Polynomial root-finding using companion matrices

Fernando De Terán

uc3m | Universidad Carlos III de Madrid | |
| :--- | :--- |
| | Departamento de Matemáticas |

FoCM2017, July 2017

Outline

(1) Introduction
(2) Part I: Backward stability

- B'err of polynomial root-finding using companion matrices
- B’err using Fiedler matrices
(3) Part II: Other companion forms
- Companion matrices
- Companion forms
(4) Epilogue

Goal

Compute the roots of (scalar) polynomials

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

using companion forms.

We can restrict ourselves to monic polynomials (after dividing by a_{n}, if necessary).

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

...Can we ??? (more on this later).

Goal

Compute the roots of (scalar) polynomials

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

using companion forms.

We can restrict ourselves to monic polynomials (after dividing by a_{n}, if necessary).

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

Goal

Compute the roots of (scalar) polynomials

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

using companion forms.

We can restrict ourselves to monic polynomials (after dividing by a_{n}, if necessary).

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad\left(a_{k} \in \mathbb{C}\right)
$$

...Can we ??? (more on this later).

Companion matrix

Companion matrix

$A \in \mathbb{C}\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]^{n \times n}$ such that

$$
p_{A}(z)=\operatorname{det}(z I-A)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=p(z) .
$$

(Only for monic polynomials).
Roots of $p(z)=$ Eigenvalues of $A \quad$ (i.e.: $p(z)=0 \Leftrightarrow \operatorname{det}(z I-A)=0)$.

Theoretically:

Polynomial root-finding

But numerically, they are different problems !!!

Companion matrix

Companion matrix

$A \in \mathbb{C}\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]^{n \times n}$ such that

$$
p_{A}(z)=\operatorname{det}(z l-A)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=p(z) .
$$

(Only for monic polynomials).
Roots of $p(z)=$ Eigenvalues of A
(i.e.: $p(z)=0 \Leftrightarrow \operatorname{det}(z I-A)=0$).

Theoretically:
 Polynomial root-finding

Companion matrix

Companion matrix

$A \in \mathbb{C}\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]^{n \times n}$ such that

$$
p_{A}(z)=\operatorname{det}(z l-A)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=p(z) .
$$

(Only for monic polynomials).
Roots of $p(z)=$ Eigenvalues of A
(i.e.: $p(z)=0 \Leftrightarrow \operatorname{det}(z I-A)=0$).

Theoretically:

Standard eigenvalue problem

Companion matrix

Companion matrix

$A \in \mathbb{C}\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]^{n \times n}$ such that

$$
p_{A}(z)=\operatorname{det}(z l-A)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=p(z) .
$$

(Only for monic polynomials).
Roots of $p(z)=$ Eigenvalues of A
(i.e.: $p(z)=0 \Leftrightarrow \operatorname{det}(z I-A)=0$).

Theoretically:
Polynomial root-finding

Standard eigenvalue problem

But numerically, they are different problems !!!

Motivation

Frobenius companion matrices:

$$
C_{1}=\left[\begin{array}{cccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & 1 & 0
\end{array}\right], \quad C_{2}=C_{1}^{\top}
$$

MATLAB's command roots: QR algorithm on C_{2}.

Outline

(9) Introduction

(2) Part I: Backward stability

- B'err of polynomial root-finding using companion matrices
- B'err using Fiedler matrices

3 Part II: Other companion forms

- Companion matrices
- Companion forms
(4) Epilogue

Basic definitions

Algorithm:

is backward stable if

$u=$ unit roundoff)

嗗 B'stability for poly root-finding using companion matrices:

B'stability on the comnanion matrix (e-vals):\square
(the computed roots (e-vals) are the e-vals of a nearby matrix, not necessarily companion!!!).
(1) B'stability on the polynomial (roots):
\square
$f=$ e-val algorithm, $f=$ polynomial root-finding, $x=$ polynomial
(the computed roots (e-vals) are the roots of a nearby polynomial).

Basic definitions

\widetilde{f} is backward stable if

$$
\tilde{f}(x)=f(x+\delta x), \quad\|\delta x\|=O(u)\|x\|
$$

($u=$ unit roundoff)
B'stability for poly root-finding using companion matrices:
(B'stability on the companion matrix (e-vals):
$\widetilde{f}=\mathrm{e}$-val algorithm, $f=\mathrm{e}$-val problem, $x=$ companion matrix
(the computed roots (e-vals) are the e-vals of a nearby matrix, not necessarily companion!!!)
(2) B'stability on the polynomial (roots):
$f=\mathrm{e}$-val algorithm, $f=$ polynomial root-finding, $x=$ polynomial
the computed roots (e-vals) are the roots of a nearby polynomial).

Basic definitions

\widetilde{f} is backward stable if

$$
\tilde{f}(x)=f(x+\delta x), \quad\|\delta x\|=O(u)\|x\|
$$

($u=$ unit roundoff)
B'stability for poly root-finding using companion matrices:

- B'stability on the companion matrix (e-vals): $\tilde{f}=$ e-val algorithm, $f=$ e-val problem, $x=$ companion matrix
the computed roots (e-vals) are the e-vals of a nearby matrix, not necessarily companion!!!)
(3) B'stability on the polynomial (roots):
\square
(the computed roots (e-vals) are the roots of a nearby polynomial)

Basic definitions

\tilde{f} is backward stable if

$$
\tilde{f}(x)=f(x+\delta x), \quad\|\delta x\|=O(u)\|x\|
$$

($u=$ unit roundoff)
[197 B'stability for poly root-finding using companion matrices:
(1) B'stability on the companion matrix (e-vals):
$\widetilde{f}=\mathrm{e}$-val algorithm, $f=\mathrm{e}$-val problem, $x=$ companion matrix
(the computed roots (e-vals) are the e-vals of a nearby matrix, not necessarily companion!!!).
(2) B'stability on the polynomial (roots):
$\widetilde{f}=$ e-val algorithm, $f=$ polynomial root-finding, $x=$ polynomial
(the computed roots (e-vals) are the roots of a nearby polynomial).

B'err of polynomial root-finding using companion matrices

Given $p(z)$

(if we use a backward stable algorithm, like $Q R$)
Set $\tilde{p}(z)=\operatorname{det}(z l-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$
 Choose A such that $p(z)=\operatorname{det}(z I-A)$
 Compute the e-vals of A
 (if we use a backward stable algorithm, like $Q R$)

Set $\widetilde{p}(z)=\operatorname{det}(z I-(A+E))$
Question: Is $\tilde{p}(z)$ close to $p(z)$?

$\frac{\|\widetilde{p}-p\|}{\|p\|}$b'err of polynomial root-finding as an eigenvalue problem (using A).

Coal

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$
 Choose A such that $p(z)=\operatorname{det}(z I-A)$
 Compute the e-vals of A
 (if we use a backward stable algorithm, like $Q R$)

Set $\widetilde{p}(z)=\operatorname{det}(z l-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze

B'err of polynomial root-finding using companion matrices

(if we use a backward stable algorithm, like $Q R$)

Question: Is $\widetilde{p}(z)$ close to $p(z)$?

b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$

Choose A such that Compute the $p(z)=\operatorname{det}(z \mid-A)$ $\begin{array}{ll}\text { Compute the } \\ \text { e-vals of } A\end{array}=\begin{aligned} & \text { e-vals of } A+E, \\ & \|E\|=O(u)\|A\|\end{aligned}$

(if we use a backward stable algorithm, like $Q R$)
Set $\widetilde{p}(z)=\operatorname{det}(z l-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

Goal:

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$

Choose A such that $p(z)=\operatorname{det}(z \mid-A)$
 Compute the e -vals of $A \quad=\|E\|=O(u)\|A\|$

(if we use a backward stable algorithm, like $Q R$)
Set $\widetilde{p}(z)=\operatorname{det}(z l-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

$$
\frac{\|\widetilde{p}-p\|}{\|p\|}=O(u) ?
$$

$\frac{\|\widetilde{p}-p\|}{\|p\|}$: b'err of polynomial root-finding as an eigenvalue problem (using A).

B'err of polynomial root-finding using companion matrices

Given $p(z) \rightarrow$

Choose A such that $p(z)=\operatorname{det}(z I-A)$

Compute the e-vals of $A=\|E\|=O(u)\|A\|$
(if we use a backward stable algorithm, like $Q R$)
Set $\widetilde{p}(z)=\operatorname{det}(z I-(A+E))$
Question: Is $\widetilde{p}(z)$ close to $p(z)$?

$$
\frac{\|\widetilde{p}-p\|}{\|p\|}=O(u) ?
$$

$\frac{\|\widetilde{p}-p\|}{\|p\|}$: b'err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze $\frac{\|\widetilde{p}-p\|}{\|p\|}$.

Perturbation of the characteristic polynomial: first order term

Using Jacobi's formula:
$\widetilde{p}(z)-p(z)=\operatorname{det}(z I-(A+E))-\operatorname{det}(z I-A)=-\operatorname{tr}(\operatorname{adj}(z I-A) \cdot E)+O\left(\|E\|^{2}\right)$

Hence, if we set: $\operatorname{det}(z l-X)=z^{n}+\sum_{k=0}^{n-1} a_{k}(X) z^{k}$, then, to first order in E :
\square

Perturbation of the characteristic polynomial: first order term

Using Jacobi's formula:
$\widetilde{p}(z)-p(z)=\operatorname{det}(z I-(A+E))-\operatorname{det}(z I-A)=-\operatorname{tr}(\operatorname{adj}(z I-A) \cdot E)+O\left(\|E\|^{2}\right)$

$$
\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} A_{k} z^{k}(\text { matrix polynomial of degree } n-1) .
$$

Hence, if we set: $\operatorname{det}(z I-X)=z^{n}+\sum_{k=0}^{n-1} a_{k}(X) z^{k}$, then, to first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\operatorname{tr}\left(A_{k} E\right)
$$

Perturbation of the characteristic polynomial: first order term

Using Jacobi's formula:
$\widetilde{p}(z)-p(z)=\operatorname{det}(z I-(A+E))-\operatorname{det}(z I-A)=-\operatorname{tr}(\operatorname{adj}(z I-A) \cdot E)+O\left(\|E\|^{2}\right)$

$$
\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} A_{k} z^{k}(\text { matrix polynomial of degree } n-1) .
$$

Hence, if we set: $\operatorname{det}(z I-X)=z^{n}+\sum_{k=0}^{n-1} a_{k}(X) z^{k}$, then, to first order in E :

$$
a_{k}(A+E)-a_{k}(A)=-\operatorname{tr}\left(A_{k} E\right)
$$

Q: Explicit formula for A_{k} ?

Recursive formula for the adjugate

$p(z)=z^{n}+\sum_{k=0}^{n-1} a_{k} z^{k}=\operatorname{det}(z I-A)$

Proposition [Gantmacher, 1959]

Set:

$$
\left\{\begin{array}{l}
A_{n-1}=I, \quad \text { and } \\
A_{k}=A \cdot A_{k+1}+a_{k} l, \quad \text { for } k=n-2, \ldots, 1,0 .
\end{array}\right.
$$

Then,

$$
\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} A_{k} z^{k}
$$

Note:

$$
((n-k) \text { th Horner shift of } p(z) \text { evaluated at } A) \text {. }
$$

[四 $p_{n-k-1}(A)$ encodes the information on the variation $a_{k}(A+E)-a_{k}(A)$:
\square

Recursive formula for the adjugate

$p(z)=z^{n}+\sum_{k=0}^{n-1} a_{k} z^{k}=\operatorname{det}(z l-A)$

Proposition [Gantmacher, 1959]

Set:

$$
\left\{\begin{array}{l}
A_{n-1}=I, \quad \text { and } \\
A_{k}=A \cdot A_{k+1}+a_{k} l, \quad \text { for } k=n-2, \ldots, 1,0
\end{array}\right.
$$

Then,

$$
\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} A_{k} z^{k}
$$

Note:

$$
A_{k-1}=p_{n-k}(A)=A^{n-k}+a_{n-1} A^{n-k-1}+\cdots+a_{k+1} A+a_{k} I
$$

(($n-k)$ th Horner shift of $p(z)$ evaluated at $A)$.
$p_{n-k-1}(A)$ encodes the information on the variation $a_{k}(A+E)-a_{k}(A)$:

Recursive formula for the adjugate

$p(z)=z^{n}+\sum_{k=0}^{n-1} a_{k} z^{k}=\operatorname{det}(z I-A)$

Proposition [Gantmacher, 1959]

Set:

$$
\left\{\begin{array}{l}
A_{n-1}=I, \quad \text { and } \\
A_{k}=A \cdot A_{k+1}+a_{k} l, \quad \text { for } k=n-2, \ldots, 1,0
\end{array}\right.
$$

Then,

$$
\operatorname{adj}(z I-A)=\sum_{k=0}^{n-1} A_{k} z^{k}
$$

Note:

$$
A_{k-1}=p_{n-k}(A)=A^{n-k}+a_{n-1} A^{n-k-1}+\cdots+a_{k+1} A+a_{k} I
$$

$$
((n-k) \text { th Horner shift of } p(z) \text { evaluated at } A) .
$$

解 $p_{-k-1}(A)$ encodes the information on the variation $a_{k}(A+E)-a_{k}(A)$:

$$
a_{k}(A+E)-a_{k}(A)=-\sum_{i, j}\left(p_{n-k-1}(A)\right)_{j i} E_{i j}+O\left(\|E\|^{2}\right) .
$$

Outline

(9) Introduction

(2) Part I: Backward stability

- B'err of polynomial root-finding using companion matrices
- B'err using Fiedler matrices
(3) Part II: Other companion forms
- Companion matrices
- Companion forms

4 Epilogue

Fiedler matrices: definition

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

$$
M_{0}=\left[\begin{array}{ll}
I_{n-1} & \\
& -a_{0}
\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}
I_{n-k-1} & \\
& \begin{array}{|cc|}
\hline-a_{k} & 1 \\
1 & 0 \\
\hline
\end{array} & \\
& & I_{k-1}
\end{array}\right], \quad k=1, \ldots, n-1
$$

Fiedler matrices: definition

$p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$
$M_{0}=\left[\begin{array}{ll}I_{n-1} & \\ & -a_{0}\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}I_{n-k-1} & & \\ & \begin{array}{|cc|}\hline-a_{k} & 1 \\ 1 & 0 \\ \hline\end{array} & \\ & & I_{k-1}\end{array}\right], \quad k=1, \ldots, n-1$

Let $\sigma:\{0,1, \ldots, n-1\} \rightarrow\{1, \ldots, n\}$ be a bijection. Then:

$$
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)}
$$

Fiedler matrix of p associated with the bijection σ

- Introduced by Fiedler in 2003.

Fiedler matrices: definition

$p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$
$M_{0}=\left[\begin{array}{ll}I_{n-1} & \\ & -a_{0}\end{array}\right], \quad M_{k}=\left[\begin{array}{ccc}I_{n-k-1} & & \\ & \begin{array}{|cc|}\hline-a_{k} & 1 \\ 1 & 0 \\ \hline\end{array} & \\ & & I_{k-1}\end{array}\right], \quad k=1, \ldots, n-1$

Let $\sigma:\{0,1, \ldots, n-1\} \rightarrow\{1, \ldots, n\}$ be a bijection. Then:

$$
M_{\sigma}:=M_{\sigma^{-1}(1)} \cdots M_{\sigma^{-1}(n)}
$$

Fiedler matrix of p associated with the bijection σ

- Introduced by Fiedler in 2003.

Fiedler matrices: some examples

- Frobenius companion matrices:

$$
\begin{aligned}
& C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{cccc}
-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\
1 & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
0 & & 1 & 0
\end{array}\right] \\
& C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top}
\end{aligned}
$$

- $M_{6}\left(M_{4} M_{5}\right)\left(M_{2} M_{3}\right)\left(M_{0} M_{1}\right)=$

Fiedler matrices: some examples

- Frobenius companion matrices:
$C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{cccc}-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & 1 & 0\end{array}\right]$
$C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top}$
- $M_{n-1} \cdots M_{2} M_{0} M_{1}=\left[\begin{array}{cccc}-a_{n-1} & -a_{n-2} & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -a_{0} & 0\end{array}\right]$
- $M_{6}\left(M_{4} M_{5}\right)\left(M_{2} M_{3}\right)\left(M_{0} M_{1}\right)=$

Fiedler matrices: some examples

- Frobenius companion matrices:
$C_{1}=M_{n-1} \cdots M_{1} M_{0}=\left[\begin{array}{cccc}-a_{n-1} & -a_{n-2} & \cdots & -a_{0} \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & 1 & 0\end{array}\right]$
$C_{2}=M_{0} M_{1} \cdots M_{n-1}=C_{1}^{\top}$
- $M_{n-1} \cdots M_{2} M_{0} M_{1}=\left[\begin{array}{cccc}-a_{n-1} & -a_{n-2} & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ 0 & & -a_{0} & 0\end{array}\right]$
- $M_{6}\left(M_{4} M_{5}\right)\left(M_{2} M_{3}\right)\left(M_{0} M_{1}\right)=\left[\begin{array}{cccccc}-a_{5} & 1 & 0 & 0 & 0 & 0 \\ -a_{4} & 0 & -a_{3} & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -a_{2} & 0 & -a_{1} & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -a_{0} & 0\end{array}\right]$

Fiedler matrices: Basic properties

- All M_{σ} contain the same entries (located in different positions):

$$
-a_{0}, \ldots,-a_{n-1} \quad \& \overbrace{1, \ldots, 1}^{n-1} \& 0^{\prime} s
$$

- M_{σ} is a (sparse) companion matrix $\left(\operatorname{det}\left(z I-M_{\sigma}\right)=p(z)\right)$.
- There are 2^{n-1} different Fiedler matrices.

Fiedler matrices: Basic properties

- All M_{σ} contain the same entries (located in different positions):

$$
-a_{0}, \ldots,-a_{n-1} \quad \& \overbrace{1, \ldots, 1}^{n-1} \& 0^{\prime} s
$$

- M_{σ} is a (sparse) companion matrix $\left(\operatorname{det}\left(z I-M_{\sigma}\right)=p(z)\right)$.
- There are 2^{n-1} different Fiedler matrices.

Fiedler matrices: Basic properties

- All M_{σ} contain the same entries (located in different positions):

$$
-a_{0}, \ldots,-a_{n-1} \quad \& \overbrace{1, \ldots, 1}^{n-1} \& 0^{\prime} s
$$

- M_{σ} is a (sparse) companion matrix $\left(\operatorname{det}\left(z I-M_{\sigma}\right)=p(z)\right)$.
- There are 2^{n-1} different Fiedler matrices.

Formula for the adjugate: main features

To first order in E :
$a_{k}\left(M_{\sigma}+E\right)-a_{k}\left(M_{\sigma}\right)=-\sum_{i, j=1}^{n} p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) E_{i j}, \quad k=0,1, \ldots, n-1$,
where:

- $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is a polynomial in a_{i} with degree at most 2.
- If $M_{\sigma}=C_{1}, C_{2}$, then all $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ have degree 1 .
- If $M_{\sigma} \neq C_{1}, C_{2}$, then there is at least one k and some (i, j) such that $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ has degree 2.

Formula for the adjugate: main features

To first order in E :
$a_{k}\left(M_{\sigma}+E\right)-a_{k}\left(M_{\sigma}\right)=-\sum_{i, j=1}^{n} p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) E_{i j}, \quad k=0,1, \ldots, n-1$,
where:

- $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is a polynomial in a_{i} with degree at most 2.
- If $M_{\sigma}=C_{1}, C_{2}$, then all $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ have degree 1 .
- If $M_{\sigma} \neq C_{1}, C_{2}$, then there is at least one k and some (i, j) such that $\left.a_{n-1}\right)$ has degree 2.

Formula for the adjugate: main features

To first order in E :
$a_{k}\left(M_{\sigma}+E\right)-a_{k}\left(M_{\sigma}\right)=-\sum_{i, j=1}^{n} p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) E_{i j}, \quad k=0,1, \ldots, n-1$,
where:

- $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is a polynomial in a_{i} with degree at most 2.
- If $M_{\sigma}=C_{1}, C_{2}$, then all $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ have degree 1 .
- If $M_{\sigma} \neq C_{1}, C_{2}$, then there is at least one k and some (i, j) such that $p_{i j}^{(\sigma, k)}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ has degree 2.

Some particular examples

Frobenius companion matrices:
$p_{n-k-1}\left(C_{1}^{\top}\right)=p_{n-k-1}\left(C_{2}\right)=\left[\begin{array}{ccc|cccc}0 & \cdots & 0 & 1 & & & 0 \\ -a_{k} & & & a_{n-1} & 1 & & \\ \vdots & \ddots & & \vdots & a_{n-1} & \ddots & \\ -a_{1} & \ddots & -a_{k} & a_{k+1} & \vdots & \ddots & 1 \\ -a_{0} & \ddots & \vdots & & a_{k+1} & \ddots & a_{n-1} \\ & \ddots & -a_{1} & & & \ddots & \vdots \\ 0 & & -a_{0} & 0 & & & a_{k+1}\end{array}\right]$.

These are the only Fiedler matrices M_{σ} for which all $p_{k}\left(M_{\sigma}\right)$ have entries of degree 1 !!!!

Some particular examples

Frobenius companion matrices:
$p_{n-k-1}\left(C_{1}^{\top}\right)=p_{n-k-1}\left(C_{2}\right)=\left[\begin{array}{ccc|cccc}0 & \cdots & 0 & 1 & & & 0 \\ -a_{k} & & & a_{n-1} & 1 & & \\ \vdots & \ddots & & \vdots & a_{n-1} & \ddots & \\ -a_{1} & \ddots & -a_{k} & a_{k+1} & \vdots & \ddots & 1 \\ -a_{0} & \ddots & \vdots & & a_{k+1} & \ddots & a_{n-1} \\ & \ddots & -a_{1} & & & \ddots & \vdots \\ 0 & & -a_{0} & 0 & & & a_{k+1}\end{array}\right]$.

These are the only Fiedler matrices M_{σ} for which all $p_{k}\left(M_{\sigma}\right)$ have entries of degree 1 !!!!

Some particular examples (II)

$F=M_{n-1} \cdots M_{2} M_{0} M_{1}$

$$
p_{n-k-1}(F)=\left[\begin{array}{ccccccc}
0 & & & & 1 & & \\
-a_{k} & & & & a_{n-1} & \ddots & \\
\vdots & \ddots & & & \vdots & \ddots & 1 \\
-a_{1} & & -a_{k} & & a_{k+2} & & a_{n-1} \\
-a_{0} & \ddots & \vdots & -a_{k} & a_{k+1} & \ddots & \vdots \\
& \ddots & -a_{1} & \vdots & & \ddots & a_{k+2} \\
& & -a_{0} & -a_{0} & & \\
& & & 1 & & & \\
a_{k+1} & -a_{0} a_{k+2} \\
& & & & a_{k+1}
\end{array}\right], \text { for } k=0: n-3,
$$

$$
p_{1}(F)=\left[\begin{array}{cccccc}
0 & & & & & 0 \\
-a_{n-2} & 1 & & & & \\
-a_{n-3} & a_{n-1} & 1 & & & \\
\vdots & & a_{n-1} & \ddots & & \\
\vdots & & & \ddots & 1 & \\
-a_{1} & & & & a_{n-1} & -a_{0} \\
1 & & & & 0 & a_{n-1}
\end{array}\right], \quad \text { and } \quad p_{0}(F)=l .
$$

Backward error

Theorem [D., Dopico, Pérez, 2013]

If the roots of $p(z)$ are computed as the e-vals of M_{σ} with a backward stable algorithm, the computed roots are the exact roots of a polynomial $\widetilde{p}(z)$ with:
(a) If $M_{\sigma}=C_{1}, C_{2}$:

$$
\frac{\|\widetilde{p}-p\|_{\infty}}{\|p\|_{\infty}}=O(u)\|p\|_{\infty}
$$

[Edelman-Murakami'95]
(b) if $M_{\sigma} \neq C_{1}, C_{2}$:

$$
\frac{\|\widetilde{p}-p\|_{\infty}}{\|p\|_{\infty}}=O(u)\|p\|_{\infty}^{2}
$$

(u is the machine precision)
$\left(\left\|\sum_{i=0}^{n} a_{i} z^{i}\right\|_{\infty}=\max _{i=0, \ldots, n}\left|a_{i}\right|\right)$

Some remarks

(Recall: $\|p\|_{\infty} \geq 1$, since p is monic).

- For $\|p\|_{\infty}$ moderate, backward stability of polynomial root-finding is guaranteed using any Fiedler matrix.
- Then, particular features of some Fiedler matrices (like low bandwidth) can make them preferable than C_{1} and C_{2}.
- When $\|p\|_{\infty}$ is large, C_{1} and C_{2} are expected to give smaller b'err than any other Fiedler.

Some remarks

(Recall: $\|p\|_{\infty} \geq 1$, since p is monic).

- For $\|p\|_{\infty}$ moderate, backward stability of polynomial root-finding is guaranteed using any Fiedler matrix.
- Then, particular features of some Fiedler matrices (like low bandwidth) can make them preferable than C_{1} and C_{2}.
- When $\|p\|_{\infty}$ is large, C_{1} and C_{2} are expected to give smaller b'err than any other Fiedler.

Some remarks

(Recall: $\|p\|_{\infty} \geq 1$, since p is monic).

- For $\|p\|_{\infty}$ moderate, backward stability of polynomial root-finding is guaranteed using any Fiedler matrix.
- Then, particular features of some Fiedler matrices (like low bandwidth) can make them preferable than C_{1} and C_{2}.
- When $\|p\|_{\infty}$ is large, C_{1} and C_{2} are expected to give smaller b'err than any other Fiedler.

Random polynomials, $n=20$

Figure: 11 samples, 500 random polys, $\|p\|_{\infty}=10^{k}(k=0: 10), a_{i}=a \cdot 10^{c}, a \in[-1,1], c \in[-k, k], a_{0}=10^{k}$.

Outline

(9) Introduction

(2) Part I: Backward stability

- B'err of polynomial root-finding using companion matrices
- B'err using Fiedler matrices
(3) Part II: Other companion forms
- Companion matrices
- Companion forms

4 Epilogue

Other companion matrices?

Q: Are there any other companion matrices than Fiedlers?

Other companion matrices?

Q: Are there any other companion matrices than Fiedlers?
YES: Infinitely many!
Just multiply: $P M_{\sigma} P^{-1}$ (P invertible)

Other companion matrices?

Q: Are there any other companion matrices than Fiedlers?
YES: Infinitely many!
Just multiply: $P M_{\sigma} P^{-1}$ (P invertible) \rightsquigarrow In general, not sparse (exception: P is a permutation matrix).

맚ㄹ We look for sparse companion matrices.

Sparse companion matrices (I)

Sparse: It has the smallest number of nonzero entries

鲒 For companion matrices, this number is $2 n-1$ [Ma-Zhan'13]

Q: How many non-permutationally similar sparse companion matrices are there and how do they look like?

Sparse companion matrices (I)

Sparse: It has the smallest number of nonzero entries

[198 For companion matrices, this number is $2 n-1$ [Ma-Zhan'13] (we focus on: $\underbrace{1, \ldots, 1}_{n-1},-a_{0}, \ldots,-a_{n-1}$).

Q: How many non-permutationally similar sparse companion matrices are there and how do they look like?

Sparse companion matrices (I)

Sparse: It has the smallest number of nonzero entries

[17 For companion matrices, this number is $2 n-1$ [Ma-Zhan'13] (we focus on: $\underbrace{1, \ldots, 1}_{n-1},-a_{0}, \ldots,-a_{n-1}$).

Q: How many non-permutationally similar sparse companion matrices are there and how do they look like?

Sparse companion matrices (II)

We define the following (lower Hessenberg) classes of matrices:

Sparse companion matrices (II)

We define the following (lower Hessenberg) classes of matrices:

$\left(\mathscr{C} \mathscr{P}_{n} \subseteq \mathscr{C}_{n}\right)$

Sparse companion matrices (II)

We define the following (lower Hessenberg) classes of matrices:

$\left(\mathscr{C} \mathscr{P}_{n} \subseteq \mathscr{C}_{n}\right)$

Theorem [Eastman-etal'14]

Any sparse companion matrix is permutationally similar to a matrix in \mathscr{C}_{n}.

Sparse companion matrices (II)

We define the following (lower Hessenberg) classes of matrices:

$\left(\mathscr{C} \mathscr{P}_{n} \subseteq \mathscr{C}_{n}\right)$

Theorem [Eastman-etal"14]

Any sparse companion matrix is permutationally similar to a matrix in \mathscr{C}_{n}.

Theorem [Eastman-etal'14]

$A\left(a_{0}, \ldots, a_{n-1}\right) \in \mathscr{C}_{n}$ is a (sparse) companion matrix $\Leftrightarrow A\left(a_{0}, \ldots, a_{n-1}\right) \in \mathscr{C} \mathscr{P}_{n}$.

Outline

(9) Introduction

(2) Part I: Backward stability

- B'err of polynomial root-finding using companion matrices
- B'err using Fiedler matrices
(3) Part II: Other companion forms
- Companion matrices
- Companion forms

4 Epilogue

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$.

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$.
Then $p(z)=\frac{1}{a_{n}} q(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}$ is monic.

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\left(a_{n} \neq 0\right)$.
Then $p(z)=\frac{1}{a_{n}} q(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}$ is monic.
If the method is b'stable for monic polys:

$$
\frac{\|p-\widetilde{p}\|}{\|p\|}=O(u) \quad(\text { for some } \widetilde{p}) .
$$

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$.
Then $p(z)=\frac{1}{a_{n}} q(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}$ is monic.
If the method is b'stable for monic polys:

$$
\frac{\|p-\widetilde{p}\|}{\|p\|}=O(u) \quad(\text { for some } \widetilde{p}) .
$$

Then (setting $\left.\widetilde{q}:=a_{n} \widetilde{p}\right)$:

$$
\frac{\|q-\widetilde{q}\|}{\|q\|}=\frac{\left\|\frac{q}{a_{n}}-\frac{\tilde{q}}{a_{n}}\right\|}{\left\|\frac{q}{a_{n}}\right\|}=\frac{\|p-\tilde{p}\|}{\|p\|}=O(u) .
$$

Why monic polynomials?

If $q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad$ (not necessarily monic) $\quad\left(a_{n} \neq 0\right)$.
Then $p(z)=\frac{1}{a_{n}} q(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}$ is monic.
If the method is b'stable for monic polys:

$$
\frac{\|p-\widetilde{p}\|}{\|p\|}=O(u) \quad(\text { for some } \widetilde{p}) .
$$

Then (setting $\left.\widetilde{q}:=a_{n} \widetilde{p}\right)$:

$$
\frac{\|q-\widetilde{q}\|}{\|q\|}=\frac{\left\|\frac{q}{a_{n}}-\frac{\tilde{q}}{a_{n}}\right\|}{\left\|\frac{q}{a_{n}}\right\|}=\frac{\|p-\tilde{p}\|}{\|p\|}=O(u) .
$$

\Rightarrow It is enough to prove b'stability for monic polys.

However...

- B'stability (in the poly sense) is only guaranteed when $\|p\|$ is moderate.
- The QZ algorithm on the Frobenius companion form (non-monic) gives b'stability if $\|p\|_{\infty} \approx 1$ ([van Dooren-Dewilde'83]).
- If we divide by $\|p\|_{\infty} \rightsquigarrow$ the polynomial may become non-monic!

However...

- B'stability (in the poly sense) is only guaranteed when $\|p\|$ is moderate.
- The QZ algorithm on the Frobenius companion form (non-monic) gives b'stability if $\|p\|_{\infty} \approx 1$ (IVan Dooren-Dewilde'83]).
- If we divide by $\|p\|_{\infty} \rightsquigarrow$ the polynomial may become non-monic!

However...

- B'stability (in the poly sense) is only guaranteed when $\|p\|$ is moderate.
- The QZ algorithm on the Frobenius companion form (non-monic) gives b'stability if $\|p\|_{\infty} \approx 1$ (IVan Dooren-Dewilde'83]).
- If we divide by $\|p\|_{\infty} \rightsquigarrow$ the polynomial may become non-monic!

Companion forms

Companion form: Valid for non-monic polynomials.

Companion form:
$A=A_{0}+z A_{1}$ s.t.:

- $A_{0}, A_{1} \in \mathbb{C}\left[a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}\right]^{n \times n}$,
- $\operatorname{det} A=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$.

May have entries $a+b z$.

Fiedler companion forms

Frobenius companion forms

$$
F_{i}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-C_{i} \quad i=1,2
$$

Fiedler companion forms

Frobenius companion forms

$$
F_{i}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-C_{i} \quad i=1,2
$$

Fiedler companion forms

$$
F_{\sigma}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-M_{\sigma}
$$

Fiedler companion forms

Frobenius companion forms

$$
F_{i}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-C_{i} \quad i=1,2
$$

Fiedler companion forms

$$
F_{\sigma}(z)=z \operatorname{diag}\left(a_{n}, 1, \ldots, 1\right)-M_{\sigma}
$$

Examples: $F_{1}=\left[\begin{array}{ccccc}a_{n} z+a_{n-1} & a_{n-2} & \cdots & a_{0} \\ -1 & z & \cdots & 0 \\ & & \ddots & \ddots & \vdots \\ 0 & & & -1 & z\end{array}\right] \quad F_{2}=F_{1}^{\top}$
$F=\left[\begin{array}{cccccc}a_{6} z+a_{5} & -1 & 0 & 0 & 0 & 0 \\ a_{4} & z & a_{3} & -1 & 0 & 0 \\ -1 & 0 & z & 0 & 0 & 0 \\ 0 & 0 & a_{2} & z & a_{1} & -1 \\ 0 & 0 & -1 & 0 & z & 0 \\ 0 & 0 & 0 & 0 & a_{0} & z\end{array}\right] \quad(n=6)$

Other companion forms

Companion form

A matrix $A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)$ such that:

- The entries are linear polynomials in z.
- $\operatorname{det} A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$.

Other companion forms

Companion form

A matrix $A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)$ such that:

- The entries are linear polynomials in z.
- $\operatorname{det} A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$.
na

Other companion forms

Companion form

A matrix $A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)$ such that:

- The entries are linear polynomials in z.
- $\operatorname{det} A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$.

19 Similarity Equivalence

Fiedler-like:

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & z & a_{0}+z a_{1} \\
0 & 0 & 1 & 0 & -z \\
0 & z & a_{2}+z a_{3} & -1 & 0 \\
1 & 0 & -z & 0 & 0 \\
a_{4}+z a_{5} & -1 & 0 & 0 & 0
\end{array}\right] \quad(n=5)
$$

Other companion forms

Companion form

A matrix $A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)$ such that:

- The entries are linear polynomials in z.
- $\operatorname{det} A\left(a_{0}, a_{1}, \ldots, a_{n-1}, a_{n} ; z\right)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$.

19 Similarity Equivalence

Fiedler-like:

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & z & a_{0}+z a_{1} \\
0 & 0 & 1 & 0 & -z \\
0 & z & a_{2}+z a_{3} & -1 & 0 \\
1 & 0 & -z & 0 & 0 \\
a_{4}+z a_{5} & -1 & 0 & 0 & 0
\end{array}\right] \quad(n=5)
$$

喚 There are many others [Dopico-Lawrence-Pérez-VanDooren]:

- Permutationally equivalent to companion forms in some "extended $\mathscr{C} \mathscr{P}_{n}$ ".
- Most of them are not sparse.

Open questions for companion forms

- Which is the smallest number of nonzero entries (sparse)?

Open questions for companion forms

- Which is the smallest number of nonzero entries (sparse)?

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & z & a_{0}+z a_{1} \\
0 & 0 & 1 & 0 & -z \\
0 & z & a_{2}+z a_{3} & -1 & 0 \\
1 & 0 & -z & 0 & 0 \\
a_{4}+z a_{5} & -1 & 0 & 0 & 0
\end{array}\right] \quad \begin{gathered}
(n=5, \\
\#(\text { nonzero })=11)
\end{gathered}
$$

Open questions for companion forms

- Which is the smallest number of nonzero entries (sparse)?
- Are all sparse companion forms permutationally equivalent to a companion form in an "extended \mathscr{C}_{n} "?

Open questions for companion forms

- Which is the smallest number of nonzero entries (sparse)?
- Are all sparse companion forms permutationally equivalent to a companion form in an "extended \mathscr{C}_{n} "?
- Do all sparse companion forms in this \mathscr{C}_{n} belong to an "extended $\mathscr{C} \mathscr{P}_{n}$ "?

Open questions for companion forms

- Which is the smallest number of nonzero entries (sparse)?
- Are all sparse companion forms permutationally equivalent to a companion form in an "extended \mathscr{C}_{n} "?
- Do all sparse companion forms in this \mathscr{C}_{n} belong to an "extended $\mathscr{C} \mathscr{P}_{n}$ "?
- Is there any companion form which provides a smaller b'err than Frobenius ones?

Other issues (not considered in this talk)

- Complexity:
- Desideratum: $O\left(n^{2}\right)$ flops $+O(n)$ storage.
- However: roots $\rightsquigarrow O\left(n^{3}\right)$ computations $+O\left(n^{2}\right)$ storage.

IISP A fast $\left(O\left(n^{2}\right)\right.$ flops i $O(n)$ storage) and b'stable (in the matrix sense) algorithm recently proposed [Aurentz etal'15].

- Coefficient-wise b'err $\left(\left|a_{i}-\widetilde{a}_{i}\right| /\left|a_{i}\right|\right)$.

恽 No algorithm can provide coefficent-wise b'stability (in the polynomial sense) [VanDooren-Mastronardi'15].

Other issues (not considered in this talk)

- Complexity:
- Desideratum: $O\left(n^{2}\right)$ flops $+O(n)$ storage.
- However: roots $\rightsquigarrow O\left(n^{3}\right)$ computations $+O\left(n^{2}\right)$ storage.

唤 A fast $\left(O\left(n^{2}\right)\right.$ flops $+O(n)$ storage) and b'stable (in the matrix sense) algorithm recently proposed [Aurentz etal'15].

- Coefficient-wise b'err ($\left.\left|a_{i}-\widetilde{a}_{i}\right| /\left|a_{i}\right|\right)$.

嘫 No algorithm can provide coefficent-wise b'stability (in the polynomial sense) [VanDooren-Mastronardi'15].

Other issues (not considered in this talk)

- Complexity:
- Desideratum: $O\left(n^{2}\right)$ flops $+O(n)$ storage.
- However: roots $\rightsquigarrow O\left(n^{3}\right)$ computations $+O\left(n^{2}\right)$ storage.

뭉 A fast $\left(O\left(n^{2}\right)\right.$ flops $+O(n)$ storage) and b'stable (in the matrix sense) algorithm recently proposed [Aurentz etal'15].

- Coefficient-wise b'err $\left(\left|a_{i}-\widetilde{a}_{i}\right| /\left|a_{i}\right|\right)$.

恽 No algorithm can provide coefficent-wise b'stability (in the polynomial sense) [VanDooren-Mastronardi'15].

Other issues (not considered in this talk)

- Complexity:
- Desideratum: $O\left(n^{2}\right)$ flops $+O(n)$ storage.
- However: roots $\rightsquigarrow O\left(n^{3}\right)$ computations $+O\left(n^{2}\right)$ storage.

A fast ($O\left(n^{2}\right)$ flops $+O(n)$ storage) and b'stable (in the matrix sense) algorithm recently proposed [Aurentz etal'15].

- Coefficient-wise b'err (|ai- $\widetilde{a}_{i}\left|/\left|a_{i}\right|\right)$.

恽 No algorithm can provide coefficent-wise b'stability (in the polynomial sense) [VanDooren-Mastronardi'15].

Other issues (not considered in this talk)

- Complexity:
- Desideratum: $O\left(n^{2}\right)$ flops $+O(n)$ storage.
- However: roots $\rightsquigarrow O\left(n^{3}\right)$ computations $+O\left(n^{2}\right)$ storage.

A fast ($O\left(n^{2}\right)$ flops $+O(n)$ storage) and b'stable (in the matrix sense) algorithm recently proposed [Aurentz etal'15].

- Coefficient-wise b'err $\left(\left|a_{i}-\widetilde{a}_{i}\right| /\left|a_{i}\right|\right)$.

榢 No algorithm can provide coefficent-wise b'stability (in the polynomial sense) [VanDooren-Mastronardi'15].

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.
- Still open: Fast and b'stable algorithm (in the polynomial sense) for all polynomials?

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.
- Still open: Fast and b'stable algorithm (in the polynomial sense) for all polynomials?

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate
of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.
- Still open: Fast and b'stable algorithm (in the polynomial sense) for all polynomials?

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!)
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.
- Still open: Fast and b'stable algorithm (in the polynomial sense) for all polynomials?

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!)
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.
Fast and b'stable algorithm (in the polynomial sense) for all
polynomials?

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).

- Looking at monic polynomials is not enough to guarantee b'stability.
 - Still more room to look for other companion forms and to describe all sparse ones.
 - Still open: Fast and b'stable algorithm (in the polynomial sense) for all

 polynomials?
Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all
sparse ones.
- Still onen: Fast and b'stable algorithm (in the polynomial sense) for all polynomials?

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.
- Still open: Fast and b'stable algorithm (in the polynomial sense) for all polynomials?

Conclusions

- B'stability on the e-val problem \nRightarrow B'stability on the poly root-finding problem.
- When $\|p\|_{\infty}$ is moderate, a b'stable e-val algorithm implies poly b'stability for any Fiedler matrix.
- When $\|p\|_{\infty}$ is large, Frobenius companion matrices are expected to give less b'err than any other Fiedlers.
- Though roots is b'stable in practice, it could give non-satisfactory results.
- B'err of the poly root-finding problem can be analyzed, using the adjugate of the characteristic matrix, for many companion matrices.
- Characterization of all sparse companion matrices is known (only for monic polynomials!).
- Looking at monic polynomials is not enough to guarantee b'stability.
- Still more room to look for other companion forms and to describe all sparse ones.
- Still open: Fast and b'stable algorithm (in the polynomial sense) for all polynomials?

Aurentz, Mach, Vandebril, Watkins.
Fast and stable computation of roots of polynomials.
SIAM J. Matrix Anal. Appl., 36 (2015) 942-973.
Dopico, Lawrence, Pérez, Van Dooren.
Block Kronecker linearizations of matrix polynomials and their backward errors. MIMs Eprint 2016.51.
DT., Dopico, Pérez.
Backward stability of polynomial root-finding using Fiedler companion matrices.
IMA J. Numer. Analysis, 36 (2016) 133-173.
Eastman, Kim, Shader, Vander Meulen.
Companion matrix patterns.
Linear Algebra Appl., 463 (2014) 255-272.
Edelman, Murakami.
Polynomial roots from companion matrix eigenvalues.
Math. Comp., 64 (1995) 763-776.
Fiedler.
A note on companion matrices.
Linear Algebra Appl., 372 (2003) 325-331.

Ma, Zhan.
Extremal sparsity of the companion matrix of a polynomial.
Linear Algebra Appl., 438 (2013) 621-625.

Van Dooren, Dewilde.
The eigenstructure of an arbitrary polynomial matrix: computational aspects Linear Algebra Appl., 50 (1983) 545-579.

