T.C MİLLİ EĞİTİM BAKANLIĞI

ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ

SFC PROGRAMLAMA MODÜLÜ 523E00323

Ankara, 2011

- Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir.
- Millî Eğitim Bakanlığınca ücretsiz olarak verilmiştir.
- PARA İLE SATILMAZ.

İÇİNDEKİLER

AÇIKLAMALAR	.iii
GÍRİŞ	1
ÖĞRENME FAALİYETİ–1	3
1.SFC PROGRAMININ TEMELLERİ	3
1.1.SFC'nin Tanıtımı	3
1.2. SFC Hakkında Bilgi	5
1.2.1. STL (Step ladder) - RET (Return)	5
1.2.2. State S	6
1.3. SFC Programlama Özellikleri	6
1.4. SFC'nin Akışa Göre Sınıflandırılması	7
1.4.1. Tek Hat Çalışma (Single flow)	7
1.4.2. Seçici Dallanma (Selective Branch Flow)	8
1.4.3. Eş Zamanlı Dallanma (Translational Branch Flow)	9
1.5. SFC VIEW (SFC Penceresi)	9
1.6. SFC Programının ve Açıklamaların Yönetimi	10
1.7. Program Tipleri	11
1.7.1. SFC Program1	11
1.7.2. Olay / Geçiş Merdiven Diyagramı	12
1.7.3. SFC Program Yapısı	13
1.7.4.Kursör Sembolü ve Giriş Sembolü	16
1.7.5. SFC Programlama Temel Bilgileri	17
1.8. SFC Programının Oluşturulması	20
1.9. SFC Programını Yazdırma	21
UYGULAMA FAALİYETİ	24
ÖLÇME VE DEĞERLENDİRME	31
ÖĞRENME FAALİYETİ–2	32
2.İLERİ SEVİYEDE SFC PROGRAMI YAZIMI	32
2.1. Üç Adet Silindirin PLC ile Kontrolü Uygulaması	32
2.1.1. Üç Ayrı Silindirin Sırayla İleri Gidip Sırayla Geri Gelmesi Uygulaması	32
2.1.2. Üç Ayrı Silindirin Sırayla İleri Gidip Aynı Anda Geri Gelmesi	
Uygulaması	39
2.1.3. Üç Ayrı Silindirin Hareketinin İsteğe Bağlı Olarak Kontrol Edilmesi	
Uygulaması	46
2.2. Trafik Işığı Kontrolü	53
2.2.1. Program Adımlarını Belirlemek için Sistemin Akış Şemasını Çıkarmak	C
	54
2.2.2. Güvenli Çalışma için Güvenlik Önlemlerini Tespit Etmek	55
2.2.3. Kontrol Programını Yapmak	55
2.2.4. Programı PLC Cihazına Yüklemek	58
2.2.5. PLC' yi Run Konumuna Alarak Sistemi Çalıştırmak	58
UYGULAMA FAALİYETİ	59
ÖLÇME VE DEĞERLENDİRME	61

	L DEĞERLENDİRME62
CEVAP ANAHTAKLAKI	PANAHTARLARI
KAYNAKÇA	AKÇA65

AÇIKLAMALAR

KOD	523EO0323	
ALAN	Endüstriyel Otomasyon Teknolojileri	
DAL/MESLEK	Ortak Alan	
MODÜLÜN ADI	SFC Programlama	
MODÜLÜN TANIMI	PLC ile ünite kontrolünün SFC (Sıralı fonksiyon grafiği) programlama kullanılarak anlatıldığı öğrenme materyalidir.	
SÜRE	40/32	
ÖN KOŞUL	PLC Programlama modülünü tamamlamış olmak.	
YETERLİK	PLC'de SFC programlama yapmak.	
MODÜLÜN AMACI	 Genel Amaç PLC'de SFC programlamasını doğru olarak yapabileceksiniz. Amaçlar PLC'de SFC programına hazırlığı doğru olarak yapabileceksiniz. PLC'de SFC kontrolünü doğru olarak yapabileceksiniz. 	
EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI	Ortam: Ardışık kontrol laboratuvarı Donanım: PLC katalogları, otomasyon malzeme katalogları, PLC deney seti, bilgisayar, PLC haberleşme kablosu giriş çıkış donanımları, el takımları.	
ÖLÇME VE DEĞERLENDİRME	Her faaliyetin sonunda ölçme soruları ile öğrenme düzeyinizi ölçeceksiniz. Araştırmalarla, grup çalışmaları ve bireysel çalışmalarla öğretmen rehberliğinde ölçme ve değerlendirmeyi gerçekleştirebileceksiniz.	

iv

GİRİŞ

Sevgili Öğrenci,

Bu modül sonunda, büyük sistemlerin kontrolünü yapabilecek, uzun ve detay gerektiren PLC programlarını küçük bölümlere ayırarak hata yapma riskini en aza indirecek, tüm sistemin programını modüler halde yazabileceksiniz. Dolayısıyla sistemin tamamını küçük işlem modüllerine ayırabileceksiniz. Bu şekilde program yazmanın birkaç avantajı vardır.

En büyük avantajlarından birisi, sistemde hata oluştuğunda hatayı tüm sistemde değil, hata veren bölümde aramak mümkündür. Dolayısıyla hatalı bölümün yerini hızlı bir şekilde tespit edecek, gerekli değişiklikler ile sistemin doğru çalışmasını kısa bir zamanda sağlayacaksınız. Bunun yanı sıra, SFC yöntemi ile yazılan programlarda sisteme sonradan bir modül eklemek ya da sonradan yapılacak değişikliklere karşı sistemin uyum sağlaması mümkün olacaktır. Sistemin geliştirilebilirliği olduğundan, sonradan yapılabilecek işlemleri rahatlıkla sisteminize aktarabileceksiniz. Daha önceki modüllerde öğrenmiş olduğunuz bilgilerin bu modülle pekiştirilmesi de amaçlanmaktadır.

SFC, Sequential Function Chart (Sıralı Fonksiyon Grafiği) ifadesinin kısaltılmış şeklidir ve durum geçiş grafiği anlamına da gelir. Değiştirilmek istenen ya da geliştirilen adım işlemlerinin gösterildiği bir programlama metodudur. SFC programlama yöntemi ile, zaman zaman tekrarlanan adım işlemleri diyagramdaki PC komutları ile gerçekleştirilir.

SFC sistemi ile, ardışık kontrol ya da lojik kontrol devreleri dizayn edilirken, geleneksel ve karmaşık tasarım yöntemleri kullanılmadan, çok kolay bir şekilde programlama yapılır. Bu sistem, kolay programlama yapılabildiğinden dolayı, IEC standardı için dikkate değerdir. Bütün bu olumlu yanlarına bakacak olursak, SFC sistemi hızla gelişecek gibi görünmektedir.

PLC'yi başarılı bir şekilde sisteme adapte edebilmemiz için problemi tanımlama, gerekli çevre birimlerini seçme, gerekli programı hazırlama, gerekli bağlantıları yapma gibi becerilere sahip olmamız gereklidir. Bu becerilerden bir tanesinin bile eksik olması, ünitenin kontrolünün doğru şekilde yapılmasını engeller.

Uygulamalarda pek çok programlama tekniğinden bahsedilmektedir. Biz burada PLC'yi SFC yöntemi ile programlayarak sistemi kontrol etmeyi öğreneceğiz. Bu modülde SFC sistemin yapısını ve sistemin algoritma yapısını adım takip edeceğiz.

IEC (International Electrotechnical Commission)

IEC, "International Electrotechnical Commission" ifadesinin kısaltılmış şeklidir.

Bu kuruluş, 1906 yılında elektron, iletişim, atom enerjisi gibi alanlarda standartlaştırmayı getirmek üzere kurulan uluslararası bir organizasyondur. Kuruluşun amacı, ülkeler arasındaki standardı ayarlamaktır. Merkezi İsviçre'dedir. Kuruluşunun faaliyetleri, 40'ın üzerinde ve farklı ülkelerden gelen temsilci kişilerin oluşturduğu komisyon tarafından yapılır. 1947 yılından sonra bu kuruluş ISO'nun elektrik, elektronik bölümünün sorumluluğunu aldı.

Aşağıdaki şekil SFC diyagramına bir örnek olarak verilmiştir.

Şekil 1.1: SFC diyagram

ÖĞRENME FAALİYETİ–1

AMAÇ

PLC'de SFC programına hazırlığı doğru olarak yapabileceksiniz.

ARAŞTIRMA

Bu öğrenme faaliyetinden önce aşağıdaki hazırlıkları yapmalısınız.

- Bu faaliyette daha önceki modüllerde öğrenmiş olduğunuz PLC komutlarını da kullanacaksınız. Bu nedenle PLC' nin programlanması ilgili konulara göz atınız.
- Internetten, çevrenizdeki kaynaklardan PLC için yazılmış programları inceleyiniz. İncelediğiniz program, geniş kapsamlı ise programın işlevini anlamakta zorluk çekebilirsiniz. Ancak program SFC mantığı ile yazılmışsa, sistemin algoritmasından program hakkında bir kanıya varmanız hiç de zor olmayacaktır.

1.SFC PROGRAMININ TEMELLERİ

SFC, son yıllarda Avrupa'da çok popüler oldu ve IEC (International Elektrotechnical Commission) tarafından da teşvik edildi.

1.1.SFC'nin Tanıtımı

Tekrarlı olarak sıralı işlemleri yapan makineler için kullanılan bir programlama tipidir.
 Sıralı işlem yapan makinelerde, başlatma (start) şartı ile işlemler başlar.

- $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
- Bir işlemden bir sonrakine geçiş, önceki işlemin bitiş şartına bağlıdır.
- Sınır anahtarı., zamanlayıcı veya sayıcı vb. değişkenler ile adımlar arası geçiş sağlanır.

Bir makinenin çalışmasını bir başka kişiye açıklamamız gerektiği durumda, her bir işlemi ayrıntıları ile zaman ve organizasyon grafiklerini de kullanarak tanımlamamız yerinde olacaktır.

(İşlemler)

(1) Başlatma (PB) butonuna basıldığında (ON), pnomatik (havalı) silindir ileriye gidecek.

(2) Havalı silindir LS2'ye dokunduğunda ve LS2 aktif olduğunda, geriye gelecek.

(3) Pnomatik silindir geriye dönüp LS1 sınır anahtarını aktif yaptığında, 10 saniye duracak.

(4) 10 saniye dolunca Pnomatik silindir yeniden ileriye doğru gidecek.

(5) Pnomatik silindir LS3'e dokunduğunda ve LS3 aktif olduğunda, geriye doğru gelecek.

Bu örnekte de olduğu gibi, yapılan işlemlerin konuşarak ya da sadece yazarak başkasına anlatılması zordur, özellikle karışık olan işlemlerin anlaşılması çok daha zor olacaktır.

Çok karmaşık, tecrübe gerektiren ve çözümü için zamana ihtiyaç duyulan devreler için SFC sistemi geliştirilmiştir. Fakat aslında SFC'de merdiven diyagramı temeline dayalı çalışmaktadır.

Yukarıdaki işlemler aşağıdaki SFC sistem ile gösterilebilir.

Şekil 1.3 : SFC programı

1.2. SFC Hakkında Bilgi

1.2.1. STL (Step ladder) - RET (Return)

Şekil 1.4 : SET-RET fonsiyonu

STL'nin anlamı, merdiven diyagramı başlayacak ve RET'in anlamı ise merdiven diyagramı bitecek demektir.

STL komutu, dahili element olan state (S)'i kullanarak "STL" kontağından itibaren "RET" komutuna kadar merdiven diyagramı ile çizilmiş olan program kümesini kontrol edebilir. RET komutu dahili element olan state içerisindeki akımın sona erdiğini ve ana enerji hattının STL komutundan önceki hatta geçtiğini gösterir.

1.2.2. State S

Bu, dahili bir elementdir. State, "S" olarak gösterilir. State bir bit aygıtıdır. MITSUBISHI FX-2N PLC'lerdeki state tahsisatı aşağıdaki gibi yapılmıştır. S0—S9 İlk pozisyon (Initial process) S10-S19 Özel durum (Normalde kullanılmaz.) S20-S899 Normal durum (Her bir işlemler dizisi) SFC'de diğer türde karakteristikler de vardır.

(a) Çift bobinin etkin bir şekilde kullanımı mümkündür.

 $(Y0 \longrightarrow Y1 \longrightarrow Y0 \longrightarrow Y1)$

(b) Program bir sonraki adıma ilerlediği zaman, çıkış kontağı (Out) açılır. Eğer çıkış kontağının bir sonraki adımda da kapalı tutulması isteniyorsa, SET komutu kullanılmalıdır. SET komutu kullanılıncaya kadar etkinliğini sürdürecektir.

1.3. SFC Programlama Özellikleri

- SFC programlama adım bitleri 'S' ile belirtilir ve onluk sayı sistemine göre adreslendirilir.
- Bir program içerisinde on farklı SFC programı yazılabilir.
- Başlangıç adım bitinin (S0-S9) numarası ile SFC programları birbirinden ayrılır.
- Farklı SFC programlarından, birbirine geçiş mümkündür.
- Başlangıç adım biti (S0-S9) ile başlayan bir SFC programı, normal adım bitleri ile devam eder.
- SFC programını sonlandırmak için RET komutu kullanılır.

PLC	FX1S	FX1N	FX2N*
ADIM BİTİ	118(\$10-128)	990(S10-999)	490(S10-499)
BAŞLANGIÇ ADIM BİTİ	10(S0-9)	10(S0-9)	10(S0-9)
PİL KORUMALI ADIM BİTİ	-	-	500(\$500- 999)
TOPLAM	128	1000	1000

Şekil 1.5: Sn aygıtının kullanım haritası

1.4. SFC'nin Akışa Göre Sınıflandırılması

Bir SFC programı birbirini izleyen adımlardan oluşur. Her adımda basit işlemler kontrol edilebilir. Bir işlem için birden fazla başlangıç koşulu tanımlamak gerekiyorsa paralel ya da seçimli dallanmalar yapılır.

1.4.1. Tek Hat Çalışma (Single flow)

SFC'deki normal akış durumudur. Eğer bir sonraki adıma geçiş için gerekli olan koşul yeterli değil ise, bu adıma geçiş mümkün olmayacaktır.

Şekil 1.6: Tek hatlı çalışma

1.4.2. Seçici Dallanma (Selective Branch Flow)

Pek çok koldan sadece bir tanesi seçilir ve akış bu dal üzerinde gerçekleşir. Bu seçici dallanma olarak adlandırılır.

Şekil 1.7: Seçici dallanma

1.4.3. Eş Zamanlı Dallanma (Translational Branch Flow)

Pek çok koldan hepsi seçilir ve akış aynı anda hepsi üzerinde gerçekleşir. Bu eş zamanlı dallanma (paralel dallanma) olarak adlandırılır.

Şekil 1.8: Eş zamanlı dallanma

Bu dallanma devrelerinde bazı kısıtlamalar vardır. Her dallara ayrılma noktası, maksimum 8 dal ile sınırlıdır. Bir devredeki toplam dal sayısı ise en fazla 16 olabilir.

1.5. SFC VIEW (SFC Penceresi)

Şekil 1.9: SFC penceresi

- ➢ SFC programlama penceresi
- SFC programlarının oluşturulması
- > CPU'daki programın görüntülenmesi
- > Açıklamaların gösterilmesi ve kaydedilmesi
- Program çıktısının alınması

Aktif program penceresinde View / SFC View menüsünü tıklayarak, SFC programlama penceresine ve gerekli ikonlara ulaşılabilir.

1.6. SFC Programının ve Açıklamaların Yönetimi

- > CPU
 - CPU'dan okunan açıklamalar MELSEC MEDOC FX/WIN yazılımının açıklama bölgesine yazılır. CPU hafızasından çekilen açıklamalar * ile işaretlidir.
 - CPU' ya program yüklenmeden önce CPU hafızasına yüklenmek istenen açıklamalar * ile işaretlenmelidir.

> Dosya

- Bir dosya açılmadan önce, CPU' daki açıklamaların program hafizasından MELSEC MEDOC FX/WIN yazılımının açıklama bölgesine yazılıp yazılmayacağı sorulur. Hayır, seçeneğini işaretlenirse açıklamalar program verileri olarak MELSEC MEDOC FX/WIN yazılımına aktarılır. MELSEC MEDOC FX/WIN yazılımının açıklama bölgesine dokunulmaz. Bu veriler daha sonra yazılımın açıklama
- * ile işaretli açıklamalar CPU açıklama bölgesine kaydedilir. Bütün açıklamalar açıklama dosyasına (*.COW) kaydedilir.

ROM yazıcı

• Veriler CPU' ya yazıldıkları gibi yazılır.

1.7. Program Tipleri

Bir SFC programı ayrı ayrı programlanabilen geçiş ve olaylardan oluşur. SFC programlamada aşağıdaki öğeler kullanılır.

- ➢ Örneğin : SET S0 ; SFC program başlangıcı
- Örneğin : Y0 ; PLC çıkışları
- ➢ TRAN : ; Geçiş

Program parçaları adımlar ve geçişler olarak programlanır.

1.7.1. SFC Programı

Şekil 1.10: SFC programı

1.7.2. Olay / Geçiş Merdiven Diyagramı

Olaylar ve geçişler merdiven diyagramı programı olarak oluşturulur. SFC programlama penceresinde programlanacak öğenin üstüne tıklanır ve CTRL+L veya View/Inner Lader View komutuyla SFC öğeleri merdiven diyagramı penceresine geçilir.

Şekil 1.11: Olay / geçiş diyagramı

SFC programının sonuna bir merdiven diyagramı bloğu eklendiğinde RET komutu otomatik olarak programın sonuna eklenir.

1.7.3. SFC Program Yapısı

Şekil 1.12: SFC program yapısı

Fonksiyon	Ekrandaki Görüntüsü	Fonksiyon Tuşu	Açıklama
Merdiven diyagramı bloğu	* Ladder m	F8	m = Merdiven diyagramı blok numarası otomatik olarak verilir
Başlangıç durum rölesi	* Sn	Shift + F4	Sn = SO - S9 durum röleleri başlangıç röleleri olarak kullanılır.
Genel durum rölesi	* Sn V	Shift + F4	Sn = S10-S999
Sıçrama (döngü)	Jump Sn	F6	Sn = SO - S999
Sıçrama (sıfırlama)	Reset	F7	Sn = SO – S999
Geçiş (geçiş koşulu)		Shift + F5	Geçiş koşulu eklenir

Fonk	siyon	Ekrandaki görüntüsü	Fonksiyon tuşu	Açıklama
Dikey ak	ım çizgisi		Shift + F9	İki durum bloğu birbirine bağlanır.
Yatay ak	ım çizgisi	Seçici akış dallanması — Paralel akış dallanması	F9	Seçici / paralel dallanma otomatik tanınır.
Kombine edilmiş semboller	Durum + Geçiş	* Sn	F5	Sn = SO –S899
	Dallanma	 	Shift + F6	Eklendiği konuma göre seçici / paralel dallanma otomatik tanınır.
			Shift + F7	
		 J	Shift + F8	

Şekil 1.13: SFC komut yapısı

1.7.4. Kursör Sembolü ve Giriş Sembolü

Posizyon	Açıklama	
1	Durum giriş pozisyonu (Sıçrama girişi ya da merdiven diyagramı bloğu oluşturma	
2	Durum – Sonraki adım birleştirme noktası	
3	Seçici / Paralel dallanma	
4	Geçiş Tanımlama pozisyonu	
5	Seçici / Paralel dallanmaya geri dönüş	

Şekil 1.15: Kursör ve giriş sembolü açıklaması

1.7.5. SFC Programlama Temel Bilgileri

Bir SFC programı oluşturmak için önce SFC programlama penceresi açılır (View / SFC View)

SFC programı, olay ve geçişlerin merdiven diyagramları oluşturulduktan sonra program komut listesi programına dönüştürülmelidir. Dönüştürülmemiş SFC programları SFC programlama penceresi kapatılınca silinir. F4 tuşu ya da Tools / Convert komutuyla dönüştürme işlemi gerçekleştirilir.

Olay - geçiş merdiven diyagramlarını oluşturmak için View / İnner ladder view komutu uygulanır. Olay - geçiş merdiven diyagramları herhangi bir merdiven diyagramı gibi programlanır. Herhangi bir durum bloğunun arkasına merdiven diyagramı bloğu eklenirse MELSEC MEDOC FX/WIN programa otomatik olarak RET komutunu ekler. Bu nedenle SFC programlama penceresinde RET komutu kullanılmamalıdır.

Komut		LD/LDI/LDP/		
Durum		LDF/AND/ ANI / ANDP/ ANDF/ ÖR / ORI / ORP / ÖRF / INV / OUT / SET/RST/PLS /PLF	ANB / ORB / MPS / MRD / MP	MC/MCR
Başlangıç v Durum Re	e Genel öleleri	Kullanılabilir	Kullanılabilir	Kullanılamaz
Dallanma, kesişme, durum	Çıkış	Kullanılabilir	Kullanılabilir	Kullanılamaz
	Geçiş	Kullanılabilir	Kullanılamaz	Kullanılamaz

Şekil 1.16 :Komut kullanım yerleri

STL komutu Interrupt programlarında ve alt programlarda kullanılamaz.

STL komutu içinde sıçrama komutları kullanmak mümkündür, ancak kompleks bir programdan kaçınmak için sıçrama komutları kullanılmaması önerilir.

Bir geçişte iki veya daha fazla koşul tanımlanmamalıdır. İki veya daha fazla koşul için geçiş merdiven diyagramı kullanılmalıdır.

Şekil 1.17: SFC program hataları

Bir durum ya da bir geçiş için henüz merdiven diyagramı programı yazılamamışsa o durum ya da geçişin yanında * işareti görülür. Merdiven diyagram programı yazıldıktan sonra bu işaret otomatik olarak kaybolur.

Bir SFC programını ilgili merdiven diyagramı programlarını tanımlamadan da kaydedebilir daha sonra gerekli eklemeler yapılabilir.

Bir SFC programında belirli bir adımda sıçrama yapılması gerekiyorsa, sıçrama işlemi sadece bir kere tanımlanmalıdır. Aksi takdirde hata oluşabilir.

Bir sıçrama komutu sadece bir kere kullanılmalıdır.

Yanlış SFC programı

Doğru SFC Programı

Şekil 1.18: SFC program hataları

1.8. SFC Programının Oluşturulması

Yeni bir SFC programı oluşturmak için önce File / New komutuyla yeni bir programlama penceresi açılmalıdır. SFC programlama penceresine View / SFC view komutuyla geçilir.

Şekil 1.19: SFC program görünümü

1.9. SFC Programini Yazdırma

SFC programlama penceresi aktifken, File / Print komutunu uygulayınız.

Pozisyon	Açıklama
1	Yazdırılacak açıklama tipinin seçilmesi / sonraki diyalog penceresi
2	Çıktısı alınacak iç devre verilerini belirleme
3	Yazdırma işleminin başlatılması
4	Açıklama penceresindeki açıklamaları okur
5	Yazdırılacak programın öz izlemesi
6	Çıktı büyüklüğünün belirlenmesi
7	Parametre listesi çıktısını aktif / pasif etme
8	Başlık listesi çıktısını aktif / pasif etme
9	Satır aralıklarını azaltmayı aktif etmek
10	İç devre merdiven diyagramını yazdırmayı aktif etmek

Şekil 1.20: SFC programını yazdırma

SFC diyalog penceresinden **comment settings** butonu tıklandığında, **SFC setting diyalog** penceresi ekrana gelir. Bu pencerede açıklamaların çıktıda nasıl görünmesi gerektiğini ayarlar.

Şekil 1.21: SFC programını yazdırma

Pozis	Açıklama
yon	
1	Çıktıda görünmesini istediğiniz açıklamaları işaretleyin.
2	Kullanılmıyor

Şekil 1.22: SFC program menüsünün açıklaması

SFC diyalog penceresindeki **print inner ladder** seçeneği işaretlenirse, **inner ladder comment settings** butonu tıklandığında, **inner ladder comment settings** diyalog penceresi ekrana gelir. Bu pencerede açıklamaların çıktıda nasıl görünmesi gerektiği ayarlanır.

Şekil 1.23: SFC programını yazdırma

Pozisyon	Açıklama
1	Yazdırılacak açıklama tiplerinin belirlenmesi
2	Değişken isimlerinin çıktı pozisyonlarını belirleme
3	Değişken açıklamalarının büyüklüğünü belirleme
4	Kullanılmıyor

Şekil 1.24: SFC programını yazdırma

UYGULAMA FAALİYETİ

Aşağıdaki sorulara ilişkin uygulama faaliyetini yapınız.

Şekil 1.25 : SFC programını yazdırma

- X0 başlatma butonuna basıldıktan sonra vagon dolum yönüne doğru hareket eder ve X1 anahtarına basıldığında durur.
- > Yükleme kapağı (Y1) 7 saniye süreyle açık kalır.
- > Vagon geri hareket eder ve X2 anahtarı kapandığından boşaltma yerinde durur.
- Vagonun boşaltma kapağı için X0 butonu beklenir.

ÇÖZÜM

- Yukarıda uygulama örneğini çözmek için öncelikle yeni bir proje seçiniz.
- View menüsünden SFC View seçeneğini seçiniz.
- Başlangıç adımı hariç işlemin kaç adım olduğu belirleyiniz.
- > 1 ADIM: Yükleme alt kapağına git.
- > 2 ADIM: Yükleme kapağını aç.
- 3.ADIM: Boşaltma yerine git.
- ➢ 4.ADIM: Boşaltma bitti, başa dön.

İşlem Basamakları	Öneriler
	Kısa yol tuşlarını
> SFC View seçeneği seçiliyken yandaki	kullanmayı deneyiniz.
butona veya F8 butonuna basınız. Ekrana aşağıdaki şekil	Kısa bir süre sonra
gelir. Bu bölümde yapılacak işlem programın başlangıç	alışkanlık yapacağından
bölümünde S0'ı (başlangıç biti) set etmek ve diğer adım	program yazma hızınız
bitlerini sıfırlamaktır.	artacaktır.
* Ladder 0 Yandaki ifadenin üzerine bir kere tıklayarak ifadeyi mavi çerçeveye alınız.	Bu işlemin içeriğine yazacağınız program satırı birden fazla olabilir.
Tuşlarına basınız veya View menüsünden	➢ Programları ilgili
inner ladder view'i seçiniz.	işlemin içine yazdıktan
Ladder ekranına aşağıdaki programı yazıp F4'e basınız.	sonra derlemeyi
View menüsünden SFC View'i seçip tekrar adım adım	unutmayınız.
programlama ekranına dönünüz.	
0 M8002 1 [SET S0] [ZRST S20 S23]	
M8002 rölesi ilk tarama boyunca aktif olur.	
Kursör, Ladder 0 bölümünün alt kısmında iken SFC programının başlangıcı için F5 tuşuna veya aşağıdaki butona basınız.	

sn. bekletme işlevini yapan aşağıdaki programı yazınız.	S22 şeklinde bir isim verilmelidir. Program satırını yazdıktan sonra F4 tuşu ile derleyiniz.
F4 tuşuna basıp derledikten sonra tekrar SFC ekranına geçiniz.	Program satırını yazdıktan sonra F4 tuşu ile derleyiniz.
S21 programının bir sonraki adıma geçiş şartı, kapağın açık süresinin dolmasıdır. Aşağıdaki program parçası bu işlevi görür.	
 STL TO TRAN) F4 tuşuna basıp derledikten sonra tekrar SFC ekranına geçiniz. Kapak kapandıktan sonra, taşıyıcı sola hareket etmeli ve soldaki anahtar ON olduğunda durmalıdır. Bu bölüm için S21 adımının altına yeni bir adım ekleyiniz. Yeni eklenen S22 adımının içine aşağıdaki programı yazınız. Bu program, kapak süresi dolduktan sonra sola gitme işlemi yapar. 	 Program satırını yazdıktan sonra F4 tuşu ile derleyiniz. Program satırını yazdıktan sonra F4 tuşu
STL (Y002) F4 tusuna basip derledikten sonra tekrar SFC ekranina	ile derleyiniz.
 S22 programının bir sonraki adıma geçiş şartı, vagonun X2 anahtarına varmasıdır. Aşağıdaki program parçası bu işlevi görür. 	

STL X002 TRAN >	Program satırını yazdıktan sonra F4 tuşu ile derleyiniz.
Taşıyıcı sola geldikten sonra, alt kapak açılacak ve 5 sn. bekleyecektir. Bu bölüm için S22 adımının altına yeni bir adım ekleyiniz. Eklenen adıma S23 adını veriniz ve içerisine alt kapağı açan ve süreyi sayan aşağıdaki programı ekleyiniz.	
STL(Y003) (T1 K50)	Programın dallanacağı alanın ismi bu kısma yazılmalıdır. Sonra F4 ile program derlenir.
F4 tuşuna basıp derledikten sonra tekrar SFC ekranına geçiniz.	≻ RET komutu bu
Alt kapak 5 sn. açık durduktan sonra S23 adımının bir sonraki adıma geçiş bölümüne aşağıdaki programı ekleyiniz.	işlemden sonra kendiliğinden program satırına eklenir.
STL TI F4 tuşuna basıp derledikten sonra tekrar SFC ekranına geçiniz.	Program bitiminde SFC görünümündeyken tüm program bir kez daha derlenir.
Bir startta yapılacak işlemler sona erdiğinden, S23'ün sonunda S0'a dönülmelidir. Bunun için S23'ün altında F6 tuşuna veya yukarıdaki butona basılmalıdır. Ekranda JUMP yazısı görülünce S0 yazıp ENTER tuşuna basılmalıdır.	
Yandaki butona basılarak veya View menüsünden ladder seçilerek merdiven diyagram program sayfasına geçildiğinde, SFC'de yazılan programın merdiven diyagramı hali ekrana gelir.	

Bu programı sonlandırmak için SFC programının sonunda, en başta olduğu gibi F8 tuşu ile ladder 1 işlemi açılır ve içine sadece END komutu yazılır. RET komutu otomatik olarak JUMP komutu ile ilave edilecektir.	
Hazırlanan programı derlemek için Tools menüsünden Convert'i seçiniz veya F4 tuşuna basınız.	

Şekil 1.26: Programın işlem basamakları

UYGULAMA FAALİYETİ

Aşağıdaki soruları cevaplayarak bu faaliyette kazandığınız bilgileri ölçünüz.

A- OBJEKTİF TESTLER (ÖLÇME SORULARI)

Aşağıdaki cümleleri doğru veya yanlış olarak değerlendiriniz.

- 1) STL merdiven diyagramının başlayacağı anlamına gelmektedir.
- 2) SFC programlamada bir işlemden bir sonrakine geçiş, hiçbir şarta bağlı değildir.
- SFC programlamada adımlar arası geçiş limit anahtarı, zamanlayıcı veya sayıcı gibi değişkenler ile sağlanır.
- 4) S10 S19 aygıtları SFC programlamada başlangıç durumlarında kullanılır.
- 5) SFC programlama adım bitleri 'S' ile belirtilir ve onluk sayı sistemine göre adreslendirilir.
- 6) Bir program içerisinde 100 farklı SFC programı yazılabilir.
- 7) Başlangıç adım bitinin (S0-S9) numarası ile SFC programları birbirinden ayrılır.
- 8) Farklı SFC programlarından, birbirine geçiş mümkündür.
- Başlangıç adım biti (S0-S9) ile başlayan bir SFC programı, normal adım bitleri ile devam eder.
- 10) SFC programını sonlandırmak için RET komutu kullanılır.

DEĞERLENDİRME

Cevaplarınızı cevap anahtarı ile karşılaştırınız. Doğru cevap sayınızı belirleyerek kendinizi değerlendiriniz. Yanlış cevap verdiğiniz ya da cevap verirken tereddüt yaşadığınız sorularla ilgili konuları faaliyet geri dönerek tekrar inceleyiniz.

ÖĞRENME FAALİYETİ–2

AMAÇ

PLC'de SFC kontrolünü doğru olarak yapabileceksiniz.

ARAŞTIRMA

Bu öğrenme faaliyetinden önce;

- SFC programlamada kullanılan elemanlar temel modüllerde anlatılmıştı. Bu konulara bir göz atınız.
- Özellikle zamanlayıcı ve sayıcı gibi elemanlarla tasarlanabilecek sistemlere göz atınız.

2.İLERİ SEVİYEDE SFC PROGRAMI YAZIMI

2.1. Üç Adet Silindirin PLC ile Kontrolü Uygulaması

2.1.1. Üç Ayrı Silindirin Sırayla İleri Gidip Sırayla Geri Gelmesi Uygulaması

X0 başlatma sinyali uygulandığında Y4 çıkışı ON olur ve 1. silindir ileri yönde hareket eder. Bu sırada T0 zamanlayıcısı 3 saniye saymaya başlar.

T0 zamanlayıcısı 3 saniyeyi doldurunca Y5 çıkışı ON olur ve 2. silindir ileri yönde harekete geçer. Bu anda 1. silindir geri döner. Bu sefer T1 zamanlayıcısı çalışmaya başlar.

T1 zamanlayıcısı 5sn.yi tamamladıktan sonra Y6 çıkışı ON olur ve 3. silindir ileri yönde harekete geçer. 2. silindir geri döner. Aynı anda T2 zamanlayıcısı saymaya başlar.

T2 zamanlayıcısı 7 sn.yi tamamladıktan sonra 3. silindir geri döner. Son olarak tüm sistem en başa geri döner. Yani X0 butonuna tekrar basılırsa, yukarıdaki işlemler tekrarlanır.

Yukarıdaki koşulları gerçekleştirecek olan PLC programını SFC programlama formatında yapınız.

Şekil 2.2: SFC diyagramı

Şekil 2.1'de X0 butonuna ok işareti ile gösterilen yönde basıldığında tüm sistem çalışmaya başlayacaktır. Tüm silindirler bir saykıl çalıştıktan sonra sistemin yeniden başlaması için X0 butonuna tekrar basılmalıdır.

Hareket Yönü	Bekleme Süresi	Hareket Yönü
İleri Yönde	3 saniye	Geri Yönde
İleri Yönde	5 saniye	Geri Yönde
İleri Yönde	7 saniye	Geri Yönde
	Hareket Yönü İleri Yönde İleri Yönde İleri Yönde	Hareket YönüBekleme Süresiİleri Yönde3 saniyeİleri Yönde5 saniyeİleri Yönde7 saniye

2.1.1.1. Program Adımlarını Belirlemek için Sistemin Akış Şemasını Çıkarmak

Sistemin akış şeması aşağıda çıkarılmıştır. Akış şemasında gösterilen adımlar PLC çalışma mantığının gereği olarak sürekli olarak tekrarlanmaktadır. PLC içersine yüklenen programdaki komutlar tek tek işlenir. Bu şekilde bir çevrim yerine getirilmiş olur. Çevrim PLC çalıştığı sürece sürekli olarak tekrarlanır.

Şekil 2.3: Üç silindirin PLC ile kontrolü akış diyagramı

2.1.1.2. Güvenli Çalışma için Güvenlik Önlemlerini Tespit Etmek

Silindirlerin hareketlerini engelleyen unsurların olup olmadığı kontrol edilmelidir. Hava aktarma borularının havanın geçişini engelleyecek şekilde katlanması engellenmelidir.

Silindirlere tatbik edilecek hava basıncının tavsiye edilen değeri aşmaması gerekir. Aksi takdirde silindirler ve hava aktarma organları zarar görebilir.

2.1.1.3. Çalışma için Gerekli Malzemeleri Seçmek

Çalışma için gerekli malzemeleri aşağıdaki gibi sıralayabiliriz.

- Başlatma butonu
- > 3 adet ileri yönde hava etkili, geri yönde yay etkili silindir
- Gerekli miktarda hava borusu
- ➢ 3 adet 2/2 yön valfi
- Giriş ve çıkış sayısı yeterli bir PLC cihazı

Giriş ve çıkış sayısının tespiti için aşağıdaki tablo kullanılabilir. Burada dikkat edilirse üç silindirin ardışık olarak belirli zaman aralıkları ile çalışması söz konusudur. Birinci silindirin geri dönmesi sistemin bir sonraki adımının tetiklenmesine sebep olur. Giriş ve çıkış ünitelerinin sayısı bu uygulamada oldukça azdır. Dolayısıyla daha basit bir PLC ile de bu uygulama gerçekleştirilebilir. PLC'nin giriş veya çıkış sayısının artması PLC maliyetini etkileyen faktörlerden biridir.

Tüm bu anlatılanların ışığında aşağıdaki tabloyu düzenleyebiliriz. Buna göre 1 girişli, 3 çıkışlı bir PLC bizim için yeterli olacaktır. Ancak tam bizim kullanacağımız giriş ve çıkış sayısında PLC bulunmayacağı için buna yakın özellikte bir PLC seçmeliyiz. Giriş ve çıkış sayısı belirttiğimiz rakamın üstünde olabilir. Ancak altında olamaz.

GİRİŞ	X0	X1	X2	X3
	Başlatma			
ÇIKIŞ	Y4	Y5	Y6	
	1. Silindir	2. Silindir	3. Silindir	

Şekil 2.4: Giriş/çıkış birimlerinin bağlantısı

2.1.1.4. Kontrol Programını Yapmak

Hazırlayacağımız kontrol programında en önemli eleman zamanlayıcı olacaktır. Ek olarak karşılaştırma elemanları kullanılacaktır.

Kontrol Program

Aşağıdaki program ile yukarıda istenen şartlar gerçekleştirilir.

Şekil 2.5: PLC ile üç adet silindirin kontrolünü yapan ladder programı ve komut görünümü

▶ 1. Satır:

PLC RUN konumuna getirildiği an M8002 yardımcı rölesi ile S0 aygıtı kurulur. X0 ile çalışma başlatılır.

➤ 3. Satır:

X0 ile Y004 rölesine bağlı 1. silindir ileri gider. T0 zamanlayıcısı 3 saniye sayar ve S21 aygıtı kurulur.

➢ 6. Satır:

S21 aygıtı kurulduğu an Y005 rölesine bağlı 2. silindir ileri gider. Bundan önce Y004 rölesi SET edilmeden kurulduğundan S22 çalıştığı an Y004 rölesi OFF durumuna geçer.1 nu.lı silindir geri döner, T1 zamanlayıcısı 5sn sayar ve S22 aygıtı kurulur.

➢ 9. Satır:

S22 aygıtı kurulduğu an Y006 rölesine bağlı 3. silindir ileri gider. Bundan önce Y005 rölesi SET edilmeden kurulduğundan S23 çalıştığı an Y005 rölesi OFF durumuna geçer. 2. silindir geri döner. T2 zamanlayıcı 7sn sayar Y006 rölesi de SET edilmeden kurulduğundan S0 çalıştığı an Y006 aygıtına bağlı 3. silindir de geri döner ve 1 turluk iş biter.

Programın komut şeklindeki görünümü yan taraftaki gibidir. Dikkat edilirse sn. şeklinki ifadeler SET edilerek kurulmuştur. Bu SFC'nin geçiş özelliğidir.

Şekil 2.6: PLC ile üç adet silindirin kontrolünü yapan SFC programının görünümü

Örnek Kontrol Programı

Bu program da yukarıdaki aynı işi yapar. Tek farkı Y_n röleleri SET komut ile kurulmuştur. Dolayısıyla RST komutunun kullanılması kaçınılmazdır.

2.1.1.5. Programı PLC Cihazına Yüklemek ve Çalıştırmak

Programlama işlemi tamamlandıktan sonra PLC-Transfers-Write düğmesine tıklanır. Programın başarılı bir şekilde yüklendiğini gösteren bir mesajın ekranda görüntülenmesi gerekmektedir.

PLC'nin üzerinde bulunan RUN anahtarı kullanılarak derlenmiş PLC programı çalıştırılır.

2.1.2. Üç Ayrı Silindirin Sırayla İleri Gidip Aynı Anda Geri Gelmesi Uygulaması

Start butonu olarak X0'a basıldığında selenoid valf etkinleştirilir ve 1 numaralı silindir sağa doğru gider.

1 numaralı silindirin milinin ucu LS1 sınır anahtarına çarpıp X1'i "ON" yaptığında T0 zamanlayıcısı saymaya başlar. 3 saniye sonunda 2 numaralı silindir de sağa doğru hareket eder. (Bu durumda 1 numaralı silindir de sağda beklemektedir.)2 numaralı silindirin milinin ucu 2 numaralı sınır anahtarına (LS2) çarpıp X2'yi "ON" yaptığında T1 zamanlayıcısı çalışmaya başlar. 5 saniye sonunda 3 numaralı silindir de sağa doğru hareket eder. (Bu durumda diğer iki silindir de sağdaki pozisyonunu korur.).3 numaralı silindirin milinin ucu 3 numaralı sınır anahtarına (LS3) çarpıp X3'ü "ON" yaptığında T2 zamanlayıcısı çalışmaya başlar. 7 saniye sonra her üç silindir, birlikte sola doğru hareket eder.Tüm silindirler sola hareket edince T3 zamanlayıcısı çalışır ve 3 saniye sonra Y0 çıkışın aktif eder. Y0 çıkışı "ON" olunca T4 zamanlayıcısı çalışır ve yine 3 saniye sonra Y0 çıkışı "OFF" yapılır. (Bu çıkış devrenin tam olarak çalıştığını göstermek amacıyla yapılmıştır.) Yukarıdaki koşulları gerçekleştiren SFC programını yapınız.

2.1.2.1. Program Adımlarını Belirlemek için Sistemin Akış Şemasını Çıkarmak

Sistemin akış şeması aşağıda çıkarılmıştır. Akış şemasında gösterilen adımlar PLC çalışma mantığının gereği olarak sürekli olarak tekrarlanmaktadır. PLC içersine yüklenen programdaki komutlar tek tek işlenir. Bu şekilde bir çevrim yerine getirilmiş olur. Çevrim PLC çalıştığı sürece sürekli olarak tekrarlanır.

Şekil 2.9: Üç silindirin PLC ile kontrolü akış diyagramı

2.1.1.1. Çalışma için Gerekli Malzemeleri Seçmek

Çalışma için gerekli malzemeleri aşağıdaki gibi sıralayabiliriz.

- Başlatma butonu
- > 3 adet ileri yönde hava etkili, geri yönde yay etkili silindir
- ➢ 3 adet sınır anahtarı
- Gerekli miktarda hava borusu
- 3 adet 2/2 yön valfi
- Giriş ve çıkış sayısı yeterli bir PLC cihazı

Giriş ve çıkış sayısının tespiti için aşağıdaki tablo kullanılabilir. Burada dikkat edilirse, üç silindirin ardışık olarak belirli zaman aralıkları ile çalışması söz konusudur. Giriş ve çıkış ünitelerinin sayısı bu uygulamada oldukça azdır. Dolayısıyla daha basit bir PLC ile de bu uygulama gerçekleştirilebilir. PLC'nin giriş veya çıkış sayısının artması PLC maliyetini etkileyen faktörlerden biridir.

Tüm bu anlatılanların ışığında aşağıdaki tabloyu düzenleyebiliriz. Buna göre 4 girişli ve 3 çıkışlı bir PLC bizim için yeterli olacaktır. Ancak tam bizim kullanacağımız giriş ve çıkış sayısında PLC bulunmayacağı için buna yakın özellikte bir PLC seçmeliyiz. Giriş ve çıkış sayısı belirttiğimiz rakamın üstünde olabilir. Ancak altında olamaz.

GİRİŞ	X0	X1	X2	X3
	Başlatma	1.Silindirin Sınır	2.Silindirin Sınır	3.Silindirin
		Anahtarı	Anahtarı	Sınır Anahtarı
ÇIKIŞ	Y4	Y5	Y6	
	1. Silindir	2. Silindir	3. Silindir	

Şekil 2.10: Giriş/çıkış birimlerinin bağlantısı

2.1.2.3. SFC Programını Yazmak

X0 butonuna basıldığında program çalışmaya başlar.

1. silindir ileri yönde hareket eder.

3 sn. sonra 2. silindir ileri doğru hareket eder.

5 sn. sonra 3. silindir ileri gider.

Şekil 2.11: SFC programı görünümü

2.1.2.4. Kontrol Programını Yapmak

Hazırlayacağımız kontrol programında en önemli eleman zamanlayıcı olacaktır.

Şekil 2.12: PLC ile üç adet silindirin kontrolünü yapan ladder programı ve komut görünümü

> 1. Satır:

PLC RUN konumuna getirildiği an M8002 yardımcı rölesi ile S0 aygıtı kurulur (Set edilir.). X0 ile çalışma başlatılır.

> 2. Satır:

X0 ile 1. silindir ileri gider. Silindir X1 sınır anahtarına değdiğinde T0 zamanlayıcısı 3 saniye sayar ve S21 aygıtı kurulur.

> 3. Satır:

X1 ile 2. silindir ileri gider. Silindir X2 sınır anahtarına değdiğinde T1 zamanlayıcısı 5 sn. sayar ve S22 aygıtı kurulur.

> 4. Satır:

X2 ile 3. silindir ileri gider. Silindir X3 ve T2 sınır anahtarına değdiğinde T2 zamanlayıcı 7 sn. sayar ve Y004 ile Y005 arasındaki çıkışlar resetlenir. Tüm silindirler geri döner.

Kontrol Programina Y0 Lambasinin Eklenmesi

Ladder 0

Yukarıdaki programa ek olarak 1 turluk işlem tamamlandığında Y0 çıkışına bağlı lambanın çalışmasını ekleyiniz. Bunun için SFC programına S23 eklenip aşağıdaki programı yazınız.

Şekil 2.13: SFC programı görünümü

Şekil 2.14: Ladder diyagramı

0	LD	M8002		36	LD	T1	
1	OR	M1		37	SET	S22	
2	SET	S0		39	STL	S22	
4	LD	X001		40	SET	Y006	
5	ZRST	S20	S40	41	LD	X006	
10	ZRST	Y000	Y007	42	OUT	T2	K70
15	PLF	M1		45	LD	T2	
17	STL	S0		46	ZRST	Y004	Y006
18	LD	X000		51	LD	Τ2	
19	SET	S20		52	PLS	MO	
21	STL	S20		54	LD	Τ2	
22	SET	Y004		55	SET	S23	
23	LD	X004		57	STL	S23	
24	OUT	TO	K30	58	OUT	T3	K30
27	LD	TO		61	LD	T3	
28	SET	S21		62	OUT	Y000	
30	STL	S21		63	OUT	T4	K30
31	SET	Y005		66	LD	T4	
32	LD	X005		67	OUT	S20	
33	OUT	T1	K50	69	RET		
			_	70	END		

Şekil 2.15: Komut kod görünümü

2.1.3. Üç Ayrı Silindirin Hareketinin İsteğe Bağlı Olarak Kontrol Edilmesi Uygulaması

Uygulamamızda giriş sinyali olarak üç ayrı anahtar kullanılacaktır. X0'a basıldığında göstergede 1 yazacak ve Y10'a bağlı 1. silindir ileri gidecektir. 1 sn. sonra Y11 ve Y12 silindirleri ileri gidecektir. Tüm silindirlerin ileri gitmesinden 1 sn. sonra tüm silindirler geri gelecektir ve program başlangıç pozisyonuna dönecektir.

X1'e basıldığında Display göstergede 2 yazacak ve Y11'e bağlı 2. silindir ileri gidecektir. 1 sn. sonra Y10 ve Y12 silindirleri ileri gidecektir. Tüm silindirlerin ileri gitmesinden 1 sn. sonra tüm silidirler geri gelecektir ve program başlangıç pozisyonuna dönecektir.

X2'a basıldığında Display göstergede 4 yazacak ve Y12'ye bağlı 3. silindir ileri gidecektir. 1 sn. sonra Y10 ve Y11 silindirleri ileri gidecektir. Tüm silindirlerin ileri gitmesinden 1 sn. sonra tüm silidirler geri gelecektir ve program başlangıç pozisyonuna dönecektir.

Şeku 2.10: Sundurier, dijital gösterge ve butonların konumları

2.1.3.1. Program Adımlarını Belirlemek için Sistemin Akış Şemasını Çıkarmak

Sistemin akış şeması aşağıda çıkarılmıştır. Akış şemasında gösterilen adımlar PLC çalışma mantığının gereği olarak sürekli olarak tekrarlanmaktadır. PLC içersine yüklenen programdaki komutlar tek tek işlenir. Bu şekilde bir çevrim yerine getirilmiş olur. Çevrim PLC çalıştığı sürece sürekli olarak tekrarlanır.

Şekil 2.17: Üç silindirin PLC ile kontrolü akış diyagramı

Programın akış diyagramından da anlaşılacağı gibi seçici dallanma yöntemi bu program için en iyi yoldur.

2.1.3.2. Çalışma için Gerekli Malzemeleri Seçmek

Çalışma için gerekli malzemeleri aşağıdaki gibi sıralayabiliriz.

- 3 adet başlatma butonu
- > 3 adet ileri yönde hava etkili, geri yönde yay etkili silindir
- Gerekli miktarda hava borusu
- ➤ 3 adet 2/2 yön valfi
- Giriş ve çıkış sayısı yeterli bir PLC cihazı
- ➤ 1 adet dijital gösterge

Giriş ve çıkış sayısının tespiti için aşağıdaki tablo kullanılabilir. Burada dikkat edilirse üç silindirin ardışık olarak belirli zaman aralıkları ile çalışması söz konusudur. Giriş ve çıkış ünitelerinin sayısı bu uygulamada oldukça azdır. Dolayısıyla daha basit bir PLC ile de bu uygulama gerçekleştirilebilir. PLC'nin giriş veya çıkış sayısının artması PLC maliyetini etkileyen faktörlerden biridir.

Tüm bu anlatılanların ışığında aşağıdaki tabloyu düzenleyebiliriz. Buna göre 4 girişli, 3 çıkışlı bir PLC bizim için yeterli olacaktır. Ancak tam bizim kullanacağımız giriş ve çıkış sayısında PLC bulunmayacağı için buna yakın özellikte bir PLC seçmeliyiz. Giriş ve çıkış sayısı belirttiğimiz rakamın üstünde olabilir. Ancak altında olamaz.

GİRİŞ	X0		X1		X2		
	Başlatma		Başlatma		Başlatma		
ÇIKIŞ	Y0	Y1	Y2	Y3	Y10	Y11	Y12
	Display	Display	Display	Display	1.Silindir	2.Silindir	3.Silindir

Sekil 2 18.	Giris/cikis	hirimlerinin	haðlantisi
ŞCKII 2.10.	GII IŞ/ÇIKIŞ	DII IIIIEI IIIII	Dagiantisi

2.1.3.3. SFC Programini Yazmak

X0, X1 veya X2 butonuna basıldığında program çalışmaya başlar.

Hangi butona basıldıysa Displayde o butonun numarası yazar.

1 silindir ileri yönde hareket eder. 1sn bekler

Diğer silindirler ileri gider. 1sn bekler

Tüm silindirler geri döner. 1sn bekler

2.1.3.4. Kontrol Programını Yapmak

Hazırlayacağımız kontrol programında en önemli eleman kodlayıcı ve kod çözücü olacaktır.

Şekil 2.20: PLC ile üç adet silindirin kontrolünü yapan programın komut görünümü

> Programı PLC Cihazına Yüklemek ve Çalıştırmak

Programlama işlemi tamamlandıktan sonra PLC-Transfers-Write düğmesine tıklanır. Programın başarılı bir şekilde yüklendiğini gösteren bir mesajın ekranda görüntülenmesi gerekmektedir.

PLC'nin üzerinde bulunan RUN anahtarı kullanılarak derlenmiş PLC programı çalıştırılır.

2.2. Trafik Işığı Kontrolü

Şekil 2.21: SFC programı uygulaması

Normalde yayalar için kırmızı (Y4), arabalar için yeşil ışık (Y0) yanacaktır. Yolun her iki kenarına konulan X0 ve X1 butonlarından herhangi birisine basıldıktan 10 saniye sonra arabalar için sarı ışık (Y1) yanacak, sarı ışık 3 saniye yandıktan sonra kırmızı ışık (Y2) arabalara yanacaktır. Arabalara yanan bu kırmızı ışıktan 1 saniye sonra yayalar için yeşil ışık (Y5) yanacaktır. Yayalara yanan yeşil ışık 10 saniye kesintisiz yandıktan sonra, 5 defada 1 er saniye aralıklarla yanıp sönecektir. Bunun sonunda yayalara kırmızı ışık yanacak, yayalara yanan kırmızı ışıkla birlikte arabalara ait olan sinyal de sarıya dönecektir. Bu sarı ışık 1 saniye sonra yeşile dönecek ve böylece ilk koşula gelinmiş olacaktır.

Yukarıdaki koşulları gerçekleştirecek olan PLC programını SFC programlama formatında yapınız.

Şekil 2.22: Trafik ışıklarının ve butonların konumları

2.2.1. Program Adımlarını Belirlemek için Sistemin Akış Şemasını Çıkarmak

Sistemin akış şeması aşağıda çıkarılmıştır. Akış şemasında gösterilen adımlar PLC çalışma mantığının gereği olarak sürekli olarak tekrarlanmaktadır. PLC içersine yüklenen programdaki komutlar tek tek işlenir. Bu şekilde bir çevrim yerine getirilmiş olur. Çevrim PLC çalıştığı sürece sürekli olarak tekrarlanır.

Şekil 2.23: Üç silindirin PLC ile kontrolü akış diyagramı

2.2.2. Güvenli Çalışma için Güvenlik Önlemlerini Tespit Etmek

Lambaların yanma sırası trafik güvenliği için çok önemlidir. Lambaların yanış sırasındaki geçişlerde gerektiği kadar zaman gecikme işlemlerinin yapılması şarttır.

2.2.3. Kontrol Programını Yapmak

Hazırlayacağımız kontrol programında en önemli eleman zamanlayıcı olacaktır.

Şekil 2.24: Programın ladder görünümü

Şekil 2.25: Trafik ışıklarının kontrolünün SFC program içerikleri

0	LD	M8002		51	SET	S22	
1	OR	M1		53	STL	S31	
2	SET	SO		54	OUT	Y005	
4	LD	X003		55	OUT	TЗ	K100
5	ZRST	S20	S40	58	LD	ТЗ	
10	ZRST	Y000	Y007	59	SET	S32	
15	PLF	M1		61	STL	S22	
17	STL	SO		62	OUT	Y001	
18	OUT	Y000		63	OUT	Τ4	K10
19	OUT	Y004		66	STL	S32	
20	LD	X000		67	LDI	T5	
21	OR	X001		68	OUT	Τ4	K10
22	OR	MO		71	LD	Τ4	
23	OUT	ТО	K100	72	OUT	T5	K10
26	OUT	MO		75	OUT	Y005	
27	LD	ТО		76	LD	Y005	
28	SET	S20		77	OUT	CO	К5
30	SET	S30		80	LD	CO	
32	STL	S20		81	PLS	MO	
33	OUT	Y001		83	LD	М0	
34	OUT	T1	К30	84	SET	S33	
37	LD	T1		86	STL	S33	
38	SET	S21		87	OUT	Y004	
40	STL	S30		88	RST	CO	
41	OUT	Y004		90	STL	S22	
42	LD	T2		91	STL	S33	
43	SET	S31		92	LD	Τ4	
45	STL	S21		93	OUT	S0	
46	OUT	Y002		95	RET		
47	OUT	Т2	K10	96	END		
50	LD	М0					

Şekil 2.26: Trafik ışık kontrol programın komut görünümü

2.2.4. Programı PLC Cihazına Yüklemek

Programlama işlemi tamamlandıktan sonra PLC-Transfers-Write düğmesine tıklanır. Programın başarılı bir şekilde yüklendiğini gösteren bir mesajın ekranda görüntülenmesi gerekmektedir.

2.2.5. PLC' yi Run Konumuna Alarak Sistemi Çalıştırmak

PLC'nin üzerinde bulunan RUN anahtarı kullanılarak derlenmiş PLC programı çalıştırılır.

UYGULAMA FAALİYETİ

Aşağıdaki soruya ilişkin uygulama faaliyetini yapınız.

Şekil 2.27: Çamaşır makinesi

Bir çamaşır makinesinde 4 çeşit program olduğunu düşünelim. Her programda da 4 çeşit işin yapıldığını farz edelim.

1. Program	2.Program	3. Program	4.Program
10 sn. sağa	20 sn. sağa	30 sn. sağa	40 sn. sağa
dön-Dur	dön-Dur	dön-Dur	dön-Dur
10 sn. sola	20 sn. sola	30 sn. sola	40 sn. sola
dön-Dur	dön-Dur	dön-Dur	dön-Dur
25 defa	50 defa	75 defa	90 defa
yukarıdaki işlemleri	yukarıdaki işlemleri	yukarıdaki işlemleri	yukarıdaki işlemleri
tekrarla	tekrarla	tekrarla	tekrarla
10 dk. 300	10 dk.400	10 dk. 500	10 dk. 600
devirde sıkma için	devirde sıkma için	devirde sıkma için	devirde sıkma için
sola dön-Dur	sola dön-Dur	sola dön-Dur	sola dön-Dur

Şekil 2.28. :PLC çalışma algoritması

Yukarıda tabloda görüldüğü gibi değişik kumaşlara göre ya da kumaşlardaki değişik kirlilik oranlarına göre farklı programlar seçilmek istenebilir. Siz yukarıdaki örnekte olduğu gibi çalışabilecek bir makineye **seçici dallanma** yöntemine göre SFC programı yazınız.

İşlem Basamakları	Öneriler
 Ünitenin çalışma şekline göre ihtiyaç duyulan giriş ve çıkış sayısını tespit ediniz. Sayıcı, zamanlayıcı sayısını tespit ediniz. 	PLC'nin bağlantısını gerçekleştirmeden önce üzerindeki ledlerden ve girişine bağlayacağınız anahtar grubundan yararlanarak çalışmasını test ediniz.
SFC yapısına göre programın yazımı için gerekli program veya fonksiyonları belirleviniz.	 Eğer bir hata varsa hatayı araştırabilirsiniz.
 Sistemin gerektirdiği PLC ve diğer donanımları seçiniz. 	Sistemde hatayı ararken hatanın sebep olduğu alt program parçacığına bakmanız size zaman kazandıracaktır.
Kontrol problemini tanımlayıp kâğıda dökünüz.	Hata bu kısımda değilse. ladder görünümü ile tüm programı ekranda görebilirsiniz.
Programı, SFC modlarından eş zamanlı dallanmaya göre tasarlayınız.	
PLC cihazının kullanılan giriş ve çıkışlarını tespit ediniz.	
Devre bağlantı şemasını çiziniz.	
Gerekli bağlantıları kurunuz.	

ÖLÇME VE DEĞERLENDİRME

Aşağıdaki soruları cevaplayarak bu faaliyette kazandığınız bilgileri ölçünüz. A- OBJEKTİF TESTLER (ÖLÇME SORULARI)

Aşağıdaki cümleleri doğru veya yanlış olarak değerlendiriniz.

- 1) SFC de program LADDER 1 şeklinde başlar.
- 2) Aşağıdaki şekil SFC'de eş zamanlı dallanmaya yönelik komutu kapsar.

- 3) M 8002 yardımcı rölesi PLC RUN edildiği sürece ON konumunda kalır.
- 4) SET komutu ile ilgili röleler sürekli olarak OFF konumlarını korur.
- 5) RST komutu ile SET edilmiş komutlar OFF haline geçer.
- 6) SFC programı RET komutu ile sonlandırılır.
- 7) SFC programında sıçrama komutu JUMP'tır.
- 8) SFC programında iki ayrı yerden aynı noktaya atlamak için iki defa jump komutu kullanılmadır.
- 9) ZRST S20 S40 komut satırı ile S20 ve S40 işlemleri resetlenir.
- 10) Kutucuk içindeki * işareti içinde bir program satırının olduğunu gösterir.

DEĞERLENDİRME

Cevaplarınızı cevap anahtarı ile karşılaştırınız. Doğru cevap sayınızı belirleyerek kendinizi değerlendiriniz. Yanlış cevap verdiğiniz ya da cevap verirken tereddüt yaşadığınız sorularla ilgili konuları faaliyet geri dönerek tekrar inceleyiniz.

MODÜL DEĞERLENDİRME

ÖLÇME SORULARI

Aşağıdaki cümleleri doğru veya yanlış olarak değerlendiriniz.

- SFC yöntemi ile yazılan programlarda sisteme bir modül eklenmesi ya da çıkartılması veya daha sonradan yapılacak değişikliklere karşı sistemin uyum sağlaması mümkündür.
- 2) SFC, merdiven diyagramı temeline dayalı çalışmaktadır.
- 3) STL'in anlamı, merdiven diyagramı bitecek ve RET'in anlamı ise merdiven diyagramı başlayacak demektir.
- 4) SFC'de S0-S9 arası olmak üzere 10 adet başlangıç adım biti vardır.
- 5) SFC programlama penceresine View / SFC View menüsünü tıklayarak ulaşabiliriz.
- 6) * ile işaretli açıklamalar CPU açıklama bölgesine COW uzantılı olarak kaydedilir.
- 7) SFC programında maksimum 100 satır yazılabilir.
- 8) SFC de sıçrama koşuludur.
- 9) SFC programlama penceresi aktifken, File / Print komutunu uygulayarak programı yazdırabiliriz.
- 10) X001 girişi OFF olduğunda bir sonraki işlem gerçekleşir.

PERFORMANS TESTİ (YETERLİK ÖLÇME)

Modülde yaptığınız uygulamaları tekrar yapınız. Yaptığınız bu uygulamaları aşağıdaki tabloya göre değerlendiriniz.

	AÇIKLAMA: Aşağıda listelenen kriterleri uygu	ıladıysanız EV	ET sütununa,	
uygulamadıysanız HAYIR sütununa X işareti yazınız.				
Değerlendirme Ölçütleri		Evet	Hayır	
1.	Üniteye uygun PLC akış şemasını çizebiliyor			
	musunuz?			
2.	Gerekli güvenlik önlemlerini tespit edebiliyor			
	musunuz?			
3.	Ünitenin çalışma şekline göre ihtiyaç duyulan giriş			
	çıkış sayısını tespit edebiliyor musunuz?			
4.	Ünitenin gerektirdiği sayıcı, zamanlayıcı sayısını ve			
	diğer PLC fonksiyonlarını doğru olarak tespit			
	edebiliyor musunuz?			
5.	Kontrol programını ve akış şemasını SFC			
	yönteminde doğru bir şekilde hazırlayabiliyor			
	musunuz?			
6.	Hazırladığınız programı PLC'ye yükleyerek gerekli			
	testleri yapabiliyor musunuz?			
7.	PLC'nin gerekli bağlantısını ve güç devresiyle			
	irtibatını gerçekleştirebiliyor musunuz?			

Şekil 2.30: Performans testi

DEĞERLENDİRME

Hayır cevaplarınız var ise ilgili uygulama faaliyetini tekrar ediniz. Cevaplarınızın tümü evet ise bir sonraki modüle geçebilirsiniz.

CEVAP ANAHTARLARI

ÖĞRENME FAALİYETİ 1 CEVAP ANAHTARI

1	D
2	Y
3	D
4	Y
5	D
6	Y
7	D
8	D
9	D
10	Y

ÖĞRENME FAALİYETİ 2 CEVAP ANAHTARI

1	Y
2	D
3	Y
4	Y
5	D
6	Y
7	D
8	Y
9	Y
10	D

MODÜL DEĞERLENDİRME CEVAP ANAHTARI

1	D
2	D
3	Y
4	D
5	D
6	D
7	Y
8	Y
9	D
10	Y

KAYNAKÇA

- OKUBO Tetsuya, Kahraman Öney, Ardışık Kontrol Teknolojisi, MEB-JICA– Temmuz, 2004.
- Programlanabilir Lojik Kontrolörler Donanım ve Yazılım MELSEC FX Serisi, Genel Teknik Sistemler LTD.ŞTİ (GTS), Mitsubishi Elektrik.
- **GULER Telat, PLC Programlama Çeşitleri Notları ve Uygulamaları**, 1999.