
Accounts in NoteDb

GERRIT User Summit 2016

Edwin Kempin, Google

What is NoteDb?

● Store all Gerrit meta data in Git
● Get rid of the Database (ReviewDb)

Gerrit with ReviewDb vs. Gerrit with NoteDb

Why NoteDb?

● Enables atomicity
(between branch state and review meta data)

● Consistent replication and backup
● Enables offline code review
● Enables code review federation between different

servers
● No more database

(less administration effort)

Gerrit Meta Data

● Projects
(includes project config, access rights)

● Changes
(includes change messages, comments, approvals, patch sets)

● Accounts
(includes account properties, preferences, project watches, SSH keys,
external IDs, stars, reviewed flags)

● Groups
(includes memberships, audit logs)

NoteDb - Current State

Projects Already in Git since 2011

Changes Implementation is ready

Accounts In Progress (Q4 2016)

Groups Next (Q4 2016 / Q1 2017)

Account Data
● Account Properties

(id, full name, preferred email, inactive)

● Preferences
(general preferences, diff preferences, edit preferences)

● Project Watches
● SSH Keys
● Stars
● External-Ids
● Reviewed Flags

All-Users repository
Most account data is stored in a special All-Users
repository
● One branch per user:

refs/users/CD/ABCD
(CD/ABCD is the sharded account ID)

● Updated through Gerrit REST API, but users may
also fetch/push manually

All-Users repository
Most account data is stored in a special All-Users
repository
● One branch per user:

refs/users/CD/ABCD
(CD/ABCD is the sharded account ID)

● Updated through Gerrit REST API, but users may
also fetch/push manually

● Magic ref for own user branch
refs/users/self

All-Users repository
● Users only have permissions for the own user branch
● Default access rights on

refs/users/${shardeduserid}

Secondary Account Index
● Accessing the account data in Git is not fast enough

for Account Queries.
● Implemented analogous to Change Index
● Enables arbitrary account queries

Account Data in User Branch
The user branch contains the following git config files:
● account.config (account properties)
● preferences.config (user preferences)
● watch.config (project watches)

In addition it contains an authorized_keys file with the
SSH keys.

account.config

preferences.config

● Default preferences can be configured in the
refs/users/default branch.

watch.config

authorized_keys

● Standard SSH file format
● Order defines sequence numbers
● Comment lines for deleted and invalid keys

External IDs
● Stored as Git Notes in All-Users:

○ Note Branch: refs/meta/external-ids
○ Note Key: SHA-1 of external ID
○ Note Content:

● Ensures that External IDs are used only once.
● Use Account Index to lookup External IDs by account

Starred Changes
● Stored as refs in All-Users:

refs/starred-changes/YY/XXXX/ZZZZZZZ
(YY/XXXX = sharded Change ID, ZZZZZZ = Account ID)

● Change Index contains Users that have starred a
Change

● Support for labeled stars

Reviewed Flags
● Potentially thousands of Reviewed Flags per user,

growing without bounds
● Storage in Git is bad

(each update requires opening a repository and creating a commit)

● Stored in a local H2 database
● Extension Point to plugin other storage backends

(e.g. required for multi-master)

Data Migrations

● Incremental
(Migrate the data piece by piece whenever the storage format for a
piece of the data is fully defined and implemented)

● Schema migrations on init

Current State
Account Index Done

Account Properties Open

Preferences Done

Watched Projects Implemented, Migration Pending

SSH Keys Done

External IDs In Progress

Starred Changes Done

Reviewed Flags Done

Thank You!

Questions ?

