Sylvester and \star-Sylvester equations: analogies and differences

Fernando de Terán

Departamento de Matemáticas
Universidad Carlos III de Madrid (Spain)

Collaborators

Co-authors:

- Fernando De Terán
- Froilán M. Dopico
- Nathan Guillery
- Daniel Montealegre
- Nicolás Z. Reyes

Outline

(1) Framework
(2) Motivation
(3) Classical Sylvester equation
(4) The equation $X A+A X^{\star}=0$
(5) The equation $A X+X^{\star} B=C$
(6) The equation $A X+B X^{\star}=0$
(7) Conclusions and bibliography

Outline

(1) Framework

(2) Motivation

3 Classical Sylvester equation
(4) The equation $X A+A X^{*}=0$
(5) The equation $A X+X^{\star} B=C$
(6) The equation $A X+B X^{*}=0$
(7) Conclusions and bibliography

The equations

Consider the equations:

- $A X+X^{\star} A=0$
$A \in \mathbb{C}^{n \times n}$
- $A X+X^{\star} B=0$
$A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$
- $A X+B X^{\star}=0$
$A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{m \times n}$
where \star can be either * (conjugate transpose) or T (transpose).

GOALS:

- Find necessary and sufficient conditions for consistency.
- Find the dimension of the solution space.
- Find an expression for the solution.
- Find necessary and sufficient conditions for uniqueness of the solution.

Motivation

- $A X+X^{\star} A=0$: Naturally arises when studying \star-congruence orbits of $A \in \mathbb{C}^{n \times n}$ [De Terán \& Dopico, 2011].
- $A X+X^{\star} B=C$: Related to block-antidiagonalization of block anti-triangular matrices via \star-congruence $\leadsto \star$-palindromic eigenvalue problems [Byers \& Kressner, 2006], [Kressner, Schröder \& Watkins, 2009].

Some history

$A X+X^{\star} B=C \quad(\star=T$ or $*) \quad \star$-Sylvester equation
(or "Sylvester equation for congruence")
(a) Sylvester equation: $A X-X B=C \quad$ (A, B must be square!!)

- Solution know since (at least) the 1950's (Gantmacher).
- Characterization of consistency and uniqueness of solution known for long (Roth, 1952, Gantmacher, 1959).
- Efficient algorithm for the unique solution already known (Bartels-Stewart, 1971).

Some history (II)

$A X+X^{\star} B=C \quad(\star=T$ or $*) \quad \star$-Sylvester equation
(b) $A X \pm X^{\star} A^{\star}=C, \quad A \in \mathbb{F}^{m \times n}, C \in \mathbb{F}^{m \times m}$:

- Hodges (1957): Solution over finite fields.
- Taussky-Wielandt (1962): Eigenvalues of $g(X)=A^{T} X+X^{T} A$.
- Lancaster-Rozsa (1983), Braden (1999): Necessary and sufficient conditions for consistency. Closed-form formula for the solution (using projectors and generalized inverses) and dimension of the solution space.
- Djordjević (2007): Extends Lancaster-Rozsa to A, C, X bounded linear operators on Hilbert spaces (with closed rank).
(c) $A X+X^{\star} A=C, \quad A, C \in \mathbb{C}^{n \times n}$:
- Ballantine (1969): $H=P A+A P^{*}$, with H hermitian and A, P with certain structure.
- DT-Dopico (2011): Complete solution for $C=0$ (explicit except for two particular sub-cases). Related to the theory of (congruence) orbits.
- García-Shoemaker (2013), and Chan-García-García-Shoemaker (2013): Explicit solution for the remaining sub-cases.

Some history (III)

(d) The \star-Sylvester equation: $A X+X^{\star} B=C$:

- Necessary and sufficient conditions for consistency: Wimmer (1994), Piao-Zhang-Wang (2007, involved), DT-Dopico (2011, another proof of Wimmer's, valid for arbitrary fields with char $=2$).
- Necessary and sufficient conditions for unique solution: Byers-Kressner (2006, $\star=T)$, Kressner-Schröder-Watkins (2009, $\star=*$).
- Closed-form formula for the solution: Piao-Zhang-Wang (2007, involved), Cvetković-llić (2008, operators with certain restrictions). In terms of generalized inverses.
- Complete solution $(C=0)$: DT-Dopico-Guillery-Montealegre-Reyes (2013).
- Algorithm for the (unique) solution: DT-Dopico (2011, $O\left(n^{3}\right)$), Vorontsov-Ivanov (2011), Chiang-Chu-Lin (2013).
(e) $A X+B X^{\star}=0$:
- Complete solution: DT (2013).

Related work

- Dmytryshyn-Kågström-Sergeichuk (2014): Solution of the system $\left\{\begin{array}{l}X^{T} A+A X=0 \\ X^{\top} B+B X=0\end{array}\right.$, with A, B skew-symmetric.
- Dmytryshyn-Kågström-Sergeichuk (2014): Solution of the system $\left\{\begin{array}{l}X^{\top} A+A X=0 \\ X^{\top} B+B X=0\end{array}\right.$, with A, B symmetric.
- Zhou-Lam-Duan (2011): Closed-form formula for the solution of $X=A X^{\star} B+C$

Outline

(1) Framework
(2) Motivation
3) Classical Sylvester equation
(4) The equation $X A+A X^{\star}=0$
(5) The equation $A X+X^{\star} B=C$
(6) The equation $A X+B X^{\star}=0$
(7) Conclusions and bibliography

Orbit theory

$X A+A X^{\star}=0, \quad A \in \mathbb{C}^{n \times n}$
Set:

$$
O_{c}(A)=\left\{P A P^{\star}: P \text { nonsingular }\right\}
$$

(complex manifold if $\star=T$, real manifold if $\star=*$).

$$
O_{s}(A)=\left\{P A P^{-1}: P \text { nonsingular }\right\}
$$

*-congruence orbit of A

Similarity orbit of A

Then:

$$
\begin{array}{cl}
T_{O_{c}(A)}(A)=\left\{X A+A X^{\star}: X \in \mathbb{C}^{n \times n}\right\} & \text { Tangent space of } O_{c}(A) \text { at } A \\
T_{O_{s}(A)}(A)=\left\{X A-A X: X \in \mathbb{C}^{n \times n}\right\} & \text { Tangent space of } O_{s}(A) \text { at } A
\end{array}
$$

(a) $\operatorname{codim} O_{C}(A)=\operatorname{codim} T_{O_{c}(A)}(A)=\operatorname{dim}$ (solution space of $X A+A X^{\star}=0$)
(complex dimension if $\star=T$, real dimension if $\star=*$).
(b) $\operatorname{codim} O_{s}(A)=\operatorname{codim} T_{O_{s}(A)}(A)=\operatorname{dim}($ solution space of $X A-A X=0)$

Reduction by congruence to anti-triangular form

$$
\begin{gathered}
\overbrace{\left[\begin{array}{cc}
l & 0 \\
X^{\star} & l
\end{array}\right]}^{P}\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \overbrace{\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]}^{P^{\star}}=\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right] \\
\Leftrightarrow A_{21} X+X^{\star} A_{12}=-A_{22} .
\end{gathered}
$$

Application: Anti-triangular form of palindromic pencils $A+\lambda A^{*}$

(Analogous to:

Reduction by congruence to anti-triangular form

$$
\begin{gathered}
\overbrace{\left[\begin{array}{cc}
l & 0 \\
X^{\star} & l
\end{array}\right]}^{P}\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \overbrace{\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]}^{P^{\star}}=\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right] \\
\Leftrightarrow A_{21} X+X^{\star} A_{12}=-A_{22} .
\end{gathered}
$$

Application: Anti-triangular form of palindromic pencils $A+\lambda A^{\star}$.

(Analogous to:

Reduction by congruence to anti-triangular form

$$
\left.\begin{array}{c}
\overbrace{\left[\begin{array}{c}
1 \\
x^{\star}
\end{array} 1\right.}^{1}]
\end{array}\right]\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \overbrace{\left[\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right]}^{P \star}=\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right],
$$

Application: Anti-triangular form of palindromic pencils $A+\lambda A^{\star}$.
(Analogous to:

$$
\begin{aligned}
& \overbrace{\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]}^{P}\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] \overbrace{\left[\begin{array}{cc}
I & -X \\
0 & I
\end{array}\right]}^{P-1}=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right] \\
& \left.\Leftrightarrow A_{11} X-X A_{22}=A_{12} \leadsto \text { Sylvester equation }\right)
\end{aligned}
$$

Outline

(1) Framework

(2) Motivation
(3) Classical Sylvester equation
(4) The equation $X A+A X^{\star}=0$
(5) The equation $A X+X^{\star} B=C$
(6) The equation $A X+B X^{\star}=0$
(7) Conclusions and bibliography

$A X-X B=0:$ Resolution procedure

$$
A X-X B=0
$$

$$
\begin{aligned}
& X Q)-\left(P^{-1} X Q\right)\left(Q^{-1} B Q\right)=0 \\
& \quad \mathbb{I} Y=P^{-1} X Q \\
& J_{A} Y-Y J_{B}=0
\end{aligned}
$$

$J_{M}=$ Jordan canonical form of M
(1) Solve: $j_{A} Y-Y J_{B}=0$
(2) Undo: $X=P Y Q^{-1}$

$A X-X B=0:$ Resolution procedure

$$
\begin{gathered}
A X-X B=0 \\
P^{-1} \cdot \downarrow \cdot Q \\
\left(P^{-1} A P\right)\left(P^{-1} X Q\right)-\left(P^{-1} X Q\right)\left(Q^{-1} B Q\right)=0 \\
1 Y=P-1 X Q \\
J_{A} Y-Y J_{B}=0
\end{gathered}
$$

$J_{M}=$ Jordan canonical form of M

C) Solve: $J_{A} Y-Y J_{B}=0$
(Explicit solution available).
(2) Undo: $X=P Y Q^{-1}$

$A X-X B=0:$ Resolution procedure

$$
\begin{gathered}
A X-X B=0 \\
P^{-1} \cdot \downarrow \cdot Q \\
\left(P^{-1} A P\right)\left(P^{-1} X Q\right)-\left(P^{-1} X Q\right)\left(Q^{-1} B Q\right)=0 \\
\hat{\downarrow} Y=P^{-1} X Q \\
J_{A} Y-Y J_{B}=0
\end{gathered}
$$

$J_{M}=$ Jordan canonical form of M
(C) Solve: $J_{A} Y-Y J_{B}=0$
(Explicit solution available).
(2) Undo: $X=P Y Q^{-}$

$A X-X B=0:$ Resolution procedure

$$
\begin{gathered}
A X-X B=0 \\
P^{-1} \cdot \downarrow \cdot Q \\
\left(P^{-1} A P\right)\left(P^{-1} X Q\right)-\left(P^{-1} X Q\right)\left(Q^{-1} B Q\right)=0 \\
\hat{I} Y=P^{-1} X Q \\
J_{A} Y-Y J_{B}=0
\end{gathered}
$$

$J_{M}=$ Jordan canonical form of M
(1) Solve: $J_{A} Y-Y J_{B}=0$
(Explicit solution available).
(2) Undo: $X=P Y Q^{-1}$

$A X-X B=0:$ Summary

- The solution depends on the Jordan canonical form (JCF) of $A, B: J_{A}, J_{B}$.
- Explicit solution is available (up to the knowledge of the change matrices P, Q such that $\left.P^{-1} A P=J_{A}, Q^{-1} B Q=J_{B}\right)$.
- Unique solution if and only if $\sigma(A) \cap \sigma^{(B)}=0$.

$A X-X B=0:$ Summary

- The solution depends on the Jordan canonical form (JCF) of $A, B: J_{A}, J_{B}$.
- Explicit solution is available (up to the knowledge of the change matrices P, Q such that $\left.P^{-1} A P=J_{A}, Q^{-1} B Q=J_{B}\right)$.
- Unique solution if and only if $\sigma(A) \cap \sigma(B)=0$.

$A X-X B=0:$ Summary

- The solution depends on the Jordan canonical form (JCF) of $A, B: J_{A}, J_{B}$.
- Explicit solution is available (up to the knowledge of the change matrices P, Q such that $\left.P^{-1} A P=J_{A}, Q^{-1} B Q=J_{B}\right)$.
- Unique solution if and only if $\sigma(A) \cap \sigma(B)=\emptyset$.

$A X-X B=C:$ consistency

Theorem (Roth, 1952)
$A X-X B=C$ is consistent if and only if

$$
\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right] \text { and }\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right] \text { are similar. }
$$

Outline

(1) Framework

(2) Motivation
(3) Classical Sylvester equation
4) The equation $X A+A X^{\star}=0$
(5) The equation $A X+X^{\star} B=C$
(6) The equation $A X+B X^{\star}=0$
(7) Conclusions and bibliography

$X A+A X^{\star}=0$: Resolution procedure

$$
X A+A X^{\star}=0
$$

$\mathbb{I} Y=P X P^{-1}$

$C_{A}=P A P^{\star}$: canonical form for \star-congruence of A

(2) Undo: $X=P^{-1} Y P$

$X A+A X^{\star}=0$: Resolution procedure

$$
\begin{gathered}
X A+A X^{\star}=0 \\
P \cdot \downarrow \cdot P^{\star} \\
\left(P X P^{-1}\right) P A P^{\star}+P A P^{\star}\left(P^{-\star} X^{\star} P^{\star}\right)=0 \\
\left.\Uparrow Y=P X P^{-1}\right) \\
Y C_{A}+C_{A} Y^{\star}=0
\end{gathered}
$$

$C_{A}=P A P^{\star}$: canonical form for \star-congruence of A

(1) Solve: $Y C_{A}+C_{A} Y^{\star}=0$

(c) Undo: $X=P^{-1} Y P$

$X A+A X^{\star}=0$: Resolution procedure

$$
\begin{gathered}
X A+A X^{\star}=0 \\
P \cdot \downarrow \cdot P^{\star} \\
\left(P X P^{-1}\right) P A P^{\star}+P A P^{\star}\left(P^{-\star} X^{\star} P^{\star}\right)=0 \\
\hat{y} Y=P X P^{-1} \\
Y C_{A}+C_{A} Y^{\star}=0
\end{gathered}
$$

$C_{A}=P A P^{\star}$: canonical form for \star-congruence of A

(1) Solve: $Y C_{A}+C_{A} Y^{\star}=0$
\square

$X A+A X^{\star}=0$: Resolution procedure

$$
\begin{gathered}
X A+A X^{\star}=0 \\
P \cdot \downarrow \cdot P^{\star} \\
\left(P X P^{-1}\right) P A P^{\star}+P A P^{\star}\left(P^{-\star} X^{\star} P^{\star}\right)=0 \\
\mathbb{I} Y=P X P^{-1} \\
Y C_{A}+C_{A} Y^{\star}=0
\end{gathered}
$$

$C_{A}=P A P^{\star}$: canonical form for \star-congruence of A
(1) Solve: $Y C_{A}+C_{A} Y^{\star}=0$
(2) Undo: $X=P^{-1} Y P$

Solution through canonical form for congruence

Canonical form for \star-congruence of A [Horn \& Sergeichuk, 2006]: $P A P^{\star}=C_{A}$ $C_{A}=D_{1} \oplus \cdots \oplus D_{S} \rightsquigarrow$ direct sum of three types of blocks (different for $\star=T$ and $\star=*$).
$X C_{A}+C_{A} X^{\star}=0$ decouples into two kind of equations:

咦 We have solved all them, for D_{i}, D_{j} being any possible combination of canonical blocks (9 different equations).

Solution through canonical form for congruence

Canonical form for \star-congruence of A [Horn \& Sergeichuk, 2006]: $P A P^{\star}=C_{A}$ $C_{A}=D_{1} \oplus \cdots \oplus D_{s} \rightsquigarrow$ direct sum of three types of blocks (different for $\star=T$ and $\star=*$.
$X C_{A}+C_{A} X^{\star}=0$ decouples into two kind of equations:
(i) $X D_{i}+D_{i} X^{\top}=0$
(ii)

$$
\begin{aligned}
& X D_{j}+D_{i} Y^{T}=0 \\
& Y D_{i}+D_{j} X^{T}=0
\end{aligned}
$$

唤 We have solved all them, for D_{i}, D_{j} being any possible combination of canonical blocks (9 different equations).

Solution through canonical form for congruence

Canonical form for \star-congruence of A [Horn \& Sergeichuk, 2006]: $P A P^{\star}=C_{A}$ $C_{A}=D_{1} \oplus \cdots \oplus D_{s} \rightsquigarrow$ direct sum of three types of blocks (different for $\star=T$ and $\star=*$).
$X C_{A}+C_{A} X^{\star}=0$ decouples into two kind of equations:
(i) $X D_{i}+D_{i} X^{\top}=0$

$$
\begin{align*}
& X D_{j}+D_{i} Y^{\top}=0 \\
& Y D_{i}+D_{j} X^{T}=0 \tag{ii}
\end{align*}
$$

哏 We have solved all them, for D_{i}, D_{j} being any possible combination of canonical blocks (9 different equations).

Solution of $X A+A X^{\star}=0$: summary

- Depends on the canonical form for \star-congruence of $A: C_{A}$.
- Explicit solution available: up to the knowledge of P such that $P A P^{\star}=C_{A}$.

Outline

(1) Framework

(2) Motivation
(3) Classical Sylvester equation
4) The equation $X A+A X^{\star}=0$
(5) The equation $A X+X^{\star} B=C$
(6) The equation $A X+B X^{\star}=0$
(7) Conclusions and bibliography

$A X+X^{\star} B=0$: Resolution procedure

$$
A X+X^{\star} B=0
$$

$$
\mathbb{\|} Y=Q^{-1} X P^{\star}
$$

$$
K_{A} Y+Y^{\star} K_{B}=0
$$

$\left(K_{A}, K_{B}^{\star}\right)=P\left(A, B^{\star}\right) Q:$ Kronecker canonical form (KCF) of $\left(A, B^{\star}\right)$
(Solve: $K_{A} Y+Y^{\star} K_{B}=0$
(2) Undo: $X=Q Y P^{-*}$

$A X+X^{\star} B=0$: Resolution procedure

$$
\begin{gathered}
A X+X^{\star} B=0 \\
P \cdot \downarrow \cdot P^{\star} \\
(P A Q)\left(Q^{-1} X P^{\star}\right)+\left(P X^{\star} Q^{-\star}\right)\left(Q^{\star} B P^{\star}\right)=0 \\
\Uparrow Y=Q^{-1} X P^{\star} \\
K_{A} Y+Y^{\star} K_{B}=0
\end{gathered}
$$

$\left(K_{A}, K_{B}^{\star}\right)=P\left(A, B^{\star}\right) Q$: Kronecker canonical form (KCF) of $\left(A, B^{\star}\right)$
(1) Solve: $K_{A} Y+Y^{\star} K_{B}=0$
(2) Undo:

$A X+X^{\star} B=0$: Resolution procedure

$$
\begin{gathered}
A X+X^{\star} B=0 \\
P \cdot \downarrow \cdot P^{\star} \\
(P A Q)\left(Q^{-1} X P^{\star}\right)+\left(P X^{\star} Q^{-\star}\right)\left(Q^{\star} B P^{\star}\right)=0 \\
\Uparrow 1 Y=Q^{-1} X P^{\star} \\
K_{A} Y+Y^{\star} K_{B}=0
\end{gathered}
$$

$\left(K_{A}, K_{B}^{\star}\right)=P\left(A, B^{\star}\right) Q$: Kronecker canonical form (KCF) of $\left(A, B^{\star}\right)$

- Solve: $K_{A} Y+Y^{\star} K_{B}=0$
(2) Undo: $X=Q Y P^{-*}$

$A X+X^{\star} B=0$: Resolution procedure

$$
\begin{gathered}
A X+X^{\star} B=0 \\
P \cdot \downarrow \cdot P^{\star} \\
(P A Q)\left(Q^{-1} X P^{\star}\right)+\left(P X^{\star} Q^{-\star}\right)\left(Q^{\star} B P^{\star}\right)=0 \\
\Uparrow 1 Y=Q^{-1} X P^{\star} \\
K_{A} Y+Y^{\star} K_{B}=0
\end{gathered}
$$

$\left(K_{A}, K_{B}^{\star}\right)=P\left(A, B^{\star}\right) Q$: Kronecker canonical form (KCF) of $\left(A, B^{\star}\right)$
(c) Solve: $K_{A} Y+Y^{\star} K_{B}=0$
(2) Undo: $X=Q Y P^{-\star}$

Partition into blocks

Lemma

Let $E=\operatorname{diag}\left(E_{1}, \ldots, E_{d}\right)$ and $F^{\star}=\operatorname{diag}\left(F_{1}^{\star}, \ldots, F_{d}^{\star}\right)$, and partition $X=\left[X_{i j}\right]_{i, j=1: d}$. Then

$$
E X+X^{\star} F=0
$$

is equivalent to the set of equations

$$
\begin{aligned}
& E_{i} X_{i j}+X_{\text {脑 }}^{\star} F_{j}=0 \\
& E_{j} X_{j i}+X_{i j}^{\star} F_{i}=0,
\end{aligned}
$$

for $i, j=1, \ldots, d$.
Note that we have:

Partition into blocks

Lemma

Let $E=\operatorname{diag}\left(E_{1}, \ldots, E_{d}\right)$ and $F^{\star}=\operatorname{diag}\left(F_{1}^{\star}, \ldots, F_{d}^{\star}\right)$, and partition $X=\left[X_{i j}\right]_{i, j=1: d}$. Then

$$
E X+X^{\star} F=0
$$

is equivalent to the set of equations

$$
\begin{aligned}
& E_{i} X_{i j}+X_{j i}^{\star} F_{j}=0 \\
& E_{j} X_{j i}+X_{i j}^{\star} F_{i}=0,
\end{aligned}
$$

for $i, j=1, \ldots, d$.
Note that we have:

$$
\left.\begin{array}{c}
i=j \rightarrow E_{i} X_{i i}+X_{i \star}^{\star} F_{i}=0 \\
i \neq j \rightarrow\left\{\begin{array}{lc}
E_{i} X_{i j}+X_{j i}^{\star} F_{j}=0 \\
E_{j} X_{j i}+X_{i j}^{\star} F_{i}=0
\end{array}\right.
\end{array} \text { (system of } 2 \text { equations) }\right) ~(1 \text { equation) })
$$

Using the KCF

By particularizing to $\left(E, F^{\star}\right)$ as the KCF of $\left(A, B^{\star}\right)$, i.e.: direct sum of blocks:
Type 1: "finite blocks": $\left(J_{k}\left(\lambda_{i}\right), I_{k}\right)$
Type 2: "infinite blocks": $\left(I_{m}, J_{m}(0)\right)$
Type 3: "right singular blocks":
$L_{\varepsilon}=\left(\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1\end{array}\right]_{\varepsilon \times(\varepsilon+1)},\left[\begin{array}{cccc}1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0\end{array}\right]_{\varepsilon \times(\varepsilon+1)}\right)$
Type 4: "left singular blocks": L_{η}^{T}
we have to solve:
(a) $E X+X^{\star} F=0$, with $\left(E, F^{\star}\right)$ of type 1-4 $\rightsquigarrow 4$ equations
(b) $\begin{aligned} & E_{i} X+Y^{\star} F_{j}=0 \\ & E_{j} Y+X^{\star} F_{i}=0\end{aligned}$, with $\left(E_{i}, F_{i}^{\star}\right),\left(E_{j}, F_{j}^{\star}\right)$ of type $1-4 \rightsquigarrow 10$ systems

唤 We get explicit solutions for all these equations/systems.

Using the KCF

By particularizing to $\left(E, F^{\star}\right)$ as the KCF of $\left(A, B^{\star}\right)$, i.e.: direct sum of blocks:
Type 1: "finite blocks": $\left(J_{k}\left(\lambda_{i}\right), I_{k}\right)$
Type 2: "infinite blocks": $\left(I_{m}, J_{m}(0)\right)$
Type 3: "right singular blocks":
$L_{\varepsilon}=\left(\left[\begin{array}{cccc}0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1\end{array}\right]_{\varepsilon \times(\varepsilon+1)},\left[\begin{array}{cccc}1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0\end{array}\right]_{\varepsilon \times(\varepsilon+1)}\right)$
Type 4: "left singular blocks": L_{η}^{T}
we have to solve:
(a) $E X+X^{\star} F=0$, with $\left(E, F^{\star}\right)$ of type 1-4 $\rightsquigarrow 4$ equations
(b) $\begin{aligned} & E_{i} X+Y^{\star} F_{j}=0 \\ & E_{j} Y+X^{\star} F_{i}=0\end{aligned}$, with $\left(E_{i}, F_{i}^{\star}\right),\left(E_{j}, F_{j}^{\star}\right)$ of type $1-4 \rightsquigarrow 10$ systems

幈 We get explicit solutions for all these equations/systems.

Solution of $A X+X^{\star} B=0$: summary

- Depends on the Kronecker canonical form of $\left(A, B^{\star}\right)$: $\left(K_{A}, K_{B}^{\star}\right)$.
- Explicit solution available: up to the knowledge of P, Q such that $P\left(A, B^{\star}\right) Q=\left(K_{A}, K_{B}^{\star}\right)$.

Uniqueness of solution

Theorem (Byers-Kressner 2006, Kressner-Schröder-Watkins 2009)

$A, B \in \mathbb{C}^{n \times n}$. Then

$$
A X+X^{\star} B=C \quad \text { has a unique solution }
$$

if and only if
(1) $\left(A, B^{\star}\right)$ is regular, and
(2) $\star=T$: If $\mu \in \sigma\left(A, B^{T}\right) \backslash\{-1\}$, then $1 / \mu \notin \sigma\left(A, B^{T}\right) \backslash\{-1\}$ and, if $-1 \in \sigma\left(A, B^{\top}\right)$, then it has algebraic multiplicity one.
$\star=*$: If $\mu \in \sigma\left(A, B^{*}\right)$, then $1 / \bar{\mu} \notin \sigma\left(A, B^{*}\right)$.

$A X+X^{\star} B=C$: Consistency

Theorem (Wimmer 1994, DT-Dopico 2011)
Let \mathbb{F} be a field with char $\mathbb{F} \neq 2, A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times m}$. Then

$$
A X+X^{\star} B=C \quad \text { is consistent }
$$

if and only if

$$
\left[\begin{array}{cc}
C & A \\
B & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right] \quad \text { are congruent }
$$

(Compare with Roth's criterion:

" $A X-X B=C$ is consistent if and only if
$\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right]$ and $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right] \quad$ are similar")

$A X+X^{\star} B=C$: Consistency

Theorem (Wimmer 1994, DT-Dopico 2011)
Let \mathbb{F} be a field with char $\mathbb{F} \neq 2, A \in \mathbb{F}^{m \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times m}$. Then

$$
A X+X^{\star} B=C \quad \text { is consistent }
$$

if and only if

$$
\left[\begin{array}{cc}
C & A \\
B & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right] \quad \text { are congruent }
$$

(Compare with Roth's criterion:
" $A X-X B=C$ is consistent if and only if

$$
\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right] \text { and }\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right] \quad \text { are similar") }
$$

Outline

(1) Framework

(2) Motivation
(3) Classical Sylvester equation
4) The equation $X A+A X^{\star}=0$
(5) The equation $A X+X^{\star} B=C$
(6) The equation $A X+B X^{\star}=0$
(7) Conclusions and bibliography

$A X+B X^{\star}=0$: Resolution procedure

$A, B \in \mathbb{C}^{m \times n}, \quad X \in \mathbb{C}^{n \times n}$ (square !!)

$$
A X+B X^{\star}=0
$$

$\left(K_{A}, K_{B}\right)=P(A, B) Q^{-1} \rightsquigarrow \operatorname{KCF}(A, B)$
(C) Solve: $K_{A} Y+K_{B} Y^{\star}=0$
(4) Undo:

$A X+B X^{\star}=0$: Resolution procedure

$A, B \in \mathbb{C}^{m \times n}, \quad X \in \mathbb{C}^{n \times n}$ (square !!)

$$
\begin{gathered}
A X+B X^{\star}=0 \\
P \cdot \downarrow \cdot Q^{\star} \\
\left(P A Q^{-1}\right)\left(Q X Q^{\star}\right)+\left(P B Q^{-1}\right)\left(Q X^{\star} Q^{\star}\right)=0 \\
\Uparrow Y=Q X Q \\
K_{A} Y+K_{B} Y^{\star}=0
\end{gathered}
$$

$\left.K_{A}, K_{B}\right)=P(A, B) Q^{-1} \rightsquigarrow \operatorname{KCF}(A, B)$
(c) Solve: $K_{A} Y+K_{B} Y^{\star}=0$
(3) Undo: $X=Q^{-1} Y Q^{-}$

$A X+B X^{\star}=0$: Resolution procedure

$A, B \in \mathbb{C}^{m \times n}, \quad X \in \mathbb{C}^{n \times n}$ (square !!)

$$
\begin{gathered}
A X+B X^{\star}=0 \\
P \cdot \downarrow \cdot Q^{\star} \\
\left(P A Q^{-1}\right)\left(Q X Q^{\star}\right)+\left(P B Q^{-1}\right)\left(Q X^{\star} Q^{\star}\right)=0 \\
\mathbb{\Downarrow} Y=Q X Q^{\star} \\
K_{A} Y+K_{B} Y^{\star}=0
\end{gathered}
$$

$\left(K_{A}, K_{B}\right)=P(A, B) Q^{-1} \rightsquigarrow \operatorname{KCF}(A, B)$

$A X+B X^{\star}=0$: Resolution procedure

$A, B \in \mathbb{C}^{m \times n}, \quad X \in \mathbb{C}^{n \times n}$ (square !!)

$$
\begin{gathered}
A X+B X^{\star}=0 \\
P \cdot \downarrow \cdot Q^{\star} \\
\left(P A Q^{-1}\right)\left(Q X Q^{\star}\right)+\left(P B Q^{-1}\right)\left(Q X^{\star} Q^{\star}\right)=0 \\
\Uparrow \mathbb{} Y=Q X Q^{\star} \\
K_{A} Y+K_{B} Y^{\star}=0
\end{gathered}
$$

$\left(K_{A}, K_{B}\right)=P(A, B) Q^{-1} \leadsto \operatorname{KCF}(A, B)$
(1) Solve: $K_{A} Y+K_{B} Y^{\star}=0$
(2) Undo: $X=Q^{-1} Y Q^{-\star}$

Uniqueness of solution

Theorem (DT, 2013)
$A, B \in \mathbb{C}^{n \times n}$. Then

$$
A X+B X^{\star}=C \quad \text { has a unique solution }
$$

if and only if
(1) $\operatorname{KCF}(A, B)$ has no right singular blocks
(2) If $\mu \in \sigma(A, B)$, then $1 / \mu \notin \sigma(A, B) \backslash\{-1\}$.

Solution of $A X+B X^{\star}=0$: summary

With similar developments as for $A X+X^{\star} B=0 \ldots$

- Depends on the Kronecker canonical form of (A, B) : $\left(K_{A}, K_{B}\right)$.
- Explicit solution available: up to the knowledge of P, Q such that $P(A, B) Q^{-1}=\left(K_{A}, K_{B}\right)$.

Solution of $A X+B X^{\star}=0$: summary

With similar developments as for $A X+X^{\star} B=0 \ldots$

- Depends on the Kronecker canonical form of (A, B) : $\left(K_{A}, K_{B}\right)$.
- Explicit solution available: up to the knowledge of P, Q such that $P(A, B) Q^{-1}=\left(K_{A}, K_{B}\right)$.

RTs Characterization of consistency??????

Solution of $A X+B X^{\star}=0$: summary

With similar developments as for $A X+X^{\star} B=0 \ldots$

- Depends on the Kronecker canonical form of $(A, B):\left(K_{A}, K_{B}\right)$.
- Explicit solution available: up to the knowledge of P, Q such that $P(A, B) Q^{-1}=\left(K_{A}, K_{B}\right)$.

Characterization of consistency: Open problem

Conclusions

- To solve $\mathbf{A X}-\mathbf{X B}=\mathbf{0}, \mathbf{A X}+\mathbf{X}^{\star} \mathbf{B}=\mathbf{0}, \mathbf{A X}+\mathbf{B X} \mathbf{X}^{\star}=\mathbf{0}$: Reduction to canonical form and explicit solution after decoupling through canonical blocks:
- $A X-X B=0$: JCF of A and B.
- $A X+X^{\star} A=0$: Canonical form for \star-congruence of A.
- $A X+X^{\star} B=0$: KCF of $\left(A, B^{\star}\right)$.
- $A X+B X^{\star}=0$: KCF of (A, B).
- Consistency of $A X+X^{\star} B=C$ vs $A X-X B=C$: the role of similarity is now played by congruence.
- Uniqueness of solution: depends on spectral properties of:
- $A X-X B: A$ and B.
- $A X+X^{\star} B=0$: The pencil $\left(A, B^{\star}\right)$
- $A X+B X^{\star}=0$: The pencil (A, B).

Some（incomplete）bibliography

R．Byers，D．Kressner．
SIAM J．Matrix Anal．Appl．， 28 （2006）326－347
F．De Terán．
Lin．Multilin．Algebra， 61 （2013）1605－1628
F．De Terán，F．M．Dopico．
Linear Algebra Appl．， 434 （2011）44－67
F．De Terán，F．M．Dopico．
Electron．J．Linear Algebra， 22 （2011）448－465
F．De Terán，F．M．Dopico．
Electron．J．Linear Algebra， 22 （2011）849－863
F．De Terán，F．M．Dopico，N．Guillery，D．Montealegre，N．Reyes．
Linear Algebra Appl．， 438 （2013）2817－2860
D．Kressner，C．Schröder，D．S．Watkins．
Numerical Algor．， 51 （2009）209－238
F．Piao，Q．Zhang，Z．Wang．
J．Franklin Inst．， 344 （2007）1056－1062．J．J．Sylvester．
C．R．Acad．Paris， 99 （1884）67－71
H．K．Wimmer．
Linear Algebra Appl． 199 （1994）357－362

