
1

Stop my Constraints from Blowing Up!

Oliver Strunk

(Havok)

2

Overview
Just understanding a rigid-body solver algorithm is not enough.

(google for ‘ragdoll glitch’ and enjoy)

Solver
Algorithm

3

Chapter I: How does a solver work?

2 meter

198 kg198 kg

2 kg

4

‘Position’ only Solver

Each Bavarian moves the mug to his boat every other second.

The center of mass of ‘Bavarian + Beer’ must stay constant:

the mass ratio mug : Bavarian = 1:99

-> the mug will move 198cm and the Bavarian 2cm.
In the end the mug and the Bavarian moved and all velocities are 0.

In the next second the other Bavarian will do the same.

Repeat

5

Lets iterate
Step Distance

1 2.00

2 1.98

3 1.96

4 1.94

5 1.92

10 1.83

100 .74 ~2/e
0.00

0.50

1.00

1.50

2.00

2.50

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

6

Now use velocities

2 meter

198 kg198 kg

2 kg

7

‘Position and Velocity’ Solver

Each Bavarian now pulls the rope every other second such that the
mug arrives at his boat after one second.

Mass * velocity (moment) must stay constant:

-> If the beer is accelerated to 1.98 meters/second, the Bavarian
will be accelerated to 2.0cm/second.
After one second: the mug reaches the boat and both mug and
Bavarian have some velocity.

In the next second the other Bavarian will pull the rope and reverse
the velocity of the mug.

8

Let’s iterate

Step Distance
Relative
Velocity

Distance
Prev. Solver

1 2 0.020 2.00

2 1.98 0.060 1.98

3 1.92 0.098 1.96

4 1.82 0.134 1.94

5 1.69 0.168 1.92

6 1.52 0.199 1.90

7 1.32 0.225 1.88

8 1.10 0.247 1.86

9 0.85 0.264 1.85

10 0.59 0.276 1.83

11 0.31 0.282 1.81

12 0.03 0.282 1.79

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4 5 6 7 8 9 10 11 12

9

Lessons Learned

2 constraints fighting each other iteratively solves the

global problem (=bringing the boats together).

We saw 2 types of iterative solvers:

– Strength ~ num iterations (convergence)

– Strength ~ num iterations2, but

• this adds energy

10

2 meter

100 000 000 kg100 000 000 kg

2 kg

Can We Pull an Ocean-Liner Using a Mug?

7000 iterations of our beer-mug solver will move this ship by 1 meter.

12

Lets look into details.

Solver ‘strength’ depends on:

– Solver type (e.g. linear/quadratic)

• We want fast convergence without the risk of instability.

– Number of solver iterations (per second)

• We want as few as possible to save CPU.

– Mass ratio of the objects involved

• Needs to be as small as possible to allow for small number of
iterations.

13

Solver Type
Statement:

• All quadratic/linear convergence solvers have similar ‘strength’.

• Solver variants found in the literature:

• Position/velocity based solver.

• Error correction by post-projection,

split impulse or Baumgarte-stabilization.

14

Number of Solver Iterations

Say n=iterations/sec, d=distance

– > we accelerate the body n-times per second

to d*n velocity -> acceleration = n2 *d

n [Hz] d [meter] acceleration acc/gravity

30 0.05 45 4.5

120 0.05 720 72

240 0.01 576 57.6

1000 0.10 100000 10000

15

Number of Solver Iterations

Observations:

Running one solver iteration per frame (30Hz) is not good enough.

Running a pure quadratic convergent solver higher than frame
frequency can lead to instability.

Most game physics engine solvers use quadratic convergence using
frame frequency (30Hz) and use linear convergence using sub-
iterations (4-10).

16

Mass Ratio:

High mass ratios require lots of solver iterations, so keep mass ratio low!

Avoid calculating the mass from density automatically:

Guessing density is tricky:

– What is the density of a car / a 747 ?

– Problem: solid vs. hollow objects

– -> So let your artist set the mass not the density.

A tank driving either over a 10cm metal or a wooden box makes no difference:

– Increase your masses on small debris objects

– Exceptions: bullets and rockets

Advice: Don’t tweak mass if you don’t have a problem yet.

17

Mass-Ratio in a 3d-World

In a 1d-universe, the mass ratio just depends on

the mass of the objects.

But games are not 1d �, so 2d/3d rigid bodies

can rotate. As a result the mass ratio depends

on mass and inertia (=‘angular mass’).

18

Typical ‘Bad’ Example

arm

Clavicle bone

torso

Lets assume:

– All joints are limited.

– All joints have reached their limit.

– Shoulder bone is 4x smaller than
arm.

– Mass is calculated from density.

19

Let’s simplify
Lets move the pivot to the mass center of the
combined arm. (in a fixed constraint we can do
this without changing behavior).

We see: We virtually apply a force at the
shoulder bone way outside its shape.

Is this bad?

Yes, it results in very poor solver strength
because the ‘effective’ mass ratio gets
extremely high (1 : 3000)

20

Effective Mass

impulse

Velocity =

impulse/mass

21

Effective Mass

Impulse

Angular vel.

Linear vel.

velocity at = linearVel + d*angularVel

= impulse/mass + d*impulse/angularMass(d)

angularMass(d) = inertia/d

velocity = impulse / effMass

effMass = 1 / (1/mass + d2/inertia)

Point vel.

Center of Mass

d

22

Effective Mass Example
Dimensions: 1meter * 20cm * 20cm

Mass: 100kg (= density: 2.5kg/litre)

Distance: = .5 meter.

Inertia: 100/12* (1*1 + .2*.2) = 8.6 kg m2

Effmass at = 1/(1/100 + .52/8.6) = 25kg

23

Lets make the cube 4x smaller
Dimensions: .25meter * 5cm * 5cm

Mass: 1.56kg (= density: 2.5kg/litre)

Distance: = .5 meter.

Inertia: 1/12*1.56*(.25*.25 + .05*.05) = 8.46e-5

Total effMass at = 33.13g

cube 4 times smaller -> eff.Mass drops by 750 !!!

24

Summary Chapter 1

Solver strength mainly depends on:

– Number of solver iterations

– Mass ratio

Rotations are bad!

– Angular movement reduces our effective

mass and therefore our solver strength.

25

Chapter 2: Angular Effects

Angular movement not only reduces
effective mass but also leads to instability!

Demo

26

Angular Effects

We have 2 distance constraints (distance d)

between a ball and 2 fixed walls.

d

d

27

Angular Effects

If we move the walls apart, we’ll have to move

the ball to satisfy the constraints:

d

d

d

d

28

Angular Effects

How will a perfect algorithm solve this?

d

d

29

Angular Effects

We are forced to linearize the equations of motion.

d

d

30

Angular Effects

Lets move the walls a little bit further:

d

d

31

Angular Effects

A solver will gain energy if it “overshoots” too much.

The likelihood of overshoots increases if the solver ‘miss-

predicts’ the angular movement:

– Because of linearization, the force direction (=Jacobian) is not
optimally chosen, especially when running ‘building the jacobian’-
algorithm at low frequency.

– Angular velocity is high compared to linear velocity.

– Effective angular mass is much less than the body mass and high
forces are applied:

inertia/d2 / mass << 1.0

32

Lessons Learned

Low inertias are the main problem for bad solver behavior!!!

– They increase the effective mass ratios between bodies

– They lead to high angular velocities, which lead to ‘explosions’/jitter

Solution:

– Increase inertias

33

Increasing Inertia

Demo

34

Increasing Inertia

Lessons learned:

We can increase inertia of selected single

objects easily by factor of 2 - 4 before users spot

serious artifacts.

35

Inertia Visualizations

We can visualize the inertia by drawing a box

which would have the same inertia.

Inertia

Object

Inertia

Object with increased

inertia

36

Combining Inertias

37

Combining Inertias

38

Demo Of Ragdoll With Increased Inertia

Demo

39

Lessons Learned

Increasing inertia matrix is very often quite acceptable in

a game environment and artifacts are hardly noticeable.

– Especially true for small bodies inside a chain of

constraint bodies (like shoulder bone).

40

How to Increase the Inertia Matrix

Multiply by a factor

(single bodies)

Add a constant to the diagonal
(bodies in a constraint chain)

41

Summary Chapter 2

To improve solver stability and ‘strength’:

Increase inertia

Increase simulation frequency

Decrease mass ratio

Advice: Don’t try to damp rigid bodies or the solver

42

Chapter 3: Reducing Rigidity
Our physics engine uses rigid bodies. Rigid means 100% rigid.

– Bodies never deform.

– Bodies never break.

– Impulses and friction forces have no limit:

-> Physics engine can feel ‘cute and bouncy’

43

Implementing Soft Contact

Reduce the maximum contact impulse to allow

for some penetration.

– E.g. clip the impulse.

Ensure that the penetration recovery happens

slowly to avoid springy behavior.

– E.g. reduce the Baumgarte stabilization for

this contact.

44

Soft Contact

Demo:

45

Destruction

Idea: destroy bodies if impulses get too high.

46

Destruction
Solution 1: Estimate the contact impulse and destruct the

object before running the solver:

– Impulse = relativeVelocity * effectiveMass

– This works pretty well, except if the breakable object is blocked by an
unbreakable object.

Fast

bullet

Destructible

wall
Unbreakable

Box

47

Destruction

Solution 2: After running the solver:
If the contact impulse exceeds a limit, break the object

– If implemented naively, breakable fixed objects will stop any
moving object.

Fast

bullet Destructible

wall

1st frame:

Stopped

bullet Destroyed

wall

2nd frame:

48

Destruction

Solution 2b: Extend solution 2 with the following modifications:

– The solver also clips the impulses to the breaking limit.

– If an object breaks, move the two objects involved to the
previous position.

1st frame: 2nd frame

Just after solve:

2nd frame after destruct

and position move:

49

Destruction

Demo

50

Summary Chapter 3

Impulse clipping in the solver allows to emulate

soft, deformable or breakable materials.

51

The End

Thanks for listening, questions welcome ☺

Solver
Algorithm

