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Basic notions

NLEVP: definition

NLEVP Given /0 6= Ω⊆ C (open), and:

F : Ω → Cn×n

λ 7→ [Fij (λ )]

Definition (right and left eigenpair)
(λ0,v) right eigenpair of F if F (λ0)v = 0 (v 6= 0),
(λ0,v) left eigenpair of F if w∗F (λ0) = 0 (w 6= 0).

(λ0 ∈ C: eigenvalue, v ∈ Cn: right eigenvector, w ∈ Cn: left eigenvector).

Notation: Λ(F ) = {λ ∈ C : λ is an e-val of F} (spectrum).
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Basic notions

MPEP: definition

MPEP In this case,

(Alam, Tue. 11:30; Shao, Tue. 12:00).

W : Ω⊆ Cm → Cn1×n1 ×·· ·×Cnm×nm

λ 7→ W (λ ) := (W1(λ ), . . . ,Wm(λ ))

For:
x := x1⊗·· ·⊗xm ∈ Cn1 ⊗·· ·⊗Cnm

set

W (λ )x := (W1(λ )x1, . . . ,Wn(λ )xn), x∗W (λ ) := (x∗1W1(λ ), . . . ,x∗mWm(λ )).

Then

(λ0,x) is a right eigenpair of W if W (λ0)x = 0
(λ0,y) is a left eigenpair of W if y∗W (λ0) = 0

(λ0 ∈ Cm is an eigenvalue, x is a right eigenvector, and y is a left eigenvector).
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Basic notions

Some particular (but relevant) cases
1 Standard e-val problem: F (λ ) = A−λ I, A ∈ Cn×n.
2 Generalized e-val problem: F (λ ) = A−λB, A,B ∈ Cn×n.
3 Polynomial e-val problem (PEP): Fij (λ ) = pij (λ ), a polynomial in λ .

F (λ ) = A0 + λA1 + · · ·+ λ
d Ad , A0,A1, . . . ,Ad ∈ Cn×n.

4 Rational e-val problem (REP): Fij (λ ) =
pij (λ )

qij (λ )
, a rational function in λ .

F (λ ) = P(λ ) + C(λ )A(λ )−1B(λ ) or F (λ ) = P(λ ) + Rsp(λ ),

with P,C,A,B matrix polynomials (A nonsingular), and Rsp strictly proper (degpij < degqij ).

5 In general: F : Ω→ Cn×n holomorphic.
6 E-vec dependent NLEVPs: F (V )V = V Λ, with F ∈ Cn×n, V ∈ Cn×k (with

orthonormal columns), Λ ∈ Ck×k (diagonal)

V ∗F (V )V = Λ⇒ Λ contains some e-vals of F (V ).

(Bai, Wed. 17:00; Truhar, Tue. 17:30).
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Basic notions

NLEVP vs Standard e-val problem

F (λ ) can be singular: detF (λ )≡ 0 requires another def’n of
e-val/e-vec.
(In most talks, but not all, F (λ ) is regular, detF (λ ) 6≡ 0).

E-vecs of different e-vals are not necessarily linearly independent:[
1
0

]
is an evec of

[
λ (λ−1) 0

0 1

]
for λ = 0,1.

Ω\Λ(F ) is open.

If F is regular, Λ(F ) = {λ ∈ Ω : detF (λ ) = 0}. Then any λ0 ∈ Λ(F ) is
isolated (i.e., there is an open set U ⊆ Ω : U ∩Λ(F ) = {λ0}).

There can be an infinite e-val: When G(λ ) := F (1/λ ) has a zero e-val.
(For polynomials, P(λ ), of degree d , we consider λ d P(1/λ )).

F (λ ) may have poles.

Algebraic and geometric multiplicities, Jordan chains, etc. can also be
defined. (Bora, after this talk; Marcaida, Tue. 18:00).
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Basic notions

Regular vs Singular (matrix polynomials)

If P(λ ) = ∑
d
i=0 λ iAi is singular, then it has right and left minimal bases and

right and left minimal indices:

Related to the fact that P(λ ) has non-trivial left and/or right null-spaces
over the field C(λ ) of rational functions:

N`(P) :=
{

y(λ )> ∈ C(λ )1×m : y(λ )>P(λ )≡ 0>
}
,

Nr (P) :=
{

x(λ ) ∈ C(λ )n×1 : P(λ )x(λ )≡ 0
}
,

which have bases consisting entirely of vector polynomials.

Looking for polynomials bases with “minimal degree”, in a certain sense,
leads to the concepts of minimal bases and indices.

Eigenstructure:
{

Eigenvalues (with multiplicities) + Minimal indices
Eigenvectors/Jordan chains + minimal bases
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Applications

Quadratic PEPs
Usually associated with Mx ′′(t) + Cx ′(t) + Kx(t) = f (t) (M,C,K ∈ Cn×n,x(t) ∈ C[t]n).

If f (t) = f0eiωt (harmonic force with frequency ω): xp(t) = eiωt
2m

∑
j=1

y∗j f0
iω−λj

xj .

If iω ≈ λj , then
y∗j f0

iω−λj
>> 1 (provided y∗j f0 6= 0).

→ Resonance

Tisseur–Meerbergen. The quadratic eigenvalue problem. SIAM Rev. 43 (2001)
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Applications

Quadratic PEPs
Usually associated with Mx ′′(t) + Cx ′(t) + Kx(t) = f (t) (M,C,K ∈ Cn×n,x(t) ∈ C[t]n).

If all e-vals of Q(λ ) := λ 2M(λ ) + λC + K are semisimple and finite, set

Λ := diag(λ1, . . . ,λ2n) (e-vals),
X :=

[
x1 . . . x2n

]
(right e-vecs),

Y :=
[

y1 . . . y2n
]

(left e-vecs).

Then the solution of Mx ′′(t) + Cx ′(t) + Kx(t) = f (t) is

x(t) = XeΛtc +
∫ t

−∞

XeΛ(t−s)Y ∗f (s)ds, c ∈ Cn arbitrary.

If f (t) = f0eiωt (harmonic force with frequency ω): xp(t) = eiωt
2m

∑
j=1

y∗j f0
iω−λj

xj .

If iω ≈ λj , then
y∗j f0

iω−λj
>> 1 (provided y∗j f0 6= 0).

→ Resonance

Tisseur–Meerbergen. The quadratic eigenvalue problem. SIAM Rev. 43 (2001)
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Applications

PEPs with higher (low) degree and moderate size

P(λ ) = ∑
d
i=0 λ iAi : Associated with A0X (t) + A1X ′(t) + · · ·+ Ak X (d)(t) = f (t)

� The solution can be given in terms of the eigenstructure of P(λ )
(includes e-val/e-vecs).

Some examples:

Orr-Sommerfeld equation (d = 4):

Planar waveguide (λ 4A4 + · · ·+ A0):

Betcke-Higham-Mehrmann-Schröder-Tisseur. NLEVP: A collection of nonlinear eigenvalue problems.
ACM TOMS, 39 (2010)
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Applications

DAEs

A + λB =

[
1 + λ 0

0 1

]
has a infinite e-val.

AX + BX ′ = f gives

[
1 0
0 0

][
x ′1(t)
x ′2(t)

]
+

[
1 0
0 1

][
x1(t)
x2(t)

]
=

[
f1(t)
f2(t)

]
⇒
[
x1(t)
x2(t)

]
=

[
e−t (c +

∫ s
−∞

esf (s)ds))
f2(t)

]
.

A + λB =

 0
0 0
0 0

 is singular.

AX + BX ′ = f gives

x ′1(t) + x2(t) = f1(t)
x ′3(t) = f2(t)
x3(t) = f3(t)

⇒

1 degree of freedom in x1,x2
f ′3 = f2

� Differential Algebraic Equations (Systems)
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Applications

REPs

Loaded elastic string: Finite element discretization of a boundary problem describing the

eigenvibration of a string with a load of mass m attached by an elastic spring of stiffness k .

R(λ )x =

(
A−λB +

λ

λ −σ
C
)

x = 0, σ = k/m

with

A = n


2 −1

−1
. . .

. . .

. . . 2 −1
−1 1

 , B =
1

6n


4 1

1
. . .

. . .

. . . 4 1
1 2

 , C = k

0
...
0
1

 [0 . . . 0 1]

(n up to 103).

Betcke-Higham-Mehrmann-Schröder-Tisseur. NLEVP: A collection of nonlinear eigenvalue problems.
ACM TOMS, 39 (2010)
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Applications

REPs

Damped vibration on a viscoelastic structure: A FEM takes the form:

R(λ ) =

(
λ

2M + K −
d

∑
j=1

1
1 + bjλ

∆Kj

)
x = 0,

with

d = number of regions,
bj =relaxation parameters,
∆Kj =stiffness matrices over each region.

(M,K > 0.)

Mehrmann-Voss. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods.
GAMM, 27 (2004)
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Applications

Other NLEVPs

Typical example: Look for solutions x(t) = eλ tv in a system of 1st order
delayed differential equations:

B0x ′(t) = A0x(t) + A1x(t− τ) =⇒ (λB0−A0−A1e−λτ )v = 0

The radio-frequency gun cavity problem:[
(K −λM) + i

√
λ −σ2

1 W1 + i
√

λ −σ2
2 W2

]
v = 0,

where M,K ,W1,W2 are real sparse symmetric 9956×9956.
Bound states in semiconductor devices problems:[

(H−λ I) +
80

∑
j=0

ei
√

λ−αj Sj

]
v = 0,

where H,Sj ∈ R16281×16281, H symmetric and Sj have low rank.
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Applications

MPEPs

Multiparameter Sturm-Liouville eigenvalue problems:

Dai. Numerical methods for solving multiparameter eigenvalue problems. Int. J. Comp. Math. 72
(1999).

Stability of delay-differential equations: From

λB0x = (A0 + e−λτA1)x

setting µ = e−λτ and, assuming λ = iω ⇒ λ =−λ ,µ = µ−1 we get{
A0x = λB0x −µA1x
A1x = −λ µB0y −µA0y .

Jarlebring-Hochstenbach. Polynomial two-parameter eigenvalue problems and matrix pencil
methods for stability of delay-differential equations. Linear Algebra Appl. 431 (2009).
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Applications

PEPs with large degree and/or large size

PEPs used to approximate other NLEVPs:
Galerkin-type discretization of a 3D Laplace e-val problem with boundary
conditions + interpolating Chebyshev polynomials: 3≤ d ≤ 30.
Finite element/boundary element discretization of a 3D fluid-structure
interaction problem: d = 11, n = 6223.
Loaded-string from NLEVP collection + Chebyshev interpolation: d = 20,
n = 104.
Kressner–Román. Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in
Chebyshev basis. Numer. Lin. Algebra Appl. 21 (2014).

Large-scale problems:

Brake squeal simulation
n≈ 106

(V. Mehrmann, Tue. 11:00h)

Gräbner–Mehrmann–Quraishi–Schröder–von Wagner. Numerical methods for parametric model
reduction in the simulation of disk brake squeal. ZAMM, 96 (2016).

Fernando De Terán (UC3M) A survey on NLEVPs and MPEPs ICIAM2019 16 / 26



Applications

PEPs with large degree and/or large size

PEPs used to approximate other NLEVPs:
Galerkin-type discretization of a 3D Laplace e-val problem with boundary
conditions + interpolating Chebyshev polynomials: 3≤ d ≤ 30.
Finite element/boundary element discretization of a 3D fluid-structure
interaction problem: d = 11, n = 6223.
Loaded-string from NLEVP collection + Chebyshev interpolation: d = 20,
n = 104.
Kressner–Román. Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in
Chebyshev basis. Numer. Lin. Algebra Appl. 21 (2014).

Large-scale problems:

Brake squeal simulation
n≈ 106

(V. Mehrmann, Tue. 11:00h)

Gräbner–Mehrmann–Quraishi–Schröder–von Wagner. Numerical methods for parametric model
reduction in the simulation of disk brake squeal. ZAMM, 96 (2016).

Fernando De Terán (UC3M) A survey on NLEVPs and MPEPs ICIAM2019 16 / 26



Applications

In this MS

Other applications:

Dynamics of systems with radiation and delay (Bindel, Tue. 12:30).

Electronic structure calculations (Bai, Tue. 17:00).

Quantum mechanics and machine learning (Upadhyaya, Wed. 11:00).

Optimization problems (Lu, Wed. 15:30).

Computer-aided geometric design (González-Vega, Wed. 16:00).

Computational nanoelectronics (Miedlar, Wed. 17:30).
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How to solve them?

Outline

1 Basic notions

2 Applications

3 How to solve them?
Small-Moderate size
Large scale
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How to solve them? Small-Moderate size

PEPs

For small/medium size: LINEARIZATION:

PEP

GEP

Eigenstructure
of GEP

Eigenstructure
of PEP

solver

linearization

Stable algorithms:
QZ (polyeig)
GUPTRI

recovery
formulas

?

� Linz’s preserve e-vals (and multiplicities), but NOT e-vecs, minimal bases
and minimal indices.
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How to solve them? Small-Moderate size

Linearization: example

F (λ ) = A0 + λA1 + · · ·+ λ d Ad , A0,A1, . . . ,Ad ∈ Cm×n

Frobenius companion lin’z of P(λ ):

F (λ ) :=


λAd + Ad−1 Ad−2 · · · A1 A0
−In λ In

. . .
. . .

. . . λ In
−In λ In

 ∈ C[λ ](m+n(d−1))×nd

� There are many other linearizations !!!!
� Computational issues still open
(conditioning, stability).

Look for the
best linearization

(Pérez-Álvaro, Today, 18:00; Dmytryshyn, Wed. 11:30; Hernando Wed. 12:00; Saltenberger, Wed. 12:30).

D The size of the problem increases very much !!!!
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How to solve them? Small-Moderate size

REPs

Linearization is also the standard tool for small/medium size problems.

However, the situation is more complicated, due to the presence of
denominators.

No explicit symbolic constructions exist whose e-vals coincide with those
of F (λ ) for any rational function F .

Theoretical background goes back to the 1970’s in Control Theory
(Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai’11],

[Amparan-Marcaida-Dopico-Zaballa’18], [Dopico-Quintana-VanDooren]).

(Van Dooren, Tue. 14:30; Quintana, Tue. 15:00; Hollister Tue. 15:30).
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How to solve them? Small-Moderate size

Other NLEVPs
F : Ω → Cn×n

λ 7→ F (λ)

(Telen, Today 18:30; Embree, Wed. 14:30;
Guguercin Wed. 15:00; Miedlar, Wed. 17:30)

Newton-like (iterative) methods (to solve detF (λ ) = 0 and then compute
the e-vecs).

Methods based on the two-step strategy:
1 Approximate F (z) by a rational matrix G(z) with poles outside Ω.

2 Solve the REP associated to G(z).

Other strategies based on Contour Integration: Take Ω1 ⊆ Ω, with
{λ1, . . . ,λs} ⊆ Ω1, and Γ a contour enclosing λ1, . . . ,λs. Then

1
2πi

∫
Γ

f (z)F (z)−1dz = Vf (J)W ∗, (Keldysh)

for f : Ω1→ C holomorphic.

� Use different f ’s to obtain J,V ,W (Beyn, Sakurai-etal, FEAST

[Gavin-Miedlar-Polizzi’18], ...).
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How to solve them? Large scale

Algorithms for large-scale problems

1 PEPs:
Model reduction: Project the problem into a subspace of much smaller
dimension.

Large-scale methods (Krylov-type) for GEPs over a linearization that take
advantage of the structure of the lin’z:

TOAR [Su-Bai-Lu’08, Kressner-Román’14].
CORK [Van Beeumen-Michiels-Meerbergen’15].

2 REPs: RCORK [Dopico-González Pizarro’19].

(Meerbergen, Tue. 16:00).
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How to solve them? Large scale

Try to preserve the structure!
In many cases, F (λ ) coming from applications has some symmetry
structure. E. g.:

Palindromic matrix polynomials
(arising in the vibration analysis

of rails excited by high speed trains):
P(λ ) = λ 2A2 + λA1 + A0,

A>0 = A2,A>1 = A1.

This symmetry implies some symmetries in the eigenstructure

.

� Rounding errors can destroy this symmetry, if we don’t use tools that
preserve the symmetry structure. E. g.: the linearization:[

λA2 + A1 A0
−I λ I

]
.
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How to solve them? Large scale

Some available software

1 For small-moderate size PEPs: polyeig (MATLAB), quadeig (QEPs)
[Hammarling-Munro-Tisseur’13].

Large size NLEPs:

2 NLEIGS [Güttel-Van Beeumen-Meerbergen-Michiels’14].
3 Automatic Rational Approximation and Linearization of NEPs

[Lietaert-Pérez-Vandereycken-Meerbergen’18].
4 Parallel implementations of TOAR for any degree in SLEPc [Roman-etal’16].

(Tisseur, Wed. 17:00; Román, Wed. 18:00; Jarlebring, Wed. 18:30).

Fernando De Terán (UC3M) A survey on NLEVPs and MPEPs ICIAM2019 25 / 26



Some surveys on NLEVPs

S. Güttel, F. Tisseur.
The nonlinear eigenvalue problem.
Acta Numer. (2017) 1–94.

V. Mehrmann, H. Voss.
Nonlinear eigenvalue problems: a challenge for modern eigenvalue
methods.
GAMM, 27 (2004).

THANK YOU!!! – ¡GRACIAS!
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