T.C. MİLLÎ EĞİTİM BAKANLIĞI

MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMININ GÜÇLENDIRILMESİ PROJESİ)

ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ

FABRİKA OTOMASYON 6

ANKARA, 2009

Milli Eğitim Bakanlığı tarafından geliştirilen modüller;

- Talim ve Terbiye Kurulu Başkanlığının 02.06.2006 tarih ve 269 sayılı Kararı ile onaylanan, Mesleki ve Teknik Eğitim Okul ve Kurumlarında kademeli olarak yaygınlaştırılan 42 alan ve 192 dala ait çerçeve öğretim programlarında amaçlanan mesleki yeterlikleri kazandırmaya yönelik geliştirilmiş öğretim materyalleridir (Ders Notlarıdır).
- Modüller, bireylere mesleki yeterlik kazandırmak ve bireysel öğrenmeye rehberlik etmek amacıyla öğrenme materyali olarak hazırlanmış, denenmek ve geliştirilmek üzere Mesleki ve Teknik Eğitim Okul ve Kurumlarında uygulanmaya başlanmıştır.
- Modüller teknolojik gelişmelere paralel olarak, amaçlanan yeterliği kazandırmak koşulu ile eğitim öğretim sırasında geliştirilebilir ve yapılması önerilen değişiklikler Bakanlıkta ilgili birime bildirilir.
- Örgün ve yaygın eğitim kurumları, işletmeler ve kendi kendine mesleki yeterlik kazanmak isteyen bireyler modüllere internet üzerinden ulaşılabilirler.
- Basılmış modüller, eğitim kurumlarında öğrencilere ücretsiz olarak dağıtılır.
- Modüller hiçbir şekilde ticari amaçla kullanılamaz ve ücret karşılığında satılamaz.

İÇİNDEKİLER

AÇIKLAMALAR	ii
GİRİŞ	1
ÖĞRENME FAALİYETİ–1	
1. DEPOLAMA ÜNİTESİ	
1.1. Depolama Ünitesi Kontrol Cihazı	4
1.2. Depolama Ünitesini Sürme Yöntemi	5
1.3. Depolama Ünitesinin PLC ile Bağlantısı	6
1.4. Depolama Ünitesinin PLC Programı	7
UYGULAMA FAALİYETİ	9
ÖLÇME VE DEĞERLENDİRME	
ÖĞRENME FAALİYETİ–2	11
2. ROBOT PROGRAMI	11
UYGULAMA FAALİYETİ	
ÖLÇME VE DEĞERLENDİRME	
MODÜL DEĞERLENDİRME	
CEVAP ANAHTARLARI	
KAYNAKÇA	
-	

AÇIKLAMALAR

KOD	523EO0337			
ALAN	Endüstriyel Otomasyon Teknolojileri			
DAL/MESLEK	Mekatronik Teknisyenliği			
MODÜLÜN ADI	Fabrika Otomasyon 6			
MODÜLÜN TANIMI	Fabrika içindeki otomasyon sisteminde var olan depolama ünitesini kullanma becerisinin verildiği öğrenim materyalidir.			
SÜRE	40/32			
ÖN KOŞUL	Fabrika Otomasyon 5 modülünü tamamlamış olmak			
YETERLİK	Depo modülünün programını yazmak			
MODÜLÜN AMACI	 Genel Amaç Fabrika içindeki otomasyon sisteminde var olan depo modülünü hatasız olarak kontrol edebileceksiniz. Amaçlar 1. Depo modülünün PLC programını doğru olarak yazabileceksiniz. 2. Depo modülünün robot programını doğru olarak yazabileceksiniz. 			
EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI	Ortam: FA laboratuarı Donanım: PLC katalogları, inverter kataloğu, servo motor ve sürücü kataloğu, otomasyon malzeme katalogları, Servo motor ve inverter deney seti, el takımları, robot kollar			
ÖLÇME VE DEĞERLENDİRME	Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendireceksiniz. Öğretmen modül sonunda ölçme aracı (çoktan seçmeli test, doğru-yanlış vb.) kullanarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirecektir.			

GİRİŞ

Sevgili Öğrenci,

Bir fabrika için en önemli sistemlerden birisi depolama sistemidir. Depolama denince akla sadece üretilen ürünlerin değil, fabrikanın işlemesi için geçerli olan tüm malzemelerin depolanması gelmelidir.

Günümüzde depo sistemini iyi kuran firmalar işleyişlerini daha verimli kılmaktadır. Bu şekilde rekabet ettikleri diğer firmalarla daha güçlü bir şekilde yarışabilmektedir. İyi bir depolama sayesinde hem ürünlere hemen ulaşabilmektedir hem de ürünlerin giriş çıkış kontrolü daha iyi yapılabilmektedir.

Bu modülde sizlere küçük bir depolama ünitesinin nasıl olması gerektiği ve depolama işleminde kullanılan PLC ve robotların programlanması anlatılacaktır. Böylece bir fabrikaya gittiğinizde otomatik olarak programlanan bir depoyu kontrol etmeyi ve düzenlenmesini öğrenmiş olacaksınız.

ÖĞRENME FAALİYETİ–1

Depo modülünün PLC programını doğru olarak yazabileceksiniz.

ARAŞTIRMA

Bu öğrenme faaliyetinden önce bir fabrika içerisindeki depolama ünitesinin nasıl olduğunu ve nasıl kontrol edildiğini araştırınız.

1. DEPOLAMA ÜNİTESİ

Otomatik depolama modülünde 16 raf bulunmaktadır. Sistemin kontrolü PLC ile veya kendi kendine yapılabilir.

Şekil 1.1: Depolama bölümü

Şekil 1.2: Raf ünitesi

Dağıtım Tablosu

3	7	11	15
2	6	10	14
1	5	9	13
0	4	8	12

Dağıtım tablosunda yer alan sayılar, raf ünitesindeki numaraları temsil eder. Böylece ürünlerin raflara yerleştirilmesinde kolaylık sağlanmış olur.

1.1. Depolama Ünitesi Kontrol Cihazı

Şekil 1.3: Kontrol cihazının önden görünüşü

Güç kaynağının açılması durumunda mod ayarları için kullanılır. "Manual mode" konumundayken raf numarası için kullanılır.

1.2. Depolama Ünitesini Sürme Yöntemi

Güç (Power ON) kaynağı açılmadan önce mod seçimi yapılmalıdır. Kontrol cihazının dijital anahtarları kullanılarak numaralar belirlenebilir.

Mode	Açıklamalar		
10	Paralel giriş/çıkış kontrol modu (Çift yerleştirme için engelleme)		
19	Paralel giriş/çıkış kontrol modu (Çift yerleştirme için engellememe)		
20	Seri iletişim kontrol modu (Çift yerleştirme için engelleme)		
29	Seri iletişim kontrol modu (Çift yerleştirme için engellememe)		
30	Sürekli test sürüş modu		
40	Manuel modu (Çift yerleştirme için engelleme)		
49	Manuel modu (Çift yerleştirme için engellememe)		
50	Ardışık yerleştirme sürme modu (Çift yerleştirme için engelleme)		

- Otomatik depolama sisteminin kontrolü, dışarıdan bağlanan donanımlar (PLC) ile yapılacaksa paralel giriş/çıkış modu seçilmelidir.
- Otomatik depolama sisteminin kontrolü, personel bilgisayarına atanan kablo ile yapılacaksa seri iletişim kontrol modu (20,29) kullanılır. Dahili PLC bu moda ayarlanır. Genellikle bu mod kullanılmaz.
- "Manuel Mod" seçilirse, belirlenmiş raf numaralarını dijital anahtarlardan girerek kontrolü elle yapmak mümkün olur.
- Çift yükleme durumu söz konusu ise bu işlem mod seçimi yapılmadan önce düşünülmelidir.

Sisteme güç verildiğinde aşağıdaki işlemler yapılır:

Shipping ve Storage lambası yanıp söner.

Shipping ve Storage lambası söner.

1.3. Depolama Ünitesinin PLC ile Bağlantısı

Fabrika otomasyon sistemlerinde, otomatik depolama ünitesi ile PLC ünitesi arasındaki bağlantı şekli aşağıdaki gibidir.

Depolama Girişi		PLC çıkışı
Depolama numarası 2^0	•	Y3F
Depolama numarası 2^1	•	- Y40
Depolama numarası 2^2	•	Y41
Depolama numarası 2^3	•	Y42
Depodan alma	•	Y43
Depoya yükleme	•	Y44

Depolama Çıkışı	PL	C Girişi
Hazır (Bekleme durumu)		X12
Meşgul (İşlem gerçekleşiyor)	►	X13
Paletin depodan dışarı alınması	▶	X14

1.4. Depolama Ünitesinin PLC Programı

PLC programı iki aşamada yazılır.

(a) Robot kontrol (SRVON, START)

PLC Akış Diyagramı

Robot Akış Diyagramı

Yukarıdaki programda başlangıç sinyali için (M500) yardımcı kontağı kullanılmıştır.

(M500) bilgisi PLC yazılım programının "Device monitör" kısmından yararlanarak uygulanır.

(b) Otomatik Depolama Kontrolü

UYGULAMA FAALİYETİ

Aşağıdaki işlem basamaklarına göre uygulama faaliyetini yapınız.

	İşlem Basamakları		Öneril	er	
	PLC ile depolama ünitesi arasındaki	Öğrenme	faaliy	eti	içerisindeki
	bağlantıyı kurunuz.	çalışmaları	adım	adım	dikkatlice
\blacktriangleright	Öğrenme faaliyetinde görmüş olduğunuz	okuyunuz.			
	programı PLC programı ile yazınız.				
\triangleright	Yazmış olduğunuz programı PLC'ye				
	aktarınız.				
\triangleright	PLC'ye programın doğru olarak				
	aktarıldığını kontrol ediniz.				
\succ	Depolama ünitesini çalıştırınız.				
\triangleright	Depolama ünitesinin sizin yüklediğiniz				
	programa göre çalışıp çalışmadığını				
	kontrol ediniz.				
\triangleright	Yüklenen programa göre çalışmıyorsa,				
	yazdığınız PLC programını kontrol				
	ediniz.				
	PLC programındaki hataları giderdikten				
	sonra aynı işlemleri tekrar uygulayınız.				
\triangleright	Sorun hala devam ediyorsa				
	öğretmeninize danışınız.				
	Tüm bu işlemleri, yaptığınız anda not				
	alınız ve ders bitiminde kontrol ediniz.				

ÖLÇME VE DEĞERLENDİRME

Aşağıdaki cümlelerde verilen bilgiler doğru ise "D", yanlış ise "Y" yazınız.

- 1. () Otomatik depolama modülünde 12 raf bulunmaktadır.
- 2. () Sistemin kontrolü PLC ile veya kendi kendine yapılabilir.
- 3. () Güç kaynağı "Manual mode" konumundayken, raf numarası için kullanılır.
- **4.** () PLC programında başlangıç bilgisi, PLC yazılım programının "Device monitör" kısmından yararlanarak uygulanır.
- Otomatik depolama sisteminin kontrolü, PLC ile yapılacaksa paralel giriş/çıkış modu seçilmelidir.

DEĞERLENDİRME

Cevaplarınızı cevap anahtarıyla karşılaştırınız. Yanlış cevap verdiğiniz ya da cevap verirken tereddüt ettiğiniz sorularla ilgili konuları faaliyete geri dönerek tekrarlayınız. Cevaplarınızın tümü doğru ise bir sonraki öğrenme faaliyetine geçiniz.

ÖĞRENME FAALİYETİ–2

Depo modülünün robot programını doğru olarak yazabileceksiniz.

ARAŞTIRMA

Bu öğrenme faaliyetinden önce bir fabrika içerisindeki depolama ünitesinde hangi tür robotların kullanıldığını araştırınız.

2. ROBOT PROGRAMI

Depolama ünitesinde kullanılan robotların programlanması, depolamanın zamanında ve düzenli yapılması açısından çok önemlidir. Aşağıda örnek bir robot programı yer almaktadır.

- > İşleme başlama komutunun zaman ayarına göre tetikleme sinyali tanımlanır.
- > Tetikleme sinyali algılandıktan sonra bir sonraki işlem gerçekleştirilir. IN 12.
- Robot çalıştığı sürece OUT6 çıkışı, robotun çalıştığını göstermek için ON durumundadır.

(Robot programı)

10 ID 20 TB -11,10 30 TB +12,50 40 GT 10 50 OB +6 60 MO 100,O 70 MO 103,0 80 MT 107,-50,O 90 MS 107,O 100 TI 5 110 GC 120 TI 5 130 MT 107,-50,C 140 MO 103,C 150 MO 102,C 160 MT 106,-50,C 170 MS 106,C 180 TI 5 190 GO 200 TI 5

Pozisyon	Açıklama		
Numarası			
P100	Ön tarafta bekleme pozisyonu		
P101	Robotun taşıyıcı bant tarafına doğru bekleme		
	durumu		
P102	ID sensör bankı tarafında olma durumu		
P103	Rafa mal koyma ya da raftan mal alma sırasındaki		
	bekleme yeri		
P104	Palet1 üzerine parça koyma, üzerinden parça alma		
	pozisyonu		
P105	Palet2 üzerine parça koyma, üzerinden parça alma		
	pozisyonu		
P106	ID sensör bankı üzerine iş parçası konumlandırma		
	pozisyonu		
P107	İş parçasının raftan alındığı ya da rafa		
	konumlandırıldığı pozisyon		

Referans: Robot komutu MS (Move straight) (Doğrusal Hareket)

Fonksiyon: Başlangıç kısmından özel belirlenmiş pozisyona doğrusal hareket.

Açıklama: Eğer hedef nokta veya hareket yolu robotun yolunun ötesine geçerse hareket sırasında ya da önceden hata sinyali oluşur.

Örnek Depolama Ünitesi Programı

İlk olarak ID bilgi taşıyıcı hafızası silinir. Daha sonra iş parçası ID taşıyıcı banktan alınıp taşıyıcı bandın üzerine bırakılır. Bu iş robot tarafından yapılır. Çalışma parçası her iki taraftaki taşıyıcı bantları (hücre tarafındaki, OTA tarafındaki) sayesinde OTA'cına gönderilir. OTA çalışma parçasını bir sonraki hücreye gönderir. Aşağıdaki işlemler sırasıyla gerçekleştirilir:

- Robot programi
- PLC programi
 - ID bilgi taşıyıcı.
 - ID sensör bankından OTA cına doğru akış diyagramı.
 - OTA'nın bir sonraki hücreye doğru hareketi için OTA Programı.

(1) Robot programı

(Robot programı)

10 ID
20 TB -11,10
30 TB +12,70
40 TB +13,290
50 GT 10
60 '
70 ' Practice1
80 OB +6
90 MO 100,O
100 MO 103.O
110 MT 107,-50,O
120 MS 107,0
130 TI 5
140 GC
150 TI 5
160 MT 107,-50,C
170 MO 103,C
180 MO 102,C
190 MT 106,-50,C
200 MS 106,C
210 TI 5
220 GO
230 TI 5
240 MT 106,-50,O
250 MO 102,O
260 OB -6
270 GT 10

280 ' 290 ' Practice2 300 OB +6 310 MT 106,-50,O 320 MS 106,O 330 TI 5 340 GC 350 T1 5 360 MT 106,-50,C 370 MO 102,C 380 MO 100,C 390 MO 101,C 400 MT 104,-50,C 410 MS 104,C 420 TI 5 430 GO 440 TI 5 450 MT 104,-50,O 460 MO 101,0 470 MO 100,0 480 OB --6 490 GT 10 500 ED

(2) PLC programi

(a) ID Bilgi Taşıyıcı

ID bilgi taşıyıcı aşağıdaki bilgileri içerir.

Bilgi İsmi	ID Hafıza Adresi	ID den PLC'ye okunması	ID den PLC'ye yazılması	Açıklama
Depolama	K100	D200	D100	Deponun Raf Numarası
İş Tipi	K101	D201	D101	Test Hücresinin Sonuçları 0: Testten önce 1: Sedan 2: Wagon 3: Bus
Montaj	K102	D202	D102	Montajlama işlemi sonuçları 0: Hazır değil 1: Hazır
İşleme (Yazı Yazma)	K103	D203	D103	İşleme hücresi sonuçları 0: Hazır değil 1: Hazır

(b) ID sensör bankından OTA'cına doğru akış diyagramı

(c) OTA'nın bir sonraki hücreye doğru hareketi için OTA programı

OTA hareket ettikten 1s sonra, zamanlayıcı kontakları ile tüm anahtarlar başlangıç pozisyonuna alınır.

Hücre içindeki optik iletişim

+24V	24G
1241	240

Giris/Cıkıs Ünitelerinin

Optik output 0	X20	OTA aracına geliş
Optik output 1	V21	AGV Conveyor pallet detection sensori
Optik output 2	A21	AGV Conveyor panet detection sensoru
Optik output 3	X22 X23	
Optik output 4		
Optik output 5	X24	
Optik output 6	X25	
Optik output 7	X26	
Ontik innut 0	X27	
Optik input o	Y28	Taşıyıcı Bantla transfer Hücre→OTA
Optik input 1	V20	Teautra Baptia Trapafar OTA Hüara
Optik input 2	¥ 29	
Optik input 3	Y2A	Yol Belirleme
•	Y2B	Yol Belirleme
Optik input 4		Val Balirlama
Optik input 5	Y2C	for beimenne
Optik input 6	Y2D	Yol Belirleme
Optik input 7	Y2E Y2F	Yol Belirleme İşlemi Tamamlandı
		OTA çalıştı.

Referans

OTA'nın rotası aşağıdaki şekilde belirlenir.

Rota	Hedef Nokta	Onlu	İkili (Binary)			
		(Desimal)	Y2D	Y2C	Y2B	Y2A
Rota 0	Bir sonraki nokta	1	0	0	0	1
Rota 1	2 sonraki nokta	2	0	0	1	0
Rota 2	3 sonraki nokta	3	0	0	1	1
Rota 3	4 sonraki nokta	4	0	1	0	0
Rota 4	5 sonraki nokta	5	0	1	0	1

UYGULAMA FAALİYETİ

Aşağıdaki işlem basamaklarına göre uygulama faaliyetini yapınız.

	İşlem Basamakları		Öneril	er	
	PLC, robot kolu ve depolama ünitesi	Öğrenme	faaliy	eti	içerisindeki
	arasındaki bağlantıyı kurunuz.	çalışmaları	adım	adım	dikkatlice
\triangleright	Öğrenme faaliyetinde görmüş olduğunuz	okuyunuz.			
	programı robot ve PLC programlarını				
	yazınız.				
\triangleright	Yazmış olduğunuz programı PLC'ye ve				
	robot kola aktarınız.				
\triangleright	PLC'ye ve robot kola programın doğru				
	olarak aktarıldığını kontrol ediniz.				
\triangleright	Depolama ünitesini çalıştırınız.				
\triangleright	Depolama ünitesinin sizin yüklediğiniz				
	programa göre çalışıp çalışmadığını				
	kontrol ediniz.				
\triangleright	Yüklenen programa göre çalışmıyorsa,				
	yazdığınız programları kontrol ediniz.				
\blacktriangleright	Programlardaki hataları giderdikten				
	sonra aynı işlemleri tekrar uygulayınız.				
\blacktriangleright	Sorun hala devam ediyorsa				
	öğretmeninize danışınız.				
\triangleright	Tüm bu işlemleri, yaptığınız anda not				
	alınız ve ders bitiminde kontrol ediniz.				

ÖLÇME VE DEĞERLENDİRME

Aşağıdaki cümlelerde verilen bilgiler doğru ise "D", yanlış ise "Y" yazınız.

- 1. () Otomatik depolama modülünde ilk olarak ID bilgi taşıyıcı hafızası silinir.
- **2.** () Fonksiyon tanımı, sonuç kısmından özel belirlenmiş pozisyona doğrusal harekettir.
- **3.** () Hareket yolu robotun yolunun ötesine geçerse hareketten sonra hata sinyali oluşur.
- 4. () Palet sensörü, taşıyıcı band üzerinde ve hücre tarafında bulunur.
- 5. () Robot programında, tetikleme sinyali algılandıktan sonra bir sonraki işlem gerçekleştirilir.

DEĞERLENDİRME

Cevaplarınızı cevap anahtarıyla karşılaştırınız. Yanlış cevap verdiğiniz ya da cevap verirken tereddüt ettiğiniz sorularla ilgili konuları faaliyete geri dönerek tekrarlayınız. Cevaplarınızın tümü doğru ise diğer "Modül Değerlendirme"ye geçiniz.

MODÜL DEĞERLENDİRME

AÇIKLAMA: Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri "**Evet**" ve "**Hayır**" kutucuklarına (X) işareti koyarak kontrol ediniz

	Evet	Hayır	
1.	Depolama ünitesinin bölümlerini sayabiliyor musunuz?		
2.	Depolama ünitesi için PLC bağlantısını doğru olarak yapabiliyor musunuz?		
3.	Depolama ünitesi için PLC programını doğru olarak yazabiliyor musunuz?		
4.	Depolama ünitesinde kullanılan robot kolunu üniteye doğru olarak bağlayabiliyor musunuz?		
5.	5.Depolama ünitesinde kullanılan robot kolunun programını doğru olarak yazabiliyor musunuz?		
6.	Depolama ünitesini komple olarak çalıştırabiliyor musunuz?		

DEĞERLENDİRME

Cevaplarınızı cevap anahtarıyla karşılaştırınız. Yanlış cevap verdiğiniz ya da cevap verirken tereddüt ettiğiniz sorularla ilgili konuları faaliyete geri dönerek tekrarlayınız. Cevaplarınızın tümü doğru ise diğer modüle geçmek için öğretmeninize başvurunuz.

CEVAP ANAHTARLARI

ÖĞRENME FAALİYETİ 1'İN CEVAP ANAHTARI

1.	Y
2.	D
3.	D
4.	D
5.	D

ÖĞRENME FAALİYETİ 2'NİN CEVAP ANAHTARI

1.	D
2.	D
3.	Y
4.	D
5.	D

KAYNAKÇA

- OKUBO Tetsuya- GÜLER Telat, Fabrika Otomasyon Sistem Denetimi, M.E.B-JICA, 2005.
- OKUBO Tetsuya- GÜLER Telat, Fabrika Otomasyonu Hücre Denetimi, M.E.B-JICA, Temmuz 2005.