uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

On the consistency of $X^{\top} A X=B$ when B is either symmetric or skew

Fernando De Terán

Joint work with A. Borobia and R. Canogar

The problem

Provide necessary and sufficient conditions for the equation

$$
X^{\top} A X=B
$$

being consistent, when B is either symmetric or skew-symmetric.

The problem

Provide necessary and sufficient conditions for the equation

$$
X^{\top} A X=B
$$

being consistent, when B is either symmetric or skew-symmetric.

10ㅏㅄㅇ $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}, X \in \mathbb{C}^{n \times m}$ (unknown).
$(\cdot)^{\top}$: transpose.

The problem

Provide necessary and sufficient conditions for the equation

$$
X^{\top} A X=B
$$

being consistent, when B is either symmetric or skew-symmetric.

망ㅇ $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}, X \in \mathbb{C}^{n \times m}$ (unknown).
$(\cdot)^{\top}$: transpose.
咚 A is not necessarily symmetric (or skew).

The problem

Provide necessary and sufficient conditions for the equation

$$
X^{\top} A X=B
$$

being consistent, when B is either symmetric or skew-symmetric.

图 $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}, X \in \mathbb{C}^{n \times m}$ (unknown).
$(\cdot)^{\top}$: transpose.
맚우 A is not necessarily symmetric (or skew). When A is symmetric (skew) the result is well-known: rank $B \leq \operatorname{rank} A$ is a necessary and sufficient condition (even when $m \neq n$).

A remark

$$
X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}
$$

If: If X is invertible, then A must be symmetric. \checkmark
Then...

A remark

$$
X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}
$$

If: If X is invertible, then A must be symmetric. \checkmark
Then...

The interesting case is when X is singular.

A remark

$$
X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}
$$

If: If X is invertible, then A must be symmetric. \checkmark
Then...

The interesting case is when X is singular.
We'll see we can restrict ourselves to X having full (column) rank.

A remark

$$
X^{\top} A X=B, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{m \times m}
$$

If: If X is invertible, then A must be symmetric. \checkmark
Then...

The interesting case is when X is singular.
We'll see we can restrict ourselves to X having full (column) rank.
망ㅇ Then, $n>m$

$X^{\top} A X=B$ and bilinear forms

The problem is equivalent to
Given a bilinear form $\mathbb{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, find the largest dimension of a subspace $V \subseteq \mathbb{C}^{n}$, such that $\mathbb{A}_{\mid V}: V \rightarrow V$ is symmetric (skew) and non-degenerate.

$X^{\top} A X=B$ and bilinear forms

The problem is equivalent to
Given a bilinear form $\mathbb{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, find the largest dimension of a subspace $V \subseteq \mathbb{C}^{n}$, such that $\mathbb{A}_{\mid V}: V \rightarrow V$ is symmetric (skew) and non-degenerate.
(If A is a matrix of \mathbb{A} in some basis, and the columns of X are a basis of V, then $X^{\top} A X$ is a matrix for $\mathbb{A}_{\mid v}$.)

Some references on this problem

- A, B with entries over finite fields (or fields with characteristic 2):
J. H. M. Wedderburn.

The automorphic transformation of a bilinear form.
Ann. of Math. 2, 23 (1921) 122-134.
L. Carlitz.

Representations by skew forms in a finite field.
Arch. Math., V (1954) 19-31.
J. H. Hodges.

A skew matrix equation over a finite field.
Math. Nachr., 17 (1966) 49-55.
P. G. Buckhiester.

Rank r solutions to the matrix equation $X A X^{t}=C, A$ alternate, over $\mathrm{GF}\left(2^{y}\right)$.
Trans. Amer. Math. Soc., 189 (1974) 201-209.

- Recent references (mainly connected to applications):
P. Benner, D. Palitta.

On the solution of the non-symmetric T-Riccati equation.
Electron. Trans. Numer. Anal., 54 (2021) 66-88.
P. Benner, B. Iannazzo, B. Meini, D. Palitta.

Palindromic linearization and numerical solution of nonsymmetric algebraic T-Riccati equations.
(2021) arXiv:2110.03254
M. Benzi, M. Viviani.

Solving cubic matrix equations arising in conservative dynamics.
uc3m Universidad Carios III de Madrid (2021) arXiv:2111.12373

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right.$)
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
(B is symmetric in all cases, but A is not).

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right.$)
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
$X^{\top} J_{n}(0) X=I_{m} \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \geq 2 m-1, n>1$.

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right) \quad(m=1, n=2)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right)$
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
$X^{\top} J_{n}(0) X=I_{m} \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \geq 2 m-1, n>1$.
uc3m Universidad Carios III de Madrid

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right) \quad(m=1, n=2)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right.$)
($m=2, n=3$)
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent
$X^{\top} J_{n}(0) X=I_{m} \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \geq 2 m-1, n>1$.

Some examples (B symmetric)

$X^{\top} A X=B$ with \ldots

- $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right) \quad(m=1, n=2)$
- $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is consistent $\left(X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -i & 0 \\ 0 & i & 0\end{array}\right]\right.$)
($m=2, n=3$)
- $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is NOT consistent $(m=3, n=4)$
$X^{\top} J_{n}(0) X=I_{m} \oplus 0_{s \times s}$ is consistent $\Leftrightarrow n \geq 2 m-1, n>1$.

The Canonical form for congruence (CFC)

Theorem (CFC) [Horn \& Sergeichuk, 2006]

Each square complex matrix is congruent to a direct sum, uniquely determined up to permutation of addends, of matrices of the form:

Type 0	$J_{k}(0)$
Type I	Γ_{k}
	$H_{2 k}(\mu)$,
Type II	$0 \neq \mu \neq(-1)^{k+1}$ $\left(\mu\right.$ is determined up to replacement by $\left.\mu^{-1}\right)$

The Canonical form for congruence (CFC)

Theorem (CFC) [Horn \& Sergeichuk, 2006]

Each square complex matrix is congruent to a direct sum, uniquely determined up to permutation of addends, of matrices of the form:

Type 0	$J_{k}(0)$
Type I	Γ_{k}
Type II	$H_{2 k}(\mu)$,
$0 \neq \mu \neq(-1)^{k+1}$	
$\left(\mu\right.$ is determined up to replacement by $\left.\mu^{-1}\right)$	

$$
\left(\Gamma_{1}=[1], \quad H_{2}(-1)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .\right)
$$

Reduction to CFC

Notation: $C_{M}=$ CFC of M.

uc3m	Universidad Carlos III de Madrid

Departamento de Matematicas

Reduction to CFC

Notation: $C_{M}=$ CFC of M.

$X^{\top} A X=B$ is consistent $\Leftrightarrow X^{\top} C_{A} X=C_{B}$ is consistent.

Reduction to CFC

Notation: $C_{M}=$ CFC of M.

$X^{\top} A X=B$ is consistent $\Leftrightarrow X^{\top} C_{A} X=C_{B}$ is consistent.

(If $A=P^{\top} C_{A} P$ and $B=Q^{\top} C_{B} Q$, then $X^{\top} A X=B \Leftrightarrow Y^{\top} C_{A} Y=C_{B}$, with $Y=P X Q^{-1}$.)

Reduction to CFC

Notation: $C_{M}=$ CFC of M.

$X^{\top} A X=B$ is consistent $\Leftrightarrow X^{\top} C_{A} X=C_{B}$ is consistent.

(If $A=P^{\top} C_{A} P$ and $B=Q^{\top} C_{B} Q$, then $X^{\top} A X=B \Leftrightarrow Y^{\top} C_{A} Y=C_{B}$, with $Y=P X Q^{-1}$.)

Nㅏㅂㅂ We can restrict ourselves to A and B given in CFC.

Some basic remarks

- B symmetric $\Rightarrow C_{B}=I_{m} \oplus 0_{s \times s}$
- B skew $\Rightarrow C_{B}=H_{2}(-1)^{\oplus k} \oplus 0_{s \times s}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]^{\oplus k} \oplus 0_{s \times s}$.
- $X^{\top}\left(A \oplus 0_{(x \ell)}\right) X=B \oplus 0_{s \times s}$ is consistent $\Leftrightarrow X^{\top} A X=B$ is consistent.

Some basic remarks

Notation: $M^{\oplus k}=\overbrace{M \oplus \cdots \oplus M}^{k \text { times }}$

- B symmetric $\Rightarrow C_{B}=I_{m} \oplus 0_{s \times s}$
- B skew $\Rightarrow C_{B}=H_{2}(-1)^{\oplus k} \oplus 0_{s \times s}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]^{\oplus k} \oplus 0_{s \times s}$.
- $X^{\top}\left(A \oplus 0_{(x \ell)}\right) X=B \oplus 0_{s \times s}$ is consistent $\Leftrightarrow X^{\top} A X=B$ is consistent.

Some basic remarks

Notation: $M^{\oplus k}=\overbrace{M \oplus \cdots \oplus M}^{k \text { times }}$

- B symmetric $\Rightarrow C_{B}=I_{m} \oplus 0_{s \times s}=\left(\Gamma_{1}\right)^{\oplus m} \oplus 0_{s \times s}$.
- B skew $\Rightarrow C_{B}=H_{2}(-1)^{\oplus k} \oplus 0_{s \times s}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]^{\oplus k} \oplus 0_{s \times s}$.
- $X^{\top}\left(A \oplus 0_{(x t)}\right) X=B \oplus 0_{s \times s}$ is consistent $\Leftrightarrow X^{\top} A X=B$ is consistent.

Some basic remarks

Notation: $M^{\oplus k}=\overbrace{M \oplus \cdots \oplus M}^{k \text { times }}$

- B symmetric $\Rightarrow C_{B}=I_{m} \oplus 0_{s \times s}=\left(\Gamma_{1}\right)^{\oplus m} \oplus 0_{s \times s}$.
- B skew $\Rightarrow C_{B}=H_{2}(-1)^{\oplus k} \oplus 0_{s \times s}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]^{\oplus k} \oplus 0_{s \times s}$.
- $X^{\top}\left(A \oplus 0_{\ell \times \ell}\right) X=B \oplus 0_{s \times s}$ is consistent $\Leftrightarrow X^{\top} A X=B$ is consistent.
(We can get rid of possible null diagonal blocks in the CFC of A and B, namely blocks $J_{1}(0)$. In particular, B may be assumed to be invertible).

A necessary condition

Let C_{A} consist of (exactly):

(1) j_{1} Type-0 blocks with size 1 ;
(i) j_{o} Type-0 blocks with odd size at least 3;
(ii) γ_{ε} Type-I blocks with even size;
(1) $h_{2 o}^{-}$Type-II blocks of the form $H_{4 k-2}(-1)$, for any $k \geq 1$;
(2) h_{4}^{+}Type-II blocks of the form $H_{4 \ell}(1)$, for any $\ell \geq 1$; and
(i) an arbitrary number of other blocks.

A necessary condition

Let C_{A} consist of (exactly):

(1) j_{1} Type-0 blocks with size 1 ;
(i) j_{o} Type-0 blocks with odd size at least 3;
(ii) γ_{ε} Type-I blocks with even size;
(1) h_{20}^{-}Type-II blocks of the form $H_{4 k-2}(-1)$, for any $k \geq 1$;
(c) h_{4}^{+}Type-II blocks of the form $H_{4 \ell}(1)$, for any $\ell \geq 1$; and
(i) an arbitrary number of other blocks.

Set:

$$
\rho_{\text {sym }}(A):=\frac{n-j_{1}+j_{o}+\gamma_{\varepsilon}+2 h_{4}^{+}}{2}, \quad \rho_{\text {skew }}(A):=\frac{n-j_{1}+j_{o}+\gamma_{\varepsilon}+2 h_{2 o}^{-}}{2}
$$

A necessary condition

Let C_{A} consist of (exactly):
(1) j_{1} Type-0 blocks with size 1 ;
(i) j_{0} Type-0 blocks with odd size at least 3;
(ii) γ_{ε} Type-I blocks with even size;
(D) h_{20}^{-}Type-II blocks of the form $H_{4 k-2}(-1)$, for any $k \geq 1$;
(2) h_{4}^{+}Type-II blocks of the form $H_{4 \ell}(1)$, for any $\ell \geq 1$; and
(i) an arbitrary number of other blocks.

Set:

$$
\rho_{\text {sym }}(A):=\frac{n-j_{1}+j_{o}+\gamma_{\varepsilon}+2 h_{4}^{+}}{2}, \quad \rho_{\text {skew }}(A):=\frac{n-j_{1}+j_{o}+\gamma_{\varepsilon}+2 h_{2 o}^{-}}{2}
$$

Theorem

- $X^{\top} A X=B$ consistent (B symmetric) \Rightarrow rank $B \leq \rho_{\text {sym }}(A)$.
- $X^{\top} A X=B$ consistent (B skew) $\Rightarrow \operatorname{rank} B \leq \rho_{\text {skew }}(A)$.

A necessary condition

Let C_{A} consist of (exactly):
(1) j_{1} Type-0 blocks with size 1 ;
(i) j_{0} Type-0 blocks with odd size at least 3;
(ii) γ_{ε} Type-I blocks with even size;
(D) h_{20}^{-}Type-II blocks of the form $H_{4 k-2}(-1)$, for any $k \geq 1$;
(2) h_{4}^{+}Type-II blocks of the form $H_{4 \ell}(1)$, for any $\ell \geq 1$; and
(i) an arbitrary number of other blocks.

Set:

$$
\rho_{\text {sym }}(A):=\frac{n-j_{1}+j_{o}+\gamma_{\varepsilon}+2 h_{4}^{+}}{2}, \quad \rho_{\text {skew }}(A):=\frac{n-j_{1}+j_{o}+\gamma_{\varepsilon}+2 h_{2 o}^{-}}{2}
$$

Theorem

- $X^{\top} A X=B$ consistent (B symmetric) \Rightarrow rank $B \leq \rho_{\text {sym }}(A)$.
- $X^{\top} A X=B$ consistent (B skew) $\Rightarrow \operatorname{rank} B \leq \rho_{\text {skew }}(A)$.

A necessary condition

Let C_{A} consist of (exactly):
(1) j_{1} Type-0 blocks with size 1 ;
(i) j_{0} Type-0 blocks with odd size at least 3;
(ii) γ_{ε} Type-I blocks with even size;
(D) h_{20}^{-}Type-II blocks of the form $H_{4 k-2}(-1)$, for any $k \geq 1$;
(2) h_{4}^{+}Type-II blocks of the form $H_{4 \ell}(1)$, for any $\ell \geq 1$; and
(i) an arbitrary number of other blocks.

Set:

$$
\rho_{\text {sym }}(A):=\frac{n-j_{1}+j_{o}+\gamma_{\varepsilon}+2 h_{4}^{+}}{2}, \quad \rho_{\text {skew }}(A):=\frac{n-j_{1}+j_{o}+\gamma_{\varepsilon}+2 h_{20}^{-}}{2}
$$

Theorem

- $X^{\top} A X=B$ consistent $\left(B\right.$ symmetric) \Rightarrow rank $B \leq \rho_{\text {sym }}(A)$.
- $X^{\top} A X=B$ consistent (B skew) $\Rightarrow \operatorname{rank} B \leq \rho_{\text {skew }}(A)$.

Some remarks on the necessary condition

- $X^{\top} A X=B$ consistent (B symmetric) \Rightarrow rank $B \leq \rho_{\text {sym }}(A)$.
- $X^{\top} A X=B$ consistent $\left(B\right.$ skew) $\Rightarrow \operatorname{rank} B \leq \rho_{\text {skew }}(A)$.

Some remarks on the necessary condition

- $X^{\top} A X=B$ consistent (B symmetric) \Rightarrow rank $B \leq \rho_{\text {sym }}(A)$.
- $X^{\top} A X=B$ consistent $\left(B\right.$ skew) $\Rightarrow \operatorname{rank} B \leq \rho_{\text {skew }}(A)$.

궝ㅂ It is valid for any $A \in \mathbb{C}^{n \times n}$.

Some remarks on the necessary condition

- $X^{\top} A X=B$ consistent (B symmetric) \Rightarrow rank $B \leq \rho_{\text {sym }}(A)$.
- $X^{\top} A X=B$ consistent (B skew) $\Rightarrow \operatorname{rank} B \leq \rho_{\text {skew }}(A)$.

맚아 It is valid for any $A \in \mathbb{C}^{n \times n}$.

뭆앙 It depends on (certain kinds of blocks in) the CFC of A.

Is it sufficient (B symmetric)?

Is it sufficient (B symmetric)?

The answer is NO.

Is it sufficient (B symmetric)?

The answer is NO.
(But there are just a few exceptions).

Is it sufficient (B symmetric)?

The answer is NO.

(But there are just a few exceptions).
(1) $A=H_{2}(-1)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], B=I_{1}=[1]$.

The condition is satisfied:

$$
n=2, \quad \operatorname{rank} B=1, \quad j_{1}=j_{o}=\gamma_{\varepsilon}=2 h_{4}^{+}=0,
$$

so it reads

$$
1 \leq \rho_{\mathrm{sym}}(A)=\frac{2}{2}
$$

However,

$$
X^{\top}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] X=1
$$

is not consistent.

Is it sufficient (B symmetric)?

The answer is NO.

(But there are just a few exceptions).
(1) $A=H_{2}(-1)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], B=I_{1}=[1]$.

The condition is satisfied:

$$
n=2, \quad \operatorname{rank} B=1, \quad j_{1}=j_{o}=\gamma_{\varepsilon}=2 h_{4}^{+}=0,
$$

so it reads

$$
1 \leq \rho_{\mathrm{sym}}(A)=\frac{2}{2}
$$

However,

$$
X^{\top}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] X=1
$$

is not consistent (note that $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is skew and 1 is symmetric).

Is it sufficient (B symmetric)?

The answer is NO.

(But there are just a few exceptions).
(1) $A=H_{2}(-1)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], B=I_{1}=[1]$.
(2) $A=H_{4}(1)=\left[\begin{array}{ll|ll} & & 1 & 0 \\ & & 0 & 1 \\ \hline 1 & 1 & & \\ 0 & 1 & & \end{array}\right], B=I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

The condition is satisfied:

$$
n=4, \quad \operatorname{rank} B=3, \quad j_{1}=j_{o}=\gamma_{\varepsilon}=0,2 h_{4}^{+}=2
$$

so it reads

$$
3 \leq \rho_{\mathrm{sym}}(A)=\frac{4+2}{2} .
$$

However,

$$
X^{\top}\left[\begin{array}{ll|ll}
& & 1 & 0 \\
& & 0 & 1 \\
\hline 1 & 1 & & \\
0 & 1 & &
\end{array}\right] X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is not consistent.

Is it sufficient (B symmetric)?

The answer is NO. (But there are just a few exceptions).
(1) $A=H_{2}(-1)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], B=I_{1}=[1]$.
(2) $A=H_{4}(1)=\left[\begin{array}{ll|ll} & & 1 & 0 \\ & & 0 & 1 \\ \hline 1 & 1 & & \\ 0 & 1 & \end{array}\right], B=I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

When B is symmetric, the blocks $H_{2}(-1)$ and $H_{4}(1)$ in C_{A} are problematic.

Is it sufficient (B skew)?

Is it sufficient (B skew)?

The answer is, again, NO.

Is it sufficient (B skew)?

The answer is, again, NO.
(But, again, there are just a few exceptions).

Is it sufficient (B skew)?

The answer is, again, NO.
(But, again, there are just a few exceptions).
(1) $A=\Gamma_{2}^{\oplus 4}=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{\oplus 4}, B=H_{2}(-1)^{\oplus 3}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]^{\oplus 3}$.

The condition is satisfied:

$$
n=8, \quad \operatorname{rank} B=6, \quad j_{1}=j_{o}=2 h_{2 o}^{-}=0, \gamma_{\varepsilon}=4,
$$

so it reads

$$
6 \leq \rho_{\text {skew }}(A)=\frac{8+4}{2}
$$

However,

$$
X^{\top}\left[\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right]^{\oplus 4} X=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{\oplus 3}
$$

is not consistent.

Is it sufficient (B skew)?

The answer is, again, NO.
(But, again, there are just a few exceptions).
(1) $A=\Gamma_{2}^{\oplus 4}=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{\oplus 4}, B=H_{2}(-1)^{\oplus 3}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]^{\oplus 3}$.
(2) $A=\Gamma_{1}^{\oplus n}=I_{n}, B=H_{2}(-1)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.

The condition is satisfied for $n \geq 4$:

$$
\operatorname{rank} B=2, \quad j_{1}=j_{o}=\gamma_{\varepsilon}=2 h_{2 o}^{-}=0
$$

so it reads

$$
2 \leq \rho_{\mathrm{sym}}(A)=\frac{n}{2} .
$$

However,

$$
X^{\top} I_{n} X=X^{\top} X=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

is not consistent.

Is it sufficient (B skew)?

The answer is, again, NO.
(But, again, there are just a few exceptions).
(1) $A=\Gamma_{2}^{\oplus 4}=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{\oplus 4}, B=H_{2}(-1)^{\oplus 3}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]^{\oplus 3}$.
(2) $A=\Gamma_{1}^{\oplus n}=I_{n}, B=H_{2}(-1)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.

The condition is satisfied for $n \geq 4$:

$$
\operatorname{rank} B=2, \quad j_{1}=j_{o}=\gamma_{\varepsilon}=2 h_{2 o}^{-}=0,
$$

so it reads

$$
2 \leq \rho_{\mathrm{sym}}(A)=\frac{n}{2} .
$$

However,

$$
X^{\top} I_{n} X=X^{\top} X=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

is not consistent (note that $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is skew).

Is it sufficient (B skew)?

The answer is, again, NO.
(But, again, there are just a few exceptions).
(1) $A=\Gamma_{2}^{\oplus 4}=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]^{\oplus 4}, B=H_{2}(-1)^{\oplus 3}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]^{\oplus 3}$.
(2) $A=\Gamma_{1}^{\oplus n}=I_{n}, B=H_{2}(-1)=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.

When B is skew, the blocks Γ_{1} and Γ_{2} in C_{A} are problematic.

It is sufficient "in general"

Theorem (consistency of $X^{\top} A X=B$, with B symmetric).
If C_{A} does not contain blocks of the form $H_{2}(-1)$ and $H_{4}(1)$, then

$$
X^{\top} A X=B \quad(B \text { symmetric })
$$

is consistent if and only if rank $B \leq \rho_{\text {sym }}(A)$.

It is sufficient "in general"

Theorem (consistency of $X^{\top} A X=B$, with B symmetric).
If C_{A} does not contain blocks of the form $H_{2}(-1)$ and $H_{4}(1)$, then

$$
X^{\top} A X=B \quad(B \text { symmetric })
$$

is consistent if and only if rank $B \leq \rho_{\text {sym }}(A)$.

Theorem (consistency of $X^{\top} A X=B$, with B skew).
If C_{A} does not contain blocks of the form Γ_{1} and Γ_{2}, then

$$
X^{\top} A X=B \quad(B \text { skew })
$$

is consistent if and only if rank $B \leq \rho_{\text {skew }}(A)$.

When CFC (A) contains blocks $H_{2}(-1)$: B symmetric

Set:

$$
\sigma_{\mathrm{sym}}(A):=n-j_{1}-j_{o}-\gamma_{\varepsilon}-2 h_{2 o}^{-}
$$

(recall: $\rho_{\text {sym }}(A):=\frac{n-j_{1}+j_{j}+\gamma_{o}+22_{2 \varepsilon}^{+}}{2}$)

When CFC (A) contains blocks $H_{2}(-1)$: B symmetric

Set:

$$
\sigma_{\mathrm{sym}}(A):=n-j_{1}-j_{o}-\gamma_{\varepsilon}-2 h_{2 o}^{-}
$$

(recall: $\rho_{\text {sym }}(A):=\frac{n-j_{1}+j_{j}+\gamma_{o}+22_{2 \varepsilon}^{+}}{2}$)
If $\operatorname{CFC}(A)$ has no blocks of type $H_{2}(-1)$ then $\rho_{\text {sym }}(A) \leq \sigma_{\text {sym }}(A)$.

When CFC(A) contains blocks $H_{2}(-1)$: B symmetric

Set:

$$
\sigma_{\mathrm{sym}}(A):=n-j_{1}-j_{o}-\gamma_{\varepsilon}-2 h_{20}^{-}
$$

(recall: $\rho_{\text {sym }}(A):=\frac{n-j_{1}+j_{j}+\gamma_{o}+22_{2 \varepsilon}^{+}}{2}$)
If $\operatorname{CFC}(A)$ has no blocks of type $H_{2}(-1)$ then $\rho_{\text {sym }}(A) \leq \sigma_{\text {sym }}(A)$.

Theorem (consistency of $X^{\top} A X=B$, with B symmetric).
If C_{A} does not contain blocks of the form $H_{2}(-1)$ and $H_{4}(1)$, then

$$
X^{\top} A X=B \quad(B \text { symmetric })
$$

is consistent if and only if rank $B \leq \rho_{\text {sym }}(A)$.

When CFC(A) contains blocks $H_{2}(-1)$: B symmetric

Set:

$$
\sigma_{\mathrm{sym}}(A):=n-j_{1}-j_{o}-\gamma_{\varepsilon}-2 h_{20}^{-}
$$

(recall: $\rho_{\text {sym }}(A):=\frac{n-j_{1}+j_{j}+\gamma_{o}+22_{2 \varepsilon}^{+}}{2}$)
If CFC (A) has no blocks of type $H_{2}(-1)$ then $\rho_{\text {sym }}(A) \leq \sigma_{\text {sym }}(A)$.

Theorem (consistency of $X^{\top} A X=B$, with B symmetric, improved).
If C_{A} does not contain blocks of the form $H_{4}(1)$, then

$$
X^{\top} A X=B \quad(B \text { symmetric })
$$

is consistent if and only if rank $B \leq \min \left\{\rho_{\text {sym }}(A), \sigma_{\text {sym }}(A)\right\}$.

Generic case in terms of bilinear forms

Theorem

$\mathbb{A}: \mathbb{C}^{n} \rightarrow \mathcal{R}$ a bilinear form.
$A \in \mathbb{C}^{n \times n}$ a matrix representation of \mathbb{A}.
If $\operatorname{CFC}(A)$ does not contain blocks $H_{4}(1)$, the largest dimension of a subspace, V of \mathbb{C}^{n} such that $\mathbb{A} \mid v$ is a symmetric (non-degenerate) is $\min \left\{\rho_{\text {sym }}(A), \sigma_{\text {sym }}(A)\right\}$.

Generic case in terms of bilinear forms

Theorem

$A: \mathbb{C}^{n} \rightarrow \mathcal{R}$ a bilinear form.
$A \in \mathbb{C}^{n \times n}$ a matrix representation of \mathbb{A}.
If $\operatorname{CFC}(A)$ does not contain blocks $H_{4}(1)$, the largest dimension of a subspace, V of \mathbb{C}^{n} such that $\mathbb{A} \mid v$ is a symmetric (non-degenerate) is $\min \left\{\rho_{\text {sym }}(A), \sigma_{\text {sym }}(A)\right\}$.

Theorem

$A: \mathbb{C}^{n} \rightarrow \mathcal{R}$ a bilinear form.
$A \in \mathbb{C}^{n \times n}$ a matrix representation of \mathbb{A}.
If $\operatorname{CFC}(A)$ does not contain blocks Γ_{1} and Γ_{2}, the largest dimension of a subspace, V, of \mathbb{C}^{n} such that $\mathbb{A} \mid v$ is skew-symmetric (non-degenerate) is $\rho_{\text {skew }}(A)$.
uc3m $\left\lvert\, \begin{aligned} & \text { Unversidad Carlos III de Madrid } \\ & \text { Departamento de Matematicas }\end{aligned}\right.$

The generic case

The "generic" CFC in $\mathbb{C}^{n \times n}$ is:

$$
\mathrm{CFC}_{g}(n):= \begin{cases}H_{2}\left(\mu_{1}\right) \oplus \cdots \oplus H_{2}\left(\mu_{k}\right), & \text { if } n=2 k, \\ H_{2}\left(\mu_{1}\right) \oplus \cdots \oplus H_{2}\left(\mu_{k}\right) \oplus \Gamma_{1}, & \text { if } n=2 k+1\end{cases}
$$

(μ_{1}, \ldots, μ_{k} different to each other and to $\mu_{1}^{-1}, \ldots, \mu_{k}^{-1}, \pm 1$).

Fi FDT, F. M. Dopico.
The solution of the equation $X A+A X^{T}=0$ and its application to the theory of orbits.
Linear Algebra Appl., 434 (2011) 44-67

The generic case

The "generic" CFC in $\mathbb{C}^{n \times n}$ is:

$$
\operatorname{CFC}_{g}(n):= \begin{cases}H_{2}\left(\mu_{1}\right) \oplus \cdots \oplus H_{2}\left(\mu_{k}\right), & \text { if } n=2 k, \\ H_{2}\left(\mu_{1}\right) \oplus \cdots \oplus H_{2}\left(\mu_{k}\right) \oplus \Gamma_{1}, & \text { if } n=2 k+1\end{cases}
$$

$\left(\mu_{1}, \ldots, \mu_{k}\right.$ different to each other and to $\left.\mu_{1}^{-1}, \ldots, \mu_{k}^{-1}, \pm 1\right)$.

FDT, F. M. Dopico.
The solution of the equation $X A+A X^{T}=0$ and its application to the theory of orbits.
Linear Algebra Appl., 434 (2011) 44-67

Theorem

If $C_{A}=\operatorname{CFC}_{g}(n)$, then

$$
X^{\top} A X=B \quad(B \text { symmetric or skew })
$$

is consistent if and only if rank $B \leq n / 2$.

Open questions

Analyze the consistency of:

- $X^{\top} A X=B$, when C_{A} contains blocks $H_{4}(1)\left(B\right.$ symmetric) or Γ_{1}, Γ_{2} (B skew).
- $X^{*} A X=B$, with B Hermitian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric/skew but A, B, X having real entries.
- (Hard) $X^{\top} A X=B$, with B arbitrary.

Open questions

Analyze the consistency of:

- $X^{\top} A X=B$, when C_{A} contains blocks $H_{4}(1)\left(B\right.$ symmetric) or Γ_{1}, Γ_{2} (B skew).
- $X^{*} A X=B$, with B Hermitian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric/skew but A, B, X having real entries.
- (Hard) $X^{\top} A X=B$, with B arbitrary.

Open questions

Analyze the consistency of:

- $X^{\top} A X=B$, when C_{A} contains blocks $H_{4}(1)\left(B\right.$ symmetric) or Γ_{1}, Γ_{2} (B skew).
- $X^{*} A X=B$, with B Hermitian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric/skew but A, B, X having real entries.

Open questions

Analyze the consistency of:

- $X^{\top} A X=B$, when C_{A} contains blocks $H_{4}(1)\left(B\right.$ symmetric) or Γ_{1}, Γ_{2} (B skew).
- $X^{*} A X=B$, with B Hermitian or skew-Hermitian.
- $X^{\top} A X=B$ with B symmetric/skew but A, B, X having real entries.
- (Hard) $X^{\top} A X=B$, with B arbitrary.

Some references

A．Borobia，R．Canogar，FDT．
On the consistency of the matrix equation $X^{\top} A X=B$ when B is symmetric．
Mediterr．J．Math．18， 40 （2021）．
目 A．Borobia，R．Canogar，FDT．
The equation $X^{\top} A X=B$ with B skew－symmetric：How much of a bilinear form is skew－symmetric？
Submitted．
目 A．Borobia，R．Canogar，FDT．
The equation $X^{\top} A X=B$ with B symmetric：the case where $\operatorname{CFC}(\mathrm{A})$ includes skew－symmetric blocks．
Submitted．
围 R．A．Horn，V．V．Sergeichuk．
Canonical forms for complex matrix congruence and＊－congruence． Linear Algebra Appl．， 416 （2006）1010－1032．

THANK YOU!

uc3m | Universidad Carlos III de Madrid Departamento de Matemáticas

