
 ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem A - Page 1 of 1

Problem A
(Program filename: A.CPP or A.PAS)

Number Steps

Starting from point (0,0) on a plane, we have written all non-negative integers 0,1,2, … as shown in the figure. For
example, 1, 2, and 3 has been written at points (1,1), (2,0), and (3, 1) respectively and this pattern has continued.

y .
 6 12 .
 5 9 11
 4 8 10
 3 5 7
 2 4 6
 1 1 3
 0 0 2
 0 1 2 3 4 5 6 7
 x

You are to write a program that reads the coordinates of a point (x, y), and writes the number (if any) that has been
written at that point. (x, y) coordinates in the input are in the range 0…5000.

Input (filename: A.IN)
The first line of the input is N, the number of test cases for this problem. In each of the N following lines, there is x, and
y representing the coordinates (x, y) of a point.

Output (filename: A.OUT)
For each point in the input, write the number written at that point or write No Number if there is none.

Sample Input
3
4 2
6 6
3 4

Sample Output
6
12
No Number

 ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem B - Page 1 of 2

Problem B
(Program filename: B.CPP or B.PAS)

Puzzlestan

His Excellency the ambassador of Puzzlestan to Tehran is giving a reception (party) on the occasion of Puzzlestan
national day on the second of November. Ambassadors of all missions to Tehran are invited. At the entrance to
reception hall each guest leaves his belongings (overcoat, hat, …, which we will call items afterwards) with the
attendant who knows the host ambassador loves puzzle games. While waiting for the reception to end, the attendant
prepares a program on his laptop that helps him find what belongs to whom. He asks each guest to give some statements
that:

• Relates two items belonging to the same guest.
• Indicates two items that do not belong to the same guest.

Suppose there are N kinds of items and M guests, and assume each guest has exactly one item from each kind (i.e. each
guest has one overcoat, one hat, …). Each of N × M items is given a unique name, which is a single letter (case-
sensitive). We can then represent all items of kind i (1 ≤ i ≤ N) by a string of length M. We call this, ith group. For
example, ith group can be ABCD. In this case, its first item is A, its second item is B, and so on.

Input (filename: B.IN)
The first line includes the number of test cases (at most 20). First line of each test case includes two positive integers;
the first one being N (1 ≤ N ≤ 7), the number of item kinds, and the second is M (1 ≤ M ≤ 7), the number of guests. In
each of the next N lines, there is one string of length M, representing one group (different items of the same kind). The
rest of the input includes several lines of statements. Each statement is of form i j X k r, which means that the jth item of
the ith group and the rth item of the kth group belong to the same guest (if X is R) or do not belong to the same guest (if
X is N). The last line of each test case is a dummy statement 0 0 R 0 0.

Output (filename: B.OUT)
For each test case, the program should produce M lines, line i (1≤ i ≤ M) starts with the letter indicating the ith member
of the first group in the input test case, then the related member of the second set and so on until that of the last set. (So
the letters in the first column are the same as the letters in the first group, preserving order). Output for consecutive test
cases must be separated by exactly one blank line.

Problem B - Page 2 of 2

Sample Input
1
3 4
ABCD
EFGH
IJKL
1 1 R 3 2
1 2 N 2 2
2 2 R 3 4
1 3 R 2 3
1 1 N 2 4
3 1 R 1 3
0 0 R 0 0

Sample Output
AEJ
BHK
CGI
DFL

 ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem C - Page 1 of 2

Problem C
(Program filename: C.CPP or C.PAS)

Dynamic Declaration Language (DDL)

DDL is a very simple programming language in which variables are dynamically declared at run time. All variables in
DDL are of the signed integer type within the range –9999…9999. There are up to five types of statements in a DDL
program (each statement is in a separate program line, and the first statement is in line 1):

1. Dcl <id>

Dcl is a keyword specifying a declaration statement. id is a single (case-sensitive) letter designating a DDL
variable. For example Dcl x when executed correctly, allocates memory for variable x, and sets its value to
zero.

2. <id> = <ic>

This is an assignment statement, where id is a DDL variable, and ic is a literal integer constant in the range
(0…9999). For example x = 2000 when executed correctly, changes value of x to 2000. Note that there
may be one or more number of blank characters around =, but there is no tab characters.

3. Goto <label>, or Goto <id> <label>

Goto is a keyword specifying an unconditional or conditional goto statement. label is a program line's number.
For example Goto 5 transfers the program execution flow to line 5 of the program, and
Goto x 5 when executed correctly, trasfers the flow to line 5 iff x>0, and to the next line otherwise. The
label is guaranteed to be in the range of program line numbers.

4.Inc <id>, or Dec <id>

Inc and Dec are keywords specifying increment and decrement statements respectively. For example Inc x
(Dec y) when executed correctly adds (substracts) 1 to (from) the value of x (y).

5. End

End is a keyword specifying the end statement, whose execution stops the program.

Not that the keywords of the DDL language are case-insensitive.

Error conditions:
When one of the following erroneous statements encounters during the program execution, an error message appears in
a separate line of the output. Each error message is of the form <label> <space> <error code>. label is the line number
for the erroneous statement, space is one blank character, and error code is a positive integer specified below.

1. Dcl x is erroneous if x has not been referenced (used in assignment, goto, increment or decrement) since
the last time a Dcl x (declaring the same variable) statement has been executed, unless this is the first Dcl x
statement being executed. In this erroneous condition, an error message indicating a repeated declaration is
generated as <label> 1, where label is the program line number for the erroneous statement. Then the program
flow transfers to the statement in the next program line, and any prior correctly executed declaration for x is
valid.

2.Any other statement where a variable such as x is referenced (used in assignment, goto, increment or
decrement) is erroneous if no Dcl x has been previously correctly executed. In this case, an error message
indicating an undeclared reference is generated as <label> 2 and the program execution continues from the next
line.

Problem C - Page 2 of 2

Input (filename: C.IN)

First line of the input file contains a single integer N indicating the number of DDL programs to follow (1 ≤ N ≤ 20).
The first line of each test case contains a single integer indicating number of statements in that program which is in the
range (1…100). There are no blank lines between test cases. Statements of each DDL program come one after the other
in separate lines without any blank lines in between. Statements are not explicitly labeled, but they are implicitly labeled
by the number of their line beginning from 1 for the first statement in each program. There is no syntax error in
programs and they are guaranteed to terminate, and no overflow or underflow errors will occur during execution. In each
line of the program, tokens (e.g. GOTO, =, etc.) are separated by at least one blank character. Also there may be some
blank characters in the beginning or at the end of each line.

Output (filename: C.OUT)

For each input DDL program, your output should start with the program number in the first line, followed by the error
messages generated by the program in the order they are generated, each error message in one line. There should be no
blank lines between error messages.

Sample Input
2
4
DCL X
INC X
DCL X
END
9
DCL X
INC X
GOTO X 5
DCL Y
Y = 100
DCL X
DCL X
Y = 50
END

Sample Output
1
2
5 2
7 1
8 2

 ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem D - Page 1 of 2

Problem D
(Program filename: D.CPP or D.PAS)

Color Tunnels

A company producing toys has a complex system to paint its products. To obtain the desired color, the product must be
painted by several colors in a specified order. A product is painted by moving through color tunnels. For each color
there is at least one tunnel that paints with that color, but there may be more. The tunnels are distributed in the painting
area and the product must be delivered from one tunnel to another in order to be painted with the given colors. The
product is at a certain point in the production plant when painting process starts and must finally be delivered to the
product warehouse.

More formally, a finished uncolored product is at a certain given point (source point) and must be delivered to another
given point (destination point) after being painted with different colors in a given order. There are several tunnels, each
is assumed to be a line segment in the plain with a specific color. The colors of the tunnels are not necessarily distinct.
Let <c1, c2, …, cn> be the sequence of n colors that the product is to be painted with. The product is required to pass
through tunnels <t1, t2, … tn> such that the color of ti is ci. Note that it is possible to pass through a tunnel without being
painted, so the mentioned <t1, t2, … tn> may be in fact a subsequence of the tunnels which the product passes through.
The direction in which the product passes a tunnel is not important. The goal is to find the shortest path from source to
destination subject to the color constraints. The path may cross itself, or even cross a tunnel. Passing twice (or more)
through a tunnel is also allowed. Note that two tunnels can cross or overlap but are different.

Input (filename: D.IN)
The input file contains several test cases. The first line of the input consists of a single integer t (between 1 and 20), the
number of test cases. Following the first line is the data for t test cases. The first line of each test case contains four real
numbers xs, ys, xt, yt which are x and y coordinates of the source and destination respectively. The second line of the test
case contains the color sequence: the first number is the length of the sequence (between 1 and 30), and the rest of the
line is the sequence itself. Each color in the sequence is an integer in the range 1…100. The third line contains a single
integer n in the range 1…60 which is the number of tunnels followed by n lines each containing five numbers. The first
two numbers are the x and y coordinates of one end of the tunnel. The third and fourth numbers are the x and y
coordinates of the other end. Coordinates are real numbers. The fifth number is an integer in the range 1...100
representing the color of the tunnel.

Output (filename: D.OUT)
The output file must have t lines, each containing the minimum length of a path from source to destination subject to the
constraints of the problem. The length will be compared to optimal length within a precision of three digits after
decimal point.

Problem D - Page 2 of 2

Sample Input
1
0 1.5 100 67
4 1 4 3 1
9
10 10 20 20 1
10 15 20.5 35.333 3
30 15 14.55 12.5 1
40 30 44 33 1
29 84 33 58 4
9 39 41 115 2
75 47 37 69 4
46 26 58 25 3
73 48 27 59 3

Sample Output
240.60967918717043

 ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem E - Page 1 of 1

Problem E
(Program filename: E.CPP or E.PAS)

Lazy Math Instructor

A math instructor is too lazy to grade a question in the exam papers in which students are supposed to produce a
complicated formula for the question asked. Students may write correct answers in different forms which makes
grading very hard. So, the instructor needs help from computer programmers and you can help.

You are to write a program to read different formulas and determine whether or not they are arithmetically equivalent.

Input (filename: E.IN)
The first line of the input contains an integer N (1 ≤ N ≤ 20) that is the number of test cases. Following the first line,
there are two lines for each test case. A test case consists of two arithmetic expressions, each on a separate line with at
most 80 characters. There is no blank line in the input. An expression contains one or more of the following:

• Single letter variables (case insensitive).
• Single digit numbers.
• Matched left and right parentheses.
• Binary operators +, - and * which are used for addition, subtraction and multiplication respectively.
• Arbitrary number of blank or tab characters between above tokens.

Note: Expressions are syntactically correct and evaluated from left to right with equal precedence (priority) for all
operators. The coefficients and exponents of the variables are guaranteed to fit in 16-bit integers.

Output (filename: E.OUT)
Your program must produce one line for each test case. If input expressions for each test data are arithmetically
equivalent, "YES", otherwise "NO" must be printed as the output of the program. Output should be all in upper-case
characters.

Sample Input
3
(a+b-c)*2
(a+a)+(b*2)-(3*c)+c
a*2-(a+c)+((a+c+e)*2)
3*a+c+(2*e)
(a-b)*(a-b)
(a*a)-(2*a*b)-(b*b)

Sample Output
YES
YES
NO

 ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem F - Page 1 of 2

Problem F
(Program filename: F.CPP or F.PAS)

Buggy Sat

Discovery Co. ltd. builds a satellite using a new kind of an intelligent camera. The camera has special software to detect
cities and roads from an image, and is also able to detect every region (which is a connected part of surface), bounded
by a series of connected roads with no other region inside. Using this technology, the satellite is able to compress the
picture before sending it. The compressed format of a picture is the city locations and its regions.

Discovery has launched the satellite, without testing the software completely. So, after a while, they received some
buggy pictures which includes one more extra region: the outer region. The outer region is the region of the plane
enclosing every other region (which has infinite area). Further analysis shows that all images sent have the following
properties:

1. All cities, in the image, have at least two roads to the other cities.
2. There is a path connecting every pair of cities.
3. There is at most one road between each pair of cities.
4. Roads do not cross each other except at the cities.

The above Figure shows a sample image received (see sample input).
You are to write a program to read a buggy image and report the outer region.

Input (filename: F.IN)
The first line of the input consists of a single integer N (1 ≤ N ≤ 20), which is the number of test cases. The test cases
appear with no blank lines in between. The first line of each test case consists of the number of cities (between 1 and
50) followed by pairs of integers (x, y) which are location of cities (each pair in one line), followed by number of faces
in a separate line (between 1 and 50), followed by face information on each line. Face information consists of number
of cities making the face and the city numbers in clockwise (or counterclockwise) order.

Output (filename: F.OUT)
There should be a single line containing the boundary face number for each test case, with no blank lines in between.

5

1 4
3

2

Problem F - Page 2 of 2

Sample Input
1
5
2 6
4 4
4 7
8 6
4 10
3
4 1 2 4 3
4 1 3 4 5
4 1 2 4 5

Sample Output
3

 ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem G - Page 1 of 1

Problem G
(Program filename: G.CPP or G.PAS)

Cashier Employment

A supermarket in Tehran is open 24 hours a day every day and needs a number of cashiers to fit its need. The
supermarket manager has hired you to help him, solve his problem. The problem is that the supermarket needs different
number of cashiers at different times of each day (for example, a few cashiers after midnight, and many in the
afternoon) to provide good service to its customers, and he wants to hire the least number of cashiers for this job.

The manager has provided you with the least number of cashiers needed for every one-hour slot of the day. This data is
given as R(0), R(1), …, R(23): R(0) represents the least number of cashiers needed from midnight to 1:00 A.M., R(1)
shows this number for duration of 1:00 A.M. to 2:00 A.M., and so on. Note that these numbers are the same every day.
There are N qualified applicants for this job. Each applicant i works non-stop once each 24 hours in a shift of exactly 8
hours starting from a specified hour, say ti (0 ≤ ti ≤ 23), exactly from the start of the hour mentioned. That is, if the ith
applicant is hired, he/she will work starting from ti o’clock sharp for 8 hours. Cashiers do not replace one another and
work exactly as scheduled, and there are enough cash registers and counters for those who are hired.

You are to write a program to read the R(i) 's for i=0..23 and ti 's for i=1..N that are all, non-negative integer numbers
and compute the least number of cashiers needed to be employed to meet the mentioned constraints. Note that there can
be more cashiers than the least number needed for a specific slot.

Input (filename: G.IN)
The first line of input is the number of test cases for this problem (at most 20). Each test case starts with 24 integer
numbers representing the R(0), R(1), …, R(23) in one line (R(i) can be at most 1000). Then there is N, number of
applicants in another line (0 ≤ N ≤ 1000), after which come N lines each containing one ti (0 ≤ ti ≤ 23). There are no
blank lines between test cases.

Output (filename: G.OUT)
For each test case, the output should be written in one line, which is the least number of cashiers needed.
If there is no solution for the test case, you should write No Solution for that case.

Sample Input
1
1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5
0
23
22
1
10

Sample Output
1

 ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem H - Page 1 of 1

Problem H
(Program filename: H.CPP or H.PAS)

Dolphin Pool

In a newly constructed dolphin pool in the Kish island in Persian Gulf, one of the fun games is as follows: the game
director throws several plastic rings in the pool such that center of no ring lies inside any other ring, and no two rings
are tangent. The dolphins are trained to jump out on the director’s whistle through the closed areas that are completely
outside the rings, one dolphin from one such area. The dolphins jump out if and only if the number of closed areas
exactly equals to the number of dolphins.

You are to write a program to given the following input/output description, finds the number of closed areas between
rings to help the dolphins decide to jump out or not.

Input (filename: H.IN)

The first line includes the number of test cases (at most 20). Each test case data has an integer N (1 ≤ N ≤ 20), the
number of plastic rings, in its first line. Following the first line there are N lines, each containing three integers, the first
and second being the x and y coordinates of the circle of the ring, and the third is its radius. Coordinates are positive
integers less than 1000 and the radius is in the range 1…100.

Output (filename: H.OUT)

For each test case, there must be one line in the output including the number of closed areas in that test case.

Sample Input
2
4
100 100 20
100 135 20
135 100 20
135 135 20
1
10 10 40

Sample Output
1
0

ACM International Collegiate
Programming Contest, 2000
Asia Region, Tehran Site
Sharif University of Technology, 1-2 Nov. 2000

Sponsored by

Problem I - Page 1 of 2

Problem I
(Program filename: I.CPP or I.PAS)

3002 Rubbery

It's now 3002 and the Godfather Unlucky Luchiano is planning a rubbery from the Rectilinia museum. The problem is
that the walls of the museum are impenetrable and the doors are guarded so his men cannot enter the museum from its
doors. He is lucky that the museum has no roofs and one can enter the museum from the above. So he decides to use a
device from thousands of years ago; a catapult! Using this, his men can fly and fall in some place in the museum without
being caught by guards.

But another problem still exists which is a high-tech laser gun that guards the museum. The laser gun is designed based
on a very recent discovery that it is possible to guide the laser beam not on a straight line, but on a rectilinear path. The
fact that the beam travels the shortest (possible) distance from the emission point to a target still remains. The problem is
that if one land somewhere in the museum that is reachable by the laser beams, he will be immediately destroyed. Again
godfather is lucky, since in the museum, there are some walls and other obstacles through which the beam cannot pass
and if his men can land in the shadows of that walls, they are safe in the way that they are not destroyed by the gun right
after landing and they can use their special device to disable the laser gun. As the catapult is not a very precise device,
godfather wants to know the probability of landing in shadows, so he has to compute the total area of shadowy regions
of the museum.

Given the layout of the museum, you have to write a program to compute the total area of the shadowy regions. Yes!
This time you really HAVE TO!

As you study the layout of the museum from the top view, you find that the museum can be considered as a rectangle
with some obstacles in it. The obstacles are simple polygons with sides parallel to the rectangle sides. Interior of
obstacles do not overlap. The laser gun is located in the upper-right corner of the museum. A laser beam is composed of
a number of line segments; each is either horizontal or vertical. When the gun chooses its target, it intelligently
determines a possible path to the target and fires. A possible path has the following characteristics:

· It consists of only horizontal and vertical segments.
· It never crosses an obstacle but in some parts may be tangent to obstacle sides. It can never be tangent to two

obstacle sides at one point.
· In the travel from the gun to the target, the beam never moves from left to right or from bottom to top

(directions are relative to view of the museum from the above).

(0,0) Gun

 x

Problem I - Page 2 of 2

The problem is to compute the total area of the shadowy regions in the museum (not belonging to the interior of the
obstacles), where the laser gun cannot shoot any point inside those regions. In the above figure, the point marked by (x)
is in a shadowy region (see sample input).

Input (filename: I.IN)
The input file contains several test cases. The first line contains a single integer t (between 1 and 10), which is the
number of test cases. Rest of the input file contains t test cases. The first line of each test case contains 2 positive
integers, which are the length and the width of the rectangle respectively. The second line contains a single integer n,
which is the number of obstacles in the museum (between 0 and 50). After it, there are n lines, which contain the
obstacle data. Each obstacle data is in a single line, which begins with an integer m, which is the number of vertices of
the obstacle (between 4 and 50), followed by 2m numbers, which are the x, and y coordinates of the vertices listed in
clockwise order. Every coordinate in the input is a positive integer less than 1,000,000. Upper-left corner of the
rectangle is the coordinate origin.

Output (filename: I.OUT)
The output file must contain exactly t lines. Each line contains a single number, which is the total area of the safe
regions in the test case. The output for each test case is guaranteed to fit in a 32-bit integer. Total execution time for all
test cases must be less than 1 minute.

Sample Input
1
12 8
3
8 5 1 11 1 11 5 7 5 7 4 9 4 9 2 5 2
4 0 3 3 3 3 4 0 4
4 1 4 2 4 2 6 1 6

Sample Output
12

