A survey on NLEVPs and multiparameter eigenvalue problems

Fernando De Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

Outline

(1) Basic notions
(2) Applications
(3) How to solve them?

- Small-Moderate size
- Large scale

Outline

(1) Basic notions

(2) Applications

(3) How to solve them?

- Small-Moderate size
- Large scale

NLEVP: definition

NLEVP Given $\emptyset \neq \Omega \subseteq \mathbb{C}$ (open), and:

$$
\begin{array}{rccc}
F: \quad \Omega & \rightarrow & \mathbb{C}^{n \times n} \\
\lambda & \mapsto & {\left[F_{i j}(\lambda)\right]}
\end{array}
$$

Definition (right and left eigenpair)

$\left(\lambda_{0}, v\right)$ right eigenpair of F if $F\left(\lambda_{0}\right) v=0(v \neq 0)$,
$\left(\lambda_{0}, v\right)$ left eigenpair of F if $w^{*} F\left(\lambda_{0}\right)=0(w \neq 0)$.
$\left(\lambda_{0} \in \mathbb{C}\right.$: eigenvalue, $v \in \mathbb{C}^{n}$: right eigenvector, $w \in \mathbb{C}^{n}$: left eigenvector).

NLEVP: definition

NLEVP Given $\emptyset \neq \Omega \subseteq \mathbb{C}$ (open), and:

$$
\begin{array}{rccc}
F: \quad \Omega & \rightarrow & \mathbb{C}^{n \times n} \\
\lambda & \mapsto & {\left[F_{i j}(\lambda)\right]}
\end{array}
$$

Definition (right and left eigenpair)

$\left(\lambda_{0}, v\right)$ right eigenpair of F if $F\left(\lambda_{0}\right) v=0(v \neq 0)$,
$\left(\lambda_{0}, v\right)$ left eigenpair of F if $w^{*} F\left(\lambda_{0}\right)=0(w \neq 0)$.
($\lambda_{0} \in \mathbb{C}$: eigenvalue, $v \in \mathbb{C}^{n}$: right eigenvector, $w \in \mathbb{C}^{n}$: left eigenvector).

Notation: $\Lambda(F)=\{\lambda \in \mathbb{C}: \lambda$ is an e-val of $F\}$ (spectrum).

MPEP: definition

MPEP In this case,

$$
\begin{array}{ccc}
W: \Omega \subseteq \mathbb{C}^{m} & \rightarrow & \mathbb{C}^{n_{1} \times n_{1}} \times \cdots \times \mathbb{C}^{n_{m} \times n_{m}} \\
\lambda & \mapsto W(\lambda):=\left(W_{1}(\lambda), \ldots, W_{m}(\lambda)\right)
\end{array}
$$

For:

$$
x:=x_{1} \otimes \cdots \otimes x_{m} \in \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{m}}
$$

set

$$
W(\lambda) x:=\left(W_{1}(\lambda) x_{1}, \ldots, W_{n}(\lambda) x_{n}\right), \quad x^{*} W(\lambda):=\left(x_{1}^{*} W_{1}(\lambda), \ldots, x_{m}^{*} W_{m}(\lambda)\right) .
$$

Then
$\left(\lambda_{0}, x\right)$ is a right eigenpair of W if $W\left(\lambda_{0}\right) x=0$
$\left(\lambda_{0}, y\right)$ is a left eigenpair of W if $y^{*} W\left(\lambda_{0}\right)=0$
($\lambda_{0} \in \mathbb{C}^{m}$ is an eigenvalue, x is a right eigenvector, and y is a left eigenvector).

MPEP: definition

MPEP In this case, (Alam, Tue. 11:30; Shao, Tue. 12:00).

$$
\begin{array}{ccc}
W: \quad \Omega \subseteq \mathbb{C}^{m} & \rightarrow & \mathbb{C}^{n_{1} \times n_{1}} \times \cdots \times \mathbb{C}^{n_{m} \times n_{m}} \\
\lambda & \mapsto & \mapsto(\lambda):=\left(W_{1}(\lambda), \ldots, W_{m}(\lambda)\right)
\end{array}
$$

For:

$$
x:=x_{1} \otimes \cdots \otimes x_{m} \in \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{m}}
$$

set

$$
W(\lambda) x:=\left(W_{1}(\lambda) x_{1}, \ldots, W_{n}(\lambda) x_{n}\right), \quad x^{*} W(\lambda):=\left(x_{1}^{*} W_{1}(\lambda), \ldots, x_{m}^{*} W_{m}(\lambda)\right)
$$

Then
$\left(\lambda_{0}, x\right)$ is a right eigenpair of W if $W\left(\lambda_{0}\right) x=0$
$\left(\lambda_{0}, y\right)$ is a left eigenpair of W if $y^{*} W\left(\lambda_{0}\right)=0$
($\lambda_{0} \in \mathbb{C}^{m}$ is an eigenvalue, x is a right eigenvector, and y is a left eigenvector).

Some particular (but relevant) cases

(1) Standard e-val problem: $F(\lambda)=A-\lambda I, A \in \mathbb{C}^{n \times n}$.
(3) Generalized e-val problem: $F(\lambda)=A-\lambda B, A, B \in \mathbb{C}^{n \times n}$.
(2) Polynomial e-val problem (PEP): $F_{i j}(\lambda)=p_{i j}(\lambda)$, a polynomial in λ.

$$
F(\lambda)=\Delta_{0}+\lambda \Delta_{1}+\cdots+\lambda^{d} \Delta_{d}, \quad \Delta_{0}, \Delta_{1}, \ldots, \Delta_{d} \in \mathbb{C}^{n \times n}
$$

(- Rational e-val problem (REP): $F_{i j}(\lambda)=\frac{p_{i j}(\lambda)}{q_{i j}(\lambda)}$, a rational function in λ.

$$
F(\lambda)=P(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { or } \quad F(\lambda)=P(\lambda)+R_{s p}(\lambda),
$$

with P, C, A, B matrix polynomials (A nonsingular), and $R_{s p}$ strictly proper $\left(\operatorname{deg} p_{i j}<\operatorname{deg} q_{i j}\right)$.
๑ In general: $F: \Omega \rightarrow \mathbb{C} n \times n$ holomornhic.
(3) E-vec dependent NLEVPs: $F(V) V=V \wedge$, with $F \in \mathbb{C}^{n \times n}, V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

$$
V * F(V) V=\wedge \Rightarrow \wedge \text { contains some e-vals of } F(V)
$$

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

Some particular (but relevant) cases

(1) Standard e-val problem: $F(\lambda)=A-\lambda I, A \in \mathbb{C}^{n \times n}$.
(2) Generalized e-val problem: $F(\lambda)=A-\lambda B, A, B \in \mathbb{C}^{n \times n}$.
(3) Polynomial e-val problem (PEP): $F_{i j}(\lambda)=p_{i j}(\lambda)$, a polynomial in λ.

$$
F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{n \times n} .
$$

(1) Rational e-val problem (REP): $F_{i j}(\lambda)=\frac{p_{i j}(\lambda)}{q_{i j}(\lambda)}$, a rational function in λ.

$$
F(\lambda)=P(\lambda)+C(\lambda) \Delta(\lambda)^{-1} B(\lambda) \quad \text { or } \quad F(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with P, C, A, B matrix polynomials (A nonsingular), and $R_{S p}$ strictly proper $\left(\operatorname{deg} p_{i j}<\operatorname{deg} q_{i j}\right)$

- In general: $\boldsymbol{F}: \Omega \rightarrow \mathbb{C}^{n \times n}$ holomorphic.
(0) E-vec dependent NLEVPs: $F(V) V=V \wedge$, with $F \in \mathbb{C}^{n \times n}, V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

$$
V^{*} F(V) V=\Lambda \Rightarrow \Lambda \text { contains some e-vals of } F(V)
$$

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

Some particular (but relevant) cases

(1) Standard e-val problem: $F(\lambda)=A-\lambda I, A \in \mathbb{C}^{n \times n}$.
(2) Generalized e-val problem: $F(\lambda)=A-\lambda B, A, B \in \mathbb{C}^{n \times n}$.
(3) Polynomial e-val problem (PEP): $F_{i j}(\lambda)=p_{i j}(\lambda)$, a polynomial in λ.

$$
F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{n \times n}
$$

- Rational e-val problem (REP): $F_{i j}(\lambda)=\frac{p_{i j}(\lambda)}{q_{i j}(\lambda)}$, a rational function in λ

$$
F(\lambda)=P(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { or } \quad F(\lambda)=P(\lambda)+R_{s p}(\lambda),
$$

with P, C, A, B matrix polynomials (A nonsingular), and $R_{S p}$ strictly proper $\left(\operatorname{deg} p_{i j}<\operatorname{deg} q_{i j}\right)$.

- In general: $\boldsymbol{F}: \Omega \rightarrow \mathbb{C}^{n \times n}$ holomorphic.
(0) E-vec dependent NLEVPs: $F(V) V=V \wedge$, with $F \in \mathbb{C}^{n \times n}, V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)
$V^{*} F(V) V=\Lambda \Rightarrow \Lambda$ contains some e-vals of $F(V)$.
(Bai, Wed. 17:00; Truhar, Tue. 17:30).

Some particular (but relevant) cases

(1) Standard e-val problem: $F(\lambda)=A-\lambda I, A \in \mathbb{C}^{n \times n}$.
(2) Generalized e-val problem: $F(\lambda)=A-\lambda B, A, B \in \mathbb{C}^{n \times n}$.
(3) Polynomial e-val problem (PEP): $F_{i j}(\lambda)=p_{i j}(\lambda)$, a polynomial in λ.

$$
F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{n \times n}
$$

(4) Rational e-val problem (REP): $F_{i j}(\lambda)=\frac{p_{i j}(\lambda)}{q_{i j}(\lambda)}$, a rational function in λ.

$$
F(\lambda)=P(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { or } \quad F(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with P, C, A, B matrix polynomials (A nonsingular), and $R_{s p}$ strictly proper $\left(\operatorname{deg} p_{i j}<\operatorname{deg} q_{i j}\right)$.
(5) In general: Forthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

Some particular (but relevant) cases

(1) Standard e-val problem: $F(\lambda)=A-\lambda I, A \in \mathbb{C}^{n \times n}$.
(2) Generalized e-val problem: $F(\lambda)=A-\lambda B, A, B \in \mathbb{C}^{n \times n}$.
(3) Polynomial e-val problem (PEP): $F_{i j}(\lambda)=p_{i j}(\lambda)$, a polynomial in λ.

$$
F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{n \times n}
$$

(4) Rational e-val problem (REP): $F_{i j}(\lambda)=\frac{p_{i j}(\lambda)}{q_{i j}(\lambda)}$, a rational function in λ.

$$
F(\lambda)=P(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { or } \quad F(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with P, C, A, B matrix polynomials (A nonsingular), and $R_{s p}$ strictly proper ($\operatorname{deg} p_{i j}<\operatorname{deg} q_{i j}$).
(6) In general: $F: \Omega \rightarrow \mathbb{C}^{n \times n}$ holomorphic.
(0) E-vec dependent NLEVPs: $F(V) V=V \wedge$, with $F \in \mathbb{C}^{n \times n}, V \in \mathbb{C}^{n \times k}$ (with
orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

$$
V^{*} F(V) V=\Lambda \Rightarrow \Lambda \text { contains some e-vals of } F(V)
$$

Some particular (but relevant) cases

(1) Standard e-val problem: $F(\lambda)=A-\lambda I, A \in \mathbb{C}^{n \times n}$.
(2) Generalized e-val problem: $F(\lambda)=A-\lambda B, A, B \in \mathbb{C}^{n \times n}$.
(3) Polynomial e-val problem (PEP): $F_{i j}(\lambda)=p_{i j}(\lambda)$, a polynomial in λ.

$$
F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{n \times n}
$$

(4) Rational e-val problem (REP): $F_{i j}(\lambda)=\frac{p_{i j}(\lambda)}{q_{i j}(\lambda)}$, a rational function in λ.

$$
F(\lambda)=P(\lambda)+C(\lambda) A(\lambda)^{-1} B(\lambda) \quad \text { or } \quad F(\lambda)=P(\lambda)+R_{s p}(\lambda)
$$

with P, C, A, B matrix polynomials (A nonsingular), and $R_{s p}$ strictly proper ($\operatorname{deg} p_{i j}<\operatorname{deg} q_{i j}$).
(6) In general: $F: \Omega \rightarrow \mathbb{C}^{n \times n}$ holomorphic.
(6) E-vec dependent NLEVPs: $F(V) V=V \wedge$, with $F \in \mathbb{C}^{n \times n}, V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

$$
V^{*} F(V) V=\Lambda \Rightarrow \Lambda \text { contains some e-vals of } F(V)
$$

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

NLEVP vs Standard e-val problem

- $F(\lambda)$ can be singular: $\operatorname{det} F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.
(In most talks, but not all, $F(\lambda)$ is regular, $\operatorname{det} F(\lambda) \not \equiv 0$).
- E-vecs of different e-vals are not necessarily linearly independent: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an evec of $\left[\begin{array}{cc}\lambda(\lambda-1) & 0 \\ 0 & 1\end{array}\right]$ for $\lambda=0,1$.
- $\Omega \backslash \wedge(F)$ is open.
- If F is regular, $\Lambda(F)=\{\lambda \in \Omega: \operatorname{det} F(\lambda)=0\}$. Then any $\lambda_{0} \in \Lambda(F)$ is isolated (i.e., there is an open set $\mathscr{U} \subseteq \Omega: \mathscr{U} \cap \Lambda(F)=\left\{\lambda_{0}\right\}$).
- There can be an infinite e-val: When $G(\lambda):=F(1 / \lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^{d} P(1 / \lambda)$).
- F(入) may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

NLEVP vs Standard e-val problem

- $F(\lambda)$ can be singular: $\operatorname{det} F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.
(In most talks, but not all, $F(\lambda)$ is regular, $\operatorname{det} F(\lambda) \not \equiv 0$).
- E-vecs of different e-vals are not necessarily linearly independent: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an evec of $\left[\begin{array}{cc}\lambda(\lambda-1) & 0 \\ 0 & 1\end{array}\right]$ for $\lambda=0,1$.
- $\Omega \backslash \wedge(F)$ is open.
- If F is regular, $\Lambda(F)=\{\lambda \in \Omega: \operatorname{det} F(\lambda)=0\}$. Then any $\lambda_{0} \in \Lambda(F)$ is isolated (i.e., there is an open set $\mathscr{U} \subseteq \Omega: \mathscr{U} \cap \Lambda(F)=\left\{\lambda_{0}\right\}$).
- There can be an infinite e-val: When $G(\lambda):=F(1 / \lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^{d} P(1 / \lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

NLEVP vs Standard e-val problem

- $F(\lambda)$ can be singular: $\operatorname{det} F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.
(In most talks, but not all, $F(\lambda)$ is regular, $\operatorname{det} F(\lambda) \not \equiv 0$).
- E-vecs of different e-vals are not necessarily linearly independent: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an evec of $\left[\begin{array}{cc}\lambda(\lambda-1) & 0 \\ 0 & 1\end{array}\right]$ for $\lambda=0,1$.
- $\Omega \backslash \Lambda(F)$ is open.
- If F is regular, $\Lambda(F)=\{\lambda \in \Omega: \operatorname{det} F(\lambda)=0\}$. Then any $\lambda_{0} \in \Lambda(F)$ is isolated (i.e., there is an open set $\mathscr{U} \subseteq \Omega: \mathscr{U} \cap \Lambda(F)=\left\{\lambda_{0}\right\}$).
- There can be an infinite e-val: When $G^{\prime}(\lambda):=F^{\prime}(1 / \lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^{d} P(1 / \lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

NLEVP vs Standard e-val problem

- $F(\lambda)$ can be singular: $\operatorname{det} F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.
(In most talks, but not all, $F(\lambda)$ is regular, $\operatorname{det} F(\lambda) \not \equiv 0$).
- E-vecs of different e-vals are not necessarily linearly independent: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an evec of $\left[\begin{array}{cc}\lambda(\lambda-1) & 0 \\ 0 & 1\end{array}\right]$ for $\lambda=0,1$.
- $\Omega \backslash \Lambda(F)$ is open.
- If F is regular, $\Lambda(F)=\{\lambda \in \Omega: \operatorname{det} F(\lambda)=0\}$. Then any $\lambda_{0} \in \Lambda(F)$ is isolated (i.e., there is an open set $\mathscr{U} \subseteq \Omega: \mathscr{U} \cap \Lambda(F)=\left\{\lambda_{0}\right\}$).
- There can be an infinite e-val: When $G(\lambda):=F(1 / \lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^{d} P(1 / \lambda)$)
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

NLEVP vs Standard e-val problem

- $F(\lambda)$ can be singular: $\operatorname{det} F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.
(In most talks, but not all, $F(\lambda)$ is regular, $\operatorname{det} F(\lambda) \not \equiv 0$).
- E-vecs of different e-vals are not necessarily linearly independent: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an evec of $\left[\begin{array}{cc}\lambda(\lambda-1) & 0 \\ 0 & 1\end{array}\right]$ for $\lambda=0,1$.
- $\Omega \backslash \Lambda(F)$ is open.
- If F is regular, $\Lambda(F)=\{\lambda \in \Omega: \operatorname{det} F(\lambda)=0\}$. Then any $\lambda_{0} \in \Lambda(F)$ is isolated (i.e., there is an open set $\mathscr{U} \subseteq \Omega: \mathscr{U} \cap \Lambda(F)=\left\{\lambda_{0}\right\}$).
- There can be an infinite e-val: When $G(\lambda):=F(1 / \lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^{d} P(1 / \lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

NLEVP vs Standard e-val problem

- $F(\lambda)$ can be singular: $\operatorname{det} F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.
(In most talks, but not all, $F(\lambda)$ is regular, $\operatorname{det} F(\lambda) \not \equiv 0$).
- E-vecs of different e-vals are not necessarily linearly independent: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an evec of $\left[\begin{array}{cc}\lambda(\lambda-1) & 0 \\ 0 & 1\end{array}\right]$ for $\lambda=0,1$.
- $\Omega \backslash \Lambda(F)$ is open.
- If F is regular, $\Lambda(F)=\{\lambda \in \Omega: \operatorname{det} F(\lambda)=0\}$. Then any $\lambda_{0} \in \Lambda(F)$ is isolated (i.e., there is an open set $\mathscr{U} \subseteq \Omega: \mathscr{U} \cap \Lambda(F)=\left\{\lambda_{0}\right\}$).
- There can be an infinite e-val: When $G(\lambda):=F(1 / \lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^{d} P(1 / \lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

NLEVP vs Standard e-val problem

- $F(\lambda)$ can be singular: $\operatorname{det} F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.
(In most talks, but not all, $F(\lambda)$ is regular, $\operatorname{det} F(\lambda) \not \equiv 0$).
- E-vecs of different e-vals are not necessarily linearly independent: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an evec of $\left[\begin{array}{cc}\lambda(\lambda-1) & 0 \\ 0 & 1\end{array}\right]$ for $\lambda=0,1$.
- $\Omega \backslash \Lambda(F)$ is open.
- If F is regular, $\Lambda(F)=\{\lambda \in \Omega: \operatorname{det} F(\lambda)=0\}$. Then any $\lambda_{0} \in \Lambda(F)$ is isolated (i.e., there is an open set $\mathscr{U} \subseteq \Omega: \mathscr{U} \cap \Lambda(F)=\left\{\lambda_{0}\right\}$).
- There can be an infinite e-val: When $G(\lambda):=F(1 / \lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^{d} P(1 / \lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

Regular vs Singular (matrix polynomials)

If $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

- Related to the fact that $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of minimal bases and indices.

Regular vs Singular (matrix polynomials)

If $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

- Related to the fact that $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

$$
\begin{aligned}
\mathscr{N}_{\ell}(P) & :=\left\{y(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m}: y(\lambda)^{\top} P(\lambda) \equiv 0^{\top}\right\} \\
\mathscr{N}_{r}(P) & :=\left\{x(\lambda) \in \mathbb{C}(\lambda)^{n \times 1}: P(\lambda) x(\lambda) \equiv 0\right\}
\end{aligned}
$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of minimal bases and indices.

Regular vs Singular (matrix polynomials)

If $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

- Related to the fact that $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

$$
\begin{aligned}
& \mathscr{N}_{\ell}(P):=\left\{y(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m}: y(\lambda)^{\top} P(\lambda) \equiv 0^{\top}\right\} \\
& \mathscr{N}_{r}(P):=\left\{x(\lambda) \in \mathbb{C}(\lambda)^{n \times 1}: P(\lambda) x(\lambda) \equiv 0\right\}
\end{aligned}
$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of minimal bases and indices.

Regular vs Singular (matrix polynomials)

If $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

- Related to the fact that $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

$$
\begin{aligned}
& \mathscr{N}_{\ell}(P):=\left\{y(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m}: y(\lambda)^{\top} P(\lambda) \equiv 0^{\top}\right\}, \\
& \mathscr{N}_{r}(P):=\left\{x(\lambda) \in \mathbb{C}(\lambda)^{n \times 1}: P(\lambda) x(\lambda) \equiv 0\right\}
\end{aligned}
$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of minimal bases and indices.

Regular vs Singular (matrix polynomials)

If $P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

- Related to the fact that $P(\lambda)$ has non-trivial left and/or right null-spaces over the field $\mathbb{C}(\lambda)$ of rational functions:

$$
\begin{aligned}
\mathscr{N}_{\ell}(P) & :=\left\{y(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m}: y(\lambda)^{\top} P(\lambda) \equiv 0^{\top}\right\}, \\
\mathscr{N}_{r}(P) & :=\left\{x(\lambda) \in \mathbb{C}(\lambda)^{n \times 1}: P(\lambda) x(\lambda) \equiv 0\right\}
\end{aligned}
$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of minimal bases and indices.

$$
\text { Eigenstructure: }\left\{\begin{array}{l}
\text { Eigenvalues (with multiplicities) + Minimal indices } \\
\text { Eigenvectors/Jordan chains + minimal bases }
\end{array}\right.
$$

Outline

(1) Basic notions

(2) Applications

(3) How to solve them?

- Small-Moderate size
- Large scale

Quadratic PEPs

Usually associated with $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)\left(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^{n}\right)$.

Quadratic PEPs

Usually associated with $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)\left(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^{n}\right)$.

mass-spring system ($n=1$)

Quadratic PEPs

Usually associated with $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)\left(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^{n}\right)$.
If all e-vals of $Q(\lambda):=\lambda^{2} M(\lambda)+\lambda C+K$ are semisimple and finite, set

$$
\begin{aligned}
& \Lambda:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{2 n}\right) \\
& X:=\left[\begin{array}{c|c|c}
x_{1} & \ldots & x_{2 n} \\
Y & \text { (e-vals), } \\
y_{1} & \ldots & y_{2 n}
\end{array}\right] \quad \begin{array}{c}
\text { (right e-vecs) } \\
\text { (left e-vecs). }
\end{array}
\end{aligned}
$$

Then the solution of $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)$ is

$$
x(t)=X e^{\wedge t} c+\int_{-\infty}^{t} X e^{\wedge(t-s)} Y^{*} f(s) d s, \quad c \in \mathbb{C}^{n} \text { arbitrary }
$$

Quadratic PEPs

Usually associated with $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)\left(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^{n}\right)$.
If all e-vals of $Q(\lambda):=\lambda^{2} M(\lambda)+\lambda C+K$ are semisimple and finite, set

$$
\begin{aligned}
& \Lambda:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{2 n}\right) \\
& X:=\left[\begin{array}{c|c|c}
x_{1} & \ldots & x_{2 n} \\
Y:=\left[\begin{array}{l|l}
\text { (e-vals) }
\end{array}\right. \\
y_{1} & \ldots & y_{2 n}
\end{array}\right] \quad \begin{array}{c}
\text { (right e-vecs) }, \\
\text { (left e-vecs). }
\end{array}
\end{aligned}
$$

Then the solution of $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)$ is

$$
x(t)=X e^{\wedge t} c+\int_{-\infty}^{t} X e^{\wedge(t-s)} Y^{*} f(s) d s, \quad c \in \mathbb{C}^{n} \text { arbitrary }
$$

If $f(t)=f_{0} e^{i \omega t}$ (harmonic force with frequency ω): $x_{p}(t)=e^{i \omega t} \sum_{j=1}^{2 m} \frac{y_{j}^{*} f_{0}}{i \omega-\lambda_{j}} x_{j}$. If $i \omega \approx \lambda_{j}$, then $\frac{y_{j}^{*} f_{0}}{i \omega-\lambda_{j}} \gg 1$ (provided $y_{j}^{*} f_{0} \neq 0$).

Quadratic PEPs

Usually associated with $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)\left(M, c, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^{n}\right)$.
If all e-vals of $Q(\lambda):=\lambda^{2} M(\lambda)+\lambda C+K$ are semisimple and finite, set

$$
\begin{aligned}
& \Lambda:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{2 n}\right) \\
& X:=\left[\begin{array}{c|c|c|}
x_{1} & \ldots & x_{2 n} \\
y_{1} & \ldots & y_{2 n}
\end{array}\right] \quad \begin{array}{c}
\text { (e-vals), } \\
\text { (right e-vecs) } \\
\text { (left e-vecs). }
\end{array}
\end{aligned}
$$

Then the solution of $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)$ is

$$
x(t)=X e^{\wedge t} c+\int_{-\infty}^{t} X e^{\wedge(t-s)} Y^{*} f(s) d s, \quad c \in \mathbb{C}^{n} \text { arbitrary }
$$

If $f(t)=f_{0} e^{i \omega t}$ (harmonic force with frequency ω): $x_{p}(t)=e^{i \omega t} \sum_{j=1}^{2 m} \frac{y_{j}^{*} f_{0}}{i \omega-\lambda_{j}} x_{j}$.
If $i \omega \approx \lambda_{j}$, then $\frac{y_{j}^{*} *_{0}}{i \omega-\lambda_{j}} \gg 1$ (provided $y_{j}^{*} t_{0} \neq 0$). \rightarrow Resonance

Quadratic PEPs

Usually associated with $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)\left(M, c, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^{n}\right)$.
If all e-vals of $Q(\lambda):=\lambda^{2} M(\lambda)+\lambda C+K$ are semisimple and finite, set

$$
\begin{aligned}
& \Lambda:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{2 n}\right) \\
& X:=\left[\begin{array}{c|c|c}
x_{1} & \ldots & x_{2 n} \\
Y:=\left[\begin{array}{l|ll}
\text { (e-vals) } \\
y_{1} & \ldots & y_{2 n}
\end{array}\right] \quad \begin{array}{c}
\text { (right e-vecs) } \\
\text { (left e-vecs). }
\end{array}
\end{array} .\right.
\end{aligned}
$$

Then the solution of $M x^{\prime \prime}(t)+C x^{\prime}(t)+K x(t)=f(t)$ is

$$
x(t)=X e^{\wedge t} c+\int_{-\infty}^{t} X e^{\wedge(t-s)} Y^{*} f(s) d s, \quad c \in \mathbb{C}^{n} \text { arbitrary }
$$

If $f(t)=f_{0} e^{i \omega t}$ (harmonic force with frequency ω): $x_{p}(t)=e^{i \omega t} \sum_{j=1}^{2 m} \frac{y_{j}^{*} f_{0}}{i \omega-\lambda_{j}} x_{j}$.
If $i \omega \approx \lambda_{j}$, then $\frac{y_{j}^{*} *_{0}}{i \omega-\lambda_{j}} \gg 1$ (provided $y_{j}^{*} t_{0} \neq 0$). \rightarrow Resonance
Tisseur-Meerbergen. The quadratic eigenvalue problem. SIAM Rev. 43 (2001)

PEPs with higher (low) degree and moderate size

$$
P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}: \text { Associated with } A_{0} X(t)+A_{1} X^{\prime}(t)+\cdots+A_{k} X^{(d)}(t)=f(t)
$$

PEPs with higher (low) degree and moderate size

$P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}:$ Associated with $A_{0} X(t)+A_{1} X^{\prime}(t)+\cdots+A_{k} X^{(d)}(t)=f(t)$
[27 The solution can be given in terms of the eigenstructure of $P(\lambda)$ (includes e-val/e-vecs).

PEPs with higher (low) degree and moderate size

$P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$: Associated with $A_{0} X(t)+A_{1} X^{\prime}(t)+\cdots+A_{k} X^{(d)}(t)=f(t)$
[27 The solution can be given in terms of the eigenstructure of $P(\lambda)$ (includes e-val/e-vecs).

Some examples:

- Orr-Sommerfeld equation $(d=4)$:

$$
\left[\left(\frac{d^{2}}{d y^{2}}-\lambda^{2}\right)^{2}-i R\left\{(\lambda U-\omega)\left(\frac{d^{2}}{d y^{2}}-\lambda^{2}\right)-\lambda U^{\prime \prime}\right\}\right] \phi=0 .
$$

PEPs with higher (low) degree and moderate size

$P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}:$ Associated with $A_{0} X(t)+A_{1} X^{\prime}(t)+\cdots+A_{k} X^{(d)}(t)=f(t)$
맚ㅇ The solution can be given in terms of the eigenstructure of $P(\lambda)$ (includes e-val/e-vecs).

Some examples:

- Orr-Sommerfeld equation $(d=4)$:

$$
\left[\left(\frac{d^{2}}{d y^{2}}-\lambda^{2}\right)^{2}-i R\left\{(\lambda U-\omega)\left(\frac{d^{2}}{d y^{2}}-\lambda^{2}\right)-\lambda U^{\prime \prime}\right\}\right] \phi=0 .
$$

- Planar waveguide ($\lambda^{4} A_{4}+\cdots+A_{0}$):

$$
\begin{aligned}
A_{1} & =\frac{\delta^{2}}{4} \operatorname{diag}(-1,0,0, \ldots, 0,0,1), \quad A_{3}=\operatorname{diag}(1,0,0, \ldots, 0,0,1), \\
A_{0}(i, j) & =\frac{\delta^{4}}{16}\left(\phi_{i}, \phi_{j}\right) \quad A_{2}(i, j)=\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right)-\left(q \phi_{i}, \phi_{j}\right) \quad A_{4}(i, j)=\left(\phi_{i}, \phi_{j}\right) .
\end{aligned}
$$

PEPs with higher (low) degree and moderate size

$P(\lambda)=\sum_{i=0}^{d} \lambda^{i} A_{i}$: Associated with $A_{0} X(t)+A_{1} X^{\prime}(t)+\cdots+A_{k} X^{(d)}(t)=f(t)$
[27 The solution can be given in terms of the eigenstructure of $P(\lambda)$ (includes e-val/e-vecs).

Some examples:

- Orr-Sommerfeld equation $(d=4)$:

$$
\left[\left(\frac{d^{2}}{d y^{2}}-\lambda^{2}\right)^{2}-i R\left\{(\lambda U-\omega)\left(\frac{d^{2}}{d y^{2}}-\lambda^{2}\right)-\lambda U^{\prime \prime}\right\}\right] \phi=0 .
$$

- Planar waveguide $\left(\lambda^{4} A_{4}+\cdots+A_{0}\right)$:

$$
\begin{aligned}
A_{1} & =\frac{\delta^{2}}{4} \operatorname{diag}(-1,0,0, \ldots, 0,0,1), \quad A_{3}=\operatorname{diag}(1,0,0, \ldots, 0,0,1), \\
A_{0}(i, j) & =\frac{\delta^{4}}{16}\left(\phi_{i}, \phi_{j}\right) \quad A_{2}(i, j)=\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right)-\left(q \phi_{i}, \phi_{j}\right) \quad A_{4}(i, j)=\left(\phi_{i}, \phi_{j}\right) .
\end{aligned}
$$

[0]
Betcke-Higham-Mehrmann-Schröder-Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. ACM TOMS, 39 (2010)

DAEs

- $A+\lambda B=\left[\begin{array}{cc}1+\lambda & 0 \\ 0 & 1\end{array}\right]$ has a infinite e-val.

DAEs

- $A+\lambda B=\left[\begin{array}{cc}1+\lambda & 0 \\ 0 & 1\end{array}\right]$ has a infinite e-val. $A X+B X^{\prime}=f$ gives

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
f_{1}(t) \\
f_{2}(t)
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left.e^{-t}\left(c+\int_{-\infty}^{s} e^{s} f(s) d s\right)\right) \\
f_{2}(t)
\end{array}\right] .
$$

DAEs

- $A+\lambda B=\left[\begin{array}{cc}1+\lambda & 0 \\ 0 & 1\end{array}\right]$ has a infinite e-val. $A X+B X^{\prime}=f$ gives
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t)\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{l}f_{1}(t) \\ f_{2}(t)\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{c}\left.e^{-t}\left(c+\int_{-\infty}^{s} e^{s} f(s) d s\right)\right) \\ f_{2}(t)\end{array}\right]$.
- $A+\lambda B=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ \hline 0 & 0 & \lambda \\ 0 & 0 & 1\end{array}\right]$ is singular.

DAEs

- $A+\lambda B=\left[\begin{array}{cc}1+\lambda & 0 \\ 0 & 1\end{array}\right]$ has a infinite e-val. $A X+B X^{\prime}=f$ gives
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t)\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{l}f_{1}(t) \\ f_{2}(t)\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{c}\left.e^{-t}\left(c+\int_{-\infty}^{s} e^{s} f(s) d s\right)\right) \\ f_{2}(t)\end{array}\right]$.
- $A+\lambda B=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ \hline 0 & 0 & \lambda \\ 0 & 0 & 1\end{array}\right]$ is singular. $A X+B X^{\prime}=f$ gives

$$
\left.\begin{array}{rll}
x_{1}^{\prime}(t)+x_{2}(t) & = & f_{1}(t) \\
x_{3}^{\prime}(t) & = & f_{2}(t) \\
x_{3}(t) & = & f_{3}(t)
\end{array}\right\} \Rightarrow
$$

DAEs

- $A+\lambda B=\left[\begin{array}{cc}1+\lambda & 0 \\ 0 & 1\end{array}\right]$ has a infinite e-val. $A X+B X^{\prime}=f$ gives
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t)\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{l}f_{1}(t) \\ f_{2}(t)\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{c}\left.e^{-t}\left(c+\int_{-\infty}^{s} e^{s} f(s) d s\right)\right) \\ f_{2}(t)\end{array}\right]$.
- $A+\lambda B=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ \hline 0 & 0 & \lambda \\ 0 & 0 & 1\end{array}\right]$ is singular. $A X+B X^{\prime}=f$ gives

$$
\left.\begin{array}{rl}
x_{1}^{\prime}(t)+x_{2}(t) & =f_{1}(t) \\
x_{3}^{\prime}(t) & = \\
f_{2}(t) \\
x_{3}(t) & =f_{3}(t)
\end{array}\right\} \Rightarrow 1 \text { degree of freedom in } x_{1}, x_{2}
$$

DAEs

- $A+\lambda B=\left[\begin{array}{cc}1+\lambda & 0 \\ 0 & 1\end{array}\right]$ has a infinite e-val. $A X+B X^{\prime}=f$ gives
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t)\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{l}f_{1}(t) \\ f_{2}(t)\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{c}\left.e^{-t}\left(c+\int_{-\infty}^{s} e^{s} f(s) d s\right)\right) \\ f_{2}(t)\end{array}\right]$.
- $A+\lambda B=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ \hline 0 & 0 & \lambda \\ 0 & 0 & 1\end{array}\right]$ is singular. $A X+B X^{\prime}=f$ gives

$$
\left.\begin{array}{rl}
x_{1}^{\prime}(t)+x_{2}(t) & =f_{1}(t) \\
x_{3}^{\prime}(t) & = \\
x_{2}(t) & =f_{3}(t)
\end{array}\right\} \Rightarrow \begin{aligned}
1 \text { degree of freedom in } x_{1}, x_{2} \\
f_{3}^{\prime}=f_{2}
\end{aligned}
$$

DAEs

- $A+\lambda B=\left[\begin{array}{cc}1+\lambda & 0 \\ 0 & 1\end{array}\right]$ has a infinite e-val. $A X+B X^{\prime}=f$ gives
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t)\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{l}f_{1}(t) \\ f_{2}(t)\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{c}\left.e^{-t}\left(c+\int_{-\infty}^{s} e^{s} f(s) d s\right)\right) \\ f_{2}(t)\end{array}\right]$.
- $A+\lambda B=\left[\begin{array}{cc|c}\lambda & 1 & 0 \\ \hline 0 & 0 & \lambda \\ 0 & 0 & 1\end{array}\right]$ is singular. $A X+B X^{\prime}=f$ gives

$$
\left.\begin{array}{rl}
x_{1}^{\prime}(t)+x_{2}(t) & =f_{1}(t) \\
x_{3}^{\prime}(t) & =f_{2}(t) \\
x_{3}(t) & =f_{3}(t)
\end{array}\right\} \Rightarrow \begin{aligned}
& 1 \text { degree of freedom in } x_{1}, x_{2} \\
& f_{3}^{\prime}=f_{2}
\end{aligned}
$$

啹 Differential Algebraic Equations (Systems)

REPs

Loaded elastic string: Finite element discretization of a boundary problem describing the eigenvibration of a string with a load of mass m attached by an elastic spring of stiffness k.

$$
R(\lambda) x=\left(A-\lambda B+\frac{\lambda}{\lambda-\sigma} C\right) x=0, \quad \sigma=k / m
$$

with

$$
A=n\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & 2 & -1 \\
& & -1 & 1
\end{array}\right], \quad B=\frac{1}{6 n}\left[\begin{array}{cccc}
4 & 1 & & \\
1 & \ddots & \ddots & \\
& \ddots & 4 & 1 \\
& & 1 & 2
\end{array}\right], \quad C=k\left[\begin{array}{l}
0 \\
\vdots \\
0 \\
1
\end{array}\right]\left[\begin{array}{llll}
0 & \ldots & 0 & 1
\end{array}\right]
$$

(n up to 10^{3}).
围
Betcke-Higham-Mehrmann-Schröder-Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. ACM TOMS, 39 (2010)

REPs

Damped vibration on a viscoelastic structure: A FEM takes the form:

$$
R(\lambda)=\left(\lambda^{2} M+K-\sum_{j=1}^{d} \frac{1}{1+b_{j} \lambda} \Delta K_{j}\right) x=0
$$

with
$d=$ number of regions, $b_{j}=$ relaxation parameters,
$\Delta K_{j}=$ stiffness matrices over each region.
($M, K>0$.)

Mehrmann-Voss. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM, 27 (2004)

Other NLEVPs

Typical example: Look for solutions $x(t)=e^{\lambda t} v$ in a system of 1st order delayed differential equations:

$$
B_{0} x^{\prime}(t)=A_{0} x(t)+A_{1} x(t-\tau) \Longrightarrow\left(\lambda B_{0}-A_{0}-A_{1} e^{-\lambda \tau}\right) v=0
$$

Other NLEVPs

Typical example: Look for solutions $x(t)=e^{\lambda t} v$ in a system of 1st order delayed differential equations:

$$
B_{0} x^{\prime}(t)=A_{0} x(t)+A_{1} x(t-\tau) \Longrightarrow\left(\lambda B_{0}-A_{0}-A_{1} e^{-\lambda \tau}\right) v=0
$$

- The radio-frequency gun cavity problem:

$$
\left[(K-\lambda M)+i \sqrt{\lambda-\sigma_{1}^{2}} W_{1}+i \sqrt{\lambda-\sigma_{2}^{2}} W_{2}\right] v=0
$$

where M, K, W_{1}, W_{2} are real sparse symmetric 9956×9956.

- Bound states in semiconductor devices problems:

where $H, S_{j} \in \mathbb{R}^{16281 \times 16281}, H$ symmetric and S_{j} have low rank.

Other NLEVPs

Typical example: Look for solutions $x(t)=e^{\lambda t} v$ in a system of 1st order delayed differential equations:

$$
B_{0} x^{\prime}(t)=A_{0} x(t)+A_{1} x(t-\tau) \Longrightarrow\left(\lambda B_{0}-A_{0}-A_{1} e^{-\lambda \tau}\right) v=0
$$

- The radio-frequency gun cavity problem:

$$
\left[(K-\lambda M)+i \sqrt{\lambda-\sigma_{1}^{2}} W_{1}+i \sqrt{\lambda-\sigma_{2}^{2}} W_{2}\right] v=0
$$

where M, K, W_{1}, W_{2} are real sparse symmetric 9956×9956.

- Bound states in semiconductor devices problems:

$$
\left[(H-\lambda I)+\sum_{j=0}^{80} e^{i \sqrt{\lambda-\alpha_{j}}} S_{j}\right] v=0
$$

where $H, S_{j} \in \mathbb{R}^{16281 \times 16281}, H$ symmetric and S_{j} have low rank.

MPEPs

- Multiparameter Sturm-Liouville eigenvalue problems:

$$
-\frac{d}{d \xi_{i}}\left(p_{i}\left(\xi_{i}\right) \frac{d}{d \xi_{i}} y_{i}\left(\xi_{i}\right)\right)+q_{i}\left(\xi_{i}\right) y_{i}\left(\xi_{i}\right)=\sum_{j=1}^{k} \lambda_{j} a_{i j}\left(\xi_{i}\right) y_{i}\left(\xi_{i}\right)
$$

Dai. Numerical methods for solving multiparameter eigenvalue problems. Int. J. Comp. Math. 72 (1999).

- Stability of delay-differential equations: From

$$
\lambda B_{0} x=\left(A_{0}+e^{-\lambda \tau} A_{1}\right) x
$$

setting $\mu=e^{-\lambda \tau}$ and, assuming $\lambda=\mathfrak{i} \omega \Rightarrow \bar{\lambda}=-\lambda, \bar{\mu}=\mu^{-1}$ we get

$$
\left\{\begin{array}{ccc}
A_{0} x & = & \lambda B_{0} x-\mu A_{1} x \\
\bar{A}_{1} x & = & -\lambda \mu \bar{B}_{0} y-\mu \bar{A}_{0} y .
\end{array}\right.
$$

目
Jarlebring-Hochstenbach. Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations. Linear Algebra Appl. 431 (2009).

PEPs with large degree and/or large size

- PEPs used to approximate other NLEVPs:
- Galerkin-type discretization of a 3D Laplace e-val problem with boundary conditions + interpolating Chebyshev polynomials: $3 \leq d \leq 30$.
- Finite element/boundary element discretization of a 3D fluid-structure interaction problem: $d=11, n=6223$.
- Loaded-string from NLEVP collection + Chebyshev interpolation: $d=20$, $n=10^{4}$.
Kressner-Román. Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Lin. Algebra Appl. 21 (2014).

PEPs with large degree and/or large size

- PEPs used to approximate other NLEVPs:
- Galerkin-type discretization of a 3D Laplace e-val problem with boundary conditions + interpolating Chebyshev polynomials: $3 \leq d \leq 30$.
- Finite element/boundary element discretization of a 3D fluid-structure interaction problem: $d=11, n=6223$.
- Loaded-string from NLEVP collection + Chebyshev interpolation: $d=20$, $n=10^{4}$.

殏Kressner-Román. Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Lin. Algebra Appl. 21 (2014).

- Large-scale problems:

Brake squeal simulation $n \approx 10^{6}$
(V. Mehrmann, Tue. 11:00h)

T
Gräbner-Mehrmann-Quraishi-Schröder-von Wagner. Numerical methods for parametric model reduction in the simulation of disk brake squeal. ZAMM, 96 (2016).

In this MS

Other applications:

- Dynamics of systems with radiation and delay (Bindel, Tue. 12:30).
- Electronic structure calculations (Bai, Tue. 17:00).
- Quantum mechanics and machine learning (Upadhyaya, Wed. 11:00).
- Optimization problems (Lu, Wed. 15:30).
- Computer-aided geometric design (González-Vega, Wed. 16:00).
- Computational nanoelectronics (Miedlar, Wed. 17:30).

Outline

(1) Basic notions

(2) Applications
(3) How to solve them?

- Small-Moderate size
- Large scale

PEPs

For small/medium size: LINEARIZATION:

Lizes Linz's preserve e-vals (and multiplicities), but NOT e-vecs, minimal bases and minimal indices.

Linearization: example

$$
F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{m \times n}
$$

Frobenius companion lin'z of $P(\lambda)$:

$$
F(\lambda):=\left[\begin{array}{ccccc}
\lambda A_{d}+A_{d-1} & A_{d-2} & \cdots & A_{1} & A_{0} \\
-I_{n} & \lambda I_{n} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{n} & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times n d}
$$

Linearization: example

$$
F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{m \times n}
$$

Frobenius companion lin'z of $P(\lambda)$:

$$
F(\lambda):=\left[\begin{array}{ccccc}
\lambda A_{d}+A_{d-1} & A_{d-2} & \cdots & A_{1} & A_{0} \\
-I_{n} & \lambda I_{n} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{n} & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times n d}
$$

四 There are many other linearizations !!!!

Linearization: example

$F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{m \times n}$
Frobenius companion lin'z of $P(\lambda)$:

$$
F(\lambda):=\left[\begin{array}{ccccc}
\lambda A_{d}+A_{d-1} & A_{d-2} & \cdots & A_{1} & A_{0} \\
-I_{n} & \lambda I_{n} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{n} & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times n d}
$$

搌 There are many other linearizations !!!!
啹 Computational issues still open
(conditioning, stability).

Linearization: example

$F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{m \times n}$
Frobenius companion lin'z of $P(\lambda)$:

$$
F(\lambda):=\left[\begin{array}{ccccc}
\lambda A_{d}+A_{d-1} & A_{d-2} & \cdots & A_{1} & A_{0} \\
-I_{n} & \lambda I_{n} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{n} & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times n d}
$$

唌 There are many other linearizations !!!!
哭 Computational issues still open (conditioning, stability).
(Pérez-Álvaro, Today, 18:00; Dmytryshyn, Wed. 11:30; Hernando Wed. 12:00; Saltenberger, Wed. 12:30).

Linearization: example

$F(\lambda)=A_{0}+\lambda A_{1}+\cdots+\lambda^{d} A_{d}, \quad A_{0}, A_{1}, \ldots, A_{d} \in \mathbb{C}^{m \times n}$
Frobenius companion lin'z of $P(\lambda)$:

$$
F(\lambda):=\left[\begin{array}{ccccc}
\lambda A_{d}+A_{d-1} & A_{d-2} & \cdots & A_{1} & A_{0} \\
-I_{n} & \lambda I_{n} & & & \\
& \ddots & \ddots & & \\
& & \ddots & \lambda I_{n} & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times n d}
$$

还 There are many other linearizations !!!!
哭 Computational issues still open (conditioning, stability).
(Pérez-Álvaro, Today, 18:00; Dmytryshyn, Wed. 11:30; Hernando Wed. 12:00; Saltenberger, Wed. 12:30).
$1 / 3$ The size of the problem increases very much !!!!

REPs

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of $F(\lambda)$ for any rational function F.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

REPs

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of $F(\lambda)$ for any rational function F.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

REPs

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of $F(\lambda)$ for any rational function F.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

REPs

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of $F(\lambda)$ for any rational function F.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11],
[Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

REPs

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of $F(\lambda)$ for any rational function F.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).
(Van Dooren, Tue. 14:30; Quintana, Tue. 15:00; Hollister Tue. 15:30).

Other NLEVPs

$$
\begin{array}{llll}
F: & \Omega & \rightarrow & \mathbb{C}^{n \times n} \\
& \lambda & \mapsto & F(\lambda)
\end{array}
$$

- Newton-like (iterative) methods (to solve $\operatorname{det} F(\lambda)=0$ and then compute the e-vecs).

Other NLEVPs

$\begin{array}{cccc}F: & \Omega & \rightarrow & \mathbb{C}^{n \times n} \\ & \lambda & \mapsto & F(\lambda)\end{array}$

- Newton-like (iterative) methods (to solve $\operatorname{det} F(\lambda)=0$ and then compute the e-vecs).
- Methods based on the two-step strategy:
(1) Approximate $F(z)$ by a rational matrix $G(z)$ with poles outside Ω.
(2) Solve the REP associated to $G(z)$.

Other NLEVPs

$F: \begin{array}{ccc}\Omega & \rightarrow & \mathbb{C}^{n \times n} \\ \lambda & \mapsto & F(\lambda)\end{array}$

- Newton-like (iterative) methods (to solve $\operatorname{det} F(\lambda)=0$ and then compute the e-vecs).
- Methods based on the two-step strategy:
(1) Approximate $F(z)$ by a rational matrix $G(z)$ with poles outside Ω.
(2) Solve the REP associated to $G(z)$.
- Other strategies based on Contour Integration: Take $\Omega_{1} \subseteq \Omega$, with $\left\{\lambda_{1}, \ldots, \lambda_{s}\right\} \subseteq \Omega_{1}$, and Γ a contour enclosing $\lambda_{1}, \ldots, \lambda_{s}$. Then

$$
\frac{1}{2 \pi \mathfrak{i}} \int_{\Gamma} f(z) F(z)^{-1} d z=V f(J) W^{*}
$$

(Keldysh)
for $f: \Omega_{1} \rightarrow \mathbb{C}$ holomorphic.
啒 Use different f 's to obtain J, V, W (Beyn, Sakurai-etal, FEAST [Gavin-Miedlar-Polizzi'18], ...).

Other NLEVPs

$F:$	Ω	\rightarrow	$\mathbb{C}^{n \times n}$
λ	\mapsto	$F(\lambda)$	

> (Telen, Today 18:30; Embree, Wed. 14:30; Guguercin Wed. 15:00; Miedlar, Wed. 17:30)

- Newton-like (iterative) methods (to solve $\operatorname{det} F(\lambda)=0$ and then compute the e-vecs).
- Methods based on the two-step strategy:
(1) Approximate $F(z)$ by a rational matrix $G(z)$ with poles outside Ω.
(2) Solve the REP associated to $G(z)$.
- Other strategies based on Contour Integration: Take $\Omega_{1} \subseteq \Omega$, with $\left\{\lambda_{1}, \ldots, \lambda_{s}\right\} \subseteq \Omega_{1}$, and Γ a contour enclosing $\lambda_{1}, \ldots, \lambda_{s}$. Then

$$
\frac{1}{2 \pi \mathfrak{i}} \int_{\Gamma} f(z) F(z)^{-1} d z=V f(J) W^{*}
$$

(Keldysh)
for $f: \Omega_{1} \rightarrow \mathbb{C}$ holomorphic.
啹 Use different f 's to obtain J, V, W (Beyn, Sakurai-etal, FEAST [Gavin-Miedlar-Polizzi'18], ...).

Algorithms for large-scale problems

(1) PEPs:

- Model reduction: Project the problem into a subspace of much smaller dimension.
- Large-scale methods (Krylov-type) for GEPs over a linearization that take advantage of the structure of the lin'z:
- TOAR [Su-Bai-Lu'08, Kressner-Román'14].
- CORK [Van Beeumen-Michiels-Meerbergen'15].
(2) REPs: RCORK [Dopico-González Pizarro'19].
(Meerbergen, Tue. 16:00).

Try to preserve the structure!

In many cases, $F(\lambda)$ coming from applications has some symmetry structure. E. g.:

Palindromic matrix polynomials
(arising in the vibration analysis
of rails excited by high speed trains):

$$
\begin{gathered}
P(\lambda)=\lambda^{2} A_{2}+\lambda A_{1}+A_{0} \\
A_{0}^{\top}=A_{2}, A_{1}^{\top}=A_{1}
\end{gathered}
$$

Try to preserve the structure!

In many cases, $F(\lambda)$ coming from applications has some symmetry structure. E. g.:

Palindromic matrix polynomials (arising in the vibration analysis of rails excited by high speed trains):

$$
\begin{gathered}
P(\lambda)=\lambda^{2} A_{2}+\lambda A_{1}+A_{0} \\
A_{0}^{\top}=A_{2}, A_{1}^{\top}=A_{1}
\end{gathered}
$$

This symmetry implies some symmetries in the eigenstructure.

Try to preserve the structure!

In many cases, $F(\lambda)$ coming from applications has some symmetry structure. E. g.:

Palindromic matrix polynomials (arising in the vibration analysis of rails excited by high speed trains):

$$
\begin{gathered}
P(\lambda)=\lambda^{2} A_{2}+\lambda A_{1}+A_{0}, \\
A_{0}^{\top}=A_{2}, A_{1}^{\top}=A_{1} .
\end{gathered}
$$

This symmetry implies some symmetries in the eigenstructure.
哏 Rounding errors can destroy this symmetry, if we don't use tools that preserve the symmetry structure. E. g.: the linearization:

$$
\left[\begin{array}{cc}
\lambda A_{2}+A_{1} & A_{0} \\
-I & \lambda I
\end{array}\right] .
$$

Some available software

(1) For small-moderate size PEPs: polyeig (MATLAB), quadeig (QEPs) [Hammarling-Munro-Tisseur'13].

Large size NLEPs:
(2) NLEIGS [Güttel-Van Beeumen-Meerbergen-Michiels'14].
(3) Automatic Rational Approximation and Linearization of NEPs
[Lietaert-Pérez-Vandereycken-Meerbergen'18].
(9) Parallel implementations of TOAR for any degree in SLEPc [Roman-etal'16].
(Tisseur, Wed. 17:00; Román, Wed. 18:00; Jarlebring, Wed. 18:30).

Some surveys on NLEVPs

\square S. Güttel, F. Tisseur.

The nonlinear eigenvalue problem.
Acta Numer. (2017) 1-94.V. Mehrmann, H. Voss.

Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods.
GAMM, 27 (2004).

Some surveys on NLEVPs

围 S. Güttel, F. Tisseur.
The nonlinear eigenvalue problem.
Acta Numer. (2017) 1-94.

- V. Mehrmann, H. Voss.

Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods.
GAMM, 27 (2004).

THANK YOU!!! - iGRASIAS!

