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Integrating the deliverable perspective into 
code review

Step 1: Identify changed files

eg1.c

example.h

eg2.c eg3.c

All files in a sample system:
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Indexing Phase

Query Phase

More recently, we started to develop the 
DiPiDi approach

@SoftwareREBELs rebels.cs.uwaterloo.ca28



29

DiPiDi

Open-source 
repo using 

CMake

Select change 
sets

Call graph 
tool

Assess 
potential 
impact

Define the 
Ground Truth

Compare the 
Results

RQ1: Which 
approach is 

most 
effective?

RQ2: Which 
approach is 

most efficient?

We are conducting controlled trials to evaluate 
whether DiPiDi actually helps
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profiles only execute a 

small set of deliverables?
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Code reviews are interdependent!
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ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto

Table 3: The frequency of the discovered types of review
linkage in OpenStack Nova and Neutron.

Category
Frequency

Nova Neutron

C1: Patch Dependency 269 (55%) 148 (56%)
Patch Ordering 124 (26%) 62 (24%)
Root Cause 50 (11%) 28 (11%)
Shallow Fix 6 (2%) 4 (2%)
Follow-up 28 (6%) 29 (11%)
Merge Related Reviews 19 (4%) 13 (5%)
Multi-part 42 (9%) 12 (5%)
C2: Broader Context 96 (20%) 50 (19%)
Related Feedback 43 (9%) 14 (6%)
Demonstration 29 (6%) 26 (10%)
Additional Evidence 24 (5%) 10 (4%)
C3: Alternative Solution 69 (14%) 39 (15%)
Superseding 35 (8%) 17 (7%)
Duplicated 34 (7%) 22 (9%)
C4: Version Control Issues 27 (6%) 17 (6%)
Integration Concern 15 (4%) 13 (5%)
Gerrit Misuse 5 (2%) 2 (1%)
Revert 7 (2%) 2 (1%)
C5: Feedback Related 23 (5%) 10 (4%)
Fix Related Issues 11 (3%) 3 (2%)
Feedback Inspired Reviews 12 (3%) 7 (3%)

entries. During the !rst coding pass, we code only using the link
source (description/comment). In several cases, more contextual
information was needed. We coded such cases as “Needs Additional
Context” during the !rst coding pass. During a third coding pass,
we check additional sources of information (e.g., the content of the
patch, the linked review, comments in discussion threads) to code
these cases more speci!cally. After the three coding passes, all of
the sampled links have been assigned to a speci!c code.
Card Sorting. Similar to prior studies [3, 18, 24, 39], we apply open
card sorting to construct a taxonomy of codes. This taxonomy helps
us to extrapolate general themes from our detailed coded data. The
card sorting process is comprised of two steps. First, the coded
links are merged into cohesive groups that can be represented by
a similar subgraph. Second, the related subgraphs are merged to
form categories that can be summarized by a short title.

5.2 Results
Table 3 provides an overview of the categories that summarize
related labels (the complete table is available online1). We observe
that the frequencies at which the link labels appear are consistent
between the two studied projects. Moreover, we only coded two
of 486 links from Nova and two of 266 links from Neutron as
false positives (i.e., spuriously detected links that do not indicate
a relationship between reviews), suggesting that our link extrac-
tion approach does not produce much noise (precision > 0.99 in
both cases). Furthermore, we required additional context informa-
tion (beyond the link source) to code 63 links, all of which were
more speci!cally coded during the third pass when we analyze

additional information sources. Below, we describe the discovered
codes according to the categories to which they belong.
Patch Dependency (C1). We !nd that 55% and 56% of the ana-
lyzed links in Nova and Neutron connect reviews to others that
they depend upon. Patch Dependency links may in"uence inte-
gration decisions and the reviewers who should be recommended.
Indeed, the integration decision in one review may be inherently
linked to that of another if they share a dependency. For example,
Review #1027045 of the Nova project was only abandoned because
of its dependency on Review #102705, which was abandoned earlier.
Moreover, reviewers of a dependent review may need to review its
dependency as well. For example, a reviewer of Review #1027498

was added only because they reviewed its dependency (Review
#101424). We further explore the usefulness of these linkage-based
reviewer invitations in Section 7 (RQ4).
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Figure 3: The Patch Dependency subgraphs.

Figure 3 shows three shapes that patch dependency links take.
First, Patch Ordering, Root Cause, Shallow Fix, and Follow-up take
the shape of two eventually integrated (or abandoned) reviews that
share a link. While they share a shape, the semantics of the patterns
di#er, i.e., Patch Ordering links indicate a timing dependency that
must be respected at integration time, while Follow-up, Root Cause,
and Shallow Fix links provide rationale for Review B by pointing to
enabling enhancements or limitations in Review A. Second, Merge
Related Reviews links merge two or more reviews into a more
cohesive whole. Finally, Multi-part links indicate that a large review
has been split into a series of smaller reviews.

Weißgerber et al. [43] observed that smaller patches tend to
be accepted in two large open source projects. Rigby et al. [35]
argue that one of the statutes of an e$cient and e#ective code
review process is the “early, frequent review of small, independent,
complete solutions”. The frequency of the Multi-part pattern (i.e.,
the splitting of large patches into smaller ones) may be an indication
that these prior observations still hold.
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entries. During the !rst coding pass, we code only using the link
source (description/comment). In several cases, more contextual
information was needed. We coded such cases as “Needs Additional
Context” during the !rst coding pass. During a third coding pass,
we check additional sources of information (e.g., the content of the
patch, the linked review, comments in discussion threads) to code
these cases more speci!cally. After the three coding passes, all of
the sampled links have been assigned to a speci!c code.
Card Sorting. Similar to prior studies [3, 18, 24, 39], we apply open
card sorting to construct a taxonomy of codes. This taxonomy helps
us to extrapolate general themes from our detailed coded data. The
card sorting process is comprised of two steps. First, the coded
links are merged into cohesive groups that can be represented by
a similar subgraph. Second, the related subgraphs are merged to
form categories that can be summarized by a short title.

5.2 Results
Table 3 provides an overview of the categories that summarize
related labels (the complete table is available online1). We observe
that the frequencies at which the link labels appear are consistent
between the two studied projects. Moreover, we only coded two
of 486 links from Nova and two of 266 links from Neutron as
false positives (i.e., spuriously detected links that do not indicate
a relationship between reviews), suggesting that our link extrac-
tion approach does not produce much noise (precision > 0.99 in
both cases). Furthermore, we required additional context informa-
tion (beyond the link source) to code 63 links, all of which were
more speci!cally coded during the third pass when we analyze

additional information sources. Below, we describe the discovered
codes according to the categories to which they belong.
Patch Dependency (C1). We !nd that 55% and 56% of the ana-
lyzed links in Nova and Neutron connect reviews to others that
they depend upon. Patch Dependency links may in"uence inte-
gration decisions and the reviewers who should be recommended.
Indeed, the integration decision in one review may be inherently
linked to that of another if they share a dependency. For example,
Review #1027045 of the Nova project was only abandoned because
of its dependency on Review #102705, which was abandoned earlier.
Moreover, reviewers of a dependent review may need to review its
dependency as well. For example, a reviewer of Review #1027498

was added only because they reviewed its dependency (Review
#101424). We further explore the usefulness of these linkage-based
reviewer invitations in Section 7 (RQ4).
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Figure 3 shows three shapes that patch dependency links take.
First, Patch Ordering, Root Cause, Shallow Fix, and Follow-up take
the shape of two eventually integrated (or abandoned) reviews that
share a link. While they share a shape, the semantics of the patterns
di#er, i.e., Patch Ordering links indicate a timing dependency that
must be respected at integration time, while Follow-up, Root Cause,
and Shallow Fix links provide rationale for Review B by pointing to
enabling enhancements or limitations in Review A. Second, Merge
Related Reviews links merge two or more reviews into a more
cohesive whole. Finally, Multi-part links indicate that a large review
has been split into a series of smaller reviews.

Weißgerber et al. [43] observed that smaller patches tend to
be accepted in two large open source projects. Rigby et al. [35]
argue that one of the statutes of an e$cient and e#ective code
review process is the “early, frequent review of small, independent,
complete solutions”. The frequency of the Multi-part pattern (i.e.,
the splitting of large patches into smaller ones) may be an indication
that these prior observations still hold.
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Broader Context (C2). We !nd that 20% and 19% of the analyzed
links point to other reviews with relevant resources. The individual
analysis of reviews that are connected with Broader Context links
may not be valid. Indeed, analyses of review outcome prediction
often compute the length of discussion threads [16, 23]. However, a
discussion may span across several reviews when Broader Context
links are present. For instance, a reviewer of Review #1552239 asks
the author to refer to a similar discussion on Review #215608.
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Figure 4: The Broader Context subgraph.

Figure 4 shows that our three codes within the Broader Con-
text category share the same shape; however, the codes di"er in
the artifact to which they refer. Related Feedback links connect
discussions on one review to discussions in other reviews, while
Demonstration links point to example code from other reviews.
Additional Evidence links point to other reviews as proof (code,
discussions, speci!cations) of the existence, removal, or relevance
of the problems that are addressed by the review under inspection.
Alternative Solution (C3).We !nd that 14% and 15% of the ana-
lyzed links connect reviews to others that implement similar func-
tionality. Similar to Patch Dependency links, Alternative Solution
links may also impact integration decisions and reviewer recom-
mendations. For example, Review #6743110 was abandoned because
another submitted solution for the same underlying issue (Review
#61041) was preferred. Especially in such examples where an “ei-
ther or” decision needs to be made, the same reviewers should
likely be invited to all of the competing reviews for the sake of
fairness [15]. Furthermore, prior work has demonstrated that a lack
of awareness of concurrently developed solutions may result in re-
dundant work [10, 49] and is a key source of software development
waste [37]. These con#ated integration decisions are not congruent
with review outcome or reviewer recommendation models that
assume each submission is independently adjudicated [21–23].
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Figure 5: The Alternative Solution subgraph.
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Figure 5 shows that our two codes within the Alternative Solu-
tion category share the same shape, yet di"er in their semantics.
Superseding links show that the solution in an earlier review has
been replaced with an updated solution in the current review, while
Duplication links highlight the existence of another (competing)
solution to the same underlying problem. In a large-scale, cross-
company software organization like OpenStack, it is di$cult to
coordinate development e"ort. However, the frequency at which
work is duplicated suggests that tooling [10, 49] may help.
Version Control Issues (C4). We !nd that 6% of analyzed links
point to reviews that introduced version control issues. Rigby and
Storey [36] also found such issues are often discussed during the
broadcast-based reviews in several open source systems. Shima-
gaki et al. [38] found that 5% of commits in a large industrial system
were reverted after being integrated. Since Revert is one of the codes
within our category, our review graphs can complement version
control data to better understand the practice of reverting commits.
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Figure 6: The Version Control Issues subgraph.

Figure 6 shows that our three codes within the Version Control
Issues category share the same shape. Integration Con#ict and
Gerrit Misuse links expose technical integration or Gerrit issues,
while Revert links indicate that a partial or complete rollback.
Feedback Related (C5).We !nd that 5% and 4% of analyzed links
in Nova and Neutron connect reviews to others that resolve or
were inspired by reviewer comments. Reviews that were inspired
by feedback in another review might be more likely to be accepted,
since one reviewer is already in favour of the idea. For example, in
Review #167100,11 a reviewer’s feedback inspired the creation of
the new Review #167082. Then, one of reviewers of #167100 joined
Review #167082, and eventually approves it for integration. There
are two possible ways to act upon C5-linked reviews. The reviewer
who inspired the change may be well suited to review the inspired
change. Thus, reviewer recommenders may need to recommend
them. On the other hand, since the reviewer who inspired the
change may not be impartial when reviewing the inspired review,
reviewer recommenders may need to recommend other reviewers.

Figure 7 shows that our two codes within the Feedback Related
category share the same shape. Fixed Related Issues links show that
(part of) a raised concern has been addressed by another review.
Feedback-inspired links show a new contribution where feedback
on Review A inspires the creation of a new patch.

RQ2: A broad variety of reasons for linkage exist. These di!er-
ent types of links may introduce noise in or opportunities for
improvement of code review analytics.
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Table 3: The frequency of the discovered types of review
linkage in OpenStack Nova and Neutron.

Category
Frequency

Nova Neutron

C1: Patch Dependency 269 (55%) 148 (56%)
Patch Ordering 124 (26%) 62 (24%)
Root Cause 50 (11%) 28 (11%)
Shallow Fix 6 (2%) 4 (2%)
Follow-up 28 (6%) 29 (11%)
Merge Related Reviews 19 (4%) 13 (5%)
Multi-part 42 (9%) 12 (5%)
C2: Broader Context 96 (20%) 50 (19%)
Related Feedback 43 (9%) 14 (6%)
Demonstration 29 (6%) 26 (10%)
Additional Evidence 24 (5%) 10 (4%)
C3: Alternative Solution 69 (14%) 39 (15%)
Superseding 35 (8%) 17 (7%)
Duplicated 34 (7%) 22 (9%)
C4: Version Control Issues 27 (6%) 17 (6%)
Integration Concern 15 (4%) 13 (5%)
Gerrit Misuse 5 (2%) 2 (1%)
Revert 7 (2%) 2 (1%)
C5: Feedback Related 23 (5%) 10 (4%)
Fix Related Issues 11 (3%) 3 (2%)
Feedback Inspired Reviews 12 (3%) 7 (3%)

entries. During the !rst coding pass, we code only using the link
source (description/comment). In several cases, more contextual
information was needed. We coded such cases as “Needs Additional
Context” during the !rst coding pass. During a third coding pass,
we check additional sources of information (e.g., the content of the
patch, the linked review, comments in discussion threads) to code
these cases more speci!cally. After the three coding passes, all of
the sampled links have been assigned to a speci!c code.
Card Sorting. Similar to prior studies [3, 18, 24, 39], we apply open
card sorting to construct a taxonomy of codes. This taxonomy helps
us to extrapolate general themes from our detailed coded data. The
card sorting process is comprised of two steps. First, the coded
links are merged into cohesive groups that can be represented by
a similar subgraph. Second, the related subgraphs are merged to
form categories that can be summarized by a short title.

5.2 Results
Table 3 provides an overview of the categories that summarize
related labels (the complete table is available online1). We observe
that the frequencies at which the link labels appear are consistent
between the two studied projects. Moreover, we only coded two
of 486 links from Nova and two of 266 links from Neutron as
false positives (i.e., spuriously detected links that do not indicate
a relationship between reviews), suggesting that our link extrac-
tion approach does not produce much noise (precision > 0.99 in
both cases). Furthermore, we required additional context informa-
tion (beyond the link source) to code 63 links, all of which were
more speci!cally coded during the third pass when we analyze

additional information sources. Below, we describe the discovered
codes according to the categories to which they belong.
Patch Dependency (C1). We !nd that 55% and 56% of the ana-
lyzed links in Nova and Neutron connect reviews to others that
they depend upon. Patch Dependency links may in"uence inte-
gration decisions and the reviewers who should be recommended.
Indeed, the integration decision in one review may be inherently
linked to that of another if they share a dependency. For example,
Review #1027045 of the Nova project was only abandoned because
of its dependency on Review #102705, which was abandoned earlier.
Moreover, reviewers of a dependent review may need to review its
dependency as well. For example, a reviewer of Review #1027498

was added only because they reviewed its dependency (Review
#101424). We further explore the usefulness of these linkage-based
reviewer invitations in Section 7 (RQ4).
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Figure 3: The Patch Dependency subgraphs.

Figure 3 shows three shapes that patch dependency links take.
First, Patch Ordering, Root Cause, Shallow Fix, and Follow-up take
the shape of two eventually integrated (or abandoned) reviews that
share a link. While they share a shape, the semantics of the patterns
di#er, i.e., Patch Ordering links indicate a timing dependency that
must be respected at integration time, while Follow-up, Root Cause,
and Shallow Fix links provide rationale for Review B by pointing to
enabling enhancements or limitations in Review A. Second, Merge
Related Reviews links merge two or more reviews into a more
cohesive whole. Finally, Multi-part links indicate that a large review
has been split into a series of smaller reviews.

Weißgerber et al. [43] observed that smaller patches tend to
be accepted in two large open source projects. Rigby et al. [35]
argue that one of the statutes of an e$cient and e#ective code
review process is the “early, frequent review of small, independent,
complete solutions”. The frequency of the Multi-part pattern (i.e.,
the splitting of large patches into smaller ones) may be an indication
that these prior observations still hold.
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Broader Context (C2). We !nd that 20% and 19% of the analyzed
links point to other reviews with relevant resources. The individual
analysis of reviews that are connected with Broader Context links
may not be valid. Indeed, analyses of review outcome prediction
often compute the length of discussion threads [16, 23]. However, a
discussion may span across several reviews when Broader Context
links are present. For instance, a reviewer of Review #1552239 asks
the author to refer to a similar discussion on Review #215608.
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Figure 4: The Broader Context subgraph.

Figure 4 shows that our three codes within the Broader Con-
text category share the same shape; however, the codes di"er in
the artifact to which they refer. Related Feedback links connect
discussions on one review to discussions in other reviews, while
Demonstration links point to example code from other reviews.
Additional Evidence links point to other reviews as proof (code,
discussions, speci!cations) of the existence, removal, or relevance
of the problems that are addressed by the review under inspection.
Alternative Solution (C3).We !nd that 14% and 15% of the ana-
lyzed links connect reviews to others that implement similar func-
tionality. Similar to Patch Dependency links, Alternative Solution
links may also impact integration decisions and reviewer recom-
mendations. For example, Review #6743110 was abandoned because
another submitted solution for the same underlying issue (Review
#61041) was preferred. Especially in such examples where an “ei-
ther or” decision needs to be made, the same reviewers should
likely be invited to all of the competing reviews for the sake of
fairness [15]. Furthermore, prior work has demonstrated that a lack
of awareness of concurrently developed solutions may result in re-
dundant work [10, 49] and is a key source of software development
waste [37]. These con#ated integration decisions are not congruent
with review outcome or reviewer recommendation models that
assume each submission is independently adjudicated [21–23].
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Figure 5: The Alternative Solution subgraph.
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Figure 5 shows that our two codes within the Alternative Solu-
tion category share the same shape, yet di"er in their semantics.
Superseding links show that the solution in an earlier review has
been replaced with an updated solution in the current review, while
Duplication links highlight the existence of another (competing)
solution to the same underlying problem. In a large-scale, cross-
company software organization like OpenStack, it is di$cult to
coordinate development e"ort. However, the frequency at which
work is duplicated suggests that tooling [10, 49] may help.
Version Control Issues (C4). We !nd that 6% of analyzed links
point to reviews that introduced version control issues. Rigby and
Storey [36] also found such issues are often discussed during the
broadcast-based reviews in several open source systems. Shima-
gaki et al. [38] found that 5% of commits in a large industrial system
were reverted after being integrated. Since Revert is one of the codes
within our category, our review graphs can complement version
control data to better understand the practice of reverting commits.
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Figure 6: The Version Control Issues subgraph.

Figure 6 shows that our three codes within the Version Control
Issues category share the same shape. Integration Con#ict and
Gerrit Misuse links expose technical integration or Gerrit issues,
while Revert links indicate that a partial or complete rollback.
Feedback Related (C5).We !nd that 5% and 4% of analyzed links
in Nova and Neutron connect reviews to others that resolve or
were inspired by reviewer comments. Reviews that were inspired
by feedback in another review might be more likely to be accepted,
since one reviewer is already in favour of the idea. For example, in
Review #167100,11 a reviewer’s feedback inspired the creation of
the new Review #167082. Then, one of reviewers of #167100 joined
Review #167082, and eventually approves it for integration. There
are two possible ways to act upon C5-linked reviews. The reviewer
who inspired the change may be well suited to review the inspired
change. Thus, reviewer recommenders may need to recommend
them. On the other hand, since the reviewer who inspired the
change may not be impartial when reviewing the inspired review,
reviewer recommenders may need to recommend other reviewers.

Figure 7 shows that our two codes within the Feedback Related
category share the same shape. Fixed Related Issues links show that
(part of) a raised concern has been addressed by another review.
Feedback-inspired links show a new contribution where feedback
on Review A inspires the creation of a new patch.

RQ2: A broad variety of reasons for linkage exist. These di!er-
ent types of links may introduce noise in or opportunities for
improvement of code review analytics.
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Figure 5 shows that our two codes within the Alternative Solu-
tion category share the same shape, yet di"er in their semantics.
Superseding links show that the solution in an earlier review has
been replaced with an updated solution in the current review, while
Duplication links highlight the existence of another (competing)
solution to the same underlying problem. In a large-scale, cross-
company software organization like OpenStack, it is di$cult to
coordinate development e"ort. However, the frequency at which
work is duplicated suggests that tooling [10, 49] may help.
Version Control Issues (C4). We !nd that 6% of analyzed links
point to reviews that introduced version control issues. Rigby and
Storey [36] also found such issues are often discussed during the
broadcast-based reviews in several open source systems. Shima-
gaki et al. [38] found that 5% of commits in a large industrial system
were reverted after being integrated. Since Revert is one of the codes
within our category, our review graphs can complement version
control data to better understand the practice of reverting commits.
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Figure 6 shows that our three codes within the Version Control
Issues category share the same shape. Integration Con#ict and
Gerrit Misuse links expose technical integration or Gerrit issues,
while Revert links indicate that a partial or complete rollback.
Feedback Related (C5).We !nd that 5% and 4% of analyzed links
in Nova and Neutron connect reviews to others that resolve or
were inspired by reviewer comments. Reviews that were inspired
by feedback in another review might be more likely to be accepted,
since one reviewer is already in favour of the idea. For example, in
Review #167100,11 a reviewer’s feedback inspired the creation of
the new Review #167082. Then, one of reviewers of #167100 joined
Review #167082, and eventually approves it for integration. There
are two possible ways to act upon C5-linked reviews. The reviewer
who inspired the change may be well suited to review the inspired
change. Thus, reviewer recommenders may need to recommend
them. On the other hand, since the reviewer who inspired the
change may not be impartial when reviewing the inspired review,
reviewer recommenders may need to recommend other reviewers.

Figure 7 shows that our two codes within the Feedback Related
category share the same shape. Fixed Related Issues links show that
(part of) a raised concern has been addressed by another review.
Feedback-inspired links show a new contribution where feedback
on Review A inspires the creation of a new patch.

RQ2: A broad variety of reasons for linkage exist. These di!er-
ent types of links may introduce noise in or opportunities for
improvement of code review analytics.

11https://review.openstack.org/#/c/167100/

The Review Linkage 
Graph for Code 

Review Analytics 
Hirao et al. 
[FSE 2019]



Code reviews are interdependent!

36@SoftwareREBELs rebels.cs.uwaterloo.ca

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto

Table 3: The frequency of the discovered types of review
linkage in OpenStack Nova and Neutron.

Category
Frequency

Nova Neutron

C1: Patch Dependency 269 (55%) 148 (56%)
Patch Ordering 124 (26%) 62 (24%)
Root Cause 50 (11%) 28 (11%)
Shallow Fix 6 (2%) 4 (2%)
Follow-up 28 (6%) 29 (11%)
Merge Related Reviews 19 (4%) 13 (5%)
Multi-part 42 (9%) 12 (5%)
C2: Broader Context 96 (20%) 50 (19%)
Related Feedback 43 (9%) 14 (6%)
Demonstration 29 (6%) 26 (10%)
Additional Evidence 24 (5%) 10 (4%)
C3: Alternative Solution 69 (14%) 39 (15%)
Superseding 35 (8%) 17 (7%)
Duplicated 34 (7%) 22 (9%)
C4: Version Control Issues 27 (6%) 17 (6%)
Integration Concern 15 (4%) 13 (5%)
Gerrit Misuse 5 (2%) 2 (1%)
Revert 7 (2%) 2 (1%)
C5: Feedback Related 23 (5%) 10 (4%)
Fix Related Issues 11 (3%) 3 (2%)
Feedback Inspired Reviews 12 (3%) 7 (3%)

entries. During the !rst coding pass, we code only using the link
source (description/comment). In several cases, more contextual
information was needed. We coded such cases as “Needs Additional
Context” during the !rst coding pass. During a third coding pass,
we check additional sources of information (e.g., the content of the
patch, the linked review, comments in discussion threads) to code
these cases more speci!cally. After the three coding passes, all of
the sampled links have been assigned to a speci!c code.
Card Sorting. Similar to prior studies [3, 18, 24, 39], we apply open
card sorting to construct a taxonomy of codes. This taxonomy helps
us to extrapolate general themes from our detailed coded data. The
card sorting process is comprised of two steps. First, the coded
links are merged into cohesive groups that can be represented by
a similar subgraph. Second, the related subgraphs are merged to
form categories that can be summarized by a short title.

5.2 Results
Table 3 provides an overview of the categories that summarize
related labels (the complete table is available online1). We observe
that the frequencies at which the link labels appear are consistent
between the two studied projects. Moreover, we only coded two
of 486 links from Nova and two of 266 links from Neutron as
false positives (i.e., spuriously detected links that do not indicate
a relationship between reviews), suggesting that our link extrac-
tion approach does not produce much noise (precision > 0.99 in
both cases). Furthermore, we required additional context informa-
tion (beyond the link source) to code 63 links, all of which were
more speci!cally coded during the third pass when we analyze

additional information sources. Below, we describe the discovered
codes according to the categories to which they belong.
Patch Dependency (C1). We !nd that 55% and 56% of the ana-
lyzed links in Nova and Neutron connect reviews to others that
they depend upon. Patch Dependency links may in"uence inte-
gration decisions and the reviewers who should be recommended.
Indeed, the integration decision in one review may be inherently
linked to that of another if they share a dependency. For example,
Review #1027045 of the Nova project was only abandoned because
of its dependency on Review #102705, which was abandoned earlier.
Moreover, reviewers of a dependent review may need to review its
dependency as well. For example, a reviewer of Review #1027498

was added only because they reviewed its dependency (Review
#101424). We further explore the usefulness of these linkage-based
reviewer invitations in Section 7 (RQ4).
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Figure 3: The Patch Dependency subgraphs.

Figure 3 shows three shapes that patch dependency links take.
First, Patch Ordering, Root Cause, Shallow Fix, and Follow-up take
the shape of two eventually integrated (or abandoned) reviews that
share a link. While they share a shape, the semantics of the patterns
di#er, i.e., Patch Ordering links indicate a timing dependency that
must be respected at integration time, while Follow-up, Root Cause,
and Shallow Fix links provide rationale for Review B by pointing to
enabling enhancements or limitations in Review A. Second, Merge
Related Reviews links merge two or more reviews into a more
cohesive whole. Finally, Multi-part links indicate that a large review
has been split into a series of smaller reviews.

Weißgerber et al. [43] observed that smaller patches tend to
be accepted in two large open source projects. Rigby et al. [35]
argue that one of the statutes of an e$cient and e#ective code
review process is the “early, frequent review of small, independent,
complete solutions”. The frequency of the Multi-part pattern (i.e.,
the splitting of large patches into smaller ones) may be an indication
that these prior observations still hold.

8https://review.openstack.org/#/c/102749/
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Broader Context (C2). We !nd that 20% and 19% of the analyzed
links point to other reviews with relevant resources. The individual
analysis of reviews that are connected with Broader Context links
may not be valid. Indeed, analyses of review outcome prediction
often compute the length of discussion threads [16, 23]. However, a
discussion may span across several reviews when Broader Context
links are present. For instance, a reviewer of Review #1552239 asks
the author to refer to a similar discussion on Review #215608.

(1) Related Feedback
(2) Demonstration
(3) Additional Evidence
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B
comment

code

(C2) Broader Context (1) or (3)

(2) or (3)

Code 
Base

Figure 4: The Broader Context subgraph.

Figure 4 shows that our three codes within the Broader Con-
text category share the same shape; however, the codes di"er in
the artifact to which they refer. Related Feedback links connect
discussions on one review to discussions in other reviews, while
Demonstration links point to example code from other reviews.
Additional Evidence links point to other reviews as proof (code,
discussions, speci!cations) of the existence, removal, or relevance
of the problems that are addressed by the review under inspection.
Alternative Solution (C3).We !nd that 14% and 15% of the ana-
lyzed links connect reviews to others that implement similar func-
tionality. Similar to Patch Dependency links, Alternative Solution
links may also impact integration decisions and reviewer recom-
mendations. For example, Review #6743110 was abandoned because
another submitted solution for the same underlying issue (Review
#61041) was preferred. Especially in such examples where an “ei-
ther or” decision needs to be made, the same reviewers should
likely be invited to all of the competing reviews for the sake of
fairness [15]. Furthermore, prior work has demonstrated that a lack
of awareness of concurrently developed solutions may result in re-
dundant work [10, 49] and is a key source of software development
waste [37]. These con#ated integration decisions are not congruent
with review outcome or reviewer recommendation models that
assume each submission is independently adjudicated [21–23].

(C3) Alternative Solution

(1) Superseding
(2) Duplication

A’

BA Code 
Base

(1)
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Figure 5: The Alternative Solution subgraph.

9https://review.openstack.org/#/c/155223/
10 https://review.openstack.org/#/c/67431/

Figure 5 shows that our two codes within the Alternative Solu-
tion category share the same shape, yet di"er in their semantics.
Superseding links show that the solution in an earlier review has
been replaced with an updated solution in the current review, while
Duplication links highlight the existence of another (competing)
solution to the same underlying problem. In a large-scale, cross-
company software organization like OpenStack, it is di$cult to
coordinate development e"ort. However, the frequency at which
work is duplicated suggests that tooling [10, 49] may help.
Version Control Issues (C4). We !nd that 6% of analyzed links
point to reviews that introduced version control issues. Rigby and
Storey [36] also found such issues are often discussed during the
broadcast-based reviews in several open source systems. Shima-
gaki et al. [38] found that 5% of commits in a large industrial system
were reverted after being integrated. Since Revert is one of the codes
within our category, our review graphs can complement version
control data to better understand the practice of reverting commits.

A
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Figure 6: The Version Control Issues subgraph.

Figure 6 shows that our three codes within the Version Control
Issues category share the same shape. Integration Con#ict and
Gerrit Misuse links expose technical integration or Gerrit issues,
while Revert links indicate that a partial or complete rollback.
Feedback Related (C5).We !nd that 5% and 4% of analyzed links
in Nova and Neutron connect reviews to others that resolve or
were inspired by reviewer comments. Reviews that were inspired
by feedback in another review might be more likely to be accepted,
since one reviewer is already in favour of the idea. For example, in
Review #167100,11 a reviewer’s feedback inspired the creation of
the new Review #167082. Then, one of reviewers of #167100 joined
Review #167082, and eventually approves it for integration. There
are two possible ways to act upon C5-linked reviews. The reviewer
who inspired the change may be well suited to review the inspired
change. Thus, reviewer recommenders may need to recommend
them. On the other hand, since the reviewer who inspired the
change may not be impartial when reviewing the inspired review,
reviewer recommenders may need to recommend other reviewers.

Figure 7 shows that our two codes within the Feedback Related
category share the same shape. Fixed Related Issues links show that
(part of) a raised concern has been addressed by another review.
Feedback-inspired links show a new contribution where feedback
on Review A inspires the creation of a new patch.

RQ2: A broad variety of reasons for linkage exist. These di!er-
ent types of links may introduce noise in or opportunities for
improvement of code review analytics.
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analysis of reviews that are connected with Broader Context links
may not be valid. Indeed, analyses of review outcome prediction
often compute the length of discussion threads [16, 23]. However, a
discussion may span across several reviews when Broader Context
links are present. For instance, a reviewer of Review #1552239 asks
the author to refer to a similar discussion on Review #215608.
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text category share the same shape; however, the codes di"er in
the artifact to which they refer. Related Feedback links connect
discussions on one review to discussions in other reviews, while
Demonstration links point to example code from other reviews.
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discussions, speci!cations) of the existence, removal, or relevance
of the problems that are addressed by the review under inspection.
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another submitted solution for the same underlying issue (Review
#61041) was preferred. Especially in such examples where an “ei-
ther or” decision needs to be made, the same reviewers should
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fairness [15]. Furthermore, prior work has demonstrated that a lack
of awareness of concurrently developed solutions may result in re-
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Figure 5 shows that our two codes within the Alternative Solu-
tion category share the same shape, yet di"er in their semantics.
Superseding links show that the solution in an earlier review has
been replaced with an updated solution in the current review, while
Duplication links highlight the existence of another (competing)
solution to the same underlying problem. In a large-scale, cross-
company software organization like OpenStack, it is di$cult to
coordinate development e"ort. However, the frequency at which
work is duplicated suggests that tooling [10, 49] may help.
Version Control Issues (C4). We !nd that 6% of analyzed links
point to reviews that introduced version control issues. Rigby and
Storey [36] also found such issues are often discussed during the
broadcast-based reviews in several open source systems. Shima-
gaki et al. [38] found that 5% of commits in a large industrial system
were reverted after being integrated. Since Revert is one of the codes
within our category, our review graphs can complement version
control data to better understand the practice of reverting commits.
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Figure 6 shows that our three codes within the Version Control
Issues category share the same shape. Integration Con#ict and
Gerrit Misuse links expose technical integration or Gerrit issues,
while Revert links indicate that a partial or complete rollback.
Feedback Related (C5).We !nd that 5% and 4% of analyzed links
in Nova and Neutron connect reviews to others that resolve or
were inspired by reviewer comments. Reviews that were inspired
by feedback in another review might be more likely to be accepted,
since one reviewer is already in favour of the idea. For example, in
Review #167100,11 a reviewer’s feedback inspired the creation of
the new Review #167082. Then, one of reviewers of #167100 joined
Review #167082, and eventually approves it for integration. There
are two possible ways to act upon C5-linked reviews. The reviewer
who inspired the change may be well suited to review the inspired
change. Thus, reviewer recommenders may need to recommend
them. On the other hand, since the reviewer who inspired the
change may not be impartial when reviewing the inspired review,
reviewer recommenders may need to recommend other reviewers.

Figure 7 shows that our two codes within the Feedback Related
category share the same shape. Fixed Related Issues links show that
(part of) a raised concern has been addressed by another review.
Feedback-inspired links show a new contribution where feedback
on Review A inspires the creation of a new patch.

RQ2: A broad variety of reasons for linkage exist. These di!er-
ent types of links may introduce noise in or opportunities for
improvement of code review analytics.
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Figure 7: The Feedback Related subgraph.

6 AUTOMATED LINK CLASSIFICATION (RQ3)
In Section 5, we !nd that several types of links may impact reviewer
recommendation and outcome prediction. Since di"erent review
analytics techniques may need to traverse or ignore links depending
on the type, a more scalable approach to link type recovery is
needed. Indeed, it took the authors 112 person-hours to code 752
review links (see Coding in Section 5.1). If we continue to code at
this rate, it would take an additional 19,793 person-hours to code
the remaining 132,898 reviews in the OpenStack data set.

In this section, we study the feasibility of using machine learning
techniques to automatically classify links by categories. To do so,
we use the manually coded data from Section 5 as a sample on
which to train and evaluate classi!ers that identify the link category
(C1–C5) based on the document that it appears within (i.e., the
review description !eld or the comment in the general or inline
discussion thread). Below, we describe our approach to automated
link category classi!cation (6.1) followed by the results (6.2).

6.1 Classi!cation Approach
Feature Extraction.We apply standard text preprocessing tech-
niques to lessen the impact of noise on our classi!ers. We !rst
tokenize the document and remove stop words using the Python
NLTK stop word list. Next, we apply lemmatization to handle term
conjugation using the Python NLTK lemmatize function. Finally,
we convert each sampled description or comment to a vector of the
Term Frequency-Inverse Document Frequency (TF-IDF) weights
of its terms. Broadly speaking, terms that appear rarely across doc-
uments, and/or often within one document are of higher weight.
We use the Python Scikit-Learn TfidfVectorizer function to
compute TF-IDF scores for all documents in a training sample.
Classi!er Validation Technique. To estimate classi!er perfor-
mance on unseen data, we apply the out-of-sample bootstrap val-
idation technique [13], which tends to yield more robust results
than other validation techniques (e.g., k-fold cross validation) [40].
First, a bootstrap sample of size N is randomly drawn with replace-
ment from the original sample of the same size N. This bootstrap
sample is used to train our classi!ers, while the documents from
the original sample that do not appear in the bootstrap sample are
set aside for testing. Since the bootstrap sample is selected with
replacement, on average, 36.8% of the documents will not appear
in the bootstrap sample and can be used to evaluate classi!er per-
formance. We perform 1,000 iterations of the bootstrap procedure
(reporting the mean performance scores across these iterations) to
ensure that our performance measurements are robust.

Classi!cation Techniques. To train our classi!ers, we experi-
ment with a broad selection of popular classi!cation techniques.
Support Vector Machines (SVM) use a hyperplane to classify docu-
ments by !rst transforming feature values into a multidimensional
feature space. Random Forest is an ensemble learning technique
that builds a large number of decision trees, each using a subset of
the features, and then aggregates the results from each tree to clas-
sify documents. Multinomial Naïve Bayes (MNB) is a conditional
probability model that uses a multinomial distribution for each of
the features. Multi-Layer Perceptron (MLP) is a supervised learning
technique where weighted inputs are delivered through neurons in
sequential layers. Multinomial Logistic Regression (MLR) general-
izes the logistic regression technique to the multi-class classi!ca-
tion setting. We use the Python Scikit-Learn implementations of
the classi!cation techniques (svm.SVC, RandomForestClassifier,
MultinomialNB, MLPClassifier, and LogisticRegression).
Hyperparameter Optimization. The classi!cation techniques
that we use have con!gurable parameters that impact their per-
formance. Similar to prior work [40], we use a grid search to tune
the parameter settings. Grid search is an exhaustive searching tech-
nique that examines all of the combinations of a speci!ed set of
candidate settings to !nd the best combination. We explore the
same set of candidate settings as Tantithamthavorn et al. [40, p. 5].
We search for the optimal parameter settings for each classi!cation
technique in each bootstrap sample (i.e., without using the testing
data) using the Scikit-Learn GridSearchCV function.
Performance Evaluation. To evaluate our classi!ers, we use com-
mon performance measures. Precision is the proportion of links
that are classi!ed as a given category that are correct. Recall is the
proportion of links of a given category that a classi!er can detect.
The F1-score is the harmonic mean of precision and recall. The
Area Under the Curve (AUC) computes the area under the curve
that plots the true positive rate against the false positive rate as
the threshold that is used for classifying documents varies. AUC
ranges from 0 to 1, where random guessing achieves an AUC of 0.5.

Since our links have more than two categories, we need to use
multi-class generalizations of these performance measures. Each
measure is computed for each category before being aggregated
into an overall score. Since the link categories are imbalanced (see
Table 3), we weigh the category scores by their overall proportion.

We also compare our classi!ers to a ZeroR classi!er, which al-
ways reports the most frequently occurring class. In our setting,
a ZeroR classi!er achieves a recall of one and a precision equal
to the frequency of the most frequently occurring category (C1)
for that class, and a precision and recall of zero for the other cate-
gories. Note that AUC does not apply to ZeroR classi!ers because
likelihood estimates are not produced. We use the Scikit-Learn
metrics library to compute our performance measurements.

6.2 Results
Table 4 shows that while no classi!cation technique consistently
outperforms the others, the classi!ers achieve a precision of 0.71–
0.77, a recall of 0.72–0.92, and F1-scores of 0.71–0.79. Since these
performance scores are on par with those of prior classi!cation
studies [28, 32, 33], we believe that our classi!ers show promise.
Moreover, Table 4 shows that our classi!ers outperform baseline
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Table 3: The frequency of the discovered types of review
linkage in OpenStack Nova and Neutron.

Category
Frequency

Nova Neutron

C1: Patch Dependency 269 (55%) 148 (56%)
Patch Ordering 124 (26%) 62 (24%)
Root Cause 50 (11%) 28 (11%)
Shallow Fix 6 (2%) 4 (2%)
Follow-up 28 (6%) 29 (11%)
Merge Related Reviews 19 (4%) 13 (5%)
Multi-part 42 (9%) 12 (5%)
C2: Broader Context 96 (20%) 50 (19%)
Related Feedback 43 (9%) 14 (6%)
Demonstration 29 (6%) 26 (10%)
Additional Evidence 24 (5%) 10 (4%)
C3: Alternative Solution 69 (14%) 39 (15%)
Superseding 35 (8%) 17 (7%)
Duplicated 34 (7%) 22 (9%)
C4: Version Control Issues 27 (6%) 17 (6%)
Integration Concern 15 (4%) 13 (5%)
Gerrit Misuse 5 (2%) 2 (1%)
Revert 7 (2%) 2 (1%)
C5: Feedback Related 23 (5%) 10 (4%)
Fix Related Issues 11 (3%) 3 (2%)
Feedback Inspired Reviews 12 (3%) 7 (3%)

entries. During the !rst coding pass, we code only using the link
source (description/comment). In several cases, more contextual
information was needed. We coded such cases as “Needs Additional
Context” during the !rst coding pass. During a third coding pass,
we check additional sources of information (e.g., the content of the
patch, the linked review, comments in discussion threads) to code
these cases more speci!cally. After the three coding passes, all of
the sampled links have been assigned to a speci!c code.
Card Sorting. Similar to prior studies [3, 18, 24, 39], we apply open
card sorting to construct a taxonomy of codes. This taxonomy helps
us to extrapolate general themes from our detailed coded data. The
card sorting process is comprised of two steps. First, the coded
links are merged into cohesive groups that can be represented by
a similar subgraph. Second, the related subgraphs are merged to
form categories that can be summarized by a short title.

5.2 Results
Table 3 provides an overview of the categories that summarize
related labels (the complete table is available online1). We observe
that the frequencies at which the link labels appear are consistent
between the two studied projects. Moreover, we only coded two
of 486 links from Nova and two of 266 links from Neutron as
false positives (i.e., spuriously detected links that do not indicate
a relationship between reviews), suggesting that our link extrac-
tion approach does not produce much noise (precision > 0.99 in
both cases). Furthermore, we required additional context informa-
tion (beyond the link source) to code 63 links, all of which were
more speci!cally coded during the third pass when we analyze

additional information sources. Below, we describe the discovered
codes according to the categories to which they belong.
Patch Dependency (C1). We !nd that 55% and 56% of the ana-
lyzed links in Nova and Neutron connect reviews to others that
they depend upon. Patch Dependency links may in"uence inte-
gration decisions and the reviewers who should be recommended.
Indeed, the integration decision in one review may be inherently
linked to that of another if they share a dependency. For example,
Review #1027045 of the Nova project was only abandoned because
of its dependency on Review #102705, which was abandoned earlier.
Moreover, reviewers of a dependent review may need to review its
dependency as well. For example, a reviewer of Review #1027498

was added only because they reviewed its dependency (Review
#101424). We further explore the usefulness of these linkage-based
reviewer invitations in Section 7 (RQ4).
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Figure 3: The Patch Dependency subgraphs.

Figure 3 shows three shapes that patch dependency links take.
First, Patch Ordering, Root Cause, Shallow Fix, and Follow-up take
the shape of two eventually integrated (or abandoned) reviews that
share a link. While they share a shape, the semantics of the patterns
di#er, i.e., Patch Ordering links indicate a timing dependency that
must be respected at integration time, while Follow-up, Root Cause,
and Shallow Fix links provide rationale for Review B by pointing to
enabling enhancements or limitations in Review A. Second, Merge
Related Reviews links merge two or more reviews into a more
cohesive whole. Finally, Multi-part links indicate that a large review
has been split into a series of smaller reviews.

Weißgerber et al. [43] observed that smaller patches tend to
be accepted in two large open source projects. Rigby et al. [35]
argue that one of the statutes of an e$cient and e#ective code
review process is the “early, frequent review of small, independent,
complete solutions”. The frequency of the Multi-part pattern (i.e.,
the splitting of large patches into smaller ones) may be an indication
that these prior observations still hold.
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Broader Context (C2). We !nd that 20% and 19% of the analyzed
links point to other reviews with relevant resources. The individual
analysis of reviews that are connected with Broader Context links
may not be valid. Indeed, analyses of review outcome prediction
often compute the length of discussion threads [16, 23]. However, a
discussion may span across several reviews when Broader Context
links are present. For instance, a reviewer of Review #1552239 asks
the author to refer to a similar discussion on Review #215608.

(1) Related Feedback
(2) Demonstration
(3) Additional Evidence

A

B
comment

code

(C2) Broader Context (1) or (3)

(2) or (3)

Code 
Base

Figure 4: The Broader Context subgraph.

Figure 4 shows that our three codes within the Broader Con-
text category share the same shape; however, the codes di"er in
the artifact to which they refer. Related Feedback links connect
discussions on one review to discussions in other reviews, while
Demonstration links point to example code from other reviews.
Additional Evidence links point to other reviews as proof (code,
discussions, speci!cations) of the existence, removal, or relevance
of the problems that are addressed by the review under inspection.
Alternative Solution (C3).We !nd that 14% and 15% of the ana-
lyzed links connect reviews to others that implement similar func-
tionality. Similar to Patch Dependency links, Alternative Solution
links may also impact integration decisions and reviewer recom-
mendations. For example, Review #6743110 was abandoned because
another submitted solution for the same underlying issue (Review
#61041) was preferred. Especially in such examples where an “ei-
ther or” decision needs to be made, the same reviewers should
likely be invited to all of the competing reviews for the sake of
fairness [15]. Furthermore, prior work has demonstrated that a lack
of awareness of concurrently developed solutions may result in re-
dundant work [10, 49] and is a key source of software development
waste [37]. These con#ated integration decisions are not congruent
with review outcome or reviewer recommendation models that
assume each submission is independently adjudicated [21–23].
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Figure 5: The Alternative Solution subgraph.
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Figure 5 shows that our two codes within the Alternative Solu-
tion category share the same shape, yet di"er in their semantics.
Superseding links show that the solution in an earlier review has
been replaced with an updated solution in the current review, while
Duplication links highlight the existence of another (competing)
solution to the same underlying problem. In a large-scale, cross-
company software organization like OpenStack, it is di$cult to
coordinate development e"ort. However, the frequency at which
work is duplicated suggests that tooling [10, 49] may help.
Version Control Issues (C4). We !nd that 6% of analyzed links
point to reviews that introduced version control issues. Rigby and
Storey [36] also found such issues are often discussed during the
broadcast-based reviews in several open source systems. Shima-
gaki et al. [38] found that 5% of commits in a large industrial system
were reverted after being integrated. Since Revert is one of the codes
within our category, our review graphs can complement version
control data to better understand the practice of reverting commits.
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Figure 6 shows that our three codes within the Version Control
Issues category share the same shape. Integration Con#ict and
Gerrit Misuse links expose technical integration or Gerrit issues,
while Revert links indicate that a partial or complete rollback.
Feedback Related (C5).We !nd that 5% and 4% of analyzed links
in Nova and Neutron connect reviews to others that resolve or
were inspired by reviewer comments. Reviews that were inspired
by feedback in another review might be more likely to be accepted,
since one reviewer is already in favour of the idea. For example, in
Review #167100,11 a reviewer’s feedback inspired the creation of
the new Review #167082. Then, one of reviewers of #167100 joined
Review #167082, and eventually approves it for integration. There
are two possible ways to act upon C5-linked reviews. The reviewer
who inspired the change may be well suited to review the inspired
change. Thus, reviewer recommenders may need to recommend
them. On the other hand, since the reviewer who inspired the
change may not be impartial when reviewing the inspired review,
reviewer recommenders may need to recommend other reviewers.

Figure 7 shows that our two codes within the Feedback Related
category share the same shape. Fixed Related Issues links show that
(part of) a raised concern has been addressed by another review.
Feedback-inspired links show a new contribution where feedback
on Review A inspires the creation of a new patch.

RQ2: A broad variety of reasons for linkage exist. These di!er-
ent types of links may introduce noise in or opportunities for
improvement of code review analytics.
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Demonstration links point to example code from other reviews.
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6 AUTOMATED LINK CLASSIFICATION (RQ3)
In Section 5, we !nd that several types of links may impact reviewer
recommendation and outcome prediction. Since di"erent review
analytics techniques may need to traverse or ignore links depending
on the type, a more scalable approach to link type recovery is
needed. Indeed, it took the authors 112 person-hours to code 752
review links (see Coding in Section 5.1). If we continue to code at
this rate, it would take an additional 19,793 person-hours to code
the remaining 132,898 reviews in the OpenStack data set.

In this section, we study the feasibility of using machine learning
techniques to automatically classify links by categories. To do so,
we use the manually coded data from Section 5 as a sample on
which to train and evaluate classi!ers that identify the link category
(C1–C5) based on the document that it appears within (i.e., the
review description !eld or the comment in the general or inline
discussion thread). Below, we describe our approach to automated
link category classi!cation (6.1) followed by the results (6.2).

6.1 Classi!cation Approach
Feature Extraction.We apply standard text preprocessing tech-
niques to lessen the impact of noise on our classi!ers. We !rst
tokenize the document and remove stop words using the Python
NLTK stop word list. Next, we apply lemmatization to handle term
conjugation using the Python NLTK lemmatize function. Finally,
we convert each sampled description or comment to a vector of the
Term Frequency-Inverse Document Frequency (TF-IDF) weights
of its terms. Broadly speaking, terms that appear rarely across doc-
uments, and/or often within one document are of higher weight.
We use the Python Scikit-Learn TfidfVectorizer function to
compute TF-IDF scores for all documents in a training sample.
Classi!er Validation Technique. To estimate classi!er perfor-
mance on unseen data, we apply the out-of-sample bootstrap val-
idation technique [13], which tends to yield more robust results
than other validation techniques (e.g., k-fold cross validation) [40].
First, a bootstrap sample of size N is randomly drawn with replace-
ment from the original sample of the same size N. This bootstrap
sample is used to train our classi!ers, while the documents from
the original sample that do not appear in the bootstrap sample are
set aside for testing. Since the bootstrap sample is selected with
replacement, on average, 36.8% of the documents will not appear
in the bootstrap sample and can be used to evaluate classi!er per-
formance. We perform 1,000 iterations of the bootstrap procedure
(reporting the mean performance scores across these iterations) to
ensure that our performance measurements are robust.

Classi!cation Techniques. To train our classi!ers, we experi-
ment with a broad selection of popular classi!cation techniques.
Support Vector Machines (SVM) use a hyperplane to classify docu-
ments by !rst transforming feature values into a multidimensional
feature space. Random Forest is an ensemble learning technique
that builds a large number of decision trees, each using a subset of
the features, and then aggregates the results from each tree to clas-
sify documents. Multinomial Naïve Bayes (MNB) is a conditional
probability model that uses a multinomial distribution for each of
the features. Multi-Layer Perceptron (MLP) is a supervised learning
technique where weighted inputs are delivered through neurons in
sequential layers. Multinomial Logistic Regression (MLR) general-
izes the logistic regression technique to the multi-class classi!ca-
tion setting. We use the Python Scikit-Learn implementations of
the classi!cation techniques (svm.SVC, RandomForestClassifier,
MultinomialNB, MLPClassifier, and LogisticRegression).
Hyperparameter Optimization. The classi!cation techniques
that we use have con!gurable parameters that impact their per-
formance. Similar to prior work [40], we use a grid search to tune
the parameter settings. Grid search is an exhaustive searching tech-
nique that examines all of the combinations of a speci!ed set of
candidate settings to !nd the best combination. We explore the
same set of candidate settings as Tantithamthavorn et al. [40, p. 5].
We search for the optimal parameter settings for each classi!cation
technique in each bootstrap sample (i.e., without using the testing
data) using the Scikit-Learn GridSearchCV function.
Performance Evaluation. To evaluate our classi!ers, we use com-
mon performance measures. Precision is the proportion of links
that are classi!ed as a given category that are correct. Recall is the
proportion of links of a given category that a classi!er can detect.
The F1-score is the harmonic mean of precision and recall. The
Area Under the Curve (AUC) computes the area under the curve
that plots the true positive rate against the false positive rate as
the threshold that is used for classifying documents varies. AUC
ranges from 0 to 1, where random guessing achieves an AUC of 0.5.

Since our links have more than two categories, we need to use
multi-class generalizations of these performance measures. Each
measure is computed for each category before being aggregated
into an overall score. Since the link categories are imbalanced (see
Table 3), we weigh the category scores by their overall proportion.

We also compare our classi!ers to a ZeroR classi!er, which al-
ways reports the most frequently occurring class. In our setting,
a ZeroR classi!er achieves a recall of one and a precision equal
to the frequency of the most frequently occurring category (C1)
for that class, and a precision and recall of zero for the other cate-
gories. Note that AUC does not apply to ZeroR classi!ers because
likelihood estimates are not produced. We use the Scikit-Learn
metrics library to compute our performance measurements.

6.2 Results
Table 4 shows that while no classi!cation technique consistently
outperforms the others, the classi!ers achieve a precision of 0.71–
0.77, a recall of 0.72–0.92, and F1-scores of 0.71–0.79. Since these
performance scores are on par with those of prior classi!cation
studies [28, 32, 33], we believe that our classi!ers show promise.
Moreover, Table 4 shows that our classi!ers outperform baseline
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