uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

A survey on NLEVPs and multiparameter eigenvalue problems

Fernando De Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

ICIAM2019, Valencia, July 15, 2019

Bow to solve them?

- Small-Moderate size
- Large scale

Outline

2 Applications

How to solve them?

- Small-Moderate size
- Large scale

-

NLEVP: definition

Given $\emptyset \neq \Omega \subseteq \mathbb{C}$ (open), and:

$$egin{array}{rcl} F:&\Omega& o&\mathbb{C}^{n imes n}\ \lambda&\mapsto&[F_{ij}(\lambda)] \end{array}$$

Definition (right and left eigenpair)

 (λ_0, v) right eigenpair of *F* if $F(\lambda_0)v = 0$ $(v \neq 0)$, (λ_0, v) left eigenpair of *F* if $w^*F(\lambda_0) = 0$ $(w \neq 0)$.

 $(\lambda_0 \in \mathbb{C}: eigenvalue, v \in \mathbb{C}^n: right eigenvector, w \in \mathbb{C}^n: left eigenvector).$

NLEVP: definition

Given $\emptyset \neq \Omega \subseteq \mathbb{C}$ (open), and:

$$egin{array}{rcl} F:&\Omega& o&\mathbb{C}^{n imes n}\ \lambda&\mapsto&[F_{ij}(\lambda)] \end{array}$$

Definition (right and left eigenpair)

 (λ_0, v) right eigenpair of *F* if $F(\lambda_0)v = 0$ $(v \neq 0)$, (λ_0, v) left eigenpair of *F* if $w^*F(\lambda_0) = 0$ $(w \neq 0)$.

 $(\lambda_0 \in \mathbb{C}: eigenvalue, v \in \mathbb{C}^n: right eigenvector, w \in \mathbb{C}^n: left eigenvector).$

Notation: $\Lambda(F) = \{\lambda \in \mathbb{C} : \lambda \text{ is an e-val of } F\}$ (spectrum).

MPEP: definition

In this case,

$$\begin{array}{cccc} W: & \Omega \subseteq \mathbb{C}^m & \to & \mathbb{C}^{n_1 \times n_1} \times \cdots \times \mathbb{C}^{n_m \times n_m} \\ \lambda & \mapsto & W(\lambda) := (W_1(\lambda), \dots, W_m(\lambda)) \end{array}$$

For:

MPEP

$$x := x_1 \otimes \cdots \otimes x_m \in \mathbb{C}^{n_1} \otimes \cdots \otimes \mathbb{C}^{n_m}$$

set

$$W(\lambda)x := (W_1(\lambda)x_1, \ldots, W_n(\lambda)x_n), \qquad x^*W(\lambda) := (x_1^*W_1(\lambda), \ldots, x_m^*W_m(\lambda)).$$

Then

 (λ_0, x) is a right eigenpair of W if $W(\lambda_0)x = 0$ (λ_0, y) is a left eigenpair of W if $y^*W(\lambda_0) = 0$

 $(\lambda_0 \in \mathbb{C}^m$ is an eigenvalue, x is a right eigenvector, and y is a left eigenvector).

Fernando De Terán (UC3M)

MPEP: definition

MPEP

In this case,

(Alam, Tue. 11:30; Shao, Tue. 12:00).

$$\begin{array}{cccc} W: & \Omega \subseteq \mathbb{C}^m & \to & \mathbb{C}^{n_1 \times n_1} \times \cdots \times \mathbb{C}^{n_m \times n_m} \\ \lambda & \mapsto & W(\lambda) := (W_1(\lambda), \dots, W_m(\lambda)) \end{array}$$

For:

$$x := x_1 \otimes \cdots \otimes x_m \in \mathbb{C}^{n_1} \otimes \cdots \otimes \mathbb{C}^{n_m}$$

set

$$W(\lambda)x := (W_1(\lambda)x_1, \ldots, W_n(\lambda)x_n), \qquad x^*W(\lambda) := (x_1^*W_1(\lambda), \ldots, x_m^*W_m(\lambda)).$$

Then

 (λ_0, x) is a right eigenpair of W if $W(\lambda_0)x = 0$ (λ_0, y) is a left eigenpair of W if $y^*W(\lambda_0) = 0$

 $(\lambda_0 \in \mathbb{C}^m$ is an eigenvalue, x is a right eigenvector, and y is a left eigenvector).

Some particular (but relevant) cases

- Standard e-val problem: $F(\lambda) = A \lambda I$, $A \in \mathbb{C}^{n \times n}$.
- ⓐ Generalized e-val problem: $F(\lambda) = A \lambda B$, $A, B \in \mathbb{C}^{n \times n}$.
- ③ Polynomial e-val problem (PEP): $F_{ij}(\lambda) = p_{ij}(\lambda)$, a polynomial in λ .

 $F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \qquad A_0, A_1, \dots, A_d \in \mathbb{C}^{n \times n}.$

3 Rational e-val problem (REP): $F_{ij}(\lambda) = \frac{p_{ij}(\lambda)}{q_{ij}(\lambda)}$, a rational function in λ .

 $F(\lambda) = P(\lambda) + C(\lambda)A(\lambda)^{-1}B(\lambda)$ or $F(\lambda) = P(\lambda) + R_{sp}(\lambda)$,

with P, C, A, B matrix polynomials (A nonsingular), and R_{sp} strictly proper (deg p_{ij} < deg q_{ij}).

- In general: *F* : Ω → $\mathbb{C}^{n \times n}$ holomorphic.
- E-vec dependent NLEVPs: $F(V)V = V\Lambda$, with $F \in \mathbb{C}^{n \times n}$, $V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

 $V^*F(V)V = \Lambda \Rightarrow \Lambda$ contains some e-vals of F(V).

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖圖 のQ@

Some particular (but relevant) cases

- Standard e-val problem: $F(\lambda) = A \lambda I$, $A \in \mathbb{C}^{n \times n}$.
- **(2)** Generalized e-val problem: $F(\lambda) = A \lambda B$, $A, B \in \mathbb{C}^{n \times n}$.
- O Polynomial e-val problem (PEP): $F_{ij}(\lambda) = p_{ij}(\lambda)$, a polynomial in λ .

 $F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \qquad A_0, A_1, \dots, A_d \in \mathbb{C}^{n \times n}.$

③ Rational e-val problem (REP): $F_{ij}(\lambda) = \frac{p_{ij}(\lambda)}{q_{ij}(\lambda)}$, a rational function in λ .

 $F(\lambda) = P(\lambda) + C(\lambda)A(\lambda)^{-1}B(\lambda)$ or $F(\lambda) = P(\lambda) + R_{sp}(\lambda)$,

with P, C, A, B matrix polynomials (A nonsingular), and R_{sp} strictly proper (deg p_{ij} < deg q_{ij}).

- **In general:** *F* : $\Omega \to \mathbb{C}^{n \times n}$ holomorphic.
- E-vec dependent NLEVPs: $F(V)V = V\Lambda$, with $F \in \mathbb{C}^{n \times n}$, $V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

 $V^*F(V)V = \Lambda \Rightarrow \Lambda$ contains some e-vals of F(V).

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖圖 のQ@

Some particular (but relevant) cases

- Standard e-val problem: $F(\lambda) = A \lambda I$, $A \in \mathbb{C}^{n \times n}$.
- **(a)** Generalized e-val problem: $F(\lambda) = A \lambda B$, $A, B \in \mathbb{C}^{n \times n}$.
- Solution Polynomial e-val problem (PEP): $F_{ij}(\lambda) = p_{ij}(\lambda)$, a polynomial in λ .

 $F(\lambda) = A_0 + \lambda A_1 + \cdots + \lambda^d A_d, \qquad A_0, A_1, \ldots, A_d \in \mathbb{C}^{n \times n}.$

ⓐ Rational e-val problem (REP): $F_{ij}(\lambda) = \frac{p_{ij}(\lambda)}{q_{ij}(\lambda)}$, a rational function in λ .

 $F(\lambda) = P(\lambda) + C(\lambda)A(\lambda)^{-1}B(\lambda)$ or $F(\lambda) = P(\lambda) + R_{sp}(\lambda)$,

with P, C, A, B matrix polynomials (A nonsingular), and R_{sp} strictly proper (deg p_{ij} < deg q_{ij}).

- In general: *F* : Ω → $\mathbb{C}^{n \times n}$ holomorphic.
- E-vec dependent NLEVPs: $F(V)V = V\Lambda$, with $F \in \mathbb{C}^{n \times n}$, $V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

 $V^*F(V)V = \Lambda \Rightarrow \Lambda$ contains some e-vals of F(V).

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへつ

Some particular (but relevant) cases

- Standard e-val problem: $F(\lambda) = A \lambda I$, $A \in \mathbb{C}^{n \times n}$.
- **(a)** Generalized e-val problem: $F(\lambda) = A \lambda B$, $A, B \in \mathbb{C}^{n \times n}$.
- Solution Polynomial e-val problem (PEP): $F_{ij}(\lambda) = p_{ij}(\lambda)$, a polynomial in λ .

$$F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \qquad A_0, A_1, \dots, A_d \in \mathbb{C}^{n \times n}.$$

Stational e-val problem (REP): $F_{ij}(\lambda) = \frac{p_{ij}(\lambda)}{q_{ij}(\lambda)}$, a rational function in λ .

 $F(\lambda) = P(\lambda) + C(\lambda)A(\lambda)^{-1}B(\lambda)$ or $F(\lambda) = P(\lambda) + R_{sp}(\lambda)$,

with P, C, A, B matrix polynomials (A nonsingular), and R_{sp} strictly proper (deg $p_{ij} < \deg q_{ij}$).

In general: *F* : $\Omega \to \mathbb{C}^{n \times n}$ holomorphic.

■ E-vec dependent NLEVPs: $F(V)V = V\Lambda$, with $F \in \mathbb{C}^{n \times n}$, $V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

 $V^*F(V)V = \Lambda \Rightarrow \Lambda$ contains some e-vals of F(V).

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへつ

Some particular (but relevant) cases

- Standard e-val problem: $F(\lambda) = A \lambda I$, $A \in \mathbb{C}^{n \times n}$.
- **(a)** Generalized e-val problem: $F(\lambda) = A \lambda B$, $A, B \in \mathbb{C}^{n \times n}$.
- Solution Polynomial e-val problem (PEP): $F_{ij}(\lambda) = p_{ij}(\lambda)$, a polynomial in λ .

$$F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \qquad A_0, A_1, \dots, A_d \in \mathbb{C}^{n \times n}.$$

Stational e-val problem (REP): $F_{ij}(\lambda) = \frac{p_{ij}(\lambda)}{q_{ij}(\lambda)}$, a rational function in λ .

 $F(\lambda) = P(\lambda) + C(\lambda)A(\lambda)^{-1}B(\lambda)$ or $F(\lambda) = P(\lambda) + R_{sp}(\lambda)$,

with P, C, A, B matrix polynomials (A nonsingular), and R_{sp} strictly proper (deg p_{ij} < deg q_{ij}).

- **In general:** $F : \Omega \to \mathbb{C}^{n \times n}$ holomorphic.
- E-vec dependent NLEVPs: $F(V)V = V\Lambda$, with $F \in \mathbb{C}^{n \times n}$, $V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

 $V^*F(V)V = \Lambda \Rightarrow \Lambda$ contains some e-vals of F(V).

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへつ

Some particular (but relevant) cases

- Standard e-val problem: $F(\lambda) = A \lambda I$, $A \in \mathbb{C}^{n \times n}$.
- **2** Generalized e-val problem: $F(\lambda) = A \lambda B$, $A, B \in \mathbb{C}^{n \times n}$.
- Solution Polynomial e-val problem (PEP): $F_{ij}(\lambda) = p_{ij}(\lambda)$, a polynomial in λ .

$$F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \qquad A_0, A_1, \dots, A_d \in \mathbb{C}^{n \times n}.$$

Stational e-val problem (REP): $F_{ij}(\lambda) = \frac{p_{ij}(\lambda)}{q_{ij}(\lambda)}$, a rational function in λ .

 $F(\lambda) = P(\lambda) + C(\lambda)A(\lambda)^{-1}B(\lambda)$ or $F(\lambda) = P(\lambda) + R_{sp}(\lambda)$,

with P, C, A, B matrix polynomials (A nonsingular), and R_{sp} strictly proper (deg $p_{ij} < \deg q_{ij}$).

- **In general:** $F : \Omega \to \mathbb{C}^{n \times n}$ holomorphic.
- Solution E-vec dependent NLEVPs: $F(V)V = V\Lambda$, with $F \in \mathbb{C}^{n \times n}$, $V \in \mathbb{C}^{n \times k}$ (with orthonormal columns), $\Lambda \in \mathbb{C}^{k \times k}$ (diagonal)

 $V^*F(V)V = \Lambda \Rightarrow \Lambda$ contains some e-vals of F(V).

(Bai, Wed. 17:00; Truhar, Tue. 17:30).

- F(λ) can be singular: det F(λ) ≡ 0 → requires another def'n of e-val/e-vec.
 (In most talks, but not all, F(λ) is regular, det F(λ) ≠ 0).
- E-vecs of different e-vals are not necessarily linearly independent: $\begin{bmatrix} 1\\0 \end{bmatrix}$ is an evec of $\begin{bmatrix} \lambda(\lambda-1) & 0\\0 & 1 \end{bmatrix}$ for $\lambda = 0, 1$.
- $\Omega \setminus \Lambda(F)$ is open.
- If *F* is regular, Λ(*F*) = {λ ∈ Ω : det *F*(λ) = 0}. Then any λ₀ ∈ Λ(*F*) is isolated (i.e., there is an open set 𝒴 ⊆ Ω : 𝒴 ∩ Λ(*F*) = {λ₀}).
- There can be an infinite e-val: When $G(\lambda) := F(1/\lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^d P(1/\lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

• $F(\lambda)$ can be singular: det $F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.

- E-vecs of different e-vals are not necessarily linearly independent: $\begin{bmatrix} 1\\0 \end{bmatrix}$ is an evec of $\begin{bmatrix} \lambda(\lambda-1) & 0\\ 0 & 1 \end{bmatrix}$ for $\lambda = 0, 1$.
- $\Omega \setminus \Lambda(F)$ is open.
- If *F* is regular, Λ(*F*) = {λ ∈ Ω : det *F*(λ) = 0}. Then any λ₀ ∈ Λ(*F*) is isolated (i.e., there is an open set 𝒴 ⊆ Ω : 𝒴 ∩ Λ(*F*) = {λ₀}).
- There can be an infinite e-val: When $G(\lambda) := F(1/\lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^d P(1/\lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

• $F(\lambda)$ can be singular: det $F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.

- E-vecs of different e-vals are not necessarily linearly independent: $\begin{bmatrix} 1\\0 \end{bmatrix}$ is an evec of $\begin{bmatrix} \lambda(\lambda-1) & 0\\0 & 1 \end{bmatrix}$ for $\lambda = 0, 1$.
- Ω \ Λ(F) is open.
- If *F* is regular, Λ(*F*) = {λ ∈ Ω : det *F*(λ) = 0}. Then any λ₀ ∈ Λ(*F*) is isolated (i.e., there is an open set 𝒴 ⊆ Ω : 𝒴 ∩ Λ(*F*) = {λ₀}).
- There can be an infinite e-val: When $G(\lambda) := F(1/\lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^d P(1/\lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

• $F(\lambda)$ can be singular: det $F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.

- E-vecs of different e-vals are not necessarily linearly independent: $\begin{bmatrix} 1\\0 \end{bmatrix}$ is an evec of $\begin{bmatrix} \lambda(\lambda-1) & 0\\0 & 1 \end{bmatrix}$ for $\lambda = 0, 1$.
- Ω \ Λ(F) is open.
- If F is regular, Λ(F) = {λ ∈ Ω : det F(λ) = 0}. Then any λ₀ ∈ Λ(F) is isolated (i.e., there is an open set 𝒴 ⊆ Ω : 𝒴 ∩ Λ(F) = {λ₀}).
- There can be an infinite e-val: When $G(\lambda) := F(1/\lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree *d*, we consider $\lambda^d P(1/\lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

• $F(\lambda)$ can be singular: det $F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.

- E-vecs of different e-vals are not necessarily linearly independent: $\begin{bmatrix} 1\\0 \end{bmatrix}$ is an evec of $\begin{bmatrix} \lambda(\lambda-1) & 0\\0 & 1 \end{bmatrix}$ for $\lambda = 0, 1$.
- Ω \ Λ(F) is open.
- If F is regular, Λ(F) = {λ ∈ Ω : det F(λ) = 0}. Then any λ₀ ∈ Λ(F) is isolated (i.e., there is an open set 𝔄 ⊆ Ω : 𝔄 ∩ Λ(F) = {λ₀}).
- There can be an infinite e-val: When $G(\lambda) := F(1/\lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^d P(1/\lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

• $F(\lambda)$ can be singular: det $F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.

- E-vecs of different e-vals are not necessarily linearly independent: $\begin{bmatrix} 1\\0 \end{bmatrix}$ is an evec of $\begin{bmatrix} \lambda(\lambda-1) & 0\\0 & 1 \end{bmatrix}$ for $\lambda = 0, 1$.
- Ω \ Λ(F) is open.
- If F is regular, Λ(F) = {λ ∈ Ω : det F(λ) = 0}. Then any λ₀ ∈ Λ(F) is isolated (i.e., there is an open set 𝔄 ⊆ Ω : 𝔄 ∩ Λ(F) = {λ₀}).
- There can be an infinite e-val: When $G(\lambda) := F(1/\lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^d P(1/\lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

• $F(\lambda)$ can be singular: det $F(\lambda) \equiv 0 \rightsquigarrow$ requires another def'n of e-val/e-vec.

(In most talks, but not all, $F(\lambda)$ is regular, det $F(\lambda) \neq 0$).

- E-vecs of different e-vals are not necessarily linearly independent: $\begin{bmatrix} 1\\0 \end{bmatrix}$ is an evec of $\begin{bmatrix} \lambda(\lambda-1) & 0\\0 & 1 \end{bmatrix}$ for $\lambda = 0, 1$.
- Ω \ Λ(F) is open.
- If F is regular, Λ(F) = {λ ∈ Ω : det F(λ) = 0}. Then any λ₀ ∈ Λ(F) is isolated (i.e., there is an open set 𝔄 ⊆ Ω : 𝔄 ∩ Λ(F) = {λ₀}).
- There can be an infinite e-val: When $G(\lambda) := F(1/\lambda)$ has a zero e-val. (For polynomials, $P(\lambda)$, of degree d, we consider $\lambda^d P(1/\lambda)$).
- $F(\lambda)$ may have poles.
- Algebraic and geometric multiplicities, Jordan chains, etc. can also be defined. (Bora, after this talk; Marcaida, Tue. 18:00).

Fernando De Terán (UC3M)

A survey on NLEVPs and MPEPs

If $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

$$\mathcal{N}_{\ell}(P) := \left\{ y(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m} : y(\lambda)^{\top} P(\lambda) \equiv 0^{\top} \right\},$$

$$\mathcal{N}_{r}(P) := \left\{ x(\lambda) \in \mathbb{C}(\lambda)^{n \times 1} : P(\lambda) x(\lambda) \equiv 0 \right\},$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of **minimal bases and indices**.

If $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

$$\begin{split} \mathscr{N}_{\ell}(\boldsymbol{P}) &:= & \left\{ \boldsymbol{y}(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m} : \boldsymbol{y}(\lambda)^{\top} \boldsymbol{P}(\lambda) \equiv \boldsymbol{0}^{\top} \right\}, \\ \mathscr{N}_{r}(\boldsymbol{P}) &:= & \left\{ \boldsymbol{x}(\lambda) \in \mathbb{C}(\lambda)^{n \times 1} : \boldsymbol{P}(\lambda) \boldsymbol{x}(\lambda) \equiv \boldsymbol{0} \right\}, \end{split}$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of **minimal bases and indices**.

If $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

$$\begin{split} \mathscr{N}_{\ell}(\boldsymbol{P}) &:= & \left\{ \boldsymbol{y}(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m} : \boldsymbol{y}(\lambda)^{\top} \boldsymbol{P}(\lambda) \equiv \boldsymbol{0}^{\top} \right\}, \\ \mathscr{N}_{r}(\boldsymbol{P}) &:= & \left\{ \boldsymbol{x}(\lambda) \in \mathbb{C}(\lambda)^{n \times 1} : \boldsymbol{P}(\lambda) \boldsymbol{x}(\lambda) \equiv \boldsymbol{0} \right\}, \end{split}$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of minimal bases and indices.

If $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

$$\begin{split} \mathscr{N}_{\ell}(\boldsymbol{P}) &:= & \left\{ \boldsymbol{y}(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m} : \boldsymbol{y}(\lambda)^{\top} \boldsymbol{P}(\lambda) \equiv \boldsymbol{0}^{\top} \right\}, \\ \mathscr{N}_{r}(\boldsymbol{P}) &:= & \left\{ \boldsymbol{x}(\lambda) \in \mathbb{C}(\lambda)^{n \times 1} : \boldsymbol{P}(\lambda) \boldsymbol{x}(\lambda) \equiv \boldsymbol{0} \right\}, \end{split}$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of minimal bases and indices.

If $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$ is singular, then it has right and left minimal bases and right and left minimal indices:

 Related to the fact that P(λ) has non-trivial left and/or right null-spaces over the field C(λ) of rational functions:

$$\begin{split} \mathscr{N}_{\ell}(\boldsymbol{P}) &:= & \left\{ \boldsymbol{y}(\lambda)^{\top} \in \mathbb{C}(\lambda)^{1 \times m} : \boldsymbol{y}(\lambda)^{\top} \boldsymbol{P}(\lambda) \equiv \boldsymbol{0}^{\top} \right\}, \\ \mathscr{N}_{r}(\boldsymbol{P}) &:= & \left\{ \boldsymbol{x}(\lambda) \in \mathbb{C}(\lambda)^{n \times 1} : \boldsymbol{P}(\lambda) \boldsymbol{x}(\lambda) \equiv \boldsymbol{0} \right\}, \end{split}$$

- which have bases consisting entirely of vector polynomials.
- Looking for polynomials bases with "minimal degree", in a certain sense, leads to the concepts of **minimal bases and indices**.

Eigenstructure: Eigenvalues (with multiplicities) + Minimal indices Eigenvectors/Jordan chains + minimal bases

Outline

How to solve them?

- Small-Moderate size
- Large scale

-

Usually associated with |Mx''(t) + Cx'(t) + Kx(t) = f(t)| $(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^n)$.

Usually associated with |Mx''(t) + Cx'(t) + Kx(t) = f(t)| $(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^n)$.

mass-spring system (n = 1)

Usually associated with |Mx''(t) + Cx'(t) + Kx(t) = f(t)| $(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^n)$.

If all e-vals of $Q(\lambda) := \lambda^2 M(\lambda) + \lambda C + K$ are semisimple and finite, set

$$\begin{array}{ll} \Lambda := \operatorname{diag}(\lambda_1, \ldots, \lambda_{2n}) & (\text{e-vals}), \\ X := \begin{bmatrix} x_1 & \ldots & x_{2n} \\ y_1 & \ldots & y_{2n} \end{bmatrix} & (\text{right e-vecs}), \\ (\text{left e-vecs}). \end{array}$$

Then the solution of Mx''(t) + Cx'(t) + Kx(t) = f(t) is

$$x(t) = X e^{\wedge t} c + \int_{-\infty}^{t} X e^{\wedge (t-s)} Y^* f(s) ds, \quad c \in \mathbb{C}^n \text{ arbitrary}.$$

Usually associated with Mx''(t) + Cx'(t) + Kx(t) = f(t) $(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^n)$.

If all e-vals of $Q(\lambda) := \lambda^2 M(\lambda) + \lambda C + K$ are semisimple and finite, set

$$\begin{array}{ll} \Lambda := \operatorname{diag}(\lambda_1, \dots, \lambda_{2n}) & (\text{e-vals}), \\ X := \begin{bmatrix} x_1 & \dots & x_{2n} \\ y_1 & \dots & y_{2n} \end{bmatrix} & (\text{right e-vecs}), \\ (\text{left e-vecs}). \end{array}$$

Then the solution of Mx''(t) + Cx'(t) + Kx(t) = f(t) is

$$x(t) = X e^{\Lambda t} c + \int_{-\infty}^{t} X e^{\Lambda(t-s)} Y^* f(s) ds, \quad c \in \mathbb{C}^n \text{ arbitrary}.$$

If $f(t) = f_0 e^{i\omega t}$ (harmonic force with frequency ω):

$$x_{p}(t) = e^{i\omega t} \sum_{j=1}^{2m} \frac{y_{j}^{*} f_{0}}{i\omega - \lambda_{j}} x_{j}.$$

If
$$i\omega \approx \lambda_j$$
, then $\frac{y_j^* f_0}{i\omega - \lambda_j} >> 1$ (provided $y_j^* f_0 \neq 0$).

Usually associated with |Mx''(t) + Cx'(t) + Kx(t) = f(t)| $(M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^n)$.

If all e-vals of $Q(\lambda) := \lambda^2 M(\lambda) + \lambda C + K$ are semisimple and finite, set

$$\begin{split} & \wedge := \operatorname{diag}(\lambda_1, \dots, \lambda_{2n}) & (\text{e-vals}), \\ & X := \begin{bmatrix} x_1 & \dots & x_{2n} \\ y_1 & \dots & y_{2n} \end{bmatrix} & (\text{right e-vecs}), \\ & \text{(left e-vecs)}. \end{split}$$

Then the solution of Mx''(t) + Cx'(t) + Kx(t) = f(t) is

$$x(t) = X e^{\wedge t} c + \int_{-\infty}^{t} X e^{\wedge (t-s)} Y^* f(s) ds, \quad c \in \mathbb{C}^n \text{ arbitrary}.$$

If $f(t) = f_0 e^{i\omega t}$ (harmonic force with frequency ω):

$$x_{\rho}(t) = e^{i\omega t} \sum_{j=1}^{2m} \frac{y_j^* f_0}{i\omega - \lambda_j} x_j.$$

If $i\omega \approx \lambda_j$, then $\frac{y_j^* t_0}{i\omega - \lambda_j} >> 1$ (provided $y_j^* t_0 \neq 0$). \rightarrow Resonance

Usually associated with $Mx''(t) + Cx'(t) + Kx(t) = f(t) | (M, C, K \in \mathbb{C}^{n \times n}, x(t) \in \mathbb{C}[t]^n).$

If all e-vals of $Q(\lambda) := \lambda^2 M(\lambda) + \lambda C + K$ are semisimple and finite, set

$$\begin{split} & \wedge := \operatorname{diag}(\lambda_1, \dots, \lambda_{2n}) & (\text{e-vals}), \\ & X := \begin{bmatrix} x_1 & \dots & x_{2n} \\ y_1 & \dots & y_{2n} \end{bmatrix} & (\text{right e-vecs}), \\ & \text{(left e-vecs)}. \end{split}$$

Then the solution of Mx''(t) + Cx'(t) + Kx(t) = f(t) is

$$x(t) = X e^{\Lambda t} c + \int_{-\infty}^{t} X e^{\Lambda(t-s)} Y^* f(s) ds, \quad c \in \mathbb{C}^n \text{ arbitrary}.$$

If $f(t) = f_0 e^{i\omega t}$ (harmonic force with frequency ω):

$$x_{\mathcal{P}}(t) = e^{i\omega t} \sum_{j=1}^{2m} \frac{y_j^* f_0}{i\omega - \lambda_j} x_j.$$

If $i\omega \approx \lambda_j$, then $\frac{y_j^* t_0}{i\omega - \lambda_j} >> 1$ (provided $y_j^* f_0 \neq 0$). \rightarrow Resonance Tisseur–Meerbergen. The quadratic eigenvalue problem. SIAM Rev. 43 (2001)

Fernando De Terán (UC3M)

PEPs with higher (low) degree and moderate size

 $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$: Associated with $A_{0}X(t) + A_{1}X'(t) + \dots + A_{k}X^{(d)}(t) = f(t)$

PEPs with higher (low) degree and moderate size

 $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$: Associated with $A_{0}X(t) + A_{1}X'(t) + \dots + A_{k}X^{(d)}(t) = f(t)$

The solution can be given in terms of the eigenstructure of $P(\lambda)$ (includes e-val/e-vecs).

PEPs with higher (low) degree and moderate size

 $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$: Associated with $A_{0}X(t) + A_{1}X'(t) + \dots + A_{k}X^{(d)}(t) = f(t)$

The solution can be given in terms of the eigenstructure of $P(\lambda)$ (includes e-val/e-vecs).

Some examples:

• Orr-Sommerfeld equation (d = 4):

$$\left[\left(\frac{d^2}{dy^2} - \lambda^2\right)^2 - iR\left\{\left(\lambda U - \omega\right)\left(\frac{d^2}{dy^2} - \lambda^2\right) - \lambda U''\right\}\right]\phi = 0.$$

PEPs with higher (low) degree and moderate size

 $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$: Associated with $A_{0}X(t) + A_{1}X'(t) + \dots + A_{k}X^{(d)}(t) = f(t)$

The solution can be given in terms of the eigenstructure of $P(\lambda)$ (includes e-val/e-vecs).

Some examples:

• Orr-Sommerfeld equation (d = 4):

$$\left[\left(\frac{d^2}{dy^2} - \lambda^2 \right)^2 - iR \left\{ (\lambda U - \omega) \left(\frac{d^2}{dy^2} - \lambda^2 \right) - \lambda U'' \right\} \right] \phi = 0.$$

• Planar waveguide $(\lambda^4 A_4 + \dots + A_0)$: $A_1 = \frac{\delta^2}{4} \operatorname{diag}(-1, 0, 0, \dots, 0, 0, 1), \quad A_3 = \operatorname{diag}(1, 0, 0, \dots, 0, 0, 1),$ $A_0(i, j) = \frac{\delta^4}{16}(\phi_i, \phi_j) \quad A_2(i, j) = (\phi'_i, \phi'_j) - (q\phi_i, \phi_j) \quad A_4(i, j) = (\phi_i, \phi_j).$

PEPs with higher (low) degree and moderate size

 $P(\lambda) = \sum_{i=0}^{d} \lambda^{i} A_{i}$: Associated with $A_{0}X(t) + A_{1}X'(t) + \dots + A_{k}X^{(d)}(t) = f(t)$

The solution can be given in terms of the eigenstructure of $P(\lambda)$ (includes e-val/e-vecs).

Some examples:

• Orr-Sommerfeld equation (d = 4):

$$\left[\left(\frac{d^2}{dy^2} - \lambda^2 \right)^2 - iR \left\{ (\lambda U - \omega) \left(\frac{d^2}{dy^2} - \lambda^2 \right) - \lambda U'' \right\} \right] \phi = 0.$$

• Planar waveguide
$$(\lambda^4 A_4 + \dots + A_0)$$
:
 $A_1 = \frac{\delta^2}{4} \operatorname{diag}(-1, 0, 0, \dots, 0, 0, 1), \quad A_3 = \operatorname{diag}(1, 0, 0, \dots, 0, 0, 1),$
 $A_0(i, j) = \frac{\delta^4}{16} (\phi_i, \phi_j) \quad A_2(i, j) = (\phi'_i, \phi'_j) - (q\phi_i, \phi_j) \quad A_4(i, j) = (\phi_i, \phi_j).$

Betcke-Higham-Mehrmann-Schröder-Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. ACM TOMS, 39 (2010)

Fernando De Terán (UC3M)

A survey on NLEVPs and MPEPs

ICIAM2019 11 / 26

= 200

DAEs

•
$$A + \lambda B = \begin{bmatrix} 1 + \lambda & 0 \\ 0 & 1 \end{bmatrix}$$
 has a infinite e-val.

DAEs

•
$$A + \lambda B = \begin{bmatrix} 1 + \lambda & 0 \\ 0 & 1 \end{bmatrix}$$
 has a infinite e-val. $\boxed{AX + BX' = f}$ gives
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x'_1(t) \\ x'_2(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix} \Rightarrow \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t}(c + \int_{-\infty}^s e^s f(s) ds) \\ f_2(t) \end{bmatrix}$

DAEs

•
$$A + \lambda B = \begin{bmatrix} 1 + \lambda & 0 \\ 0 & 1 \end{bmatrix}$$
 has a infinite e-val. $\boxed{AX + BX' = f}$ gives
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix} \Rightarrow \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t}(c + \int_{-\infty}^{s} e^{s}f(s)ds)) \\ f_2(t) \end{bmatrix}$.

•
$$A + \lambda B = \begin{bmatrix} \frac{\lambda}{0} & 1 & 0 \\ 0 & 0 & \lambda \\ 0 & 0 & 1 \end{bmatrix}$$
 is singular.

DAEs

•
$$A + \lambda B = \begin{bmatrix} 1 + \lambda & 0 \\ 0 & 1 \end{bmatrix}$$
 has a infinite e-val. $\boxed{AX + BX' = f}$ gives
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix} \Rightarrow \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t}(c + \int_{-\infty}^{s} e^{s}f(s)ds) \\ f_2(t) \end{bmatrix}$
• $A + \lambda B = \begin{bmatrix} \frac{\lambda & 1 & | \ 0 \\ 0 & 0 & | \ 1 \end{bmatrix}$ is singular. $\boxed{AX + BX' = f}$ gives
 $x_1'(t) + x_2(t) = f_1(t) \\ x_3'(t) = f_2(t) \\ x_3(t) = f_3(t) \end{bmatrix} \Rightarrow$

DAEs

•
$$A + \lambda B = \begin{bmatrix} 1 + \lambda & 0 \\ 0 & 1 \end{bmatrix}$$
 has a infinite e-val. $\boxed{AX + BX' = f}$ gives
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix} \Rightarrow \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t}(c + \int_{-\infty}^{s} e^{s}f(s)ds) \\ f_2(t) \end{bmatrix}$
• $A + \lambda B = \begin{bmatrix} \frac{\lambda & 1 & 0}{0 & 0 & \lambda} \\ 0 & 0 & 1 \end{bmatrix}$ is singular. $\boxed{AX + BX' = f}$ gives
 $\begin{aligned} x_1'(t) + x_2(t) &= f_1(t) \\ x_3'(t) &= f_2(t) \\ x_3(t) &= f_3(t) \end{aligned} \Rightarrow \begin{bmatrix} 1 \text{ degree of freedom in } x_1, x_2 \\ x_1, x_2 \end{bmatrix}$

DAEs

•
$$A + \lambda B = \begin{bmatrix} 1 + \lambda & 0 \\ 0 & 1 \end{bmatrix}$$
 has a infinite e-val. $\boxed{AX + BX' = f}$ gives
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix} \Rightarrow \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t}(c + \int_{-\infty}^{s} e^{s}f(s)ds) \\ f_2(t) \end{bmatrix}$
• $A + \lambda B = \begin{bmatrix} \frac{\lambda & 1 & 0}{0 & 0 & \lambda} \\ 0 & 0 & 1 \end{bmatrix}$ is singular. $\boxed{AX + BX' = f}$ gives
 $\begin{aligned} x_1'(t) + x_2(t) &= f_1(t) \\ x_3'(t) &= f_2(t) \\ x_3(t) &= f_3(t) \end{aligned} \Rightarrow \begin{bmatrix} 1 \text{ degree of freedom in } x_1, x_2 \\ f_3' = f_2 \end{aligned}$

DAEs

•
$$A + \lambda B = \begin{bmatrix} 1 + \lambda & 0 \\ 0 & 1 \end{bmatrix}$$
 has a infinite e-val. $\boxed{AX + BX' = f}$ gives
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix} \Rightarrow \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t}(c + \int_{-\infty}^{s} e^{s}f(s)ds) \\ f_2(t) \end{bmatrix}$
• $A + \lambda B = \begin{bmatrix} \frac{\lambda & 1 & | \ 0 \\ 0 & 0 & | \ 1 \end{bmatrix}$ is singular. $\boxed{AX + BX' = f}$ gives
 $\begin{aligned} x_1'(t) + x_2(t) &= f_1(t) \\ x_3'(t) &= f_2(t) \\ x_3(t) &= f_3(t) \end{aligned} \Rightarrow \begin{bmatrix} 1 \text{ degree of freedom in } x_1, x_2 \\ f_3' &= f_2 \end{bmatrix}$

Pifferential Algebraic Equations (Systems)

REPs

Loaded elastic string: Finite element discretization of a boundary problem describing the eigenvibration of a string with a load of mass *m* attached by an elastic spring of stiffness *k*.

$$R(\lambda)x = \left(A - \lambda B + \frac{\lambda}{\lambda - \sigma}C\right)x = 0, \qquad \sigma = k/m$$

with

$$A = n \begin{bmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & 2 & -1 \\ & & -1 & 1 \end{bmatrix}, \quad B = \frac{1}{6n} \begin{bmatrix} 4 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & 4 & 1 \\ & & 1 & 2 \end{bmatrix}, \quad C = k \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix}$$

 $(n \text{ up to } 10^3).$

Betcke-Higham-Mehrmann-Schröder-Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. ACM TOMS, 39 (2010)

= ~ Q Q

REPs

Damped vibration on a viscoelastic structure: A FEM takes the form:

$$R(\lambda) = \left(\lambda^2 M + K - \sum_{j=1}^d \frac{1}{1+b_j\lambda} \Delta K_j\right) x = 0,$$

with

d = number of regions,

 b_i =relaxation parameters,

 ΔK_i =stiffness matrices over each region.

(*M*, *K* > 0.)

Mehrmann-Voss. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM, 27 (2004)

Typical example: Look for solutions $x(t) = e^{\lambda t}v$ in a system of 1st order **delayed** differential equations:

$$B_0 x'(t) = A_0 x(t) + A_1 x(t-\tau) \Longrightarrow (\lambda B_0 - A_0 - A_1 e^{-\lambda \tau}) v = 0$$

Typical example: Look for solutions $x(t) = e^{\lambda t}v$ in a system of 1st order **delayed** differential equations:

$$B_0 x'(t) = A_0 x(t) + A_1 x(t-\tau) \Longrightarrow (\lambda B_0 - A_0 - A_1 e^{-\lambda \tau}) v = 0$$

• The radio-frequency gun cavity problem:

$$\left[(K - \lambda M) + i\sqrt{\lambda - \sigma_1^2} W_1 + i\sqrt{\lambda - \sigma_2^2} W_2 \right] \mathbf{v} = \mathbf{0},$$

where M, K, W_1, W_2 are real sparse symmetric 9956 × 9956.

• Bound states in semiconductor devices problems:

$$\left[(H-\lambda I)+\sum_{j=0}^{80}e^{j\sqrt{\lambda-\alpha_j}}S_j\right]v=0,$$

where $H, S_i \in \mathbb{R}^{16281 \times 16281}$, *H* symmetric and S_i have low rank.

Typical example: Look for solutions $x(t) = e^{\lambda t}v$ in a system of 1st order **delayed** differential equations:

$$B_0 x'(t) = A_0 x(t) + A_1 x(t-\tau) \Longrightarrow (\lambda B_0 - A_0 - A_1 e^{-\lambda \tau}) v = 0$$

• The radio-frequency gun cavity problem:

$$\left[(K - \lambda M) + i\sqrt{\lambda - \sigma_1^2} W_1 + i\sqrt{\lambda - \sigma_2^2} W_2 \right] \mathbf{v} = \mathbf{0},$$

where M, K, W_1, W_2 are real sparse symmetric 9956 × 9956.

Bound states in semiconductor devices problems:

$$\left[(H - \lambda I) + \sum_{j=0}^{80} e^{j\sqrt{\lambda - \alpha_j}} S_j \right] \mathbf{v} = \mathbf{0},$$

where $H, S_j \in \mathbb{R}^{16281 \times 16281}$, *H* symmetric and S_j have low rank.

MPEPs

Multiparameter Sturm-Liouville eigenvalue problems:

$$-\frac{d}{d\xi_i}\left(p_i(\xi_i)\frac{d}{d\xi_i}y_i(\xi_i)\right) + q_i(\xi_i)y_i(\xi_i) = \sum_{j=1}^k \lambda_j a_{ij}(\xi_i)y_i(\xi_i)$$

- Dai. Numerical methods for solving multiparameter eigenvalue problems. Int. J. Comp. Math. 72 (1999).
- Stability of delay-differential equations: From

$$\lambda B_0 x = (A_0 + e^{-\lambda \tau} A_1) x$$

setting $\mu = e^{-\lambda \tau}$ and, assuming $\lambda = i\omega \Rightarrow \overline{\lambda} = -\lambda, \overline{\mu} = \mu^{-1}$ we get

$$\begin{cases} A_0 x = \lambda B_0 x - \mu A_1 x \\ \overline{A}_1 x = -\lambda \mu \overline{B}_0 y - \mu \overline{A}_0 y. \end{cases}$$

Jarlebring-Hochstenbach. Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations. Linear Algebra Appl. 431 (2009).

Fernando De Terán (UC3M)

A survey on NLEVPs and MPEPs

PEPs with large degree and/or large size

- PEPs used to approximate other NLEVPs:
 - Galerkin-type discretization of a 3D Laplace e-val problem with boundary conditions + interpolating Chebyshev polynomials: 3 ≤ d ≤ 30.
 - Finite element/boundary element discretization of a 3D fluid-structure interaction problem: d = 11, n = 6223.
 - Loaded-string from NLEVP collection + Chebyshev interpolation: d = 20, $n = 10^4$.

Kressner–Román. Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Lin. Algebra Appl. 21 (2014).

PEPs with large degree and/or large size

- PEPs used to approximate other NLEVPs:
 - Galerkin-type discretization of a 3D Laplace e-val problem with boundary conditions + interpolating Chebyshev polynomials: 3 ≤ d ≤ 30.
 - Finite element/boundary element discretization of a 3D fluid-structure interaction problem: d = 11, n = 6223.
 - Loaded-string from NLEVP collection + Chebyshev interpolation: d = 20, $n = 10^4$.
 - Kressner–Román. Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Lin. Algebra Appl. 21 (2014).
- Large-scale problems:

Brake squeal simulation $n\approx 10^6$

(V. Mehrmann, Tue. 11:00h)

Gräbner–Mehrmann–Quraishi–Schröder–von Wagner. Numerical methods for parametric model reduction in the simulation of disk brake squeal. ZAMM, 96 (2016).

Fernando De Terán (UC3M)

A survey on NLEVPs and MPEPs

ICIAM2019 16 / 26

In this MS

Other applications:

- Dynamics of systems with radiation and delay (Bindel, Tue. 12:30).
- Electronic structure calculations (Bai, Tue. 17:00).
- Quantum mechanics and machine learning (Upadhyaya, Wed. 11:00).
- Optimization problems (Lu, Wed. 15:30).
- Computer-aided geometric design (González-Vega, Wed. 16:00).
- Computational nanoelectronics (Miedlar, Wed. 17:30).

Outline

Applications

How to solve them?

- Small-Moderate size
- Large scale

For small/medium size: LINEARIZATION:

三日 のへの

프 🖌 🔺 프

For small/medium size: LINEARIZATION:

= 200

< E

For small/medium size: LINEARIZATION:

3

B > 4 B >

= 990

For small/medium size: LINEARIZATION:

ELE NOR

E ► < E ►</p>

For small/medium size: LINEARIZATION:

- (E) (E)

For small/medium size: LINEARIZATION:

Example 2 Constraints (and multiplicities), but **NOT** e-vecs, minimal bases and minimal indices.

$$F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \quad A_0, A_1, \dots, A_d \in \mathbb{C}^{m \times n}$$

Frobenius companion lin'z of $P(\lambda)$:

$$F(\lambda) := \begin{bmatrix} \lambda A_d + A_{d-1} & A_{d-2} & \cdots & A_1 & A_0 \\ -I_n & \lambda I_n & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & \lambda I_n & \\ & & & & -I_n & \lambda I_n \end{bmatrix} \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times nd}$$

$$F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \quad A_0, A_1, \dots, A_d \in \mathbb{C}^{m \times n}$$

Frobenius companion lin'z of $P(\lambda)$:

$$F(\lambda) := \begin{bmatrix} \lambda A_d + A_{d-1} & A_{d-2} & \cdots & A_1 & A_0 \\ -I_n & \lambda I_n & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & \lambda I_n & \\ & & & & -I_n & \lambda I_n \end{bmatrix} \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times nd}$$

There are many other linearizations !!!!

$$F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \quad A_0, A_1, \dots, A_d \in \mathbb{C}^{m \times n}$$

Frobenius companion lin'z of $P(\lambda)$:

$$F(\lambda) := \begin{bmatrix} \lambda A_d + A_{d-1} & A_{d-2} & \cdots & A_1 & A_0 \\ -I_n & \lambda I_n & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & \lambda I_n & \\ & & & & -I_n & \lambda I_n \end{bmatrix} \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times nd}$$

 There are many other linearizations !!!!
 Computational issues still open (conditioning, stability).

$$F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \quad A_0, A_1, \dots, A_d \in \mathbb{C}^{m \times n}$$

Frobenius companion lin'z of $P(\lambda)$:

$$F(\lambda) := \begin{bmatrix} \lambda A_d + A_{d-1} & A_{d-2} & \cdots & A_1 & A_0 \\ -I_n & \lambda I_n & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & \lambda I_n & \\ & & & & -I_n & \lambda I_n \end{bmatrix} \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times nd}$$

 There are many other linearizations !!!!
 Computational issues still open (conditioning, stability).

Look for the best linearization

(Pérez-Álvaro, Today, 18:00; Dmytryshyn, Wed. 11:30; Hernando Wed. 12:00; Saltenberger, Wed. 12:30).

$$F(\lambda) = A_0 + \lambda A_1 + \dots + \lambda^d A_d, \quad A_0, A_1, \dots, A_d \in \mathbb{C}^{m \times n}$$

Frobenius companion lin'z of $P(\lambda)$:

$$\mathsf{F}(\lambda) := \begin{bmatrix} \lambda A_d + A_{d-1} & A_{d-2} & \cdots & A_1 & A_0 \\ -I_n & \lambda I_n & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & \lambda I_n & \\ & & & & -I_n & \lambda I_n \end{bmatrix} \in \mathbb{C}[\lambda]^{(m+n(d-1)) \times nd}$$

 There are many other linearizations !!!!
 Computational issues still open (conditioning, stability).

Look for the best linearization

(Pérez-Álvaro, Today, 18:00; Dmytryshyn, Wed. 11:30; Hernando Wed. 12:00; Saltenberger, Wed. 12:30).

The size of the problem increases very much !!!!

1

• Linearization is also the standard tool for small/medium size problems.

- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of *F*(λ) for any rational function *F*.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of *F*(λ) for any rational function *F*.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of *F*(λ) for any rational function *F*.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of *F*(λ) for any rational function *F*.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

- Linearization is also the standard tool for small/medium size problems.
- However, the situation is more complicated, due to the presence of denominators.
- No explicit symbolic constructions exist whose e-vals coincide with those of *F*(λ) for any rational function *F*.
- Theoretical background goes back to the 1970's in Control Theory (Rosenbrock, Van Dooren, Verghese, ...) and it is being revisited ([Su-Bai'11], [Amparan-Marcaida-Dopico-Zaballa'18], [Dopico-Quintana-VanDooren]).

(Van Dooren, Tue. 14:30; Quintana, Tue. 15:00; Hollister Tue. 15:30).

$$egin{array}{cccc} F: & \Omega & o & \mathbb{C}^{n imes n} \ \lambda & \mapsto & F(\lambda) \end{array}$$

• Newton-like (iterative) methods (to solve det $F(\lambda) = 0$ and then compute the e-vecs).

 $egin{array}{cccc} F:&\Omega& o&\mathbb{C}^{n imes n}\ \lambda&\mapsto&F(\lambda) \end{array}$

- Newton-like (iterative) methods (to solve det $F(\lambda) = 0$ and then compute the e-vecs).
- Methods based on the two-step strategy:
 - **(**) Approximate F(z) by a rational matrix G(z) with poles outside Ω .
 - Solve the REP associated to G(z).

 $egin{array}{ccc} F:&\Omega& o&\mathbb{C}^{n imes n}\ \lambda&\mapsto&F(\lambda) \end{array}$

- Newton-like (iterative) methods (to solve det $F(\lambda) = 0$ and then compute the e-vecs).
- Methods based on the two-step strategy:
 Approximate *F*(*z*) by a rational matrix *G*(*z*) with poles outside Ω.

Solve the REP associated to G(z).

• Other strategies based on Contour Integration: Take $\Omega_1 \subseteq \Omega$, with $\{\lambda_1, \ldots, \lambda_s\} \subseteq \Omega_1$, and Γ a contour enclosing $\lambda_1, \ldots, \lambda_s$. Then

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) F(z)^{-1} dz = V f(J) W^*, \qquad \text{(Keldysh)}$$

for $f: \Omega_1 \to \mathbb{C}$ holomorphic.

[™] Use different *f*'s to obtain *J*, *V*, *W* (Beyn, Sakurai-etal, FEAST [Gavin-Miedlar-Polizzi'18], ...).

Fernando De Terán (UC3M)

F :	Ω	\rightarrow	$\mathbb{C}^{n \times n}$
	λ	\mapsto	$F(\lambda)$

(Telen, Today 18:30; Embree, Wed. 14:30; Guguercin Wed. 15:00; Miedlar, Wed. 17:30)

- Newton-like (iterative) methods (to solve det $F(\lambda) = 0$ and then compute the e-vecs).
- Methods based on the two-step strategy:
 Approximate *F*(*z*) by a rational matrix *G*(*z*) with poles outside Ω.

Solve the REP associated to G(z).

• Other strategies based on Contour Integration: Take $\Omega_1 \subseteq \Omega$, with $\{\lambda_1, \ldots, \lambda_s\} \subseteq \Omega_1$, and Γ a contour enclosing $\lambda_1, \ldots, \lambda_s$. Then

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) F(z)^{-1} dz = V f(J) W^*, \qquad \text{(Keldysh)}$$

for $f: \Omega_1 \to \mathbb{C}$ holomorphic.

[™] Use different *f*'s to obtain *J*, *V*, *W* (Beyn, Sakurai-etal, FEAST [Gavin-Miedlar-Polizzi'18], ...).

Fernando De Terán (UC3M)

Large scale

Algorithms for large-scale problems

PEPs:

- Model reduction: Project the problem into a subspace of much smaller dimension.
- Large-scale methods (Krylov-type) for GEPs over a linearization that take advantage of the structure of the lin'z:
 - TOAR [Su-Bai-Lu'08, Kressner-Román'14].
 - CORK [Van Beeumen-Michiels-Meerbergen'15].
- REPs: RCORK [Dopico-González Pizarro'19].

(Meerbergen, Tue, 16:00).

Try to preserve the structure!

In many cases, $F(\lambda)$ coming from applications has some **symmetry structure**. E. g.:

Try to preserve the structure!

In many cases, $F(\lambda)$ coming from applications has some **symmetry structure**. E. g.:

This symmetry implies some symmetries in the eigenstructure.

Try to preserve the structure!

In many cases, $F(\lambda)$ coming from applications has some **symmetry structure**. E. g.:

This symmetry implies some symmetries in the eigenstructure.

Rounding errors can destroy this symmetry, if we don't use tools that preserve the symmetry structure. E. g.: the linearization:

$$\begin{bmatrix} \lambda A_2 + A_1 & A_0 \\ -I & \lambda I \end{bmatrix}$$

Some available software

For small-moderate size PEPs: polyeig (MATLAB), guadeig (QEPs) [Hammarling-Munro-Tisseur'13].

Large size NLEPs:

- In the second second
- Automatic Rational Approximation and Linearization of NEPs [Lietaert-Pérez-Vanderevcken-Meerbergen'18].
- Parallel implementations of TOAR for any degree in SLEPc [Roman-etal'16].

(Tisseur, Wed. 17:00; Román, Wed. 18:00; Jarlebring, Wed. 18:30).

Some surveys on NLEVPs

S

S. Güttel, F. Tisseur.

The nonlinear eigenvalue problem. Acta Numer. (2017) 1–94.

V. Mehrmann, H. Voss.

Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods.

GAMM, 27 (2004).

Some surveys on NLEVPs

S. Güttel, F. Tisseur. The nonlinear eigenvalue problem. Acta Numer. (2017) 1–94.

V. Mehrmann, H. Voss. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods.

GAMM, 27 (2004).

THANK YOU!!! - ¡GRACIAS!