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Abstract

This work will show new algorithms developed
during the month following our project release
(http://code.google.com/p/9dof-orientation-
estimation/ ). Indeed, when report [1] was
released, there were still a lot of work to
do, especially for Complementary Filter and
observation estimation algorithms. In this
direction, an alternative method to the Gra-
dient Descent algorithm to get quaternions
from accelerometer and magnetometer mea-
surements will be presented in this report.
Moreover, an implementation of a quaternion
based Complementary Filter will be shown.
The whole work is integrated with results.

Part I

Observation Estimation

Based on

Gauss-Newton Method

In this application context quaternions have an im-
portant role; rotations can be expressed simply by
mean of a vector and without trigonometric func-
tions. However, it is not trivial to get the right
quaternion con�guration from the sensor measure-
ments. Using gyroscope datas, the quaternion varia-

tion can be computed as follows [2]:

˙⃗qt =
1

2
· q⃗t−1 ⊗ ω⃗t (1)

where q⃗t−1 is the latest computed quaternion and

ω⃗t =
[
0 ωx(t) ωy(t) ωz(t)

]T
is the angular

rates vector at the current time.
Computing quaternions from accelerometer and

magnetometer measurements need a di�erent ap-
proach, because datas are not directly related to an-
gles. In [2, 1], it is shown how to compute angles
minimizing a function by mean of Gradient Descent
method. In this section, a minimization algorithm
brie�y discussed in [3] and based on Gauss-Newton
method, will be presented.

Let z⃗ =
[
Ax Ay Az Mx My Mz

]T
be

the accelerometer and magnetometer measurements
vector. It can be expressed in the Earth frame,

z⃗0 =
[
0 0 1 M̃x M̃y M̃z

]T
(it is assumed

that the con�guration of �zero� position has ac-
celerometer z axis parallel with gravity vector and
upward), where M̃i is the magnetic component after
the magnetic compensation process in �zero� posi-
tion, and with respect of the body (IMU) frame, z⃗t =[
Ax(t) Ay(t) Az(t) Mx(t) My(t) Mz(t)

]T
.

Now, if we could have the real and correct angles
values of the IMU, then:

ϵ = z⃗0 −Rt × z⃗t = 0 (2)

where Rt is the Direction Cosine Matrix (DCM) at
the current time. Actually, since quaternions we trat
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with are just an estimation, the best we can do is to
minimize ϵ using the latest available angles or quater-
nion. In quaternion case (as our case), Rt matrix is
expressed as follows:

Rt =

 q24 + q21 − q22 − q23 2 · (q1 · q2 − q3 · q4)
2 · (q1 · q2 + q3 · q4) q24 + q22 − q21 − q23
2 · (q1 · q3 − q2 · q4) 2 · (q3 · q2 + q1 · q4)

2 · (q1 · q3 + q2 · q4)
2 · (q2 · q3 − q4 · q1)
q24 + q23 − q21 − q22

 (3)

Note that quaternion convention is the same of [3],
q⃗ =

[
q1 q2 q3 q4

]
with q4 the real component,

and it is di�erent from the convention used in [1, 2].
Since we are considering two contributions to ori-

entation estimation, privided by accelerometer and
magnetometer, ϵ computation must be rewritten as:

ϵ = z⃗0 −Mt × z⃗t (4)

where Mt is the current time DCM which rotates
both the measurements vectors:

Mt =

[
Rt 0
0 Rt

]
(5)

As shown in [4], given a vector of n functions in m
variables, f(x1, . . . , xm), Gauss-Newton method con-
sists in the following optimization step:

xk+1 = xk −
[
JT
k · Jk

]−1 · JT
k · f (6)

where Jk is the Jacobian of f calculated in xk.
In our case the function f is ϵ = f (q⃗(t− 1), z⃗0, z⃗t) in
case of �rst iteration, where q⃗(t−1) is the latest iter-
ation quaternion provided in the previous time (t−1)
by the same algorithm, and ϵ = f (q⃗k−1(t), z⃗0, z⃗t) in
case of iterations following the �rst (k is iteration in-
dex). Then the Jacobian of the k− th iteration is the
following:

Jt(q⃗k(t)) =
δ(ϵ)

δq⃗k(t)
= −

[ (
δM

δq1
· z⃗t

) (
δM

δq2
· z⃗t

)
(
δM

δq3
· z⃗t

)(
δM

δq4
· z⃗t

)]
(7)

which, after performing the derivatives and matrix
products, can be rewritten as follows:

Jt(q⃗k(t)) =

−


(2q1Ax + 2q2Ay + 2q3Az) (−2q2Ax + 2q1Ay + 2q4Az)
(2q2Ax − 2q1Ay − 2q4Az) (2q1Ax + 2q2Ay + 2q3Az)
(2q3Ax + 2q4Ay − 2q1Az) (−2q4Ax + 2q3Ay − 2q2Az)
(2q1Mx + 2q2My + 2q3Mz) (−2q2Mx + 2q1My + 2q4Mz)
(2q2Mx − 2q1My − 2q4Mz) (2q1Mx + 2q2My + 2q3Mz)
(2q3Mx + 2q4My − 2q1Mz) (−2q4Mx + 2q3My − 2q2Mz)

(−2q3Ax − 2q4Ay + 2q1Az) (2q4Ax − 2q3Ay + 2q2Az)
(2q4Ax − 2q3Ay + 2q2Az) (2q3Ax + 2q4Ay − 2q1Az)
(2q1Ax + 2q2Ay + 2q3Az) (−2q2Ax + 2q1Ay + 2q4Az)

(−2q3Mx − 2q4My + 2q1Mz) (2q4Mx − 2q3My + 2q2Mz)
(2q4Mx − 2q3My + 2q2Mz) (2q3Mx + 2q4My − 2q1Mz)
(2q1Mx + 2q2My + 2q3Mz) (−2q2Mx + 2q1My + 2q4Mz)


Note that the quaternion vector q⃗k(t) refers to the

k − th iteration at the current time t (during each
time an acquisition from the IMU is performed, and
more than one iteration per time could be computed,
in order to faster reach the minimum point).
Finally, the next iteration quaternion is computed as
follows:

q⃗k+1(t) = q⃗k(t)−
[
Jt(q⃗k(t))

T · Jt(q⃗k(t))
]−1 ·

·Jt(q⃗k(t))T · (z⃗0 −Mt(q⃗k) · z⃗t) (8)

With regards to experimental results and com-
parison with Gradient Descent algorithm, as theory
claims, �gure 1 and �gure 2shows that Gauss-Newton
is faster, it doesn't require many iterations to reach
the optimum point and it doesn't introduce the �zig-
zag� e�ect.
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Figure 1: Guass-Newton and Gradient Descent meth-
ods comparison. In this example, 3 iterations per
acqusition are computed for Gauss-Newton method,
while 10 iterations per acquisition are executed for
Gradient Descent method.

Figure 2: Angles related to the quaternions shown in
�gure 1

Part II

Quaternion

Complementary Filter

Complementary Filter is an easy way to estimate
orientation of an IMU using its sensors datas. As
shown in [1], the usage of Euler angles can leads to
some problems, so it would be nice to perform the

�lter using quaternions 1. In this section, the con-
vention used to represent quaternion is the following:
q⃗ =

[
q0 q1 q2 q3

]
, where q0 is the real compo-

nent.
Complementary Filter fuses the gyroscope based

estimation with the accelerometer and magnetometer
one using two gain factors which sum to 1, chosen in
such a way that lacks of each fusion component are
avoided. With regards to the gyroscope, current time
quaternion is computed by the following equation:

q⃗Gyro(t) = q⃗Gyro(t− 1) + ˙⃗qGyro(t) · δt (9)

where ˙⃗qGyro(t) is obtained from equation 1.
Measurements from accelerometer and magne-

tometer are used to get the quaternion q⃗(t), by mean
of the Gradient Descent or the Gauss-Newton meth-
ods. In order to prevent the estimation from wrong
values, magnetic compensation can be performed; us-
ing the latest quaternion computed, q⃗(t−1), the mag-
netic refence in the earth frame is obtained as follows:

E h⃗t = q⃗(t− 1)⊗S m⃗t ⊗ q⃗(t)∗

where q⃗(t)∗ indicates the conjugate of q⃗(t) and m⃗t is
the magnetometer measurements at time t. Since the
magnetic reference doesn't have a component aligned
with y axis, it is derived as follows:

E b⃗t =
[
0

√
h2
x + h2

y 0 hz

]
This will be the magnetic reference passed to
the algorithm (Gradient Descent or Gauss-Newton)
which compute the quaternion from accelerometer
and magnetometer measurements (the accelerometer
reference is just the

[
0 0 1

]
vector).

When quaternions of both the Complementary
Filter fusion components are available, the �ltered
quaternion is obtained by the following equation:

ˆ⃗qt = K · q⃗Gyro(t) + (1−K) · q⃗(t) (10)

where K is the �lter gain, 0 ≤ K ≤ 1.

1I suggest you to have a look to report [1] to understand
Complementary Filter at all. Although that report is written
in italian language, block diagrams and equations could be
useful.
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In order to have a feedback of the �ltered quater-
nion, equation 9 and 10 must be substituted with the
following ones:

q⃗GyroFilt(t) = q⃗Filt(t− 1) + ˙⃗qGyro(t) · δt (11)

ˆ⃗qt = K · q⃗GyroFilt(t) + (1−K) · q⃗(t) (12)

In this way, divergences due to gyroscope bias are
avoided, while dynamic errors related to magnetome-
ter and accelerometer during IMU movements are
prevented with a large enough value of K. As shown
in [5], the time constant of the system is obtained by
the following relation:

τ =
K · δt
1−K

where δt is the sampling period. With respect to
accelerometer and magnetometer datas, τ represents
the time constant of a LP �lter, while it acts quite
like an HP �lter for gyroscope measurements.
During the experimental analisys both the Gradi-

ent Descent and Gauss-Newton algorithm has been
considered to estimate quaternions from accelerom-
eter and magnetometers measurements. In �gure 3,
4, 5 and 6 are shown quaternions and angles trends.
The chosen value for K has been 0.98, as in [1].

Figure 3: Quaternion Complementary Filter with
observation estimation based on Gradient Descent:
trend of quaternions. As can be seen, the �ltered
values take a little time to reach the convergence to
initial value. This is due to the time constant τ .

Figure 4: Quaternion Complementary Filter with ob-
servation estimation based on Gradient Descent: an-
gles estimated.

Figure 5: Quaternion Complementary Filter with
observation estimation based on Gauss-Newton
method: trend of quaternions. As can be seen, since
Gauss-Newton reach the optimum point faster than
Gradient Descent, during some (2 ÷ 5) initial acqui-
sition the values of q⃗(t) could also be assigned to

q⃗GyroFilt(t) and ˆ⃗qt, in order to have a good conver-
gence to initial values.
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Figure 6: Quaternion Complementary Filter with
observation estimation based on Gauss-Newton
method: angles estimated.

It has to be noticed that quaternions estimation
by mean of minimization algorithms su�ers of some
problems when the IMU undergoes high acceleration
(i.e. strong vibrations). Indeed, since a quaternion
has a dual representation, it may happens that, after
a strong movement (i.e. acceleration stronger than
2 g amplitude) during which observation estimation is
not reliable (an high value of K prevent for bad esti-
mations during this stage), new quaternions provided
by the observation estimation algorithm are dual re-
spect the previous ones, as shown in �gures 7 and 8.
This lack introduce a time, proportional to K, dur-
ing which the estimation is not correct. The higher
is K, the longer will take the algorithm to reach the
convergence.

Figure 7: Trend of quaternions during an experiment
with high acceleration perturbations. As can be seen,
quaternions, after the perturbation, change con�gu-
ration to the dual one.

Figure 8: Trend of angles during the same experiment
of �gure 7.

A solution to the problem above can be sim-
ply achieved by using the latest �ltered quaternion,
ˆ⃗q(t − 1), in the observation estimation algorithm
(Gradient Descent or Gauss-Newton) instead of the
latest quaternion provided by the same algorithm,
q⃗(t − 1). Then, during �rst step of the observa-
tion estimation algorithm, minimization function be-

comes f
(
ˆ⃗q(t− 1), z⃗0, z⃗t

)
, which could be a common

sense assumption. Figure 9 and �gure 10 shows sys-
tem response against high perturbations; as can be
seen, quaternions don't change con�guration, avoid-
ing temporary divergences.
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Figure 9: Trend of quaternions during an experiment
with high acceleration perturbations. As can be seen,
quaternions doesn't change con�guration since the �l-
tered signal is used as reference in observation esti-
mation algorithm.

Figure 10: Trend of angles related to quaternions
shown in �gure 9. Angles estimated aren't the best,
but of course are better than the ones shown in �gure
8.

Part III

Complementary Filter

and Kalman Filter

Comparison

In [1] it is shown a solution to the orientation estima-
tion problem using Kalman �lter as estimation algo-
rithm. This kind of solution is not a trivial one and
requires more tuning operations than Complemen-
tary �lter in order to �t the algorithm to the IMU.
In this section a brief comparison between Kalman
�lter and Complementary �lter will be presented.
Two main experiments has been played:

• The �rst experiment takes in account system
response against common rotations and move-
ments;

• The second experiment treats system response
against high external perturbations.

With regards to �rst experiment, �gures 11 and 12
show the results.

Figure 11: Trend of Complementary �lter (blue) and
Kalman �lter (red) quaternions against normal move-
ments of the IMU.
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Figure 12: Trend of the angles related to quaternions
shown in �gure 11.

As can be seen, Kalman �lter response against fast
movements is faster than Complementary �lter one
(during last 4 seconds of the experiments fast ro-
tation has been played). This is due to the static
gain of Complementar �lter, that allows a great re-
sponse when the IMU moves while introduces a time
to reach the steady state (gyroscope doesn't provide
measures anymore, so the dynamic component is re-
lated to (1−K) gain). The lower is K the faster
will be the steady state convergence, but the swings
around the steady state will increase too (less expec-
tation is based on gyroscope measurements); this is
the reason why a value of K = 0.98 has been cho-
sen. Kalman �lter, through a dynamic gain inversely
proportional to variances and covariances matrix of
the observations, R, and in some way related to the
variance of prediction error, allows the �lter to adjust
to IMU movements. This behavior leads to a faster
response to high perturbations, as shown in �gures
13 and 14. Indeed, while Complementary �lter takes
a while to diverge, Kalman �lter change almost im-
mediately state.

Figure 13: Trend of Complementary �lter (blue) and
Kalman �lter (red) quaternions against high pertur-
bations on the IMU.

Figure 14: Trend of the angles related to quaternions
shown in �gure 13.

Conclusions

Continuing our work on the project published
on google code (http://code.google.com/p/9dof-
orientation-estimation/ ), some improvement has
been achieved during the month following the project
release. There is still much work to do, so during
the next months we'll try to get new results.
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