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Introduction

Goal

Compute the roots of (scalar) polynomials

p(z) = anzn +an−1zn−1 + · · ·+a1z +a0 (ak ∈ C)

using companion forms.

We can restrict ourselves to monic polynomials (after dividing by an, if
necessary).

p(z) = zn +an−1zn−1 + · · ·+a1z +a0 (ak ∈ C)

...Can we ??? (more on this later).
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Introduction

Companion matrix

Companion matrix
A ∈ C[a0,a1, . . . ,an−1]

n×n such that

pA(z) = det(zI−A) = zn +an−1zn−1 + · · ·+a1z +a0 = p(z).

(Only for monic polynomials).

Roots of p(z) = Eigenvalues of A (i.e.: p(z) = 0⇔ det(zI−A) = 0).

Theoretically:

Polynomial root-finding
Companion

matrix⇐⇒ Standard eigenvalue problem

But numerically, they are different problems !!!
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Introduction

Motivation

Frobenius companion matrices:

C1 =




−an−1 −an−2 · · · −a0
1 0 · · · 0

. . .
. . .

...
0 1 0


 , C2 = C>1

MATLAB’s command roots: QR algorithm on C2.
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Part I: Backward stability B’err of polynomial root-finding using companion matrices

Outline

1 Introduction

2 Part I: Backward stability
B’err of polynomial root-finding using companion matrices
B’err using Fiedler matrices

3 Part II: Other companion forms
Companion matrices
Companion forms

4 Epilogue

Fernando de Terán (UC3M) Poly root-finding using companion matrices FoCM2017 6 / 33



Part I: Backward stability B’err of polynomial root-finding using companion matrices

Basic definitions
Problem: Algorithm:

f : X︸︷︷︸
data

−→ Y︸︷︷︸
solution

f̃ : X︸︷︷︸
data

−→ Y︸︷︷︸
solution

f̃ is backward stable if f̃ (x) = f (x +δx), ‖δx‖= O(u)‖x‖
( u = unit roundoff)

� B’stability for poly root-finding using companion matrices:
1 B’stability on the companion matrix (e-vals):

f̃ = e-val algorithm, f = e-val problem, x = companion matrix
(the computed roots (e-vals) are the e-vals of a nearby matrix, not necessarily companion!!!).

2 B’stability on the polynomial (roots):

f̃ = e-val algorithm, f = polynomial root-finding, x = polynomial
(the computed roots (e-vals) are the roots of a nearby polynomial).
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Part I: Backward stability B’err of polynomial root-finding using companion matrices

B’err of polynomial root-finding using companion matrices

Given p(z)→ Choose A such that
p(z) = det(zI−A) → Compute the

e-vals of A = e-vals of A+E ,
‖E‖= O(u)‖A‖

(if we use a backward stable algorithm, like QR)

Set p̃(z) = det(zI− (A+E))

Question: Is p̃(z) close to p(z)?

‖p̃−p‖
‖p‖ = O(u) ?

‖p̃−p‖
‖p‖ : b’err of polynomial root-finding as an eigenvalue problem (using A).

Goal:

Analyze
‖p̃−p‖
‖p‖ .
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Part I: Backward stability B’err of polynomial root-finding using companion matrices

Perturbation of the characteristic polynomial: first order term

Using Jacobi’s formula:

p̃(z)−p(z) = det(zI− (A+E))−det(zI−A) =− tr(adj(zI−A) ·E) +O(‖E‖2)

adj(zI−A) =
n−1

∑
k=0

Ak zk (matrix polynomial of degree n−1).

Hence, if we set: det(zI−X ) = zn +
n−1

∑
k=0

ak (X )zk , then, to first order in E :

ak (A+E)−ak (A) =−tr(AkE).

Q: Explicit formula for Ak ?
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Part I: Backward stability B’err of polynomial root-finding using companion matrices

Recursive formula for the adjugate
p(z) = zn +∑

n−1
k=0 ak zk = det(zI−A)

Proposition [Gantmacher, 1959]

Set: {
An−1 = I , and
Ak = A ·Ak+1 +ak I, for k = n−2, . . . ,1,0.

Then,

adj(zI−A) =
n−1

∑
k=0

Ak zk .

Note:
Ak−1 = pn−k (A) = An−k +an−1An−k−1 + · · ·+ak+1A+ak I

((n−k)th Horner shift of p(z) evaluated at A).

� pn−k−1(A) encodes the information on the variation ak (A+E)−ak (A):

ak (A+E)−ak (A) =−∑i ,j (pn−k−1(A))jiEij +O(‖E‖2).
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Part I: Backward stability B’err using Fiedler matrices
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Part I: Backward stability B’err using Fiedler matrices

Fiedler matrices: definition

p(z) = zn +an−1zn−1 + · · ·+a1z +a0

M0 =

[
In−1

−a0

]
, Mk =




In−k−1

−ak 1
1 0

Ik−1


 , k = 1, . . . ,n−1.

Let σ : {0,1, . . . ,n−1}→ {1, . . . ,n} be a bijection. Then:

Mσ := Mσ−1(1) · · ·Mσ−1(n)
Fiedler matrix of p

associated with
the bijection σ

I Introduced by Fiedler in 2003.
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Part I: Backward stability B’err using Fiedler matrices

Fiedler matrices: some examples

Frobenius companion matrices:

C1 = Mn−1 · · ·M1M0 =




−an−1 −an−2 · · · −a0
1 0 · · · 0

. . .
. . .

...
0 1 0




C2 = M0M1 · · ·Mn−1 = C>1

Mn−1 · · ·M2M0M1 =




−an−1 −an−2 · · · 1
1 0 · · · 0

. . .
. . .

...
0 −a0 0




M6(M4M5)(M2M3)(M0M1) =




−a5 1 0 0 0 0
−a4 0 −a3 1 0 0

1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0




(n = 6)
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Part I: Backward stability B’err using Fiedler matrices

Fiedler matrices: Basic properties

All Mσ contain the same entries (located in different
positions):

−a0, . . . ,−an−1 &

n−1︷ ︸︸ ︷
1, . . . ,1 & 0′s

Mσ is a (sparse) companion matrix (det(zI−Mσ ) = p(z)).

There are 2n−1 different Fiedler matrices.
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Part I: Backward stability B’err using Fiedler matrices

Formula for the adjugate: main features

To first order in E :

ak (Mσ +E)−ak (Mσ ) =−
n

∑
i ,j=1

p(σ ,k)
ij (a0,a1, . . . ,an−1)Eij , k = 0,1, . . . ,n−1,

where:

p(σ ,k)
ij (a0,a1, . . . ,an−1) is a polynomial in ai with degree at most 2.

If Mσ = C1,C2, then all p(σ ,k)
ij (a0,a1, . . . ,an−1) have degree 1.

If Mσ 6= C1,C2, then there is at least one k and some (i , j) such that
p(σ ,k)

ij (a0,a1, . . . ,an−1) has degree 2.
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Part I: Backward stability B’err using Fiedler matrices

Some particular examples

Frobenius companion matrices:

pn−k−1(C>1 ) = pn−k−1(C2) =




0 . . . 0 1 0
−ak an−1 1
...

. . .
... an−1

. . .

−a1
. . . −ak ak+1

...
. . . 1

−a0
. . .

... ak+1
. . . an−1

. . . −a1
. . .

...
0 −a0 0 ak+1




.

These are the only Fiedler matrices Mσ for which all pk (Mσ ) have entries of
degree 1 !!!!

Fernando de Terán (UC3M) Poly root-finding using companion matrices FoCM2017 16 / 33



Part I: Backward stability B’err using Fiedler matrices

Some particular examples

Frobenius companion matrices:

pn−k−1(C>1 ) = pn−k−1(C2) =




0 . . . 0 1 0
−ak an−1 1
...

. . .
... an−1

. . .

−a1
. . . −ak ak+1

...
. . . 1

−a0
. . .

... ak+1
. . . an−1

. . . −a1
. . .

...
0 −a0 0 ak+1




.

These are the only Fiedler matrices Mσ for which all pk (Mσ ) have entries of
degree 1 !!!!

Fernando de Terán (UC3M) Poly root-finding using companion matrices FoCM2017 16 / 33



Part I: Backward stability B’err using Fiedler matrices

Some particular examples (II)

F = Mn−1 · · ·M2M0M1

pn−k−1(F ) =




0 1 0

−ak an−1
. . .

...
...

. . .
...

. . . 1 0
−a1 −ak ak+2 an−1 −a0

−a0
. . .

... −ak ak+1
. . .

... −a0an−1
. . . −a1

...
. . . ak+2

...
−a0 −a1 ak+1 −a0ak+2

1 ak+1




, for k = 0 : n−3,

p1(F ) =




0 0
−an−2 1
−an−3 an−1 1

... an−1
. . .

...
. . . 1

−a1 an−1 −a0
1 0 an−1



, and p0(F ) = I.
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Part I: Backward stability B’err using Fiedler matrices

Backward error

Theorem [D., Dopico, Pérez, 2013]

If the roots of p(z) are computed as the e-vals of Mσ with a backward stable
algorithm, the computed roots are the exact roots of a polynomial p̃(z) with:
(a) If Mσ = C1,C2:

‖p̃−p‖∞

‖p‖∞

= O(u)‖p‖∞, [Edelman-Murakami’95]

(b) if Mσ 6= C1,C2:
‖p̃−p‖∞

‖p‖∞

= O(u)‖p‖2∞.

(u is the machine precision)

(
‖

n

∑
i=0

ai z i‖∞ = max
i=0,...,n

|ai |
)
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Part I: Backward stability B’err using Fiedler matrices

Some remarks

(Recall: ‖p‖∞ ≥ 1, since p is monic).

For ‖p‖∞ moderate, backward stability of polynomial root-finding is
guaranteed using any Fiedler matrix.

Then, particular features of some Fiedler matrices (like low bandwidth)
can make them preferable than C1 and C2.

When ‖p‖∞ is large, C1 and C2 are expected to give smaller b’err than
any other Fiedler.
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Part I: Backward stability B’err using Fiedler matrices

Random polynomials, n = 20

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

log(‖p‖∞)

lo
g
(‖
p̃
−
p‖

∞
/‖

p‖
∞
)

 

 

Logarithm of the maximum normwise backward error

   Linear fitting (slope equal to 0.85)

Logarithm of the minimum normwise backward error

(a) C2
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log(||p||∞)
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(||
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−
p|
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/|
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Logarithm of the maximum normwise backward error

   Linear fitting (slope equal to 1.9)

Logarithm of the minimum normwise backward error

(b) Pentadiagonal
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Logarithm of the minimum normwise backward error

(c) F
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p‖

∞
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p‖
∞
)

 

 

Logarithm of the maximum normwise backward error

   Linear fitting (slope equal to 1.8)

Logarithm of the minimum normwise backward error

(d) Mσ

Figure: 11 samples, 500 random polys, ‖p‖∞ = 10k (k = 0 : 10), ai = a ·10c , a ∈ [−1,1], c ∈ [−k ,k ], a0 = 10k .
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Part II: Other companion forms Companion matrices

Outline

1 Introduction

2 Part I: Backward stability
B’err of polynomial root-finding using companion matrices
B’err using Fiedler matrices

3 Part II: Other companion forms
Companion matrices
Companion forms

4 Epilogue
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Part II: Other companion forms Companion matrices

Other companion matrices?

Q: Are there any other companion matrices than Fiedlers?

YES: Infinitely many!

Just multiply: PMσ P−1 (P invertible) In general, not sparse
(exception: P is a permutation matrix).

�We look for sparse companion matrices.
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Part II: Other companion forms Companion matrices

Sparse companion matrices (I)

Sparse: It has the smallest number of nonzero entries

� For companion matrices, this number is 2n−1 [Ma-Zhan’13]

(we focus on: 1, . . . ,1︸ ︷︷ ︸
n−1

,−a0, . . . ,−an−1).

Q: How many non-permutationally similar sparse companion
matrices are there and how do they look like?
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Part II: Other companion forms Companion matrices

Sparse companion matrices (II)
We define the following (lower Hessenberg) classes of matrices:

Cn C Pn


1
...

. . .
. . .

1
−a0 . . . 1




−a1 ∈ , . . . ,−an−1 ∈




0 1
. . .

. . .

. . . −an−1 1

. . . 0
. . .

...
. . .

...
...

. . . 1

−a0
. . . 0 . . . 0




(C Pn ⊆ Cn)

Theorem [Eastman-etal’14]

Any sparse companion matrix is permutationally similar to a matrix in Cn.

Theorem [Eastman-etal’14]

A(a0, . . . ,an−1) ∈ Cn is a (sparse) companion matrix⇔ A(a0, . . . ,an−1) ∈ C Pn.
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Part II: Other companion forms Companion forms

Why monic polynomials?

If q(z) = anzn +an−1zn−1 + · · ·+a1z +a0 (not necessarily monic) (an 6= 0).

Then p(z) = 1
an

q(z) = zn +
an−1
an

zn−1 + · · ·+ a1
an

z + a0
an

is monic.

If the method is b’stable for monic polys:

‖p− p̃‖
‖p‖ = O(u) (for some p̃).

Then (setting q̃ := anp̃):

‖q− q̃‖
‖q‖ =

‖ q
an
− q̃

an
‖

‖ q
an
‖ =

‖p− p̃‖
‖p‖ = O(u).

⇒ It is enough to prove b’stability for monic polys.
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Part II: Other companion forms Companion forms

However...

B’stability (in the poly sense) is only guaranteed when ‖p‖ is
moderate.

The QZ algorithm on the Frobenius companion form
(non-monic) gives b’stability if ‖p‖∞ ≈ 1 ([Van Dooren-Dewilde’83]).

If we divide by ‖p‖∞  the polynomial may become
non-monic!
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Part II: Other companion forms Companion forms

Companion forms

Companion form: Valid for non-monic polynomials.

Companion form:
A = A0 +zA1 s.t.:

A0,A1 ∈ C[a0,a1, . . . ,an−1,an]
n×n,

detA = anzn +an−1zn−1 + · · ·+a1z +a0.

May have entries a+bz.
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Part II: Other companion forms Companion forms

Fiedler companion forms

Frobenius companion forms

Fi(z) = z diag(an,1, . . . ,1)−Ci i = 1,2

Fiedler companion forms

Fσ (z) = z diag(an,1, . . . ,1)−Mσ

Examples: F1 =




anz +an−1 an−2 · · · a0
−1 z · · · 0

. . .
. . .

...
0 −1 z


 F2 = F>1

F =




a6z +a5 −1 0 0 0 0
a4 z a3 −1 0 0
−1 0 z 0 0 0
0 0 a2 z a1 −1
0 0 −1 0 z 0
0 0 0 0 a0 z




(n = 6)
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Part II: Other companion forms Companion forms

Other companion forms

Companion form
A matrix A(a0,a1, . . . ,an−1,an;z) such that:

The entries are linear polynomials in z.
detA(a0,a1, . . . ,an−1,an;z) = anzn +an−1zn−1 + · · ·+a1z +a0.

Fiedler-like:




0 0 0 z a0 +za1
0 0 1 0 −z
0 z a2 +za3 −1 0
1 0 −z 0 0

a4 +za5 −1 0 0 0




(n = 5)

� There are many others [Dopico-Lawrence-Pérez-VanDooren]:

Permutationally equivalent to companion forms in some “extended C Pn".
Most of them are not sparse.
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Part II: Other companion forms Companion forms

Open questions for companion forms

Which is the smallest number of nonzero entries (sparse)?

Are all sparse companion forms permutationally equivalent to
a companion form in an “extended Cn"?

Do all sparse companion forms in this Cn belong to an
“extended C Pn"?

Is there any companion form which provides a smaller b’err
than Frobenius ones?
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Epilogue

Other issues (not considered in this talk)

Complexity:

Desideratum: O(n2) flops + O(n) storage.

However: roots O(n3) computations + O(n2) storage.

� A fast (O(n2) flops + O(n) storage) and b’stable (in the matrix sense)
algorithm recently proposed [Aurentz etal’15].

Coefficient-wise b’err (|ai − ãi |/|ai |).
� No algorithm can provide coefficent-wise b’stability (in the
polynomial sense) [VanDooren-Mastronardi’15].
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Epilogue

Conclusions

B’stability on the e-val problem 6⇒ B’stability on the poly root-finding
problem.
When ‖p‖∞ is moderate, a b’stable e-val algorithm implies poly b’stability
for any Fiedler matrix.
When ‖p‖∞ is large, Frobenius companion matrices are expected to give
less b’err than any other Fiedlers.
Though roots is b’stable in practice, it could give non-satisfactory
results.
B’err of the poly root-finding problem can be analyzed, using the adjugate
of the characteristic matrix, for many companion matrices.
Characterization of all sparse companion matrices is known (only for
monic polynomials!).
Looking at monic polynomials is not enough to guarantee b’stability.
Still more room to look for other companion forms and to describe all
sparse ones.
Still open: Fast and b’stable algorithm (in the polynomial sense) for all
polynomials?
Fernando de Terán (UC3M) Poly root-finding using companion matrices FoCM2017 33 / 33
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