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Framework

JCF(AB) vs JCF(BA)
Notation:

JCF(M) = Jordan Canonical Form of M.

Sλ(M) = (n1,n2, . . . ,0,0, . . .) = Segré characteristic of M at λ ∈ C (infinite
sequence of ordered sizes n1 ≥ n2 ≥ . . . of Jordan blocks at λ in JCF(M)).

Theorem (Flanders, 1951)
Given A ∈ Cm×n,B ∈ Cn×m, set M = AB,N = BA.

(i) Sλ(M) = Sλ(N) for all λ , 0.

(ii) ‖S0(M) − S0(N)‖∞ ≤ 1 .
Conversely, if M ∈ Cm×m and N ∈ Cn×n satisfy (i)–(ii), then M = AB and
N = BA, for some A,B.

In plain words: JCF(AB) and JCF(BA) can only differ in the J-blocks at 0, and
the corresponding sizes differ, at most, by 1, and this happens only for
matrices of the form AB and BA.
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Some history
Proved in:

H. Flanders
The elementary divisors of AB and BA.
Proc. Am. Math. Soc. 2 (1951) 871–874.

And later in:

W. V. Parker, B. E. Mitchell.
Elementary divisors of certain matrices.
Duke Math. J. 19 (1952) 483–485.
R. C. Thompson.
On the matrices AB and BA.
Linear Algebra Appl. 1 (1968) 43–58.
S. Bernau, A. Abian.
Jordan canonical forms of matrices AB and BA.
Rend. Istit. Mat. Univ. Trieste. 20 (1988) 101–108.
C. R. Johnson, E. S. Schreiner.
The relationship between AB and BA.
Amer. Math. Monthly 103 (1996) 578–581.
R. A. Lippert, G. Strang.
The Jordan form of AB and BA.
Electron. J. Linear Algebra 18 (2009) 281–288.
Fernando De Terán (UC3M) Flanders’ Theorem for many matrices Università di Pisa, 01/2020 5 / 34



Logo-dpto

Framework

Flanders again: exhaustivity

Moreover:

Theorem (Flanders, 1951)
Let µµµ = (µ1, µ2, . . .), and µµµ′ = (µ′1, µ

′
2, . . .) be two lists of integers with

µ1 ≥ µ2 ≥ . . . ≥ 0, and µ′1 ≥ µ
′
2 ≥ . . . ≥ 0, with:

(i) ‖µµµ − µµµ′‖∞ ≤ 1 , and

(ii) ‖µµµ‖1 = m, ‖µµµ′‖1 = n.

Then, there are A ∈ Cm×n,B ∈ Cn×m with S0(AB) = µµµ and S0(BA) = µµµ′.
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More than two matrices? Size.

What happens for products (in different orders) of more than two matrices?

Three matrices: A ∈ Cm×n,B ∈ Cp×q ,C ∈ Cr×s of “appropriate" sizes. What
dose this mean?:

ABC must be defined (m × n) · (p × q) · (r × s)⇒ n = p, q = r .

ACB must be defined (m × n) · (r × s) · (p × q)⇒ n = r , s = p.

CAB must be defined (r × s) · (m × n) · (p × q)⇒ s = m, n = p.

Then: m = n = p = q = r = s.
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More than two matrices? Cyclic permutations.

Three matrices: A,B,C ∈ Cn×n. Then

S1 = {ABC,CAB,BCA}: Any two here satisfy Flanders’ Theorem.

S2 = {ACB,BAC,CBA}: Any two here satisfy Flanders’ Theorem.

Q: What happens with one from S1 and another one from S2?
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More than two matrices? “Anything" may happen with
nonzero e-vals.

(Λ(M) : Spectrum of M).

� Λ(ABC) and Λ(CBA) can be (almost) arbitrarily different !!

Theorem
Let

Λ1 = {λ11, . . . , λn1}, Λ2 = {λ12, . . . , λn2}

be two sets of n nonzero complex numbers (with possible repetitions).

If λ11 · · · λn1 = λ12 · · · λn2, there are A,B,C ∈ Cn×n, such that

Λ(ABC) = Λ1, Λ(CBA) = Λ2.
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More than two matrices? Anything may happen with
the zero e-val.

� The sizes of Jordan blocks at 0 in JCF(ABC) and JCF(CBA) can be
arbitrarily different !!

A =


1

1/2
. . .

1/n

 , B =


1

−1
. . .

. . . 1
−1 1

 , C = (AB)−1


0 1

. . .
. . .

0 1
0

.

ABC =


0 1

. . .
. . .

0 1
0

 (= Jn(0)).

The e-vals of CBA are: 0, λ1, . . . , λn−1, with λ1 · · · λn−1 , 0.

�We need to impose some extra conditions on A,B,C.

Which ones ?
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. . .
. . .

0 1
0

 (= Jn(0)).

The e-vals of CBA are: 0, λ1, . . . , λn−1, with λ1 · · · λn−1 , 0.

(IDEA: 0 is a simple eigenvalue of CBA: rank(CBA) = n − 1 and (CBA) [ 1 2 ··· n ]> = 0. But
(CBA)v1 = [ 1 2 ··· n ]> is impossible, since this would imply Cw = [ 1 2 ··· n ]>, but the last two
entries of Cw must coincide, since the last two rows of C are the same.)

�We need to impose some extra conditions on A,B,C.

Which ones ?
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Flanders pairs and bridges

Set M ∈ Cm×m,N ∈ Cn×n.

Definition
(M ,N) is a Flanders pair if M = AB,N = BA, for some A ∈ Cm×n,B ∈ Cn×m.
There is a Flanders bridge between M and N if (M ,N) is a Flanders pair.

Note: Not transitive !!!
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(M ,N) is a Flanders pair if M = AB,N = BA, for some A ∈ Cm×n,B ∈ Cn×m.
There is a Flanders bridge between M and N if (M ,N) is a Flanders pair.

Note: Not transitive !!!

Example:
M = J3(0), Q = diag(J2(0), J1(0)), N = diag(J1(0), J1(0), J1(0)) ≡ 03×3.

Then (M ,Q) and (Q,N) are Flanders pairs, but (M ,N) is not.
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Flanders pairs and bridges

Set M ∈ Cm×m,N ∈ Cn×n.

Definition
(M ,N) is a Flanders pair if M = AB,N = BA, for some A ∈ Cm×n,B ∈ Cn×m.
There is a Flanders bridge between M and N if (M ,N) is a Flanders pair.

Note: Not transitive !!!

Corollary (of Flanders’ Theorem)
If (M1,M2), (M2,M3), . . . , (Md ,Md+1) are Flanders pairs, then:

(i) Sλ(M1) = Sλ(Md+1), for all λ , 0.

(ii) ‖S0(M1) − S0(Md+1)‖∞ ≤ d .

Sequences of Flanders pairs allow us to relate the JCF of two matrices
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The problems

Given A1, . . . ,Ak ∈ C
n×n, we set:

P(A1, . . . ,Ak ) := {Ai1 · · ·Aik : (i1, . . . , ik ) a permutation of (1, . . . , k)}

(”Permuted products" of A1, . . . ,Ak )

Three questions (after Flanders’ Theorem):
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(ii) ‖S0(M) − S0(N)‖∞ ≤ d , for any M ,N ∈ P(A1, . . . ,Ak ) and

‖S0(M) − S0(N)‖∞ = d , for some M ,N ∈ P(A1, . . . ,Ak ).
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P(A1, . . . ,Ak ) := {Ai1 · · ·Aik : (i1, . . . , ik ) a permutation of (1, . . . , k)}

(”Permuted products" of A1, . . . ,Ak )

Three questions (after Flanders’ Theorem):

Question 2: If M ,N satisfy

(i) Sλ(M) = Sλ(N) , ∀λ , 0, and

(ii) ‖S0(M) − S0(N)‖∞ ≤ d ,

then M ,N ∈ P(A1, . . . ,Ak ), for some A1, . . . ,Ak satisfying the conditions
obtained in Question 1?
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P(A1, . . . ,Ak ) := {Ai1 · · ·Aik : (i1, . . . , ik ) a permutation of (1, . . . , k)}

(”Permuted products" of A1, . . . ,Ak )

Three questions (after Flanders’ Theorem):

Question 3 (exhaustivity):

Given: two non-increasing sequences of nonnegative integers µµµ,µµµ′ such that
‖µµµ − µµµ′‖∞ = d ,

are there: A1, . . . ,Ak satisfying the conditions obtained in Question 1 and
S0(Π1) = µµµ, S0(Π2) = µµµ′ , for some Π1,Π2 ∈ P(A1, . . . ,Ak )?
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Given A1, . . . ,Ak ∈ C
n×n, we set:

P(A1, . . . ,Ak ) := {Ai1 · · ·Aik : (i1, . . . , ik ) a permutation of (1, . . . , k)}

(”Permuted products" of A1, . . . ,Ak )

Three questions (after Flanders’ Theorem):

Question 3 (exhaustivity):

Given: two non-increasing sequences of nonnegative integers µµµ,µµµ′ such that
‖µµµ − µµµ′‖∞ = d ,

are there: A1, . . . ,Ak satisfying the conditions obtained in Question 1 and
S0(Π1) = µµµ, S0(Π2) = µµµ′ , for some Π1,Π2 ∈ P(A1, . . . ,Ak )?

(Only for k = 3).
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Questions 2 and 3 are related

If the answer to Question 3 is affirmative:

Given M and N with

(i) Sλ(M) = Sλ(N), ∀λ , 0, and

(ii) ‖S0(M) − S0(N)‖∞ ≤ d ,

then

M ∼

[
J,0(M) 0

0 J0(M)

]
∼

[
J,0(M) 0

0 Π1

]
= Π̃1,

N ∼

[
J,0(M) 0

0 J0(N)

]
∼

[
J,0(M) 0

0 Π2

]
= Π̃2.

(∼: similar).

So M ∼ Π̃1 and N ∼ Π̃2, with Π̃1, Π̃2 ∈ P(Ã1, . . . , Ãk ).

Fernando De Terán (UC3M) Flanders’ Theorem for many matrices Università di Pisa, 01/2020 13 / 34



Logo-dpto

Framework

Questions 2 and 3 are related

If the answer to Question 3 is affirmative:

Given M and N with

(i) Sλ(M) = Sλ(N), ∀λ , 0, and

(ii) ‖S0(M) − S0(N)‖∞ ≤ d ,

then

M ∼

[
J,0(M) 0

0 J0(M)

]
∼

[
J,0(M) 0

0 Π1

]
= Π̃1,

N ∼

[
J,0(M) 0

0 J0(N)

]
∼

[
J,0(M) 0

0 Π2

]
= Π̃2.

(∼: similar).

So M ∼ Π̃1 and N ∼ Π̃2, with Π̃1, Π̃2 ∈ P(Ã1, . . . , Ãk ).
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The case of three matrices

Permuted products of A,B,C ∈ Cn×n

P(A,B,C) = {ABC,ACB,BCA,BAC,CBA,CAB}

↙ ↘

Flanders pairs
ABC

CAB BCA

Flanders pairs
ACB

BAC CBA

If (CA)B = (AC)B:

CAB = ACB

ABC

BCA

BAC

CBA
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The case of three matrices

Commutativity relations

If at least two of A,B,C commute then, for any Π1,Π2 ∈ P(A,B,C) :

(i) Sλ(Π1) = Sλ(Π2), for all λ , 0.

(ii) ‖S0(Π1) − S0(Π2)‖∞ ≤ 2.

� commutativity of (A,B) or (A,C), or (B,C) is the answer to Question 1 for
three matrices.

� Moreover, it is the answer to Question 3:

Theorem
Let µµµ,µµµ′ be two non-increasing sequences of nonnegative integers such that

(i) ‖µµµ − µµµ′‖∞ ≤ 2, and
(ii) ‖µµµ‖1 = ‖µµµ′‖1 = n.

Then, there are three matrices A,B,C ∈ Cn×n, such that AC = CA and

S0(ABC) = µµµ, and S0(CBA) = µµµ′.
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The case of three matrices

Answer to Question 2?

As for Question 2, we have:

Corollary
Let M ,N ∈ Cn×n. Then the following are equivalent:

(a) There is Q ∈ Cn×n such that (M ,Q) and (Q,N) are Flanders pairs.

(b) Sλ(M) = Sλ(N), for all λ , 0, and ‖S0(M) − S0(N)‖∞ ≤ 2.

(c) There are A,B,C ∈ Cn×n such that AC = CA, M is similar to ABC, and N
is similar to CBA.

Not necessarily: M = ABC and N = CBA !!!

Fernando De Terán (UC3M) Flanders’ Theorem for many matrices Università di Pisa, 01/2020 17 / 34



Logo-dpto

The case of three matrices

Answer to Question 2?

As for Question 2, we have:

Corollary
Let M ,N ∈ Cn×n. Then the following are equivalent:

(a) There is Q ∈ Cn×n such that (M ,Q) and (Q,N) are Flanders pairs.

(b) Sλ(M) = Sλ(N), for all λ , 0, and ‖S0(M) − S0(N)‖∞ ≤ 2.

(c) There are A,B,C ∈ Cn×n such that AC = CA, M is similar to ABC, and N
is similar to CBA.

Not necessarily: M = ABC and N = CBA !!!

Fernando De Terán (UC3M) Flanders’ Theorem for many matrices Università di Pisa, 01/2020 17 / 34



Logo-dpto

The case of three matrices

Answer to Question 2? (proof)

Corollary
Let M ,N ∈ Cn×n. Then the following are equivalent:

(a) There is Q ∈ Cn×n such that (M ,Q) and (Q,N) are Flanders pairs.

(b) Sλ(M) = Sλ(N), for all λ , 0, and ‖S0(M) − S0(N)‖∞ ≤ 2.

(c) There are A,B,C ∈ Cn×n such that AC = CA, M is similar to ABC, and N is similar to CBA.

Proof:

Fernando De Terán (UC3M) Flanders’ Theorem for many matrices Università di Pisa, 01/2020 18 / 34



Logo-dpto

The case of three matrices

Answer to Question 2? (proof)

Corollary
Let M ,N ∈ Cn×n. Then the following are equivalent:

(a) There is Q ∈ Cn×n such that (M ,Q) and (Q,N) are Flanders pairs.

(b) Sλ(M) = Sλ(N), for all λ , 0, and ‖S0(M) − S0(N)‖∞ ≤ 2.

(c) There are A,B,C ∈ Cn×n such that AC = CA, M is similar to ABC, and N is similar to CBA.

Proof: (a)⇒ (b): Corollary of Flanders’ Th. (already seen).
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The case of three matrices

Answer to Question 2? (proof)

Corollary
Let M ,N ∈ Cn×n. Then the following are equivalent:

(a) There is Q ∈ Cn×n such that (M ,Q) and (Q,N) are Flanders pairs.

(b) Sλ(M) = Sλ(N), for all λ , 0, and ‖S0(M) − S0(N)‖∞ ≤ 2.

(c) There are A,B,C ∈ Cn×n such that AC = CA, M is similar to ABC, and N is similar to CBA.

Proof:
(b)⇒ (c): Taking M ,N to JCF:

M ∼ JCF(M) = diag(Mr ,Ms)
N ∼ JCF(N) = diag(Nr ,Ns)

(nonzero e-vals, zero e-val)
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(b)⇒ (c): Taking M ,N to JCF:

M ∼ JCF(M) = diag(Mr ,Ms)
N ∼ JCF(N) = diag(Nr ,Ns)

(nonzero e-vals, zero e-val)

By hypothesis: Mr = Nr and ‖S0(M) − S0(N)‖∞ ≤ 2. Therefore (last Thm.)
there are As,Bs,Cs with AsCs = CsAs and AsBsCs = Ms, CsBsAs = Ns.
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Proof:
(b)⇒ (c): Taking M ,N to JCF:

M ∼ JCF(M) = diag(Mr ,Ms)
N ∼ JCF(N) = diag(Nr ,Ns)

(nonzero e-vals, zero e-val)

By hypothesis: Mr = Nr and ‖S0(M) − S0(N)‖∞ ≤ 2. Therefore (last Thm.)
there are As,Bs,Cs with AsCs = CsAs and AsBsCs = Ms, CsBsAs = Ns.
⇒ A = diag(I,As), B = diag(Mr ,Bs), C = diag(I,Cs) fulfill the conditions in (c).
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The case of three matrices

Answer to Question 2? (proof)

Corollary
Let M ,N ∈ Cn×n. Then the following are equivalent:

(a) There is Q ∈ Cn×n such that (M ,Q) and (Q,N) are Flanders pairs.

(b) Sλ(M) = Sλ(N), for all λ , 0, and ‖S0(M) − S0(N)‖∞ ≤ 2.

(c) There are A,B,C ∈ Cn×n such that AC = CA, M is similar to ABC, and N is similar to CBA.

Proof:
(c)⇒ (a): Let M = P(ABC)P−1,N = R(CBA)R−1, and set Q := BCA.
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Let M ,N ∈ Cn×n. Then the following are equivalent:
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(b) Sλ(M) = Sλ(N), for all λ , 0, and ‖S0(M) − S0(N)‖∞ ≤ 2.

(c) There are A,B,C ∈ Cn×n such that AC = CA, M is similar to ABC, and N is similar to CBA.

Proof:
(c)⇒ (a): Let M = P(ABC)P−1,N = R(CBA)R−1, and set Q := BCA.

Then (M ,Q) and (Q,N) are Flanders pairs:

M = P(ABC)P−1 = (PA)(BCP−1) ∼ (BCP−1)(PA) = BCA = Q.
N = R(CBA)R−1 = (RC)(BAR−1) ∼ (BAR−1)(RC) = BAC = BCA = Q. �
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More than three matrices

Outline

1 Framework

2 The case of three matrices

3 More than three matrices

4 Motivation: Fiedler matrices
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More than three matrices

Basic definitions
Path of a graph: Sequence of adjacent edges containing no cycles. Its length
is the number of edges.

Forest: A graph containing no cycles.

Definition
The graph of non-commutativity relations of A1, . . . ,Ak is the graph G = (V ,E)
with V = {1,2, . . . , k }, such that {i , j} ∈ E if and only if AiAj , AjAi , for
1 ≤ i , j ≤ k with i , j .
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More than three matrices

Sequences of Flanders bridges

Definition
M1,Md+1 ∈ C

n×n are connected by a sequence of Flanders bridges if
(M1,M2), (M2,M3), . . . , (Md ,Md+1) are Flanders pairs, for some M2, . . . ,Md .

G(A1, . . . ,Ak ): the graph of non-commutativity relations of A1, . . . ,Ak .

Then, if products in P(A1, . . . ,Ak ) are considered as formal products:

Theorem
Any two products in P(A1, . . . ,Ak ) are related by a sequence of Flanders
bridges⇔ G(A1, . . . ,Ak ) is a forest.

Hence: If G(A1, . . . ,Ak ) is a forest, ∀Π1,Π2 ∈ P(A1, . . . ,Ak ):
Sλ(Π1) = Sλ(Π2), for all λ , 0.

‖S0(Π1) − S0(Π2)‖∞ ≤ d .

...d?
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More than three matrices

The main result

Theorem
1 G(A1, . . . ,Ak ) a forest. Set d= length of the longest path in G(A1, . . . ,Ak ).

Given Π1,Π2 ∈ P(A1, . . . ,Ak ):

‖S0(Π1) − S0(Π2)‖∞ ≤ d .

2 This bound is attainable: Let G be any forest with k vertices, and let
d ≤ k be the length of the longest path in G. Then there are
A1, . . . ,Ak ∈ C

n×n whose graph of non-commutativity relations is G, and
Π1,Π2 ∈ P(A1, . . . ,Ak ) with

‖S0(Π1) − S0(Π2)‖∞ = d .

Comment on the Proof:

For 1 Uses tools from theory of permutations and graph theory.

For 2 : Constructive, just matrix manipulations.
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More than three matrices

Example
1

2

39 8

5 4

7

6

Set:
A1 = diag(Ã1, I8), A2 = diag(I7,D

(2)
2 , I4), A3 = diag(Ã3,D

(1)
3 ,D(2)

3 ,D(3)
3 , I2),

A4 = diag(I11,D
(4)
4 ), A5 = diag(I9,D

(3)
5 ,D(4)

5 ), A6 = diag(I5,D
(1)
6 , I6),

A7 = diag(Ã7,D
(2)
2 , I4), A8 = diag(Ã8, I8), A9 = (Ã9, I8),

with:
Ã9 = diag(I3, J2(0)) Ã1 = diag(I2, J2(0),1), Ã3 = diag(1, J2(0), I2),

Ã8 = diag(J2(0), I3), Ã7 = diag(0, I4), Ãi = I5, for i , 1,3,7,8,9,

and D(i)
j ∈ C

2×2 nonsingular such that D(1)
3 D(1)

6 , D(1)
6 D(1)

3 , D(2)
3 D(2)

2 , D(2)
2 D(2)

3 ,

D(3)
3 D(3)

5 , D(3)
5 D(3)

3 , and D(4)
4 D(4)

5 , D(4)
5 D(4)

4 . Then:

Π1 = (A9A1A3A8A7)A6A2A5A4 = diag(J5(0), J),Π2 = (A7A8A3A1A9)A6A2A5A4 = diag(05, J),

with J = diag
(
D(1)

3 D(1)
6 ,D(2)

3 D(2)
2 ,D(3)

3 D(3)
5 ,D(4)

5 D(4)
4

)
, nonsingular.

Hence: S0(Π1) = (5) and S0(Π2) = (1,1,1,1,1), so ‖S0(Π1) − S0(Π2)‖∞ = 4 .
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More than three matrices

Open Problems

1 Given d ≥ 4 and two non-increasing sequences µµµ,µµµ′ of nonnegative
integers such that ‖µµµ − µµµ′‖∞ ≤ d − 1, is it always possible to find d
matrices, A1, . . . ,Ad , such that G(A1, . . . ,Ak ) is a path, and
S0(A1 · · ·Ad ) = µµµ, S0(Ad · · ·A1) = µµµ′?

2 If M ,Q ∈ Cn×n are such that Sλ(M) = Sλ(Q), for all λ , 0, and
‖S0(M) − S0(Q)‖∞ ≤ 2, are there three matrices A,B,C ∈ Cn×n with
AC = CA, such that M = ABC and Q = CBA?
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More than three matrices

Simple cases for Open Problem 2 (I)
The simplest case is

M = J3(0) =

0 1 0
0 0 1
0 0 0

 , N = J1(0) ⊕ J1(0) ⊕ J1(0) ≡ 03×3.

S0(M) = (3,0,0),S0(N) = (1,1,1)⇒ ‖S0(M) − S0(N)‖∞ = 2.

In this case, the answer is affirmative:

A =

 1 0 0
0 0 1
0 0 0

 , B =

 0 1 0
0 0 0
0 0 1

 , C =

 0 0 0
0 1 0
0 0 1

 ,
satisfy:

ABC = M

CBA = N

AC = CA
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More than three matrices

Simple cases Open Problem 2 (II)
The second simplest case is

M = J4(0) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , N = J2(0) ⊕ J2(0) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


S0(M) = (4,0),S0(N) = (2,2)⇒ ‖S0(M) − S0(N)‖∞ = 2.

In this case, the answer is, again, affirmative (but no so simple):

A =

 1 0 0 −
√

2
0 1 0 −1
0 0 0

√
2/2

0 0 0 0

 , B =

 1 0 0 2
√

2
0 1

√
2 1

0 0 2 0
0 0 0 2

 , C =


0 1 0 0
0 0 0

√
2/2

0 0
√

2/2 0
0 0 0

√
2/2

 ,
satisfy:

ABC = M

CBA = N

AC = CA
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Motivation: Fiedler matrices

Fiedler matrices: definition

Given (a0,a1, . . . ,an−1) ∈ Cn:

M0 =

[
In−1

−a0

]
, Mk =


In−k−1

−ak 1
1 0

Ik−1

 , k = 1, . . . ,n − 1.

Let σ : {0,1, . . . ,n − 1} → {1, . . . ,n} be a bijection. Then:

Mσ := Mσ−1(1) · · ·Mσ−1(n)

Fiedler matrix
associated with
the bijection σ

I Introduced by Fiedler in 2003.
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Motivation: Fiedler matrices

Fiedler matrices: some examples

Frobenius companion matrices:

C1 = Mn−1 · · ·M1M0 =


−an−1 −an−2 · · · −a0

1 0 · · · 0
. . .

. . .
...

0 1 0

 C2 = M0M1 · · ·Mn−1 = C>1

Mn−1 · · ·M2M0M1 =


− an−1 −an−2 · · · 1

1 0 · · · 0
. . .

. . .
...

0 −a0 0



M6(M4M5)(M2M3)(M0M1) =



−a5 1 0 0 0 0
−a4 0 −a3 1 0 0
1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0


(n = 6)
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Motivation: Fiedler matrices

Fiedler’s Theorem

M0 =

[
In−1

−a0

]
, Mk =


In−k−1

−ak 1
1 0

Ik−1

 , k = 1, . . . ,n − 1.

Mσ := M
σ−1(1)

· · ·M
σ−1(n)

(Fiedler matrix associated with σ)

� Fiedler matrices are products of matrices M0, . . . ,Mn−1 in different orders.

Theorem [Fiedler, 2003]

All Fiedler matrices Mσ are similar to each other.

� All Fiedler matrices have the same eigenvalues (zero or nonzero) with the
same multiplicities they have the same JCF.
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Motivation: Fiedler matrices

Why commutativity relations?

Fiedler “blocks" satisfy the following commutativity relations:

MiMj = MjMi , |i − j | ≤ 1.

� Therefore, the graph of non-commutativity relations of Fiedler blocks,
G(M0, . . . ,Mn−1), is a path:

M0 M1 M2 ... Mn−1
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Motivation: Fiedler matrices

Proof of Fiedler’s Theorem

M0 =

[
In−1

−a0

]
, Mk =


In−k−1

−ak 1
1 0

Ik−1

 , k = 1, . . . ,n − 1.

Mσ := M
σ−1(1)

· · ·M
σ−1(n)

(Fiedler matrix associated with σ)

Fiedler’s Theorem It is an immediate consequence of:

1 G(M0, . . . ,Mn−1) is a forest (actually, a path).

2 M1, . . . ,Mn−1 are invertible.

3 rank M0 ≥ n − 1.

because:

1 ⇒ all Mσ have the same JCF at nonzero e-vals, and

2 + 3 ⇒ all Mσ have the same JCF at the zero e-val (actually, at most 1 block).
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