A role-based component architecture for
computer assisted interventions: illustration for
electromagnetic tracking and robotized motion

rejection in flexible endoscopy.

Release 2.00

Jean-Baptiste Fasquell, Guillaume Chabrel, Philippe Zanne?, Stéphane Nicolau?,
Vincent Agnusl, Luc Solerl, Michel de Mathelin? and Jacques Marescauxt

July 3, 2009

1Computer Science Research and Development Department, IRCADgFranc
2University of Strasbourg, France

Abstract

This paper presents an original role-based software athite facilitating the flexible composition,
configuration and collaboration of separated componerttseifield of computer assisted interventions.
Roles, which can be seen as methods dynamically attachdijetcts, are embedded in components, to
limit build level dependencies and improve flexibility. Ap@opriate component definition and com-
position language is proposed to declare softwares, withioy specific initialization or glue code, this
remaining a challenging issue in component oriented prograg. The potential of this architecture
is illustrated for a software coupling electromagnetickiag with a robotized system dedicated to the
physiological motion rejection in flexible endoscopy. Téistware consists in several independent com-
ponents with are combined at runtime thanks to a concise Xisléed declaration.

Contents

1 Introduction 1
2 Architecture 2
3 Illustration 6
4 Discussion 7

1 Introduction

This paper faces the design of a framework for the rapid prototypingfbivares in computer assisted
interventions, this being currently an active area of intef@stijith existing open source IGT architectures

such as CISST, Slicer IGT[6] or IGSTK[4].

The main originality of the proposed C++ cross-platform (Windows, LifMac Os X) architecture relies
in the coupling of a component approach with the notion of role-basedaroging B] in this application.
Roles define the composition by dynamically associating different tasks t@the sonceptual entity al-
though they are defined in separated code elements, similarly to dynamic inberi&uch a mechanism is
not supported by traditional object oriented languages and in particuldrebC++ language traditionally
used in our application domain for runtime performances reasons. Rofgatiosn facilitates component
collaboration as component instances share a common data supportsghebject). Component orienta-
tion aims at removing, thanks to role abstraction, build level dependaries [

On top of this approach, we propose a congiemponent definition and composition languggkfacili-
tating the definition of applications independently from the implementation languatt@ut any specific
glue code and therefore with a high degree of flexibility, this being challgn§in

Compared to our previous worE][this paper presents to two main improvements. In terms of architecture,
we simplified both class distributions (e.g. merging of b&thPt Ser vi ce andExt Ser vi ce) and the XML-
based description formalism. Moreover, specific initialization or glue cod& iequired anymore, allowing

to entirely define applications with a pure XML-based declaration. In ternfignationality, compared to

[5], the application field is extended to robotized system management combinedwirora-based
electromagnetic trackind.].

2 Architecture

As traditionally considered in component oriented programming, the prdgoseework is based on a
strong separation between dabage objectdirectly inheriting from the : [ayer:: Obj ect in fig. 1, being
data container restricted to getters and setters) and functionaséegdes being implementations of the
. layer:: I Service interface in fig.1).

layer |
named attributes - " .
0. IService ObjectRegistry
~ stop() communication
setConfiguration(cfg : XML)
configure()
AN
io

IReader

aurora | anubis

Tube Reader

Figure 1: Simplified UML class diagram of the architecture (tlager package being the core of the
architecture). Theo package defines a functionality tydeRéader), while aur or a package (only partially
described for clarity) represents an implementation package (a spea@oobgect Tube) and a specific
service Reader)). Theanubi s content is not detailed for clarity.

Services (roles) can be dynamically associated to a base object, usooglealievel, a generic invocation

such as:::layer::add(myCoject,"::io::IReader","::aurora::Reader"), wheremyQbj ect is an
instance of : aurora: : Tube, and will play the: ;i o0:: | Reader role type. Note that the notion of service
type facilitates both code factorization and object classification (usefubtimnm some tasks according
to the type, independently from effective low-level implementations). Sersiate (attributes’ value) is
defined using an XML like structure passed as parameger (i ce: : set Confi guration(cfg: XM.) and

| Servi ce: : configure() methods in figl).

<plugin id="aurora">

<library name="libAurora"/>

<point id="::aurora::Reader" schema="AuroraReader.xsd">
<inpl ements>::io::|Reader</inpl enents>
<inpl enent s>:: aurora:: Tube</i npl ement s>

</ poi nt >

</ pl ugi n>

Figure 2: Example of component description file contepi nt declares, with a uniform formalism,
that:: aurora:: Reader inherites from: :io0::|Reader and can play a reading role for objects of type
:raurora:: Tube.

Component =V — —T — ——
distribution | TYARP 1Y ’7 i layer |J
JA

Component
defintion

Component

composition newType

& configuration

Figure 3: The complexity of the component distribution (top) is hidden by the_Xslsed graph provided
by their descriptions (middle). Applications (bottom) can be seen as new(tygés/ pe, see figuret for full
declaration), possibly declared in separated componentsifgipp), consisting in particular compositions
and configurations of base objects and services. Notenifgp can be restricted to a description file
only (i.e. no dynamic library). All together forms a uniform object-oriente@ Igcaph integrating both
definitions and new declarations. Thanks to ith@l ement s XML statement,Reader seems to inherite
from Tube, although it concerns role declaration only.

At initialization (I Servi ce: : start () method in fig.1), a service can dynamically affect shared attributes
(optional attributesH]) to its base object (natively restricted to hard-coded intrinsic attrib@ies [

At runtime, depending on the functionality, a service can perform compuogatising its own attributes,
intrinsic attributes of its base object, or even a combination of all. If the seexeeution depends on
attributes of another service, it is preferable (inter-service indepeyji¢hat this other service exports the
required attributes to its base object, as shared attributes. Therefoneidheofithe base object’s intrinsic
and shared attributes represent the data support for service exe@uioSer vi ce: : updat e() method in
fig. 1). Service execution ordering (chaining) can be managed in a generitemasing a list of identifiers

(explicit chaining, as each service can be retrieved from a unique identifier (e.g. itwodaoking like
. layer::get(nyQbject, serviceU D)->update()). Chaining can also be impliciiriiplicit chaining
using the event-based collaboration mechanism previously descEp@aimuni cat i on entity in fig. 1).

Thanks to the abstraction provided by treyer (e.g.add, get methods andiSer vi ce API), we can avoid
build level inter-service dependencies by embedding services in comgdBEnA component is defined

by a XML description file (e.g. see figud, (optionally) coupled with a dynamic library and ressources
(e.g. icons,...), being bundled into a single entity (e.g. a directory of a filesyst€he dynamic library
embeds the implementation of a (set of) service(s) defined in the XML déseariile. When requesting

an attachement (e.g: | ayer: : add(nyQbj ect,"::io0::1Reader","::aurora::Reader")), the compo-
nent management system (wrapped inlthger package) analyzes the description files of the component
distribution, loads the appropriate dynamic library (d.gbAur or a) to instanciate the appropriate service
and finally to store the resulting association in théayer: : Obj ect Regi stry (singleton storing all in-
stanciated base objects and attached services). The formalism usedribedesmponentscOomponent
definition languaggleads to a graph (see figusg similar to an inheritance hierarchy (where each class is
declared with a XML element nameadi nt). Such a graph-based representation appears more concise and
structured than previoushb], and hides the complexity and the specificity of the component distribution
(as illustrated by figur8).

<extension id="newType" inplenments="::aurora:: Tube" >
<obj ect uid="root" type="::aurora:: Tube">

<service uid="reader" type="::io0::1Reader" inplenmentation="::aurora::Reader" >
<l ocation>...</location>
</service>

<service uid="render" type="::render::IRender" inplenentation="::aurora::Render" >
<wi ndow i d="900"/ >
</ service>
<service uid="tracker" type="::tracker::|Tracker" inplenentation="::aurora::Tracker" />
<service type="::qgui::lAspect" inplenentation="defaultAspect" >
<wi ndows>
<wi ndow i d="900"/ >
</w ndows>
</ service>
<start type="::gui::|Aspect" />
<start uid="tracker" />
<start uid="reader" />
<update uid="reader" />
<stop uid="tracker" />
<stop type="::gui::|Aspect" />
</ obj ect >
</ ext ensi on>

Figure 4. XML-based software declaration: Aurora-based electroptagtracking {r acker), including
3D rendering ((ender) in a specific view (corresponds to the left side of the snap shot givig.id). The
.. aurora:: Tube base object is a set of points, their position being modified by the trackelyimg@D
rendering refresh (implicit chaining).

On top of this, new types (i.e. base objects with specific service attachembatgedormed at instanciation
time) can be defined using a dedicated XML declaratimm(position language as illustrated in figure
4. The root XML elemengxt ensi on enables to integrate this declaration into the graph resulting from
component definition, leading to a uniformization of both definitions and coitipos. Note that optional

XML elements can specify services to stattgrt statement) and executgpfat e statement) when ending
instanciation, and those to stoft fp statement) when destroying the object (taking the declaration order
into account). Compared to our previous wabk [such a declaration is used to define a complete software
(evaluated for the VR-Render freewagd)[using a generic launcher (the root object type, egwType,

being a parameter), independent from any component (dependencylltmiteel ayer entity) and without

glue code. Note that service existence and attachment compliance akecthieough a graph analysis.
Services’ state (children afer vi ce-named XML elements) can be checked using XSD schemas provided
as component ressource files and specified XML descriptionsgehgma attribute value opoi nt XML
element in figure?).

<extension id="illustration" inplements="::layer::Chject" >

<obj ect uid="root" type="::layer::Object">

<obj ect uid="aurora" type="::aurora:: Tube">
<service uid="reader1" type="::io::|Reader" inplenentation="::aurora::Reader" >
<l ocati on>xxx</ | ocati on>
</ service>

<service uid="render" type="::render::IRender" inplenentation="::aurora::Render" >
<wi ndow i d="900"/ >
</ service>
<service uid="tracker" type="::tracker::|Tracker" inplenentation="::aurora::Tracker" />
</ obj ect >
<obj ect ui d="anubi s" type="::anubis:: Robot">
<service uid="reader2" type="::io::|Reader" inplenmentation="::anubis::Reader" />
<service uid="motionFilter" type="::layer::IControler" inplenmentation="::anubis::Mtion" >
<ui d>s1</ ui d>
<ui d>s2</ ui d>
<ui d>s3</ ui d>
</ service>
<service uid="sl1" type="::tracker::|Tracker" inplenentation="::anubis::Tracker"/>
<service uid="s2" type="::anubis::|Conmand" inplenmentation="::anubis::Command"/>
<service uid="s3" type="::fwRender::IRender" inplenentation="::anubis::Imge">
<wi n gui Cont ai ner| d="902" />
</ service>
<service uid="Ctrl" type="::qgui::lEditor" inplementation="::anubis::HeadDriver">
<wi n gui Cont ai nerld="901" />
</ service>
</ obj ect >
<service type="::gui::lAspect" inplenentation="defaul t Aspect" >
<wi ndows>
<wi ndow i d="900"/ >
<wi ndow i d="901"/ >
<wi ndow i d="902"/ >
</ wi ndows>
</service>
<start type="::gui::lAspect" />

<stop type="::gui::lAspect" />
</ obj ect >
</ ext ensi on>

Figure 5: XML-based declaration of the application managing the robotiegiblk endoscopeafubi s)
coupled with the tracking systerauf or a).

3 lllustration

The XML declaration of the application considered in this paper is given diyrdi5. Figure 6 (resp.
7) concerns the experimental setup (resp. the software). 8uathi s andaur or a objects are declared
as independent elements composing the applicatioh object. This root object has only ohéspect
service in charge of configuring the overall layout of the GUI. The adithe previousewType declaration
(figure 4) has been entirely reused without any code modification or specific glie co

4 Bending tip

Figure 6: Experimental setup related to the system managed by the applisatgmsiiot in fig7).

Theaur or a object focuses on the monitoring of flexible endoscope motion using anategnetic track-
ing system: a set of sensor coils are regularly placed on a cathetanr ¢ra: : Tube in figure 5) which

is introduced in a channel of the flexible endoscope. Associated semwéérm tracking as well as 3D
rendering (both r acker andr ender services in figur®) in a predefined view area of the application (right
panel in fig. 7, corresponding to the window identifi@00 in the declaration). For this functionality, the
native event-based mechanism is used to synchronize both trackingradeting (similarly to the IGSTK
approach4] with notions ofSpat i al Transf or mandSpat i al Qbj ect).

The anubi s object is mainly dedicated to motion cancelation in flexible endoscopy, in the afase
the robotized system described ih0. This system is represented by a specific base object (of type
. ranubi s: : robot), which mainly consists in data related to both motors and the image (video) being
visualized by the head of the endoscope. A tracking service performadghal tracking ¢1 in fig. 5),

and a command servicaq in fig. 5) controls endoscope motors. GUI aspects have been implemented
in separated services, preserving the control ladpands?2) from the GUI specificity, regarding both the
video rendering and the interactive definition of the target to be trad@ih fig. 5). In addition to motion
filtering, the user can control the orientation of the head of the flexiblesmmge ¢t r | in fig. 5). Due to

the video frame rate, a complete control loop cycle must be shorter than 4Ban#his reason, a control
service (oti onFilter in figure5), triggered by video acquisition ¢ader 2 in figure 5), manages both
control loop and video rendering refresh (explicit chaining). As esimg) is optional, the3 service is ex-
ecuted only if enough time remains. Despite the proposed abstraction (wethko reduce performances
due to indirections), it has been observed that runtime performancescangpliant with requirements. In

our sense, this is facilitated by the role orientation, as services collaboratgtha direct access to their
common base object content, preserving performances. Indirections roostgrn system initialization
(e.g. service attachement and configuration) and observation bakszbcations (which can be, as for the
considered control loop, replaced by explicit chaining, dependingguired reactivity).

Start/Stop —

Figure 7: Snapshot of the illustrative application. Lef panel: part dégticeo the robotized system, in-

cluding endoscopic view (with tracked target in green), endoscopkdmdrol (both sliders) and button to

start/stop themt i onFi | t er service (see XML declaratiob). Righ panel: part dedicated to 3D rendering
of the catheter deformation tracked by the Aurora system.

4 Discussion

In our sense, the strength of the role orientation in the presented fraknstoat component composition is
natively supported (common data support), as well as behavioral calladmousing the integrated observer
design pattern (used in the illustration for electromagnetic tracking). Compaistraction and (build
level) independencies facilitate application prototyping with a concise XMlladatton without specific
glue code or initialization code. Due to direct access to the base objectmisdhat such an architecture,
despite its abstraction, can be advantageously used for critical applicationss the one presented here.
Besides, due to the well structured organization of base objects andesgrincluding communications
and, at service level, the state pattern, any application can be easily mdmitaorgtime. Such monitoring
capability appears essential for debugging and could be avantageseslyor managing safety, this being
critical in softwares dedicated to computer assisted interventions.

References

[1] http://www.ndigital.com/medical/aurora.php, 2009.
[2] VR-Render, http://www.ircad.fr/softwares/vr-render/software, #999.4

References 8

[3]

K. Cleary, S. Aylward, P. Kazanzides, K. Vosburgh, R. Ellidpdncan, K. Farahani, H. Lemke, T. Pe-
ters, WB. Lorensen, D. Gobbi, J. Haller, LL. Clarke, S. Pizer, RldayR. Jr Galloway, G. Fichtinger,

N. Hata, K. Lawson, C. Tempany, R. Kikinis, F. Jolesz, S. Dimaio, anduKapChallenges in image-

guided therapy system desigdeuroimagepages 144-151, 2001.

[4] A. Enquobahrie, D. Gobbi, M. Turek, P. Cheng, Z. Yaniv, F.dseth, and K. Cleary. Designing

[5]

[6]

tracking software for image-guided surgery applications: IGSTK egpee.International Journal of
Computer Assisted Radiology and Surgé&p):395—-403, 20081, 3

J.-B. Fasquel, J. Waechter, L. Goffin, S. Nicolau, V. Agnus, dleg§ and J. Marescaux. A XML based
component oriented architecture for image guided surgery: illustratiothéovideo based tracking
of a surgical tool. Innsight Journal, Workshop on Systems and Architectures for Compstested
Interventions, 11th International Conference on Medical Image Caimgpuand Computer Assisted
Intervention 2008.1, 2, 4

N. Hata, S. Piper, F. Jolesz, C. Tempany, P. Black, S. Morikawé#séki, M. Hashizume, and R. Kiki-
nis. Application of open source image guided therapy software in MR-dutterapies. Irinterna-
tional Conference on Medical Image Computing and Computer Assistenvémtion 2007. 1

[7] A Kapoor, A. Deguet, and P. Kazanzides. Software componemisrameworks for medical robot

[8]

[9]

[10]

control. InProceedings of the 2006 IEEE International Conference on RobotidsAariomation
pages 3813-3818, 2006.

B.B. Kristensen and K. Osterbye. Roles: conceptual abstractiamtland practical language issues.
Theory and Practice of Object Syster@sl43—-160, 19961, 2

K.-K. Lau and Z. Wang. Software component modelEEE Transactions on software engineering
33(10):709-724, 20071

l. Ott, F. Nageotte, P. Zanne, and M. de Mathelin. Simultaneous phgsalanotion cancellation and
depth adaptation in flexible endoscopNeEE Transactions on Biomedical Engineerjmpges 1-4,
2009.3

	Introduction
	Architecture
	Illustration
	Discussion

