
CUSIMANN: An optimized simulated
annealing software for GPUs

AUTHORS:

Ana Marı́a Ferreiro Ferreiro

José Antonio Garcı́a Rodrı́guez

José Germán López Salas

Carlos Vázquez Cendón

Department of Mathematics, Faculty of Informatics, Campus Elviña s/n, 15071-A Coruña (Spain)

13th April, 2012





CUSIMANN (CUDA SIMULATED ANNEALING) is a free/open-source library for global optimiza-
tion that provides a parallel implementation of the simulated annealing algorithm in CUDA.

1 Introduction

In this section we begin giving a general overview of the optimization problems that CUSIMANN
solves.

1.1 Optimization problems

CUSIMANN addresses general nonlinear optimization problems of the form min
x∈Rn

f(x), where f is the

cost function and x represents the n optimization parameters. This problem should be subject to the
bound constraints:

lbi ≤ xi ≤ ubi, for i = 1, . . . , n

given lower bounds lb and upper bounds ub.

1.2 Global optimization

Global optimization is the problem of finding the feasible point x that minimizes the objective f(x)
over the entire feasible region. In general, this can be a very difficult problem, becoming exponentially
harder as the number n of parameters increases. In fact, unless special information about f is known, it
is not even possible to be certain whether one has found the true global optimum, because there might
be a sudden dip of f hidden somewhere in the parameter space you haven’t looked at yet. However,
CUSIMANN is a global optimization algorithm that works well, even if the dimension n is too large.

2 CUSIMANN installation

The installation of CUSIMANN if fairly standard and straightforward, at least on Unix-like systems.
It requires a C/C++ compiler, the nvcc1 CUDA compiler and the NLopt free/open-source library for
nonlinear optimization, [6]. To install the compilers and the NLopt library refer to his installation
instructions.

In order to use the CUSIMANN library you only have to unpack it and include the header file
cusimann.cuh in your code.

3 Simulated annealing

The simulated annealing algorithm works with a virtual “temperature”, a variable decreasing over time.
At each step, the algorithm replaces the current solution by a randomly generated nearby point if this
new point results in a better solution, but also allows for “downhill” moves with a certainly probability
depending on the temperature, often preventing the method from becoming trapped in a local mini-
mum. This acceptance probability decreases with temperature. There are many ways to implement the
algorithm, we are going to explain the one we propose.

1Version 4.0 or later, because we use the Thrust CUDA Library.

2



3.1 Algorithm

The annealing process can be described as follows: starting from some maximum temperature, T0, we
consider a sequence of decreasing temperatures. At each one the system is allowed to reach thermal
equilibrium, in which the probability of the system to be in some state with energy E is given by the
Boltzmann distribution. The main steps of the simulated annealing algorithm are the following (see [1]
for details):

• Step 1: Start with a given temperature, T0, and an initial point, x0, with energy of configuration
E0 = f(x0).

• Step 2: Select randomly a coordinate of x0 and a random number to modify the selected coordi-
nate to obtain another point x1 in a neighborhood of x0.

• Step 3: Compare the function value at the two previous points, by using the Metropolis criterion
as follows: let E1 = f(x1) and select a sample of a random uniform variable U(0, 1). Then,
move the system to the new point if and only if U < exp(−(E1−E0)/T ), where T is the current
temperature. Thus, E1 − E0 is compared with an exponential random variable with mean T .
Note that we always move to the new point if E1 < E0, and that at any temperature there is a
chance for the system to move “upwards”. Note that we need three uniform random numbers:
one to choose the coordinate, one to change the selected coordinate and one for the acceptance
criterion.

• Step 4: Either the system has moved or not, repeat steps 2 − 3. At each stage we compare the
function at new points with the function at the present point until the sequence of accepted points
fulfills some test of achieving an equilibrium state.

• Step 5: Once an equilibrium state has been achieved for a given temperature, the temperature
is decreased according to the annealing schedule (in our case we update temperature with a de-
creasing factor ρ with 0 < ρ < 1, usually ρ close to one) and step 2 starts again, with the
last iteration of the algorithm as initial state. The iteration procedure continues until a stopping
criterion considering the system has frozen is achieved.

Since we continue steps 2 − 3 until an equilibrium state, the starting values in step 1 have no
effect on the solution. The algorithm can be implemented in numerous ways.

The pseudo-code of the previous algorithm can be sketched as follows:

xxx = xxx0 ; T = T0;
do

for j = 1 to N do
xxx′ = ComputeNeighbour(xxx);
∆E = f(xxx′)− f(xxx); // Energy increment
if (∆E < 0 or AcceptWithProbability P (∆E, T ))
xxx = xxx′; // The trial is accepted

end for
T = ρT ; // with 0 < ρ < 1

while (T > Tmin);

The algorithm is highly dependent on the value of the parameters ρ, N , T0 and Tmin. As soon as Tmin

is decreased and T0, N and ρ are increased, the accuracy and the computational cost increases. This
can be allowed by the GPU technology and provides an accurate result.

3



The annealing algorithm appears to be very reliable, in that it always converged to within a neighbor-
hood of the global minimum. The size of this neighborhood can be reduced by altering the parameters
of the algorithm, but this can be expensive in terms of time.

In most cases we would like to find the minimizing solution up to a precision of several decimal places.
It is clear that the annealing algorithm could produce results with such accuracy, but sometimes the
execution time would be prohibitive. A more traditional algorithm can produce solutions to machine
accuracy but can have considerable difficulty in finding the correct solution. This is the reason why we
combined the annealing algorithm with a more traditional algorithm to form a hybrid algorithm which
is both reliable and accurate.

3.2 Hybrid algorithm

The hybrid algorithm consists of two distinct components:

• The first component is an annealing algorithm which is used to produce a starting point for the
second component.

• The second component is a local optimization algorithm. We offer to the user the possibility to
use quickly and easily the Nelder-Mead algorithm implemented in the NLopt library. If you wish
to use other local minimization algorithm you can implement it as well.

4 Parallelization

The parallelization of the previous algorithm is not straightforward. Figure 1 shows the sketch of the
parallel algorithm. We take the following approach: at each temperature level we perform nt Markov
chains of lengthN . These are independent processes and can be distributed among the GPU processors:
each Markov process will be executed by one thread in the GPU and thus, each thread returns one final
state. We then choose the best state among the nt computed ones, advance to the next temperature level
and use the obtained state as starting point for the next nt Markov processes.

Figure 1: Sketch of the synchronous parallel algorithm.

4



5 Tutorial

In this tutorial we also illustrate the usage of CUSIMANN via two examples.

5.1 First example

As a first example, we consider the global minimization problem related to the Normalized Schwefel
function [4]:

f(x) = − 1

n

n∑
i=1

xi · sin
(√
|xi|
)
, −512 ≤ xi ≤ 512, x = (x1, . . . , xn).

The parameter space of f is constrained to −512 ≤ xi ≤ 512. For any space dimension n, the global
minimum is achieved at xi = 420.968746, i = 1, . . . , n, and f(x) = −418.982887. In order to
illustrate the complexity of the function, a plot of f for n = 2 is shown in Figure 2.

Figure 2: Plot of the Normalized Schwefel function for n = 2.

To implement the above example using CUSIMANN we would first do:

# i n c l u d e ” cus imann . cuh ”

to include the CUSIMANN header file.

Next we would define our objective function as:

5



t empla te <c l a s s T>
c l a s s Schwefe l {
p u b l i c :

h o s t d e v i c e T operator ( ) ( c o n s t T ∗x , unsigned i n t n , void ∗ f d a t a ) c o n s t
{

T f x = 0 . 0 f ;

i n t i ;
f o r ( i =0 ; i<n ; i ++)

f x = f x + x [ i ] ∗ s i n ( s q r t ( f a b s ( x [ i ] ) ) ) ;

f x = f x / n ;

re turn − f x ;
}

} ;

There are several points to be noticed here. First, since in CUDA it is not allowed to take the address of
a device function in host code, we use Functor classes to workaround this restriction. Second, the
compiler will generate two functions, one for the device and one for the host; the first one can be gener-
ated in single or double precision (as chosen by the user in the configuration file configuration.h,
although it is recommended the single-precision for reasons of speed calculation in GPUs), and the
other one is generated in double precision, for reasons of accuracy. Also, the first argument of the ob-
jective function refers to the point in which we evaluate the function and n is the dimension of x. We
have an extra parameter f data that can be used to pass additional data to f, but no additional data is
needed here so that this parameter is unused (see the next example for more details).

Now we can call cusimann optimize to actually perform the optimization:

template<c l a s s F>
i n t c u s i m a n n o p t i m i z e ( unsigned i n t n t h r e a d s p e r b l o c k , unsigned i n t n b l o c k s , r e a l

T 0 , r e a l T min , unsigned i n t N, r e a l rho , unsigned i n t n , r e a l ∗ lb , r e a l ∗ub ,
F f , void ∗ f d a t a , r e a l ∗cusimann minimum , r e a l ∗ f cus imann minimum )

Let’s explain each one of the arguments of the minimization function:

• n threads per block: represents the number of threads per block to be launched in the
minimization kernel of simulated annealing. Reference values are 128, 256 or 512.

• n blocks: similarly, represents the number of thread blocks to be launched in the minimization
kernel of simulated annealing. A reference value is 64.

• T 0: represents the initial temperature T0. T0 must be sufficiently large for any point within the
parameter space to have a reasonable chance of being considered as candidate to minimum, but
if it is too large then too much time is spent in a “molten” state. In practice it may be necessary to
try the algorithm for several values of T0 before deciding on a suitable value. A reference value
can be 1000.

• T min: minimum temperature Tmin. The algorithm stops when the reached temperature is less
than or equal to Tmin. A small Tmin gives an accurate solution. Reference values are 0.1, 0.01,
. . .

• N: length of the Markov chain N , i.e., number of neighboring states generated for each temper-
ature level. A large N gives an accurate solution. If possible the value of N should be selected

6



so that it could be reasonably assumed that the system is in equilibrium by that time. A reference
value is 100.

• rho: parameter that defines the annealing schedule, ρ, 0 < ρ < 1. Increasing ρ increases the
reliability of the algorithm to reach the global optimum, and corresponds to a slower cooling of
the system. A reference value is 0.99.

• n: dimension of the search space n.

• lb: vector of size n containing the lower bounds constraints lb, lbi ≤ xi,∀i = 1 . . . n.

• ub: vector of size n containing the upper bounds constraints ub, ubi ≥ xi, ∀i = 1 . . . n. This
vector, together with the above one, defines the search space. Obviously the search space should
be as small as possible.

• f: objective function.

• f data: this parameter can be used to pass additional data to the objective function f. It avoids
the use of the “dangerous” global variables. If no additional data are needed it is set to NULL.

• cusimann minimum: All previous parameters are inputs. However, this is an output parameter
which returns the minimum found by the simulated annealing algorithm.

• f cusimann minimum: output parameter which returns the value of the objective function f
at the obtained minimum.

Once we have performed the simulated annealing, if we want to improve the accuracy of the obtained
solution, we can run the Nelder-Mead local minimization algorithm, starting from the point returned by
simulated annealing. For this purpose we have to include the header file nelderMead.h. Next, we
have to define the objective function as required by the NLopt Library (see [6] for more details):

double f n e l d e r M e a d ( unsigned i n t n , c o n s t double ∗x , double ∗grad , void ∗ f d a t a ) {
re turn Schwefe l<double >() ( x , n , f d a t a ) ;

}

And finally simply call the following function

void n e l d e r M e a d o p t i m i z e ( unsigned i n t n , r e a l ∗ lb , r e a l ∗ub , r e a l ∗ s t a r t P o i n t ,
double (∗ f ) ( unsigned i n t n , c o n s t double ∗x , double ∗grad , void ∗ f d a t a ) , void
∗ f d a t a , double ∗nelderMead minimum , double ∗ f ne lderMead minimum )

where the parameters unexplained yet represent:

• startPoint: first iterate for the Nelder-Mead algorithm. It must be initialized to the value
returned by simulated annealing.

• f: function pointer to the Nelder-Mead objective function.

• nelderMead minimum: output parameter which returns the minimum obtained by the Nelder-
Mead algorithm.

• f nelderMead minimum: output parameter which returns the value of the objective function
f at the obtained minimum.

7



For more details, the complete example code can be seen in the file
CUSIMANN/samples/minimizeSchwefel.cu.

It is compiled with the nvcc compiler, and it is necessary to link properly the used libraries (cutil,
curand, nlopt and math):

$ nvcc -I../include minimizeSchwefel.cu -lcutil -lcurand -lnlopt -lm -o minimizeSchwefel

Finally, we show the results of an execution with n = 13 and the following simulated annealing config-
uration parameters: T0 = 1000, Tmin = 0.1, N = 100, ρ = 0.99, n threads per block = 256,
n blocks = 64:

cusimann minimum = [ 420 .967255 420 .978210 420 .984650 420 .999115 420 .950195
420 .955261 420 .982971 420 .990631 420 .980896 420 .968994 420 .990265 420 .978882
420 .987488 ]

f ( cusimann minimum ) = −418.982910
nelderMead minimum = [ 420 .968746 420 .968747 420 .968745 420 .968746 420 .968745

420 .968746 420 .968747 420 .968747 420 .968746 420 .968746 420 .968746 420 .968747
420 .968746 ]

f ( nelderMead minimum ) = −418.982887

Notice that, in this case, the accuracy of the simulated annealing solution is correct, in general, to only
the first decimal place, and the Nelder-Mead ones is much more accurate.

5.2 Second example

As a second example we will look at the global minimization problem for the following Modified
Langerman function [5]:

f(x) = −
5∑

i=1

cie
− 1
π

∑n
j=1(xj−aij)2 cos

π n∑
j=1

(xj − aij)2
 , −20 ≤ xi ≤ 20, x = (x1, . . . , xn),

where

A =


9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020
9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374
8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982
2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426
8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567

 ,

c =
(
0.806 0.517 0.100 0.908 0.965

)
.

The global optimum in the five dimensional case (n = 5) is x1 = 8.074000, x2 = 8.777001, x3 =
3.467004, x4 = 1.863013, x5 = 6.707995, and f(x) = −0.964999.

First of all we must define a data type to pass the constant matrix A and the vector c to the objective
function:

# i n c l u d e ” cus imann . cuh ”
# i n c l u d e ” ne lderMead . h ”

t y p e d e f s t r u c t {
r e a l ∗A, ∗c ;

} LANGERMAN data ;

8



Next we define our objective function as:

t empla te <c l a s s T>
c l a s s Langerman {
p u b l i c :

h o s t d e v i c e T operator ( ) ( c o n s t T ∗x , unsigned i n t n , void ∗ f d a t a ) c o n s t
{

LANGERMAN data l a n g e r m a n d a t a ;
l a n g e r m a n d a t a = ∗ ( ( LANGERMAN data∗ ) f d a t a ) ;

r e a l ∗A = l a n g e r m a n d a t a .A;
r e a l ∗c = l a n g e r m a n d a t a . c ;

T f x = 0 . 0 f ;
T aux ;

i n t i , j ;
f o r ( i =0 ; i <5; i ++) {

aux = 0 . 0 f ;
f o r ( j =0 ; j<n ; j ++)

aux += pow ( x [ j ]−A[ pos2Dto1D ( i , j , 1 0 ) ] , 2 ) ;

f x += c [ i ] ∗ exp (−1.0 f / M PI CUDA ∗ aux ) ∗ cos ( M PI CUDA ∗ aux ) ;
}

re turn − f x ;
}

} ;

double f n e l d e r M e a d ( unsigned i n t n , c o n s t double ∗x , double ∗grad , void ∗ f d a t a ) {
re turn Langerman<double >() ( x , n , f d a t a ) ;

}

Now, before calling cusimann optimize, we build up the device structure containing A and c in
host memory first, and then copy that to the device. This can be done as follows:

r e a l A[ 5∗1 0 ] = {
9 . 6 8 1 , 0 . 6 6 7 , 4 . 7 8 3 , 9 . 0 9 5 , 3 . 5 1 7 , 9 . 3 2 5 , 6 . 5 4 4 , 0 . 2 1 1 , 5 . 1 2 2 , 2 . 0 2 0 ,
9 . 4 0 0 , 2 . 0 4 1 , 3 . 7 8 8 , 7 . 9 3 1 , 2 . 8 8 2 , 2 . 6 7 2 , 3 . 5 6 8 , 1 . 2 8 4 , 7 . 0 3 3 , 7 . 3 7 4 ,
8 . 0 2 5 , 9 . 1 5 2 , 5 . 1 1 4 , 7 . 6 2 1 , 4 . 5 6 4 , 4 . 7 1 1 , 2 . 9 9 6 , 6 . 1 2 6 , 0 . 7 3 4 , 4 . 9 8 2 ,
2 . 1 9 6 , 0 . 4 1 5 , 5 . 6 4 9 , 6 . 9 7 9 , 9 . 5 1 0 , 9 . 1 6 6 , 6 . 3 0 4 , 6 . 0 5 4 , 9 . 3 7 7 , 1 . 4 2 6 ,
8 . 0 7 4 , 8 . 7 7 7 , 3 . 4 6 7 , 1 . 8 6 3 , 6 . 7 0 8 , 6 . 3 4 9 , 4 . 5 3 4 , 0 . 2 7 6 , 7 . 6 3 3 , 1 .567 } ;

r e a l c [ 5 ] = { 0 . 8 0 6 , 0 . 5 1 7 , 0 . 1 0 0 , 0 . 9 0 8 , 0 .965 } ;

/ / s t r u c t i n h o s t memory
LANGERMAN data l a n g e r m a n d a t a ;
l a n g e r m a n d a t a .A = A;
l a n g e r m a n d a t a . c = c ;

/ / Assemble t h e d e v i c e s t r u c t u r e i n h o s t memory f i r s t
LANGERMAN data ∗ d A r r a y l a n g e r m a n d a t a , d l a n g e r m a n d a t a [ 1 ] ;

r e a l ∗d A , ∗ d c ;
c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ )&d A , 5∗10 ∗ s i z e o f ( r e a l ) ) ) ;
c u t i l S a f e C a l l ( cudaMemcpy ( d A , l a n g e r m a n d a t a . A, 5∗10 ∗ s i z e o f ( r e a l ) ,

cudaMemcpyHostToDevice ) ) ;

c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ )&d c , 5 ∗ s i z e o f ( r e a l ) ) ) ;

9



c u t i l S a f e C a l l ( cudaMemcpy ( d c , l a n g e r m a n d a t a . c , 5 ∗ s i z e o f ( r e a l ) ,
cudaMemcpyHostToDevice ) ) ;

d l a n g e r m a n d a t a [ 0 ] . A = d A ;
d l a n g e r m a n d a t a [ 0 ] . c = d c ;

/ / Then copy t h a t h o s t memory v e r s i o n t o d e v i c e memory
c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ ) &d A r r a y l a n g e r m a n d a t a , 1∗ s i z e o f (

LANGERMAN data ) ) ) ;
c u t i l S a f e C a l l ( cudaMemcpy ( d A r r a y l a n g e r m a n d a t a , d l a n g e r m a n d a t a , 1∗ s i z e o f (

LANGERMAN data ) , cudaMemcpyHostToDevice ) ) ;

Now, in the same way as in the previous example, we call the cusimann optimize function:

r e a l l b [ 5 ] = {−10, −10, −10, −10, −10};
r e a l ub [ 5 ] = {10 , 10 , 10 , 10 , 10} ;
r e a l cusimann minimum [ 5 ] , f cus imann minimum ;
c u s i m a n n o p t i m i z e ( 5 1 2 , 64 , 1000 , 0 . 1 , 400 , 0 . 9 9 , 5 , lb , ub , Langerman<r e a l >() ,

d A r r a y l a n g e r m a n d a t a , cusimann minimum , &f cus imann minimum ) ;

Again, finally, we can invoke the Nelder-Mead algorithm:

double nelderMead minimum [ 5 ] , f ne lderMead minimum ;
n e l d e r M e a d o p t i m i z e ( 5 , lb , ub , cusimann minimum , f ne lde rMead , &l a n g e r m a n d a t a ,

nelderMead minimum , &f nelderMead minimum ) ;

For more details, the complete sample code can be seen in the file
CUSIMANN/samples/minimizeLangerman.cu.

5.3 Using all available GPUs in the system

By default CUSIMANN uses only a single GPU in the minimization process. If you want to
use all available GPUs in the system you must indicate it explicitly in the configuration file
configuration.h. This is useful when trying to minimize complex functions. So the algorithm
can explore more points in the function domain “without increasing” runtimes2.

If the user needs to pass additional data to the objective function (as in the single-GPU Second example
5.2) it is his responsability to properly initialize the memory of each one of the GPUs.

Finally note that CUSIMANN uses OpenMP [7] threads to manage multiple GPUs.

6 Contact information

• Ana Marı́a Ferreiro Ferreiro (aferreiro@udc.es)

• José Antonio Garcı́a Rodrı́guez (jagrodriguez@udc.es)

• José Germán López Salas (jose.lsalas@udc.es)

• Carlos Vázquez Cendón (carlosv@udc.es)
2If the user appropriately reduces the number of launched threads in each one of the GPUs, the multi-GPU version can

also be used to reduce runtimes.

10



Department of Mathematics, Faculty of Informatics, Campus Elviña s/n, 15071-A Coruña (Spain).

This work is partially supported by I-Math Consolider Project (Reference: COMP-C6-0393), by
MICINN (MTM2010-21135-C02-01) and by Xunta de Galicia (Ayuda CN2011/004 cofinanced with
FEDER funds). The authors also acknowledge some ideas suggested by J.L. Fernández (Autonomous
University of Madrid).

11



References

[1] S.P. Brooks, B.J.T. Morgan, Optimization using simulated annealing, The Statistician 44 (1995),
241-257.

[2] P.J.M van Laarhoven, E.H.L. Aarts, Simulated Annealing: Theory and Applications, Kluwer Aca-
demic Publishers (1987).

[3] NVIDIA CUDA C Programming Guide Version 4.0, Nvidia Cooporation (2011).

[4] http://www.it.lut.fi/ip/evo/functions/node10.html

[5] http://www.it.lut.fi/ip/evo/functions/node15.html

[6] http://ab-initio.mit.edu/wiki/index.php/NLopt

[7] http://openmp.org


	Introduction
	Optimization problems
	Global optimization

	CUSIMANN installation
	Simulated annealing
	Algorithm
	Hybrid algorithm

	Parallelization
	Tutorial
	First example
	Second example
	Using all available GPUs in the system

	Contact information

