Stop my Constraints from Blowing Up!

Oliver Strunk (Havok)

Overview

Just understanding a rigid-body solver algorithm is not enough. (google for 'ragdoll glitch' and enjoy)

Chapter I: How does a solver work?

'Position' only Solver

Each Bavarian moves the mug to his boat every other second.

- The center of mass of 'Bavarian + Beer' must stay constant: the mass ratio mug : Bavarian = 1:99
 -> the mug will move 198cm and the Bavarian 2cm. In the end the mug and the Bavarian moved and all velocities are 0.
- In the next second the other Bavarian will do the same.
- Repeat

Lets iterate

Now use velocities

'Position and Velocity' Solver

Each Bavarian now pulls the rope every other second such that the mug arrives at his boat after one second.

- Mass * velocity (moment) must stay constant:
 - -> If the beer is accelerated to 1.98 meters/second, the Bavarian will be accelerated to 2.0cm/second.
 - After one second: the mug reaches the boat and *both* mug and Bavarian have some velocity.
- In the next second the other Bavarian will pull the rope and reverse the velocity of the mug.

Let's iterate

		Relative	Distance
Step	Distance	Velocity	Prev. Solver
1	2	0.020	2.00
2	1.98	0.060	1.98
3	1.92	0.098	1.96
4	1.82	0.134	1.94
5	1.69	0.168	1.92
6	1.52	0.199	1.90
7	1.32	0.225	1.88
8	1.10	0.247	1.86
9	0.85	0.264	1.85
10	0.59	0.276	1.83
11	0.31	0.282	1.81
12	0.03	0.282	1.79

Lessons Learned

- 2 constraints fighting each other iteratively solves the global problem (=bringing the boats together).
- > We saw 2 types of iterative solvers:
 - Strength ~ num iterations (convergence)
 - Strength ~ num iterations², but
 - this adds energy

Can We Pull an Ocean-Liner Using a Mug?

7000 iterations of our beer-mug solver will move this ship by 1 meter.

Lets look into details.

Solver 'strength' depends on:

- Solver type (e.g. linear/quadratic)
 - We want fast convergence without the risk of instability.
- Number of solver iterations (per second)
 - We want as few as possible to save CPU.
- Mass ratio of the objects involved
 - Needs to be as small as possible to allow for small number of iterations.

Solver Type

Statement:

- All quadratic/linear convergence solvers have similar 'strength'.
- Solver variants found in the literature:
 - Position/velocity based solver.
 - Error correction by post-projection, split impulse or Baumgarte-stabilization.

Number of Solver Iterations

Say n=iterations/sec, d=distance

-> we accelerate the body n-times per second to d*n velocity -> acceleration = n² *d

n [Hz]	d [meter]	acceleration	acc/gravity
30	0.05	45	4.5
120	0.05	720	72
240	0.01	576	57.6
1000	0.10	100000	10000

Number of Solver Iterations

Observations:

- Running one solver iteration per frame (30Hz) is not good enough.
- Running a pure quadratic convergent solver higher than frame frequency can lead to instability.
- Most game physics engine solvers use quadratic convergence using frame frequency (30Hz) and use linear convergence using subiterations (4-10).

Mass Ratio:

High mass ratios require lots of solver iterations, so keep mass ratio low!

Avoid calculating the mass from density automatically:

- **Guessing density is tricky:**
 - What is the density of a car / a 747 ?
 - Problem: solid vs. hollow objects
 - -> So let your artist set the mass not the density.
- **A** tank driving either over a 10cm metal or a wooden box makes no difference:
 - Increase your masses on small debris objects
 - Exceptions: bullets and rockets
- Advice: Don't tweak mass if you don't have a problem yet.

Mass-Ratio in a 3d-World

In a 1d-universe, the mass ratio just depends on the mass of the objects.

But games are not 1d ⁽²⁾, so 2d/3d rigid bodies can rotate. As a result the mass ratio depends on mass **and** inertia (='angular mass').

Typical 'Bad' Example

Lets assume:

- All joints are limited.
- All joints have reached their limit.
- Shoulder bone is 4x smaller than arm.
- Mass is calculated from density.

Let's simplify

Lets move the pivot to the mass center of the combined arm. (in a fixed constraint we can do this without changing behavior).

We see: We virtually apply a force at the shoulder bone way outside its shape.

Is this bad?

Yes, it results in very poor solver strength because the '**effective**' mass ratio gets extremely high (1 : 3000)

Effective Mass

Effective Mass Example

Dimensions: 1meter * 20cm * 20cm
Mass: 100kg (= density: 2.5kg/litre)
Distance: •<>•= .5 meter.

Inertia: $100/12^*$ (1*1 + .2*.2) = 8.6 kg m²

> Effmass at $\bullet = 1/(1/100 + .5^2/8.6) = 25$ kg

Lets make the cube 4x smaller

- Dimensions: .25meter * 5cm * 5cm
- Mass: 1.56kg (= density: 2.5kg/litre)
- > Distance: $\rightarrow \rightarrow \rightarrow = .5$ meter.
- Inertia: 1/12*1.56*(.25*.25 + .05*.05) = 8.46e-5

Total effMass at • = 33.13g

cube 4 times smaller -> eff.Mass drops by 750 !!!

Summary Chapter 1

Solver strength mainly depends on:

- Number of solver iterations
- Mass ratio
- Rotations are bad!
 - Angular movement reduces our effective mass and therefore our solver strength.

Chapter 2: Angular Effects

Angular movement not only reduces effective mass but also leads to instability!

Demo

We have 2 distance constraints (distance d) between a ball and 2 fixed walls.

If we move the walls apart, we'll have to move the ball to satisfy the constraints:

How will a perfect algorithm solve this?

We are forced to linearize the equations of motion.

Lets move the walls a little bit further:

- A solver will gain energy if it "overshoots" too much.
- The likelihood of overshoots increases if the solver 'misspredicts' the angular movement:
 - Because of linearization, the force direction (=Jacobian) is not optimally chosen, especially when running 'building the jacobian'algorithm at low frequency.
 - Angular velocity is high compared to linear velocity.
 - Effective angular mass is much less than the body mass and high forces are applied:

inertia/d² / mass << 1.0

Lessons Learned

Low inertias are the main problem for bad solver behavior!!!

- They increase the effective mass ratios between bodies
- They lead to high angular velocities, which lead to 'explosions'/jitter
- **>** Solution:
 - Increase inertias

Increasing Inertia

Increasing Inertia

Lessons learned:

We can increase inertia of selected single objects easily by factor of 2 - 4 before users spot serious artifacts.

Inertia Visualizations

We can visualize the inertia by drawing a box which would have the same inertia.

Combining Inertias

Demo Of Ragdoll With Increased Inertia

Lessons Learned

- Increasing inertia matrix is very often quite acceptable in a game environment and artifacts are hardly noticeable.
 - Especially true for small bodies inside a chain of constraint bodies (like shoulder bone).

How to Increase the Inertia Matrix

Multiply by a factor (single bodies) Add a constant to the diagonal (bodies in a constraint chain)

Summary Chapter 2

To improve solver stability and 'strength':

- Increase inertia
- Increase simulation frequency
- Decrease mass ratio

Advice: Don't try to damp rigid bodies or the solver

Chapter 3: Reducing Rigidity

Our physics engine uses rigid bodies. Rigid means 100% rigid.

- Bodies never deform.
- Bodies never break.
- Impulses and friction forces have no limit:
 - -> Physics engine can feel 'cute and bouncy'

Implementing Soft Contact

- Reduce the maximum contact impulse to allow for some penetration.
 - E.g. clip the impulse.
- Ensure that the penetration recovery happens slowly to avoid springy behavior.
 - E.g. reduce the Baumgarte stabilization for this contact.

Soft Contact

Demo:

Idea: destroy bodies if impulses get too high.

Solution 1: Estimate the contact impulse and destruct the object before running the solver:

- Impulse = relativeVelocity * effectiveMass
- This works pretty well, except if the breakable object is blocked by an unbreakable object.

Solution 2: After running the solver:

If the contact impulse exceeds a limit, break the object

 If implemented naively, breakable fixed objects will stop any moving object.

47

> Solution 2b: Extend solution 2 with the following modifications:

- The solver also clips the impulses to the breaking limit.
- If an object breaks, move the two objects involved to the previous position.

Summary Chapter 3

Impulse clipping in the solver allows to emulate soft, deformable or breakable materials.

The End

Thanks for listening, questions welcome $\ensuremath{\mathfrak{S}}$

