{array} .=\widetilde{\Pi}_{2} .\right.
\end{aligned}
$$

(\sim : similar).
So $M \sim \widetilde{\Pi}_{1}$ and $N \sim \widetilde{\Pi}_{2}$, with $\widetilde{\Pi}_{1}, \widetilde{\Pi}_{2} \in \mathcal{P}\left(\widetilde{A}_{1}, \ldots, \widetilde{A}_{k}\right)$.

Outline

(1) Framework

(2) The case of three matrices
(3) More than three matrices

4 Motivation: Fiedler matrices

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

$\mathcal{P}(A, B, C)=\{A B C, A C B, B C A, B A C, C B A, C A B\}$

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

$$
\mathcal{P}(A, B, C)=\{A B C, A C B, B C A, B A C, C B A, C A B\}
$$

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

$$
\mathcal{P}(A, B, C)=\{A B C, A C B, B C A, B A C, C B A, C A B\}
$$

If $A(B C)=A(C B)$:

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

$\mathcal{P}(A, B, C)=\{A B C, A C B, B C A, B A C, C B A, C A B\}$

 If $C(A B)=C(B A)$:

Permuted products of $A, B, C \in \mathbb{C}^{n \times n}$

$$
\mathcal{P}(A, B, C)=\{A B C, A C B, B C A, B A C, C B A, C A B\}
$$

$$
\text { If }(C A) B=(A C) B \text { : }
$$

Commutativity relations

If at least two of A, B, C commute then, for any $\Pi_{1}, \Pi_{2} \in \mathcal{P}(A, B, C)$:
(i) $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
(ii) $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq 2$.

Commutativity relations

If at least two of A, B, C commute then, for any $\Pi_{1}, \Pi_{2} \in \mathcal{P}(A, B, C)$:
(i) $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
(ii) $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq 2$.

四 commutativity of (A, B) or (A, C), or (B, C) is the answer to Question 1 for three matrices.

Commutativity relations

If at least two of A, B, C commute then, for any $\Pi_{1}, \Pi_{2} \in \mathcal{P}(A, B, C)$:
(i) $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
(ii) $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq 2$.

啹 commutativity of (A, B) or (A, C), or (B, C) is the answer to Question 1 for three matrices.

四 Moreover, it is the answer to Question 3:

Theorem

Let $\boldsymbol{\mu}, \boldsymbol{\mu}^{\prime}$ be two non-increasing sequences of nonnegative integers such that
(i) $\left\|\boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\|_{\infty} \leq 2$, and
(ii) $\|\boldsymbol{\mu}\|_{1}=\left\|\boldsymbol{\mu}^{\prime}\right\|_{1}=n$.

Then, there are three matrices $A, B, C \in \mathbb{C}^{n \times n}$, such that $A C=C A$ and

$$
\mathcal{S}_{0}(A B C)=\boldsymbol{\mu}, \quad \text { and } \quad \mathcal{S}_{0}(C B A)=\boldsymbol{\mu}^{\prime} .
$$

Answer to Question 2?

As for Question 2, we have:

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to CBA.

Answer to Question 2?

As for Question 2, we have:

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to CBA.

Not necessarily: $M=A B C$ and $N=C B A!!!$

Answer to Question 2? (proof)

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to $C B A$.

Answer to Question 2? (proof)

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to $C B A$.

Proof: $(\mathrm{a}) \Rightarrow(\mathrm{b})$: Corollary of Flanders' Th. (already seen).

Answer to Question 2? (proof)

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to $C B A$.

Proof:

(b) \Rightarrow (c): Taking M, N to JCF:

$$
\begin{aligned}
M \sim & \operatorname{JCF}(M)=\operatorname{diag}\left(M_{r}, M_{s}\right) \\
N \sim & \operatorname{JCF}(N)=\operatorname{diag}\left(N_{r}, N_{s}\right) \\
& (\text { nonzero e-vals, zero e-val) }
\end{aligned}
$$

Answer to Question 2? (proof)

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to $C B A$.

Proof:

(b) \Rightarrow (c): Taking M, N to JCF:

$$
\begin{aligned}
M \sim & \operatorname{JCF}(M)=\operatorname{diag}\left(M_{r}, M_{s}\right) \\
N \sim & \operatorname{JCF}(N)=\operatorname{diag}\left(N_{r}, N_{s}\right) \\
& \text { (nonzero e-vals, zero e-val) }
\end{aligned}
$$

By hypothesis: $M_{r}=N_{r}$ and $\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$. Therefore (last Thm.) there are A_{s}, B_{s}, C_{s} with $A_{s} C_{s}=C_{s} A_{s}$ and $A_{s} B_{s} C_{s}=M_{s}, C_{s} B_{s} A_{s}=N_{s}$.

Answer to Question 2? (proof)

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to $C B A$.

Proof:

(b) \Rightarrow (c): Taking M, N to JCF:

$$
\begin{aligned}
M \sim & \operatorname{JCF}(M)=\operatorname{diag}\left(M_{r}, M_{s}\right) \\
N \sim & \operatorname{JCF}(N)=\operatorname{diag}\left(N_{r}, N_{s}\right) \\
& \text { (nonzero e-vals, zero e-val) }
\end{aligned}
$$

By hypothesis: $M_{r}=N_{r}$ and $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty} \leq 2$. Therefore (last Thm.) there are A_{s}, B_{s}, C_{s} with $A_{s} C_{s}=C_{s} A_{s}$ and $A_{s} B_{s} C_{s}=M_{s}, C_{s} B_{s} A_{s}=N_{s}$. $\Rightarrow A=\operatorname{diag}\left(I, A_{s}\right), B=\operatorname{diag}\left(M_{r}, B_{s}\right), C=\operatorname{diag}\left(I, C_{s}\right)$ fulfill the conditions in (c).

Answer to Question 2? (proof)

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|S_{0}(M)-S_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to $C B A$.

Proof:

$$
(\mathrm{c}) \Rightarrow(\mathrm{a}): \text { Let } M=P(A B C) P^{-1}, N=R(C B A) R^{-1} \text {, and set } Q:=B C A \text {. }
$$

Answer to Question 2? (proof)

Corollary

Let $M, N \in \mathbb{C}^{n \times n}$. Then the following are equivalent:
(a) There is $Q \in \mathbb{C}^{n \times n}$ such that (M, Q) and (Q, N) are Flanders pairs.
(b) $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(N)$, for all $\lambda \neq 0$, and $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty} \leq 2$.
(c) There are $A, B, C \in \mathbb{C}^{n \times n}$ such that $A C=C A, M$ is similar to $A B C$, and N is similar to $C B A$.

Proof:

(c) $\Rightarrow(\mathrm{a})$: Let $M=P(A B C) P^{-1}, N=R(C B A) R^{-1}$, and set $Q:=B C A$.

Then (M, Q) and (Q, N) are Flanders pairs:
$M=P(A B C) P^{-1}=(P A)\left(B C P^{-1}\right) \sim\left(B C P^{-1}\right)(P A)=B C A=Q$.
$N=R(C B A) R^{-1}=(R C)\left(B A R^{-1}\right) \sim\left(B A R^{-1}\right)(R C)=B A C=B C A=Q$.

Outline

(1) Framework

2 The case of three matrices
(3) More than three matrices

4 Motivation: Fiedler matrices

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length is the number of edges.

Forest: A graph containing no cycles.

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length is the number of edges.

Forest: A graph containing no cycles.

Example:

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length is the number of edges.

Forest: A graph containing no cycles.
Example: - - -- Path (of length 4)

Basic definitions

Path of a graph: Sequence of adjacent edges containing no cycles. Its length is the number of edges.

Forest: A graph containing no cycles.

Example:

 - - -- Path (of length 4)

Definition

The graph of non-commutativity relations of A_{1}, \ldots, A_{k} is the graph $\mathcal{G}=(V, E)$ with $V=\{1,2, \ldots, k\}$, such that $\{i, j\} \in E$ if and only if $A_{i} A_{j} \neq A_{j} A_{i}$, for $1 \leq i, j \leq k$ with $i \neq j$.

Sequences of Flanders bridges

Definition

$M_{1}, M_{d+1} \in \mathbb{C}^{n \times n}$ are connected by a sequence of Flanders bridges if $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, for some M_{2}, \ldots, M_{d}.
$\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$: the graph of non-commutativity relations of A_{1}, \ldots, A_{k}.

Sequences of Flanders bridges

Definition

$M_{1}, M_{d+1} \in \mathbb{C}^{n \times n}$ are connected by a sequence of Flanders bridges if $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, for some M_{2}, \ldots, M_{d}.
$\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$: the graph of non-commutativity relations of A_{1}, \ldots, A_{k}.
Then, if products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are considered as formal products:

Theorem

Any two products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are related by a sequence of Flanders bridges $\Leftrightarrow \mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$ is a forest.

Sequences of Flanders bridges

Definition

$M_{1}, M_{d+1} \in \mathbb{C}^{n \times n}$ are connected by a sequence of Flanders bridges if $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, for some M_{2}, \ldots, M_{d}.
$\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$: the graph of non-commutativity relations of A_{1}, \ldots, A_{k}.
Then, if products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are considered as formal products:

Theorem

Any two products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are related by a sequence of Flanders bridges $\Leftrightarrow \mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$ is a forest.

Hence: If $\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$ is a forest, $\forall \Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$:

- $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
- $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d$.

Sequences of Flanders bridges

Definition

$M_{1}, M_{d+1} \in \mathbb{C}^{n \times n}$ are connected by a sequence of Flanders bridges if $\left(M_{1}, M_{2}\right),\left(M_{2}, M_{3}\right), \ldots,\left(M_{d}, M_{d+1}\right)$ are Flanders pairs, for some M_{2}, \ldots, M_{d}.
$\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$: the graph of non-commutativity relations of A_{1}, \ldots, A_{k}.
Then, if products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are considered as formal products:

Theorem

Any two products in $\mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ are related by a sequence of Flanders bridges $\Leftrightarrow \mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$ is a forest.

Hence: If $\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$ is a forest, $\forall \Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$:

- $\mathcal{S}_{\lambda}\left(\Pi_{1}\right)=\mathcal{S}_{\lambda}\left(\Pi_{2}\right)$, for all $\lambda \neq 0$.
- $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d . \quad \ldots d ?$

The main result

Theorem

(1) $\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$ a forest. Set $d=$ length of the longest path in $\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$. Given $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$:

$$
\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d
$$

(2) This bound is attainable: Let \mathcal{G} be any forest with k vertices, and let $d \leq k$ be the length of the longest path in \mathcal{G}. Then there are $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$ whose graph of non-commutativity relations is \mathcal{G}, and $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ with

$$
\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty}=d
$$

The main result

Theorem

(1) $\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$ a forest. Set $d=$ length of the longest path in $\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$. Given $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$:

$$
\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty} \leq d
$$

(2) This bound is attainable: Let \mathcal{G} be any forest with k vertices, and let $d \leq k$ be the length of the longest path in \mathcal{G}. Then there are $A_{1}, \ldots, A_{k} \in \mathbb{C}^{n \times n}$ whose graph of non-commutativity relations is \mathcal{G}, and $\Pi_{1}, \Pi_{2} \in \mathcal{P}\left(A_{1}, \ldots, A_{k}\right)$ with

$$
\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty}=d
$$

Comment on the Proof:

- For (1) Uses tools from theory of permutations and graph theory.
- For (2: Constructive, just matrix manipulations.

Example

Set:

$$
\begin{array}{lll}
A_{1}=\operatorname{diag}\left(\widetilde{A}_{1}, I_{8}\right), & A_{2}=\operatorname{diag}\left(I_{7}, D_{2}^{(2)}, I_{4}\right), & A_{3}=\operatorname{diag}\left(\widetilde{A}_{3}, D_{3}^{(1)}, D_{3}^{(2)}, D_{3}^{(3)}, I_{2}\right), \\
A_{4}=\operatorname{diag}\left(I_{11}, D_{4}^{(4)}\right), & A_{5}=\operatorname{diag}\left(I_{9}, D_{5}^{(3)}, D_{5}^{(4)}\right), & A_{6}=\operatorname{diag}\left(I_{5}, D_{6}^{(1)}, I_{6}\right), \\
A_{7}=\operatorname{diag}\left(\widetilde{A}_{7}, D_{2}^{(2)}, I_{4}\right), & A_{8}=\operatorname{diag}\left(\widetilde{A}_{8}, I_{8}\right), & A_{9}=\left(\widetilde{A}_{9}, I_{8}\right),
\end{array}
$$

with:

$$
\begin{array}{lll}
\widetilde{A}_{9}=\operatorname{diag}\left(I_{3}, J_{2}(0)\right) & \widetilde{A}_{1}=\operatorname{diag}\left(I_{2}, J_{2}(0), 1\right), & \widetilde{A}_{3}=\operatorname{diag}\left(1, J_{2}(0), I_{2}\right), \\
\widetilde{A}_{8}=\operatorname{diag}\left(J_{2}(0), I_{3}\right), & \widetilde{A}_{7}=\operatorname{diag}\left(0, I_{4}\right), & \widetilde{A}_{i}=I_{5}, \text { for } i \neq 1,3,7,8,9,
\end{array}
$$

and $D_{j}^{(i)} \in \mathbb{C}^{2 \times 2}$ nonsingular such that $D_{3}^{(1)} D_{6}^{(1)} \neq D_{6}^{(1)} D_{3}^{(1)}, D_{3}^{(2)} D_{2}^{(2)} \neq D_{2}^{(2)} D_{3}^{(2)}$,
$D_{3}^{(3)} D_{5}^{(3)} \neq D_{5}^{(3)} D_{3}^{(3)}$, and $D_{4}^{(4)} D_{5}^{(4)} \neq D_{5}^{(4)} D_{4}^{(4)}$. Then:
$\Pi_{1}=\left(A_{9} A_{1} A_{3} A_{8} A_{7}\right) A_{6} A_{2} A_{5} A_{4}=\operatorname{diag}\left(J_{5}(0), J\right), \Pi_{2}=\left(A_{7} A_{8} A_{3} A_{1} A_{9}\right) A_{6} A_{2} A_{5} A_{4}=\operatorname{diag}\left(0_{5}, J\right)$, with $J=\operatorname{diag}\left(D_{3}^{(1)} D_{6}^{(1)}, D_{3}^{(2)} D_{2}^{(2)}, D_{3}^{(3)} D_{5}^{(3)}, D_{5}^{(4)} D_{4}^{(4)}\right)$, nonsingular.

Hence: $\mathcal{S}_{0}\left(\Pi_{1}\right)=(5)$ and $\mathcal{S}_{0}\left(\Pi_{2}\right)=(1,1,1,1,1)$, so $\left\|\mathcal{S}_{0}\left(\Pi_{1}\right)-\mathcal{S}_{0}\left(\Pi_{2}\right)\right\|_{\infty}=4$.

Open Problems

(1) Given $d \geq 4$ and two non-increasing sequences μ, μ^{\prime} of nonnegative integers such that $\left\|\boldsymbol{\mu}-\boldsymbol{\mu}^{\prime}\right\|_{\infty} \leq d-1$, is it always possible to find d matrices, A_{1}, \ldots, A_{d}, such that $\mathcal{G}\left(A_{1}, \ldots, A_{k}\right)$ is a path, and $\mathcal{S}_{0}\left(A_{1} \cdots A_{d}\right)=\mu, \mathcal{S}_{0}\left(A_{d} \cdots A_{1}\right)=\mu^{\prime}$?
(2) If $M, Q \in \mathbb{C}^{n \times n}$ are such that $\mathcal{S}_{\lambda}(M)=\mathcal{S}_{\lambda}(Q)$, for all $\lambda \neq 0$, and $\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(Q)\right\|_{\infty} \leq 2$, are there three matrices $A, B, C \in \mathbb{C}^{n \times n}$ with $A C=C A$, such that $M=A B C$ and $Q=C B A$?

Simple cases for Open Problem 2 (I)

The simplest case is

$$
\begin{gathered}
M=J_{3}(0)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad N=J_{1}(0) \oplus J_{1}(0) \oplus J_{1}(0) \equiv 0_{3 \times 3} . \\
\mathcal{S}_{0}(M)=(3,0,0), \mathcal{S}_{0}(N)=(1,1,1) \Rightarrow\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty}=2 .
\end{gathered}
$$

Simple cases for Open Problem 2 (I)

The simplest case is

$$
\begin{gathered}
M=J_{3}(0)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad N=J_{1}(0) \oplus J_{1}(0) \oplus J_{1}(0) \equiv 0_{3 \times 3} . \\
S_{0}(M)=(3,0,0), \mathcal{S}_{0}(N)=(1,1,1) \Rightarrow\left\|S_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty}=2 .
\end{gathered}
$$

In this case, the answer is affirmative:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad C=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

satisfy:

- $A B C=M$
- $C B A=N$
- $A C=C A$

Simple cases Open Problem 2 (II)

The second simplest case is

$$
\begin{aligned}
& M=J_{4}(0)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad N=J_{2}(0) \oplus J_{2}(0)=\left[\begin{array}{ll|ll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{S}_{0}(M)=(4,0), \mathcal{S}_{0}(N)=(2,2) \Rightarrow\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty}=2 .
\end{aligned}
$$

Simple cases Open Problem 2 (II)

The second simplest case is

$$
\begin{aligned}
& M=J_{4}(0)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad N=J_{2}(0) \oplus J_{2}(0)=\left[\begin{array}{ll|ll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{S}_{0}(M)=(4,0), \mathcal{S}_{0}(N)=(2,2) \Rightarrow\left\|\mathcal{S}_{0}(M)-\mathcal{S}_{0}(N)\right\|_{\infty}=2 .
\end{aligned}
$$

In this case, the answer is, again, affirmative (but no so simple):

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & -\sqrt{2} \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & \sqrt{2} / 2 \\
0 & 0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \sqrt{2} \\
0 & 1 & \sqrt{2} & 1 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right], \quad C=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & \sqrt{2} / 2 \\
0 & 0 & \sqrt{2} / 2 & 0 \\
0 & 0 & 0 & \sqrt{2} / 2
\end{array}\right]
$$

satisfy:

- $A B C=M$
- $C B A=N$
- $A C=C A$

Outline

(1) Framework

(2) The case of three matrices
(3) More than three matrices

4 Motivation: Fiedler matrices

Fiedler matrices: definition

Given $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathbb{C}^{n}$:

$$
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & & \\
& \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0 \\
\hline
\end{array} & \\
& & I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1 .
$$

Let $\sigma:\{0,1, \ldots, n-1\} \rightarrow\{1, \ldots, n\}$ be a bijection. Then:

- Introduced by Fiedler in 2003.

Fiedler matrices: definition

Given $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathbb{C}^{n}$:

$$
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & & \\
& \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0 \\
\hline
\end{array} & \\
& & I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1 .
$$

Let $\sigma:\{0,1, \ldots, n-1\} \rightarrow\{1, \ldots, n\}$ be a bijection. Then:

$$
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)}
$$

Fiedler matrix associated with the bijection σ

Fiedler matrices: definition

Given $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in \mathbb{C}^{n}$:

$$
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & & \\
& \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0 \\
\hline
\end{array} & \\
& & I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1 .
$$

Let $\sigma:\{0,1, \ldots, n-1\} \rightarrow\{1, \ldots, n\}$ be a bijection. Then:

$$
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)}
$$

Fiedler matrix associated with the bijection σ

- Introduced by Fiedler in 2003.

Fiedler matrices: some examples

- Frobenius companion matrices:

$$
C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{cccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & 1 & 0
\end{array}\right] C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top}
$$

Fiedler matrices: some examples

- Frobenius companion matrices:

$$
\begin{aligned}
& C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{ccccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & 1 & 0
\end{array}\right] C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top} \\
& -M_{n-1} \cdots M_{2} M_{0} M_{1}=\left[\begin{array}{ccccc}
-a_{n-1} & -a_{n-2} & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
0 & -a_{0} & 0
\end{array}\right] \\
& \\
& M_{6}\left(M_{4} M_{5}\right)\left(M_{2} M_{3}\right)\left(M_{0} M_{1}\right)=\left[\begin{array}{cccccc}
-a_{5} & 1 & 0 & 0 & 0 & 0 \\
-a_{4} & 0 & -a_{3} & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{2} & (n=6)
\end{array}\right.
\end{aligned}
$$

Fiedler matrices: some examples

- Frobenius companion matrices:

$$
\begin{gathered}
C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{cccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & 1 & 0
\end{array}\right] C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top} \\
-M_{n-1} \cdots M_{2} M_{0} M_{1}=\left[\begin{array}{cccc}
-a_{n-1} & -a_{n-2} & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & -a_{0} & 0
\end{array}\right]
\end{gathered}
$$

- $M_{6}\left(M_{4} M_{5}\right)\left(M_{2} M_{3}\right)\left(M_{0} M_{1}\right)=\left[\begin{array}{cccccc}-a_{5} & 1 & 0 & 0 & 0 & 0 \\ -a_{4} & 0 & -a_{3} & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -a_{2} & 0 & -a_{1} & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -a_{0} & 0\end{array}\right] \quad(n=6)$

Fiedler's Theorem

$$
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{lll}
I_{n-k-1} & \\
& \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0 \\
\hline
\end{array} & \\
& & I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1
$$

$$
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)}
$$

(Fiedler matrix associated with σ)

Fiedler's Theorem

$$
\begin{gathered}
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0
\end{array} & \\
& & \\
& \\
M_{\sigma-1}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)} & \text { (Fiedler matrix associated with } \sigma \text {) }
\end{array} . . \begin{array}{l}
\\
\\
\end{array} . \quad k=1, \ldots, n-1 .\right. \\
\end{gathered}
$$

Fiedler matrices are products of matrices M_{0}, \ldots, M_{n-1} in different orders.

Fiedler's Theorem

$$
\begin{gathered}
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0
\end{array} & \\
& & I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1 . \\
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)} \quad \text { (Fiedler matrix associated with } \sigma \text {) }
\end{gathered}
$$

19 Fiedler matrices are products of matrices M_{0}, \ldots, M_{n-1} in different orders.

Theorem [Fiedler, 2003]

All Fiedler matrices M_{σ} are similar to each other.

Fiedler's Theorem

$$
\begin{gathered}
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0
\end{array} & \\
& & I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1 . \\
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)} \quad \text { (Fiedler matrix associated with } \sigma \text {) }
\end{gathered}
$$

19 Fiedler matrices are products of matrices M_{0}, \ldots, M_{n-1} in different orders.

Theorem [Fiedler, 2003]

All Fiedler matrices M_{σ} are similar to each other.

㕷 All Fiedler matrices have the same eigenvalues (zero or nonzero) with the same multiplicities $\leadsto \rightarrow$ they have the same JCF.

Why commutativity relations?

Fiedler "blocks" satisfy the following commutativity relations:

$$
M_{i} M_{j}=M_{j} M_{i}, \quad|i-j| \leq 1 .
$$

Why commutativity relations?

Fiedler "blocks" satisfy the following commutativity relations:

$$
M_{i} M_{j}=M_{j} M_{i}, \quad|i-j| \leq 1 .
$$

咹 Therefore, the graph of non-commutativity relations of Fiedler blocks, $\mathcal{G}\left(M_{0}, \ldots, M_{n-1}\right)$, is a path:

Proof of Fiedler's Theorem

$$
\begin{gathered}
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & \\
& \begin{array}{cc}
-a_{k} & 1 \\
1 & 0
\end{array} & \\
I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1 . \\
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)} \quad \text { (Fiedler matrix associated with } \sigma \text {) }
\end{gathered}
$$

Fiedler's Theorem It is an immediate consequence of:
(1) $\mathcal{G}\left(M_{0}, \ldots, M_{n-1}\right)$ is a forest (actually, a path).
(2) M_{1}, \ldots, M_{n-1} are invertible.
(3) rank $M_{0} \geq n-1$.

Proof of Fiedler's Theorem

$$
\begin{gathered}
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & \\
& \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0
\end{array} & \\
& \\
M_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1 . \\
\\
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)} \quad \text { (Fiedler matrix associated with } \sigma \text {) }
\end{gathered}
$$

Fiedler's Theorem It is an immediate consequence of:
(1) $\mathcal{G}\left(M_{0}, \ldots, M_{n-1}\right)$ is a forest (actually, a path).
(2) M_{1}, \ldots, M_{n-1} are invertible.
(3) rank $M_{0} \geq n-1$.
because:
(1) \Rightarrow all M_{σ} have the same JCF at nonzero e-vals, and
(2)+(3) \Rightarrow all M_{σ} have the same JCF at the zero e-val (actually, at most 1 block).

Bibliography

F. De Terán, R. A. Lippert, Y. Nakatsukasa, and V. Noferini.

Flanders' theorem for many matrices under commutativity assumptions.
Linear Algebra Appl. 443 (2014) 120-138.
Related work:
S. Furtado, C. R. Johnson.

Order invariant spectral properties for several matrices.
Linear Algebra Appl. 432 (2010) 1950-1960.
S. Furtado, C. R. Johnson.

On the similarity classes among products of m nonsingular matrices in various orders.
Linear Algebra Appl. 450 (2014) 217-242.

J. Gelonch, C. R. Johnson.

Genrelization of Flanders' theorem to matrix triples.
Linear Algebra Appl. 380 (2004) 151-171.J. Gelonch, C. R. Johnson, P Rubió.

An extension of Flanders theorem to several matrices.
Lin. Multilin. Algebra 43 (1997) 181-200.

GRAZIE (THANK YOU)

Logo-dpto

