
FANNTool 1.0 User's Guide

FANNTool 1.0
User's Guide

Birol
bluekid70@gmail.com

Michael Schaale
Michael.Schaale@fu-berlin.de

Page 1 of 21

mailto:bluekid70@gmail.com
mailto:Michael.Schaale@fu-berlin.de

FANNTool 1.0 User's Guide

Introduction

An artificial neural network (ANN), usually called "neural network" (NN), is a mathematical
model or computational model that tries to simulate the structure and/or functional aspects
of biological neural networks. An ANN performs a non-parametric non-linear multivariate
multiple regression.

The Fast Artificial Neural Network library (FANN) is a free open source neural network
library, which implements multilayer artificial neural networks in C and supports both fully
and sparsely connected networks. Cross-platform execution in both fixed and floating point
is supported. It includes a framework for easy handling of training data sets. It is easy to
use, versatile, well documented, and fast. PHP, C++, .NET, Ada, Python, Delphi, Octave,
Ruby, Prolog Pure Data and Mathematica bindings are available.

FANNTool is a GUI to the FANN library which allows its easy usage without the need of
programming. This tool enables You to:

... prepare the data in FANN library standard

... design an ANN

... train the designed ANN

... test the trained ANN

... run the trained ANN

Page 2 of 21

http://leenissen.dk/fann/
http://code.google.com/p/fanntool/
http://leenissen.dk/fann/
http://en.wikipedia.org/wiki/Artificial_neural_network

FANNTool 1.0 User's Guide

Data example #1 : Time series of sun spots

Let's learn more about FANNTool by working through an example: we want to predict the
monthly mean of sunspots by using (extrapolating from) past values. The data are given in
The ASCII file 'SunSpotsRaw-1980-2006.txt' lists line-by-line the monthly means of
sunspots from January 1980 to October 2006 (= 322 values).

Now launch FANNTool and select Data Processing to load the data file
'SunSpotsRaw-1980-2006.txt', the Time Series Data Processing dialog opens.

Check the radio button Time series and look at a plot mean of sun spots vs. time.

Data Processing reads ASCII raw data and ...

... (optionally) scales them : ANN generally prefer data within a range of (0, 1) or (-1, 1)
thus the real-world values usually need to be scaled

... produces a FANN compatible data format.

The FANN library uses a simple but fixed ASCII data format)

The file must be formatted like

num_train_data num_input_nodes num_output_nodes
 num_input_nodes input data (separated by space) set #1

Page 3 of 21

FANNTool 1.0 User's Guide

 num_output_nodes output data (separated by space) set #1
.
.
num_input_nodes input data (separated by space) set #num_train_data
num_output_nodes output data (separated by space) set #num_train_data

For example

3 Input 1 Output with 2 data sets:

2 3 1

1 1 1

0

1 0 1

1

... splits the data into a test and a training data set (option)

... shuffles the data sets (option)

For the data set 'SunSpotsRaw-1980-2006.txt' we make the following settings:

Number of Input dim. : for example '6' means that 6 monthly mean values are input while
the seventh serves as output

Minimum Output Value : desired Minimum Output value after Scaling (here: 0.0)

Maximum Output Value : desired Maximum Output value after Scaling (here: 1.0)

Fraction of data for training : Fraction of the data set that is used for the network training
(here: 0.7, i.e. 70 % of the data are allocated for training)

Fraction of data for testing : Fraction of the data set that is used for the network testing
(here: 0.3, i.e. 30 % of the data are allocated for training)

Shuffle : shuffle order of the data, i.e. scramble the data sequence

Scale :

For this example

min = 0.0, max = 200.3 (estimated from the data)

(Desired) Minimum Output Value = 0

(Desired) Maximum Output Value = 1

Scaled Value = (Input Value - Minimum) / (Maximum - Minimum)

For this example:

Page 4 of 21

FANNTool 1.0 User's Guide

Scaled Value = (Input Value – 0,0) / (200.3 - 0.0)

And the reverse way (descaling):

Input Value = (Scaled Value *(200.3 - 0.0)) + 0.0

In the Time series Data Processing dialog you can switch between two types of graphs:

(1) Histogram (rather crude sketch)

(2) X-Y plot

Data File Name: Enter path and file name stem for the storage of the FANN formatted
training and test data. For example : 'Out' produces

'Out-train.dat' : Training Data File

'Out-test.dat' : Test Data File

'Out-scale.txt' : Text File contain Scaling Parameters

Page 5 of 21

FANNTool 1.0 User's Guide

Data example #2 : multiple regression

There is a another Raw data format which is matrix-like. Each line includes both input and
output data. Here the output data are contained in the last columns.

In the example data file 'ParkinsonRaw.txt' file there are 23 columns, where the first 22
columns are the input dimensions and the 23rd column contains the output data.

The dataset was created by Max Little of the University of Oxford, in collaboration with the
National Centre for Voice and Speech, Denver, Colorado, who recorded the speech
signals. The original study published the feature extraction methods for general voice
disorders.

The file consists of 23 element ASCII records whose fields have the following physical
meaning:

Rec Variable Meaning

1 MDVP:Fo(Hz) Average vocal fundamental frequency

2 MDVP:Fhi(Hz) Maximum vocal fundamental frequency

3 MDVP:Flo(Hz) Minimum vocal fundamental frequency

4 MDVP:Jitter(%) \

5 MDVP:Jitter(Abs)

6 MDVP:RAP Several measures of variation in fundamental frequency

7 MDVP:PPQ

8 Jitter:DDP /

9 MDVP:Shimmer \

10 MDVP:Shimmer(dB)

11 Shimmer:APQ3

12 Shimmer:APQ5 Several measures of variation in amplitude

13 MDVP:APQ

14 Shimmer:DDA /

15 NHR Measure #1 of ratio of noise to tonal components in the voice

16 HNR Measure #2 of ratio of noise to tonal components in the voice

17 RPDE Nonlinear dynamical complexity measure #1

18 D2 Nonlinear dynamical complexity measure #2

19 DFA Signal fractal scaling exponent

20 Spread1 \

21 Spread2 Nonlinear measures of fundamental frequency variation

22 PPE /

23 Status Health status of the subject (one) - Parkinson's, (zero) – healthy

Page 6 of 21

http://www.eng.ox.ac.uk/samp/members/max/home/index.html
http://archive.ics.uci.edu/ml/datasets/Parkinsons

FANNTool 1.0 User's Guide

Launch FANNTool, select Data Processing and load the 'ParkinsonRaw.txt' data file.

In this window (which now looks a bit different from the data example #1) we must specify
the number of output dimensions (= # of output nodes).

Number of Output dim. : for this example '1' . It may be greater, i.e. the last n columns
are used as output values while the data in the remaining columns serve as input values.

Item No : Each column of the data matrix (= input dimension) can be scaled separately.

The remaining buttons/input fields are the same as in the preceding data example #1.

Page 7 of 21

FANNTool 1.0 User's Guide

Setting up a network for the sun spot time series data

After having converted the raw data into a FANN suitable data format one may proceed
with the definition of the network.

First load the training and test data :

File → Open Train Data File : Loads training data

File → Open Test Data File : Loads test data

After the reading of the files the number of input nodes (=dimensions) and output nodes is
shown (and remains fixed).

Page 8 of 21

FANNTool 1.0 User's Guide

Next the hidden layer/s has/have to be specified.

This number can only be altered between 3 and 5, thus the number of hidden layers is
constrained to 1, 2 or 3.

of Layer : Number of layers = Input (1) + Hidden (1 to 3) + Output (1)

so there is a minimum of 3 layers with 1 hidden layer and a maximum of 5 layers with 3
hidden layers. (Rem.: fannlib supports even more hidden layers but there is no need for it).

Hid. layer 1 : # of neurons in the 1st hidden layer

Hid. layer 2 : # of neurons in the 2nd hidden layer (# of Layer ≥ 4)

Hid. layer 3 : # of neurons in the 3rd hidden layer (# of Layer = 5)

Training Method : You can choose one of the following training algorithms:

FANN_TRAIN_INCREMENTAL: Standard backpropagation algorithm in pattern
mode: the weights are updated after each training pattern. This means that the
weights are updated many times during a single epoch. For this reason some
problems, will train very fast with this algorithm, while other more advanced problems
will not train very well.

FANN_TRAIN_BATCH: Standard backpropagation algorithm in batch mode: the
weights are updated after calculating the mean square error for the whole training
set. This means that the weights are only updated once during an epoch. This raises
the problem the algorithm will converge slower. But since the mean square error is
calculated more correctly than in incremental training, some problems will reach a
better solutions with this algorithm.

FANN_TRAIN_RPROP: A more advanced batch training algorithm which achieves
good results for most problems. The RPROP training algorithm is adaptive, and does
therefore not use a fixed learning_rate. Some other parameters can however be set
to change the way the RPROP algorithm works, but it is only recommended for users
with insight in how the RPROP training algorithm works. The RPROP training
algorithm is described by [Riedmiller and Braun, 1993], but the actual learning
algorithm used here is the iRPROP- training algorithm which is described by [Igel and
Husken, 2000] which is a varient of the standard RPROP training algorithm.

FANN_TRAIN_QUICKPROP: A more advanced batch training algorithm which
achieves good results for many problems. The quick propagation (quickprop) training
algorithm uses the learning_rate parameter along with other more advanced
parameters, but it is recommended to change these advanced parameters by users
with insight in how the quickprop training algorithm works only. The quickprop
training algorithm is described by [Fahlman, 1988].

Page 9 of 21

FANNTool 1.0 User's Guide

Activation Function Hidden : Hidden Layer Activation Function
Activation Function Output : Output Layer Activation Function

The graphic below shows a sketch of the sigmoid function with different (0.25, 0.5, 1)
steepness values.

In the Fine Tuning section you will see the Steepness option. The figure above illustrates
the effect of varying this value on the steepness of the transition from the function's (here:
FANN_SIGMOID) minimum to its maximum value. The smaller the steepness becomes
the more linear the transfer function behaves. And reversely the larger the steepness is
chosen the more the smooth sigmoid function approaches a step function. For more
details see here. FANNTool allows to choose different step functions from a huge variety
(see FANN documentation http://leenissen.dk/fann/html/files/fann_data-
h.html#fann_activationfunc_enum).

Page 10 of 21

http://leenissen.dk/fann/html/files/fann_data-h.html#fann_activationfunc_enum
http://leenissen.dk/fann/html/files/fann_data-h.html#fann_activationfunc_enum
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-10.html

FANNTool 1.0 User's Guide

Network training

Neural Network → Detect → Optimum Training Algorithm: Each possible
Training Algorithm is used for several epochs. All other parameters are fixed and the

weight initialization is identical. The Training Algorithm showing the lowest MSE is picked.

Neural Network → Detect → Optimum Activation Functions: Each possible
Activation Function is used for several epochs. All other parameters are fixed and

the weight initialization is identical. The Activation Function yielding the lowest MSE is
picked.

Neural Network → Train → Normal: Fixed topology training. The size and topology
of the ANN is determined in advance and the training alters the weights in order to

minimize the difference between the desired output values and the actual output values.
This kind of training is supported by fann_train_on_data.

Neural Network → Train → Cascade: Evolving topology training. The training
starts with an empty ANN, only consisting of input and output neurons. Hidden

neurons and connections are added during training, in order to reach the same goal as for
fixed topology training. This kind of training is supported by FANN Cascade Training.

Stop Function : Stop criterion used during training.

FANN_STOPFUNC_MSE: Stop criterion is Mean Square Error (MSE) value.

FANN_STOPFUNC_BIT: Stop criterion is the number of bits that fail. 'Number of bits'
means the number of output neurons which differ more than the bit fail limit.

Epoch Between Reports : The number of epochs between printing the status to the Log
(file) and Graphic (window)

Max Epoch : The maximum number of training epochs

Page 11 of 21

FANNTool 1.0 User's Guide

The Main Window after the training with the Graph tab

.... and with the Log tab opened.

Page 12 of 21

FANNTool 1.0 User's Guide

Tabs in the main window

Log (see above)

All the text output written this section.

 Clear Log clears the log screen

Save Log saves the content of the Log window to a text file.

Open Log optionally loads the log from a (saved) text file

Graphic (see above)

Plots a MSE vs. Epoch graph during the training. If OCS is not activated the plotted MSE
is the MSE for the training data only. İf OCS is activated the mean of the MSE for the
training data and the MSE for testing is used. You can also see the numeric MSE values at
the bottom of the graphic window.

Cascade Tuning

Cascade training differs from ordinary training in the sense that it starts with an empty
neural network and then adds neurons one by one, while it trains the neural network. The
main benefit of this approach, is that you do not have to guess the number of hidden
layers and neurons prior to training, but cascade training have also proved better at
solving some problems.

The basic idea of cascade training is that a number of candidate neurons are trained
separate from the real network, then the most promising of these candidate neurons is
inserted into the neural network. Then the output connections are trained and new
candidate neurons is prepared. The candidate neurons are created as shortcut connected
neurons in a new hidden layer, which means that the final neural network will consist of a
number of hidden layers with one shortcut connected neuron in each. For detailed
information about the parameters consult the FANN documentation
(http://leenissen.dk/fann/html/files/fann_cascade-h.html#Parameters).

Page 13 of 21

http://leenissen.dk/fann/html/files/fann_cascade-h.html#Parameters

FANNTool 1.0 User's Guide

FineTuning

In this tab several parameters which are linked to the learning stage can be (if necessary)
adapted and fine-tuned.

Page 14 of 21

FANNTool 1.0 User's Guide

The meaning of the parameters is briefly summarized here:

Quickprop Decay Factor: The decay is a small negative valued number which is the factor
that the weights should become smaller in each iteration during quick propagation training.
This is used to make sure that the weights do not become too high during training.

The default decay is -0.0001.

Quickprop Mu Factor: The mu factor is used to increase and decrease the step-size during
quickprop training. The mu factor should always be above 1, since it would otherwise
decrease the step-size when it was suppose to increase it.

The default mu factor is 1.75.

RPROP Increase Factor: The increase factor is a value larger than 1, which is used to
increase the step-size during RPROP training.

The default increase factor is 1.2.

RPROP Decrease Factor: The decrease factor is a value smaller than 1, which is used to
decrease the step-size during RPROP training.

The default decrease factor is 0.5.

RPROP Minimum Step-Size: The minimum step-size is a small positive number
determining how small the minimum step-size may be.

The default value delta min is 0.0.

RPROP Maximum Step-Size: The maximum step-size is a positive number determining
how large the maximum step-size may be.

The default delta max is 50.0.

Desired Error (MSE): desired mean squared error of the network.

Bit Fail Limit: The number of fail bits, i.e. the number of output neurons which differ more
than the bit fail limit.

Hidden Activation Steepness:
Output Activation Steepness:

The steepness of an activation function describes how fast the activation function goes
from the minimum to the maximum. A large value yields a steep activation function.

When training neural networks where the output values should be at the extremes (usually
0 and 1, depending on the activation function), a steep activation function can be used
(e.g. 1.0).

The default activation steepness is 0.5.

Page 15 of 21

FANNTool 1.0 User's Guide

Learning Rate: The learning rate is used to determine how aggressive training should be
for some of the training algorithms (FANN_TRAIN_INCREMENTAL,
FANN_TRAIN_BATCH, FANN_TRAIN_QUICKPROP). Do however note that it is not used
in FANN_TRAIN_RPROP.

The default learning rate is 0.7

Momentum: The learning momentum can be used to speed up
FANN_TRAIN_INCREMENTAL training. A too high momentum will however not benefit
training. Setting momentum to 0 will be the same as not using the momentum parameter.
The recommended value of this parameter is between 0.0 and 1.0.

The default momentum is 0.

Connection Rate: The connection rate controls how many connections there will be in the
network. If the connection rate is set to 1, the network will be fully connected, but if it is set
to 0.5 only half of the connections will be set.

Shuffle Train Data: Shuffles training data, randomizing the order. This is recommended for
incremental training, while it have no influence during batch training.

Initialize the weights (Widrow+Nguyen Alg.): Initialize the weights using the Widrow +
Nguyen’s algorithm. This function behaves similar to fann_randomize_weights(). It will use
the algorithm developed by Derrick Nguyen and Bernard Widrow to set the weights in such
a way as to speed up training. This technique is not always successful, and in some cases
it can be less efficient than a purely random initialization.

Error Function: Error function to be minimized during training.

FANN_ERRORFUNC_LINEAR: Standard linear error function.

FANN_ERRORFUNC_TANH: Tanh error function, usually better but can require a lower
learning rate. This error function aggressively targets outputs that differ much from the
desired value, while not targeting outputs that differ slightly only. This error function is not
recommended for cascade training and incremental training.

Overtraining Caution System (OCS): When selected a test data (=data being independent
of the ANN training) file has to be loaded too. During the training you can watch the test
data's and the training data's MSE values. The training will stop if the overall MSE (=MSE
OCS), i.e. the arithmetic mean of the test and training data MSE,

MSE OCS = (MSE(Training) + MSE (Test)) / 2

will show an increase. An increasing MSE OCS indicates a decreasing generalization
capability of the network. During the training the graph of the MSE OCS is plotted in the
Graphic window.

Page 16 of 21

FANNTool 1.0 User's Guide

Saving trained Neural Networks

After the regular end of a training or when it was stopped by the user, the program

asks the user wether to save the network:

When answering with 'yes' the Save ANN dialog opens. Simply choose the ANN You want
to save then click Save ANN:

Latest ANN: ANN when training stopped

Minimum Training MSE: minimum MSE value with Training Data During training
process

Minimum Testing MSE: minimum MSE value with Testing Data During training
process (if OCS was activated)

Minimum OCS MSE: minimum mean MSE value with Testing and Training Data
During training process (if OCS was activated)

A trained network can be Run inside FANNTool in two ways

Run : One can Run a trained ANN within the FANNTool by using 2 methods:

First method: Neural Network → Run → Normal : Simply select saved ANN file. Then
the Run ANN dialog opens. Add input values and then click the Run button and see the
answer of the ANN in the output section. All inputs must be scaled. Output received there
are descaled to real values.

Page 17 of 21

FANNTool 1.0 User's Guide

Second method: Write scaled data in a FANN compatible data format file (see above).
Now load this file to the test data section(File → Open Test Data File). Now use the
stored ANN: Neural Network → Run → with File. The result of the recall is written to the
Log screen.

Page 18 of 21

FANNTool 1.0 User's Guide

Neural Network Information

Obtain information about the saved ANN files: simply select an ANN file and the

Neural Network information dialog opens up and You can see the network's structure,
some parameters and selected weight of the ANN .

Page 19 of 21

FANNTool 1.0 User's Guide

Recall result for the sun spot time series example

After the training of the sun spot data the network was saved to the file 'SunSpots.net'.
Next the whole(!) raw data was imported again and stored in a scaled version without(!)
shuffling the data. The Fraction of Data for Training field was set to 1.0 prior to export.
Finally the '*-train.dat' data set was loaded into the Test Data File field. Next Neural
Network → Run → with File was selected and the trained network 'SunSpot.net' was
selected. The network's responses together with the desired responses appeared in the
Log window and were stored in an ASCII data file. Those data maybe imported into MS
Excel or OpenOffice Calc for a rescaling or they may be plotted directly with gnuplot (see
below).

Page 20 of 21

FANNTool 1.0 User's Guide

Concluding remarks

The range of possible applications of Artificial Neural Networks is huge and nowadays they
are used quite frequently. The software FANNTool will hopefully encourage more scientists
and non-scientists to look into the subject. This guide briefly describes how to use this
program and it does not claim to be complete or absolutely clear nor will the software be
bug-free. If You encounter any problems or if You have any suggestions please feel free to
contact us by email, we will be happy if we can help You.

All data and net files mentioned above are distributed with this documentation. We
recommend to use these examples to learn more about FANNTool and to practice it
intensively.

More examples can be pulled from my Blog which is written in turkish(!) language

Letter recognition
Nodule count determination in spherical cast irons
Classification of heart disease
Eye finding by using an ANN
Blood donation prediction by using ANN
ANN playing Tic Tac Toe
FANNTool publications

BlueKid

Page 21 of 21

http://derindelimavi.blogspot.com/2008/06/gz-bulma-i.html
http://derindelimavi.blogspot.com/2007/07/kgdd-lerde-nodul-says-tespiti.html
http://derindelimavi.blogspot.com/search/label/FANN
http://derindelimavi.blogspot.com/2008/02/yapay-zeka-tbbn-hizmetinde-1.html
mailto:bluekid70@gmail.com
http://derindelimavi.blogspot.com/2007/07/ysa-ile-tic-tac-toe.html
http://derindelimavi.blogspot.com/2009/05/ysa-ile-kan-bags-tahmini.html
http://derindelimavi.blogspot.com/2006/04/harf-tanma-bir-ysa-uygulamas.html
http://derindelimavi.blogspot.com/

