
 

Design Notes
with Adrian Secord

Liam Spradlin: Adrian, welcome to Design Notes.

Adrian Secord: Hey, Liam, it's so nice to see you. Thank you so much for 

having me.

Liam: Yeah, I'm really excited to have you on. I wanna start the 

episode the same way that we always do, which is to talk a 

little bit about who you are, what you're working on, and the 

kind of journey that led you there.

Adrian: Yeah, for sure. So, I'm an engineer, uh, unlike a lot of people 

(laugh) I'm working with who are, you know, designers and 

design-oriented. Um, been hanging out on Material Design 

for about 10 years now. Um, in fact, it was really fun 

listening to you talk to Will Larche, uh, in the other episode 

because, uh, he and I overlapped heavily for a long time. So 

it was- it was sort of fun to hear him talk about the past. 

Um, before I came to Google, I, uh, was doing a lot of grad 

school. I have a PhD in Computer Graphics, so algorithms 

for, um, movies and video games and that kind of stuff. 

Never used any of that information, uh, never used any of 

that knowledge. Uh, instead joined a startup like many 

people did. And then like many startups, uh, it fell apart and 

was sort of purchased quickly by Microsoft.



And I didn't want to go to Microsoft. I didn't wanna leave 

New York. Uh, so ended up jumping over to Google and 

joined Google Wallet and I was an iOS engineer on Google 

Wallet for a few years. Um, and during that time, I started 

teaching an Intro to iOS course at Google. And so during 

that point, I met some people who are working on Material 

Design from the engineering side of things. And as I'm sure 

you know, the original Material didn't really have a lot of 

engineering, um, it was sort of a group effort across the 

company to build components and patterns and things, um, 

as sort of needed, ad hoc.

Um, a lot of people working on Google Maps were building 

stuff, Google Search, all those kinds of things. Um, but 

Material Design had just started a nascent engineering effort 

to centralize a lot of that work. And one of the people who I 

often co-taught the Intro to iOS class, Alastair Tse, um, he 

was, uh, working in Material Design and pulled me in. And, 

uh, Alastair is fantastic and, I miss him a lot even though it's 

been eight or nine years now. But, uh, he pulled me in and 

started working on iOS components for Material Design, and 

that was kind of the very beginning. Um, and then over time 

I ended up, um, actually taking over that team, uh, as tech 

lead and then as manager.

Managed that team for a little while, um, and then jumped 

to be a sort of overall tech lead of all the different platform 

teams. So at that point, Material had invested in engineering 

and cross web and iOS and Android and Flutter even. Um, so 

I was sort of an overall tech lead for all those teams, trying 

to coordinate things and make sure that we did the same 



things at the same time and maybe we released the same 

kind of components at the same time, um, that kind of 

work. And, uh, eventually moved into a different piece of 

Material where we were building out design tokens. So 

design tokens are, you know, not invented at Google, but 

very common across, uh, the design world.

But at Google, as you well know (laugh), uh, it's its own giant 

ecosystem internally, and we needed to build some 

infrastructure, um, some, you know, database, some servers, 

some services, APIs to store and serve design tokens across 

all the different teams who need to use them. Uh, so I got 

to build that backend out, which was super fun. And I 

basically kind of went from more or less front end and front 

end thinking to more or less backend thinking, which I really 

appreciated. It was a great opportunity at Google, um, to be 

able to do that. And so built out the backend for design 

tokens and things. Um, still pretty involved in that world. Uh, 

I know a lot of the people working on it, and I occasionally 

get pulled in to help out with things.

Um, and more recently I describe myself as a roving 

engineer. I am (laugh) still within Material Design or our 

greater org. Um, but, uh, I essentially get occasionally 

grabbed and thrown into a problem area and help out for six 

months or 12 months and then go and do some more 

troubleshooting somewhere else. So I'm kind of- I kind of 

bounce around from hotspot to hotspot as required.

Liam: Okay. I know that near the beginning of the journey, you said 

that you, uh, did a PhD in Computer Graphics.



Adrian: Yeah.

Liam: And then you said that you didn't really do anything with 

that information.

Adrian: (laugh). True.

Liam: One of the things that I'm really interested in on this show 

is like the ways that, that the different parts of the journey 

that like brings us all into the design world, um, ends up 

showing up in our work.

Adrian: Yeah.

Liam: So when you say that you didn't use the information, my 

first instinct was like, are you sure?

Adrian: Yeah, no, I'm lying. It's not true. Uh-

Liam: (laugh).

Adrian: I mean, everyone brings with them their, their background 

and their experiences. So I mean, there are technical things. 

Um, for example, uh, I think, uh, Will Larche was talking 

about, um, color spaces a little bit, the HCT color space and 

um, uh, how we had to sort of invent a new color space to 

better represent what we were trying to do with, um, 

personalization, uh, and those sort of related technologies. 

And it was actually really fun watching that develop. I was 

chatting with some of the engineers at some point, but, uh, I 



did not personally work on that work, but it was really great 

to see a new color space come to be born.

You know, in the world there are many color spaces. You 

know, everything from like spectral stuff that, uh, you know, 

astronomers would use all the way down to some very 

simple things like RGB, um, and everything in between, you 

know. And it's, it's been sort of slowly developing for, I don't 

know, 50 or 70 years by this point. Um, but it's always 

exciting to sort of see a new one get born. 

I think the other thing that a PhD teaches you is, um, 

perseverance. no one survives a PhD program without a lot 

of just, uh, you know, get your- put your head down and 

kind of crank out a bunch of work and, um, keep it going 

year over year over year. Um, so that's something I feel like I, 

I did learn. And, um, I have been very lucky to be on 

Material, uh, working here for over 10 years now, um, but 

there's an element of that, of, of trying not to bounce off of 

problems. You know, when you find a problem, dig in and 

kind of sit with it and-

Liam: Yeah.

Adrian: You know, maybe sit on it, uh, and not just sort of like, oh, 

this is getting too hard, I gotta- I gotta go do something else. 

Um, 'cause you know, we all have our various, uh, demands 

on our time and, uh, sometimes it's easy to go pay attention 

to the other things instead of tackling that really thorny 

problem. so yes, I mean, although I am- I'm not generating 

algorithms for, you know, X, Y, Z or anything like that. It's, uh, 



the kind of technical content of the PhD is now out of date. 

And, uh, I didn't actually use it in the sort of, um, academic 

sense, which is what most PhD training really is.

Liam: Right. I know if, um, colleague, friend and friend of the show 

Yasmine-

Adrian: Mm-hmm.

Liam: Is listening, she will know what you're talking about when 

you talk about committing to the problem over time, 

especially at Google, it's very, like, our plans are measured in 

centuries, kind of.

Adrian: Yes.

Liam: Sometimes.

Adrian: 100%. Also, hi Yasmine (laugh). Yeah.

Liam: Shout out to her.

Adrian: Exactly.

Liam: When you mentioned the color space specifically and like 

seeing a new color space get born, I think this is 

something... We've had a few, like really interesting articles 

that go into how the color space works and like, what it 

allows us to do and things like that. But I'm interested in 

like, why it's so exciting to see something like that come 

into the world.



Adrian: Um, that's a good question. I mean, from a design point of 

view, all of these color spaces and all of these abstractions, 

uh, change how you can look at things. Like, uh, you know, 

uh, color comes from physics and, you know, all the light 

that's shining down on us right now has all these 

wavelengths and all this sort of stuff. But that's almost like, 

that's way too complex, um, to handle in any kind of 

realistic sense. I mean, like I said, like if you're doing 

astronomy, sure. If you're doing, you know, chemistry, sure.

But, um, for people that are responsible for doing things like 

either color on screens, which is already a sort of limited 

slice of the universe, uh, or color in printing, so that's 

another huge traditional place where color spaces, um, 

thrive, um, or color matching or looking at a table right now, 

you know, matching a color to the tone of this table or 

something, um, the color space that you work in is kind of 

like the language that shapes, uh, your thinking, you know, 

about the problem. So it's exciting to see a new color space 

come out of, uh, a new set of requirements really. It's a... It's 

a really interesting design problem, not because it's not 

software.

I mean, I know there's software supporting it, but it's really 

a, a mathematical model, you know, of what are the 

important parts of this giant, uh, you know, nearly infinite 

space of things? What is the most important parts of them, 

and how can we collapse those important parts down into 

like a set of numbers or, you know, a set of smaller 



concepts or something like that, um, that make it useful and 

fruitful and convenient to use? 

So to, to see a new one pop up... First off, I mean, there are 

a lot of color spaces, and I would probably say 90% of them 

have, you know, gone by the wayside. I mean, they just didn't 

survive the- uh, in the landscape of competition, of, of 

ideas. Uh, and so to see a new baby one come out (laugh) 

and, uh, and see where it's coming from, like why- you 

know, why did we make the choices we did? Why did we 

need something new? You know, which is always a great 

question. Um, uh, that's an exciting moment. And I think it's 

probably too early to tell, but maybe, you know, in five or 10 

years' time when we're looking back and maybe you're on 

the Wikipedia page for color spaces or something, and I 

really hope that, you know, that one pops up. It'd be nice.

Liam: Yeah. We can talk about it again, uh, during the M20 

campaign in 2034

Adrian: Exactly. I can't wait. It's gonna be great (laugh).

Liam: Um, that, that, uh, is really interesting to me because it has 

so much to do with perception and, you know-

Adrian: Yeah.

Liam: You're saying like color is based in physics and stuff. We 

know that people perceive colors differently. It brought to 

mind how, uh, working in engineering on a system at the 

scale of something like Material, you are probably dealing a 



lot with finding ways to abstract perception to, to 

essentially like bring this subjective experience down into 

something more apprehendable, which is code or a 

mathematical model or something like that.

Adrian: Yeah. And I think, um, a lot of my work involves design 

systems, you know, uh, Material Design being the sort of 

parental design system at Google. But, um, I don't know if 

everyone listening knows this, but there are many design 

systems at Google and, uh, they're children of Material 

Design, uh, in a very literal sense. Uh, but like, um, Maps will 

have their own design system, and Search has their own, 

and... They're all born from Material Design, but they have 

their own local work to specialize to their domain, like a 

map or something. Um, and design systems in themselves 

are an interesting abstraction of all the possible things we 

could do on a computer screen or on a, you know, a phone.

Uh, it's a really interesting and almost brutally hard problem 

to sort of think about. Like, really, when I'm looking at a 

laptop like I am right now, there's, you know, so many pixels 

by so many pixels in a grid. They all can take on so many 

different colors. it could display pure static, we could 

display, you know, rendered 3D shapes. We could do all 

sorts of stuff, but it's too complex to think about it that 

way. And, um, not only for the designer and the, uh, person 

building, uh, the experience on the screen, but also for 

anyone trying to understand it and use it to get, you know, 

real things done.



Um, so we boil things down, you know. We... We create 

these abstractions, we create these systems. And in part of 

creating those abstractions and systems, we have to explain 

them to people, right? So I think this is where the 

storytelling and the, um, visualization maybe part of 

abstractions, like design systems come in, which is very 

interesting. So how do you explain, like, I sat down for six 

months, I figured out this great system of boxes and things 

on the screen that I- you know, I think I can make word 

processors and podcast apps and whatever with, and it's, 

it's great? But then how do you get that outta your head, 

um, that six months of hard work and into the heads of 

people have to build stuff on it, people have to use it, all 

that kind of stuff?

And for me, that's one of the difficult and interesting 

problems of building these big abstractions. Um, and, uh, 

there's a, a shout-out to the original Material actually. Um, 

they had a beautiful... It's just this beautiful, um, way of 

describing it that everything was supposed to be essentially 

cut out from pieces of paper. They were literal pieces of 

Material, right? I don't know if you ever saw this, but, the 

original Material Design, uh, they actually took real paper, 

cut things out and saw how the light and the shadows 

worked. And they have these- we have these great 

photographs and some of the historical stuff of them like 

setting up lamps on a table and casting shadows.

And that's how they built the original, um, interface 

components, um, by analogy, but sometimes almost just by 

copying, uh, these physical things. And the, the wonderful 



thing about that is that it's pretty easy to explain to people. 

You know, like, we're all used to picking up pieces of paper 

and working with things and shadows and light and all that 

kind of stuff. Uh, of course you can go too far. You can go 

into the skeuomorphism, you know, which is, you know, I 

don't know, maybe entertaining, but, but not the most 

useful thing. Um, and I think further iterations of Material, 

M2 and M3 and everything that's, you know, to come, uh, 

have definitely wandered away from any kind of physical 

metaphor.

But explaining that, um, geez, we just spent so much time 

trying to figure out this system, explaining it to other people 

via a physical metaphor, uh, that was brilliant. I thought that 

was- it was really great. And, uh, um, I got to join the team 

actually just, just... It was just like a year-ish after the 

original release of Material. And I remember being so 

impressed with this sort of like, oh, this is a very clear 

system, you know. It was also very small and (laugh) maybe, 

uh, not so tested at that time, you know, and not hit up 

against the harsh bumps of reality as much, but, um, it 

really was a very nice, uh, clean system.

Um, so there's something in there about having an 

abstraction. Not only having abstraction that is useful, um, 

and, uh, fits the problem space that you're trying to solve, 

but also is, you can explain it to other humans. If you can't 

explain your abstraction to other humans, it's- you know, it's 

gonna be really tough.



Liam: Yeah, it's interesting, this point of like consolidating all of 

these ideas and then needing to turn them so that they 

come back out and kind of like spark the same imagination 

in other people. A previous guest on the show, Judith 

Donath, um, who's done a lot of work on, um, sociable 

computing and topics of the interface and things like that, 

um, said that metaphor has kind of always been one of the 

fundamental ways that we explain things that people have 

not encountered before.

Adrian: That makes sense.

Liam: Obviously, we see that reflected, like in the original version 

of Material. It had like an extremely strong metaphorical 

basis to the point that, yeah, you're right, like, there's videos 

of like Christian in his garage with-

Adrian: That was it. Thank you.

Liam: Flood lights and, and these paper rigs. Um, but the system 

has really evolved since then, and I think that that, like, one 

to one metaphorical basis is no longer there. And I wonder, 

one, how important you think that metaphorical basis is 

today- in today's context, and two, if you think that the 

software interface is something that has become so 

established that we don't need to rely as much on metaphor 

to explain the fundamentals as we might have 10 years ago.

Adrian: Yeah, 100%. The... Um, the initial problem of explaining how 

to use something to people who did not grow up with it or 

are not familiar with it is, is like real, and probably 



something that happens all the time. I don't know, like 

maybe self-driving cars are having this problem today or 

something. Um, certainly anything to do with AI, we're having 

that problem today. No one has any clue of how to like hold 

or handle an AI thing right now. It's, you know, all over the 

place. Um, and I think with, uh, uh, orig- original, um, you 

know, metaphors like the desktop metaphor, I think, uh, 

you've talked about before, um, uh, the sort of paper 

Material type thing for, for original Material, all these things 

are familiar, uh, make things comfortable.

Um, hopefully make it understandable enough that people 

can make leaps based on what they know about things and 

have it applied to the actual digital imaginary interface. Um, 

so they're, they're very useful that way. But I think as people 

get more and more used to this and are like literally born 

into, you know, uh, like the cell phone era and, and things 

like that, uh, we are given the freedom to wander away and 

it's okay. People don't get mad. They... You know, um, I, I 

think the skeuomorphism thing is, is really interesting. I'm 

sure there's people who study that, uh, you know, 

academically and, and, uh, in interesting ways. But we, we 

just don't design things with faux wood grain and things that 

look like, you know, a podcasting app with a little 

microphone and stuff like that.

Uh, because partially I think we don't need to anymore, you 

know. Uh, we don't really need to spoonfeed, um, users on 

these, these concepts, at least because they grew up with 

them, they know how to use them, they're pretty familiar 

with them. Um, we no longer have (laugh)... Uh, you know, 



we no longer have in high school courses that teach people 

about how to use a mouse, you know, although I'm sure 

maybe there's still typing, I don't know. Uh, but, uh, there- 

we don't really need it anymore. So it allows for more 

freedom of expression, which to me is exciting but also you 

could wander too far afield. You could... You know, your, 

your, your, uh, design UI elements or whatever could get too 

abstract or too- maybe too inconsistent.

Um, so like, I, I think, as you know, working on a design 

system, uh, one of the important things is to make it as 

consistent as possible, to have some principles, whatever 

they are, and have those shine through everywhere in the 

design system, in the UI elements and, and how they 

interact. Um, so I, I think there's- you, you sort of run the 

risk of like, it gets too floofy, it gets too abstract, it's no 

longer holding together, and then, you know, what do we 

got? Uh, I don't know, sort of falls apart.

Liam: Yeah, that's an interesting point that actually so many 

possibilities are opened up that you'd need to create kind of 

a- your own pocket world that-

Adrian: Yeah.

Liam: Holds some internal consistency.

Adrian: I love that.

Liam: So that people can build a model of how this works.



Adrian: Yeah, I love that. One of my friends is, um, a faculty at- of, 

um, of game design. Actually. His name's Andy Neland. And, 

uh, we talk about... You know, we play games together. We've 

been playing games together for, for a long time, uh, before 

he was a professor of games. But, uh, we p- play games 

together and, and we often talk about, um, sort of video 

games are really interesting because people aren't surprised 

that they have to learn the interface every time they sit 

down with a new game, right? You sit down with a new 

game and honestly, if it's a console game, you probably 

know how all the buttons work.

If it's, you know, a point and click thing, you probably know 

how most of this works, but there's always this tutorial 

phase, this, this opening phase where you're like learning, 

oh, that's where the jump button is. Or I don't know, there's 

no jumping in this game. Fine, I have to figure other things 

out. Um, and people aren't like surprised or shocked or 

bothered by that. Um, so it's, it's a really interesting sort of, 

uh, you said pocket world, I think.

Liam: Mm-hmm.

Adrian: Um, every game is a little pocket world for UI design, um, 

but also, you know, physics and inter- you know, because in 

games they can do whatever they want. So physics and 

interactions and, um, how characters interact, uh, do you 

speak to people? Do you not? Um, who are the bad guys? 

Who are not the bad guys? All that kind of stuff. Um, I find 

that really interesting 'cause it feels like- sometimes it 

almost feels like I can- I can see the original like game 



designer sitting there and going like, like, trying to talk to me 

telepathically through the design of the game, right? They're 

not there in the room to say anything. And sometimes you 

get frustrated with it, you're like, "Why did you put this thing 

that looks like I can jump on it, but I can't jump on it?"

Liam: (laugh).

Adrian: You know, like, what, what are you doing? Uh, and I 

sometimes wish I could have that conversation with, you 

know, the original game designer. But, um, yeah, I love that 

idea of a little pocket world of, um, of interface or, or, um, 

something that can explain how to interact with things. 

That's great.

Liam: So in... Like, in recognition of that kind of possibility, does 

that then make the, the task of kind of engineering or 

engineering leadership even more difficult when you have 

like such a broad range? Because I know on Material, I've 

seen folks draw things or animate things that, um, you 

know, are, are brilliantly far away from anything that we 

know to be possible in the physical world.

Adrian: Yeah.

Liam: So I can imagine that looking at something like that and, and 

bringing it back down into the system can, can be, uh, 

intimidating.

Adrian: Intimidating is one word for it. Yeah. Um-



Liam: (laugh).

Adrian: Uh, there is forever a tension between design and 

engineering. And, um, ideally it's a creative tension that 

great things come out of, but sometimes it's a little tricky. 

And... And motion, I think actually is- it's a good example, is 

one of those places where we have not done well enough in 

the world of, uh, UI design. Uh, there have been so many, 

um, great, like, sort of I'd say micro design systems of, of 

motion about, oh, like, well, when you interact with this, it 

does a certain thing, or, um, or maybe tunable. So we could 

have something that's more hyperactive, we have something 

that's more calm and enterprisey. Uh, and they rarely get 

kind of well-translated when you get down into the, the 

code and the implementations and things.

Um, and it's... Uh, it's a really tricky, uh, kind of balance to 

make because, uh, the, the designer is designing, um, in, 

well, ideally not in a vacuum, no. I mean, a designer's job is 

to not, you know, necessarily be in a- in a vacuum. They're 

bringing all their experience and all their, you know, uh, 

world knowledge in with them, but in the end, they're not 

designing typically by writing code on an Android device. You 

know, that's, that's just not kind of how the process works. 

So they design some, some motion, some awesome, 

whatever bouncy thing. Uh, sometimes an element in 

isolation, you know, will have motion, but maybe we're not 

thinking about, okay, that's one button on a crowded screen 

of all sorts of stuff.



How does that... You know, maybe that makes the button, I 

don't know, overlap other things and that's tricky. Um, I 

think one thing that's interesting about being an engineer is 

in the end, your job is to make it all work. Um, and so there 

are often- engineering is often left, um, figuring out, uh, a lot 

of the little details and the little problems that either were 

not thought of or maybe they were thought of, but not 

documented, so we're not dead sure of what we're 

supposed to do. Um, so it- it's an interesting... The transition 

from design to engineering is, um, a really interesting one. 

And, uh, ideally it's working very well, you know. So you've 

got a designer and they sit next to your engineer, the- you 

know, the dream.

You've got a great designer sitting next to a great engineer at 

the literal table, and they- you know, they're bouncing ideas 

back and forth, oh, this doesn't work, oh, this does work. 

Great, let's do this. But in reality, uh, in these large company 

settings, you know, uh, design is designing a thing, kind of 

packaging up and maybe putting a bow on it and then 

handing it off to engineering for feedback or maybe even 

just final implementation. And then the feedback starts 

coming, oh, this doesn't work and that doesn't work and this 

doesn't work. And, uh, you know, if there's enough time, that 

actually rounds off the sharp edges of the whole thing and 

we end up with something that's better, um-

Liam: Mm-hmm.

Adrian: But I don't know if that's always the case.



Liam: Yeah. we talked earlier about how like our entire team 

basically is collectively, uh, speaking to the outside world 

and perhaps many teams within the outside world. And it's 

our job to kind of consolidate all of these ideas into some 

form of communication that then comes back out and helps 

everyone understand what it is that they're using that we've 

produced. And I'm kind of seeing like a smaller version of 

that playing out, like, um, among teams who might have to 

do certain parts of the work asynchronously from design to 

engineering.

Adrian: Yeah.

Liam: How do you, uh, convey the rationale in a way that sparks 

the same understanding in other people-

Adrian: Yeah.

Liam: That you had when you made the thing? I think it's the same 

also, like when I work with another designer, when I work 

with an engineer, when I work with an editor, it's like, not 

only, you know, here's the thing that I want to do, but also, 

you know, they might say, "Here's how it breaks." And then I 

have to say, "Okay, here was my intention. Like, what might 

we do..." (laugh)

Adrian: Yeah.

Liam: "In order to resolve that?"



Adrian: And I, I think that... Well, I mean, uh, the hard problems are 

always the human problems. And I think one of the hardest 

things is communicating intent, like you said.

Liam: Mm-hmm.

Adrian: Um, and I think one of the good things... I mean, we're 

talking about Material 10 here, coming back to the- either 

the original Material Design or its current incarnations, I 

think one of the greatest things about it was that we had all 

of this write- written guidance about how it's intended to be 

used. It's not just a sticker sheet of all the button variations 

and slider variations or something. It's trying to explain, this 

is what we were thinking. This is sort of how we think these 

things go together. Um, all the way down to like dos and 

don'ts for using a button.

Liam: Mm-hmm.

Adrian: You know, that kind of stuff. Um, but communicating that 

intent, especially when you're not there or can't be there 

because of geography, because of time, um, because of time 

and the way that (laugh) maybe, maybe you, you, you did all 

this work in designing all this stuff, but we decided not to 

build it just yet. And then 18 months later, we're like, "Cool, 

now we have time to build it." And, you know, that was 18 

months ago. So there's... You know, there's, there's barriers 

to communication sort of everywhere. Uh, and I think it's, 

it's really tough because the... It... It's... It's hard because 

your, your intention... And I mean, maybe you had a 

beautifully fleshed out model in your head of how all this 



hangs together and stuff. Um, and that's great, but if it 

didn't get kind of like written down and recorded and-

Liam: Mm-hmm.

Adrian: Um, in some form that, say an engineer can understand, um, 

it's not... I don't wanna say it's lost, but it's, it's gonna make 

the job way harder. Um, it's a really interesting and I'd say 

permanent problem. Like, I don't think AI is gonna solve it 

for us. I don't think anything's gonna solve that for us as 

long as there's people, um, collaborating on something, 

especially people with different backgrounds. So, um, I 

would... In an ideal world, I would love every single like UI 

designer to have, uh, engineering experience. And I would 

love every single engineer out there to have to go through a 

design sprint and a design crit and all that kind of stuff. It... 

In reality, we know that's not really the case. So without 

that shared background and experience...

Um, I mean, you are an exception, sir. Uh, but without that 

kind of shared background and experience for both sides of 

the, of the, the process, it- it's really tough. Like, the 

language is different, the metaphors are different, your 

training was different, you know, all of that. Um, it's a- it's a 

hard problem.

Liam: Yeah. So Design Notes is going on record as saying designers 

should code (laugh).

Adrian: Designers should code and I mean, engineers should design. 

That's... I-



Liam: Yeah.

Adrian: I would be super excited to see that. Yeah.

Liam: Totally. Um, yeah, I think there was a really interesting point 

you made about the- um, again, about the original Material 

Design spec, which was, uh, that there was so much of the 

intent behind the system embedded in the way that it was 

described there. And that resonates with me because I feel 

like over the years I've heard over and over again at I/O or 

just online or wherever, that those specs were a lot of 

people's, including engineers', first introduction to design.

Adrian: 100%.

Liam: Period.

Adrian: Yep.

Liam: Um, and I wonder... Like, the system has made some major 

shifts over the past 10 years with personalization, tokens, 

like new technical complexities, more components. Um, 

we're at a point now where I feel the system is actually 

quite powerful in the way that it abstracts things. And I 

think we also face a challenge in conveying that same level 

of intent in a way that, that comes out to the overall 

audience out there, and I'm curious what you think about 

that. As we grow in complexity, how do we keep explaining 

or keep, uh, embedding that knowledge or building that 

model?



Adrian: Yeah, that's a great question. Um, I know, uh, for instance, 

Material Design, the sort of the, the public spec that we 

have up on the web is used, um, in a lot of, uh, design 

curriculum, you know, which is great. You know, it's, it's such 

an amazing thing that someone's like teaching off of this or 

using this as a- as a resource in the, the teaching. I think it's 

super cool. I think-

Liam: Shout out to, Austin and Barbara and Megan and Euphrates 

and the whole team (laugh).

Adrian: 100%. I am extremely lucky to sit with some of those folks. 

Uh, my, my desk, uh, is right next to all of them, or a bunch 

of them and, uh, I'm- yeah, I'm a lucky guy. I'm a lucky 

engineer (laugh). Um, uh, the complexity question is really 

interesting and really hard. Uh, so like in software, there's a 

very, I mean, well-understood, not solved, but 

well-understood problem of systems that grow over time, 

right? So if I'm creating... Um, let's say I'm creating a 1.0 of, 

um, uh, a mapping API. So I can... You know, you can- you 

can hit this API and ask for, I don't know, um, the 

coordinates of the closest, uh, coffee shop, and it will, you 

know, spit back something, whatever.

You can imagine, some kind of API. And at the beginning it 

starts small, it's not- starts tight. Um, every different API 

entry point, every different call you can make follows the 

same patterns and the same like error responses and all 

this kind of stuff. Um, and that's about as tight as it's going 

to stay at the beginning (laugh), right?



Liam: Mm-hmm.

Adrian: Because over time, say your API gets very popular, or maybe 

it's a product, maybe it's being sold, um, you get these 

feature requests, uh, certainly bugs will show up. You miss 

something, we're all human. Um, uh, but you get feature 

requests to build on it, you start adding more things. And we 

all try to stay consistent as much as possible. Uh, but, uh, 

again, being human, we're gonna fail. Um, and sometimes 

there's serious business concerns, you know. Like, if you're 

at a startup and if you don't add this the next three days, 

we might all go down, you know. Um, so over time, the 

complexity of the interface grows. Even if it's, um, with the 

best of intentions, the more and more and more we add to 

this thing, they get sort of- it gets heavier and heavier and 

kind of creakier and harder to understand.

And I, I think this is a very natural result of successful 

systems, any kind of system. Um, and, uh, a lot of the time, 

at least in software, they... You know, you can see this in 

open source projects, actually. You know, you've got some... 

This is, I mean co... It's so common. You've got some very 

well-known library, say it's a mapping library or something. 

It's had a 1.0, now it's up to 1.7, whatever. It's... It's had many 

iterations, but it's getting creaky, creaky, creaky. And 

somewhere at some point, someone is gonna say, "You know 

what, I'm gonna rewrite it. Like, we're gonna start the 2.0 

project." And it- you know, open source, it causes the 

schism in the community. And there's people that, no, no, 



no, keep the original. No, no, no, I wanna build this new 

thing.

Uh, and they try to start again, because basically the 

complexity gets too high to, to make progress. Um, uh, 

there's something similar in terms of... You've probably 

bumped into this, uh, in terms of teams who maintain... 

Sorry, software teams who maintain a product. So at the 

beginning-

Liam: Mm-hmm.

Adrian: You know, I've got my product. Maybe I've got 10 engineers, 

great. And we're adding features at like, you know, I don't 

know, one feature a week or something, great. But then the 

size of your project or product is growing. Um, so the 

number of feature requests and bugs and, and the 

maintenance involved grows and grows and grows until the 

point you get to some point where the product is so big that 

the maintenance cost is 10 engineers. And at that point, you 

will never add another feature because it has grown to the 

size of the team who supports it. And... You know, and then 

you have to- you gotta do something drastic to, to, to fix 

that. Um, I've gone far afield of your original question, 

(laugh), I think.

Liam: No. No, but it's good because I'm, I'm also wondering, like... 

you know, obviously maintenance is one thing that I've 

bumped into, uh, over the years, but also I'm curious about 

code as a constraint or like the complexity of the system 

becoming a constraint in the sense that, you know, uh, no 



spoilers, but I've proposed features for existing components 

that, you know, the components are built in a certain way in 

a library that people are actively using. And, uh, certain new 

behaviors would make it really hard to kind of build that 

component in the way that it currently-

Adrian: Yep.

Liam: Exists. So where design runs up against what is possible 

with what is built, um, how do you think about resolving 

that? How do you know when the balance of changes that 

you would have to make in the way that the code is built, 

uh, is worth it?

Adrian: It's a good question. Um, so I would say software 

engineering- engineering in general is, um, a game of 

trade-offs, right? It's always, we can do anything, almost 

anything. Uh, software engineering is a kind of wild world 

these days of like, it's a- there's a lot of magic. It seems like 

magic probably from the outside, but... And of course there's 

a billion constraints on the inside, but within those two, you 

know, bounds, there's a ton of room to build things in many 

ways. So like you said, so you're- let's say to be concrete, 

you're proposing, um, a new animation style for an existing 

button that- but that button is used in a couple hundred 

places in every, say... Let's say it's internal, every Google app. 

Great. How many Google apps are there? I don't even know. 

But there's- (laugh) dozens is too small of a number, right?

So, uh, that button is being used everywhere, and you want 

to add this new motion constraint to it. But the original 



authors of the button weren't even thinking about motion. 

They were just like, "Oh, well, we know what the right 

motion for the button. It goes..." I don't know, "Click, click." 

Or something like that. Um, uh, and they have no concept or 

no ability in there to add anything new in terms of the 

motion curves or, or whatever it has to do. Uh, at that point, 

it's a- that's a big trade off, right? So you have one designer 

who has worked very hard and has brought all of their 

knowledge and training to bear against some problem. Um, 

and their answer is, okay, cool, what we need to do is add 

this new motion curve to this button.

That's like 100% cool, and that is exactly why, you know, 

designers are awesome and that's, that's why they're there. 

And then we have all these engineers, uh, who are 

responsible for, you know, shipping this button and getting 

into the apps and all the bugs that come back and all this 

kind of stuff who are saying like, "Yeah, that's cool, but for 

us to change this, say several thousand instances of this 

button everywhere, it would take us..." I don't know, "Six 

months of work or something." Um, uh, especially at 

something the size of Google. And then someone, has to 

balance the, you know, the, the, the trade-offs between the, 

the benefit that new thing would bring against all that 

engineering time.

And one thing I will say is a lot of engineers, especially if 

they're not- um, haven't been design adjacent and haven't 

worked with designers tightly, uh, I think a lot of engineers 

sometimes have this sort of crusty response of like, no, I 

don't wanna change anything. Like, it's working, leave it 



alone, you know (laugh). Why are you changing my buttons, 

basically? Uh, you know, we, we get this all the time in 

Material Design. And I, I, I respect the position, but I think 

it's also a little shortsighted sometimes. Um, and, and 

someone needs to, you know, bridge the gap between those 

two, um, and ultimately make a call, at least in an 

organization like Google. Um, in a startup, I'm, I'm sure you 

could do something a little bit more agile. Um, the 

trade-offs are there, but you know, the scope is smaller.

Um, I, I, I don't think there's... The... The tension between 

those two things is, is, is never really going away. Um, and I, I 

don't know, I, I mean, the, the answer is always like, shove 

everyone in a room and make them figure it out. You know, 

get the humans talking to, to actually-

Liam: Mm-hmm.

Adrian: Talk about it. Um, but yeah, uh, making those kinds of 

changes is, is very hard.

Liam: Yeah. I think, um, definitely at previous jobs I've worked with 

the software engineers who, like, the first reaction that I get 

from a proposal is like, that simply isn't possible (laugh).

Adrian: Yes.

Liam: And I think something that we, um, have mostly gotten the 

hang of on the design side is answering every question with, 

well, it depends (laugh).



Adrian: Yes. Well, it depends (laugh).

Liam: I think that's ultimately the answer to everything.

Adrian: Yeah. And... And to come back to what you were saying 

before that... I... I know these are imaginary people we're 

making up here, but that engineer that says, um, "That 

simply isn't possible," maybe with this kind of like slightly 

dumbfounded, irritated view look on their face, like, they're 

thinking of the abstraction, to go back again. The 

abstraction that has sort of been built into that button, say, 

you know-

Liam: Mm-hmm,

Adrian: It's... It's... I can change the... Well, you know, I can change 

the font, I can change the color, but no, there is no way for 

me to change the motion curves, or no, there's no way for 

me to change the corner radius or something. And of 

course, there is in the sense that it's all software. I mean, 

we could- you can rip down or rip, rip things out, uh, and 

get pretty low down in the stack if you have to. But in their 

heads, their day-to-day conception of that button, uh, which 

exists for a very good reason, they have that conception for 

a very good reason, that their day-to-day conception of that 

button doesn't include these affordances that the motion 

and the corner radiuses and stuff.

So for them in that second, like, it's a- it's a true response. 

You know, like it's a real, like, I don't know what you mean. 



Like, this brick is a brick. I don't know what you want me to 

do with this brick (laugh). You know?

Liam: Yeah.

Adrian: It's, what's going on here? But the, the one thing that's 

exciting about software, um, development is that, uh, you 

know, you could- you can disassemble the brick, you can 

bring the brick down to its component atoms and start 

again to-

Liam: Right.

Adrian: You know, to kind of, you know, bust this analogy badly. Uh, 

but, uh, I, I like that kind of reaction of like, oh, that's, that's 

impossible. Because there- you can clearly see at what level 

does their level of abstraction sort of stop.

Liam: Yeah.

Adrian: Or what's their working concept, you know?

Liam: Yeah. There's a concept. Um, again, like I have a background 

in sociology and art, so I approach design from that 

perspective a lot. And I think one of the things that we are 

talking about here, which I think we've been talking about 

the whole time, is the concept of intersubjectivity, which is 

basically like person A has a perception of a phenomenon. In 

this case, it's like the button that is their like model-

Adrian: Yeah.



Liam: And informed the way that they built it. I also have my own 

model of the button. But intersubjectivity is like knowing 

how to have a perception of the other person's perception 

(laugh), how to orient yourself towards that person's mental 

model of the button, which I think is what we're talking 

about when we talk about how engineers need to have a 

design perspective and designers need to have an 

engineering perspective. We need to understand how each 

person is kind of modeling the same concept in their mind, 

because it's not the same, going all the way back to the 

beginning of the discussion with, with perception and color 

(laugh).

Adrian: Yeah. Um, yeah, I- it's- I honestly think it's like one of... Well, 

it's one of the biggest challenges in life, you know. Like, uh, 

I've got some... Or it's the biggest source of, or a big source 

of misunderstandings in life. You know, I've-

Liam: Mm-hmm.

Adrian: Uh, I don't know. Uh, I've (laugh)... I've got a certain sense of 

like how clean the apartment should be, and maybe your 

partner has a very different sense of how clean the 

apartment should be based on like, how they were raised 

and like-

Liam: Mm-hmm.

Adrian: I don't know, stuff that they see. Uh, but if you don't ever 

talk about that, uh, you know, you're gonna just be butting 



heads continually. Um, it's similar. I mean, luckily for design 

and engineering, um, uh, one nice thing I think actually be- 

about this problem in a work context is that, um, as long as 

everyone is respectful and cool and trying to, you know, in 

general, do the right thing, um, uh, the way around this is, 

like I said, is we all sit down and ideally in the same room 

physically, but you know, in the same virtual room and kind 

of talk it out. And then I learn your model and you learn my 

model.

And I love, I love, I love being in some of these problem 

solving sessions where we're like, "You know, no, we can't 

add motion to this button. It's impossible." I absolutely 

love... You can see the light go off in someone's eyes when 

they're like, "Oh, wait, you wanna do what?" And then you 

can see them finally mapping the two models together.

Liam: Yeah.

Adrian: And... And... And figuring out what you wanted. And then, 

like... And then usually it goes fast and it's like, oh, cool. 

Yeah, we can do this. We can do this. Um-

Liam: Yeah.

Adrian: Goes from there.

Liam: I think it's... I think it's... Um, I feel like we've had a 

breakthrough on this episode (laugh).

Adrian: (laugh).



Liam: I feel like designer-developer collaboration is unlocked. I feel 

like this makes it... Like, this perspective on things makes it 

such a more apprehendable problem. It's not like... It's not 

something that's unique to our work environment or our 

roles within that environment. It's actually just what we're 

doing all the time every day.

Adrian: Yeah, 100%. It's just been professionalized. And, um, I often 

think about the training we all got. Like, I didn't... I get... I 

didn't get trained as a designer. Um, it sounds intense. I've 

never been through a design crit despite me claiming I 

should do that. Uh, sounds intense. Um, and, uh, designers 

who came up through sort of a traditional training also 

didn't- uh, you know, didn't stay up all night in the 

engineering lab, like getting whatever done. Um, and we... So 

we've just... There's... There's different cultures, you know, 

kind of bumping up against each other, and ideally that is 

rich and fertile, and everyone is excited to learn about their- 

you know, uh, their coworkers, how they're thinking, all this 

kind of stuff.

Sometimes time pressures and geographic differences and, 

uh, time zone differences and stuff leads us to butting 

heads a little bit more than it should be. I... I... I hate the... I 

hate the standard curmudgeonly engineer thing of like, oh, 

well, design just designs these wild things and then throws 

them over the wall, and now I gotta learn how to build 

them, you know, or figure out how to build this thing. I... I 

really dislike that because, uh, you know, design is amazing. 

They do amazing stuff. They're also humans who sometimes 



mess things up or don't understand, say, like, um, you know, 

really common things like, uh, my phone needs to run at 60 

frames per second. That is the standard set by the system.

And if it doesn't run at that, like, there are severe 

consequences, therefore there are real constraints on your 

motion curve or whatever. Uh, but designers can correct 

that and then like, you know, we can get better together. 

But, um-

Liam: Yeah.

Adrian: It's-

Liam: Also... Also like, get over here, you know?

Adrian: Yeah.

Liam: The wall is not endless (laugh).

Adrian: Exactly. Yeah.

Liam: Come over to this side and, and, and I'll do the same.

Adrian: Yeah. Yeah.

Liam: Um, I want to wrap up, you know. Um, ostensibly we're here 

to talk about the history of the design-

Adrian: Oh, [inaudible 00:49:03]



Liam: System in the past 10 years, all of that stuff. but I also want 

to take all of that information that we've just talked about 

and, and get your idea, your extrapolation into what's gonna 

happen next. What do you want to happen next?

Adrian: Sure. Uh, so I see a fork in the road. I'm sure you see a 

similar fork. Um, and the fork in the road is this. We have 

the juggernaut of AI, um, bounding towards us. Um, 

obviously Google and many other companies are working 

very hard to figure out how AI might solve real problems Uh, 

but in terms of user interfaces, uh, one branch of the road 

is... Well, one branch of the road is this sort of, I would say, I 

guess now traditional UI design paradigm, right? So we work 

with designers, they come up with design systems. We, um, 

uh, come up with color systems and motion systems, and 

we, um, codify them into design tokens, which then get 

shipped to engineering.

And engineering uses those things to build experiences that 

turn into apps. That's sort of... I actually don't see that 

changing too, too much. There's a different branch in the 

road, uh, that I've heard people talk about, which is my 

phone or my app or something will basically become an 

empty container. Um, and then AI will, on the fly based on 

my needs and my preferences and what I'm asking for and 

stuff, ship UI down the wire or down the radio waves into 

my phone, and the phone's UI will, you know, update 

spontaneously based on the current task and, and this kind 

of stuff. Um, so sort of a fully AI-driven real time UI. Uh, I 

am having a hard time imagining that second branch of the 



road being sort of practical, um, but it is totally possible I'm, 

I'm wrong.

But the, the future as I'm seeing it right now is, uh, a little 

fuzzy, uh, as is many things with AI. Uh, I have a hard time 

imagining a fully AI-driven UI, but, um, I would be excited to 

be wrong. Um, and I think the interesting- the more 

interesting part will be how does, um, new technologies like 

AI or whatever's coming next, um, modify the traditional 

design and engineering, um, uh, workflows? Uh, so... Um, so 

for example, one thing right now is designers, at least at 

Google and in many other places, are the ones who have to 

go through their design systems or go through their designs 

and pull out the design tokens, right? They need to pull out, 

oh, the primary color is FFF, the something else is 

something, something something.

And then they kind of either input those into a program or 

write them down in spreadsheet or whatever the workflow 

is. And then some... You know, somehow those get 

transformed to code. You know, it's all sort of dependent on 

your environment. Um, maybe that's a place where 

something like an AI could help extract that step and 

basically make it transparent. Like, make it to the point 

where we, kind of engineers, consider like a compiler or 

something. It's just like, oh yeah, I don't even think about all 

the machinations that are happening to extract that stuff.

Liam: Mm-hmm.



Adrian: And it works almost perfectly or perfectly enough that I can 

forget about it. Um, and that would be... Like if, if we get... 

Those are the interesting bits. How do... How do we make 

these technologies actually help this sort of human 

process? Um-

Liam: Mm-hmm.

Adrian: I'm hoping we don't end up in some spot where all these 

new technologies are like eliminating the human process, 

uh, 'cause I think that would be a giant loss and kind of 

lame and boring. Um-

Liam: Yeah.

Adrian: But it's possible. I don't know.

Liam: The... The optimistic, perhaps naive part of me thinks that 

humans are always gonna be human processing. 

Adrian: Yeah (laugh).

Liam: I don't know. I don't know how that could be replaced. I 

think if humanity has no creative motivation, then we're like 

living in a different dimension (laugh).

Adrian: Yeah. Uh, I guess... I think some humans will always be doing 

the creative stuff. I... I worry about, um, how many of them 

can pay rent doing so-

Liam: Mm-hmm.



Adrian: With some of these technologies coming down the pipe. I 

don't know. Uh, it's, uh, let's say uncomfortably exciting.

Liam: Mm-hmm.

Adrian: (laugh). Um, we'll, we'll see where... We'll see where it goes.

Liam: Yeah. For my part, I have to say, um, you know, another thing 

I did when I was in school was glass blowing and-

Adrian: Nice.

Liam: My professor was really good friends with an artist, um, who 

worked in Venice and he had a big studio and he had many 

people who came out of that studio, uh, to start their own 

st- studios. And one student in particular, um, ended up 

copying one of the teacher's most, most iconic works-

Adrian: Mm-hmm.

Liam: And... And kind of selling it.

Adrian: Mm-hmm.

Liam: And people always ask this guy in interviews, they said like, 

"Aren't you upset that one of your students is like, ripping 

off your, your coolest piece or whatever?" And... And the guy 

was like, "No, it doesn't bother me because I think people 

who, uh, encounter this work will always know the 

difference."



Adrian: Huh, interesting.

Liam: And I, I do think it's the same for the interface.

Adrian: Yes.

Liam: We will always feel the difference.

Adrian: Yes. These... These things that have high touch, literal touch, 

but high, um, we're, we're experiencing them pretty deeply, I 

would say, or at least, um, uniformly through the day and, 

and regularly and stuff. I agree, you, you definitely feel it. It's 

like, um, font selection in books or something. Sometimes 

you pick up a book and you're just like, "Oh, nope, not 

reading that 'cause-"

Liam: Mm-hmm.

Adrian: "I don't know what the heck that font is." Uh, I don't know if 

it registers like, uh, consciously, but um, yeah, I agree, we're 

very sensitive to these things and, uh, yeah.

Liam: Thank you again, Adrian, for joining me.

Adrian: Thank you so much, Liam.

Liam: This was a really cool episode.

Adrian: Yeah, thanks so much. It was really fun to be here.


