
A role-based component architecture for
computer assisted interventions: illustration for
electromagnetic tracking and robotized motion

rejection in flexible endoscopy.
Release 2.00

Jean-Baptiste Fasquel1, Guillaume Chabre1, Philippe Zanne2, Stéphane Nicolau1,
Vincent Agnus1, Luc Soler1, Michel de Mathelin2 and Jacques Marescaux1

July 3, 2009

1Computer Science Research and Development Department, IRCAD, France
2University of Strasbourg, France

Abstract

This paper presents an original role-based software architecture facilitating the flexible composition,
configuration and collaboration of separated components inthe field of computer assisted interventions.
Roles, which can be seen as methods dynamically attached to objects, are embedded in components, to
limit build level dependencies and improve flexibility. An appropriate component definition and com-
position language is proposed to declare softwares, without any specific initialization or glue code, this
remaining a challenging issue in component oriented programming. The potential of this architecture
is illustrated for a software coupling electromagnetic tracking with a robotized system dedicated to the
physiological motion rejection in flexible endoscopy. Thissoftware consists in several independent com-
ponents with are combined at runtime thanks to a concise XML-based declaration.

Contents

1 Introduction 1

2 Architecture 2

3 Illustration 6

4 Discussion 7

1 Introduction

This paper faces the design of a framework for the rapid prototyping of softwares in computer assisted
interventions, this being currently an active area of interest [3], with existing open source IGT architectures



2

such as CISST[7], Slicer IGT[6] or IGSTK[4].

The main originality of the proposed C++ cross-platform (Windows, Linux,Mac Os X) architecture relies
in the coupling of a component approach with the notion of role-based programming [8] in this application.
Roles define the composition by dynamically associating different tasks to the same conceptual entity al-
though they are defined in separated code elements, similarly to dynamic inheritance. Such a mechanism is
not supported by traditional object oriented languages and in particular by the C++ language traditionally
used in our application domain for runtime performances reasons. Role orientation facilitates component
collaboration as component instances share a common data support (the base object). Component orienta-
tion aims at removing, thanks to role abstraction, build level dependancies [9].

On top of this approach, we propose a concisecomponent definition and composition language[9] facili-
tating the definition of applications independently from the implementation language, without any specific
glue code and therefore with a high degree of flexibility, this being challenging [9].

Compared to our previous work [5], this paper presents to two main improvements. In terms of architecture,
we simplified both class distributions (e.g. merging of bothExtPtService andExtService) and the XML-
based description formalism. Moreover, specific initialization or glue code is not required anymore, allowing
to entirely define applications with a pure XML-based declaration. In terms offunctionality, compared to
[5], the application field is extended to robotized system management combined withan Aurora-based
electromagnetic tracking [1].

2 Architecture

As traditionally considered in component oriented programming, the proposed framework is based on a
strong separation between data (base object, directly inheriting from the::layer::Object in fig. 1, being
data container restricted to getters and setters) and functionalities (services, being implementations of the
::layer::IService interface in fig.1).

layer

IService

update()
start()
stop()
setConfiguration(cfg : XML)
configure()

Object

ObjectRegistry

io

IReader

named attributes

0..1

0..*

1 0..*

aurora

ReaderTube

communication

anubis

Figure 1: Simplified UML class diagram of the architecture (thelayer package being the core of the
architecture). Theio package defines a functionality type (IReader), whileaurora package (only partially
described for clarity) represents an implementation package (a specific base object (Tube) and a specific
service (Reader)). Theanubis content is not detailed for clarity.

Services (roles) can be dynamically associated to a base object, using, atcode level, a generic invocation



3

such as:::layer::add(myObject,"::io::IReader","::aurora::Reader"), wheremyObject is an
instance of::aurora::Tube, and will play the::io::IReader role type. Note that the notion of service
type facilitates both code factorization and object classification (useful to perform some tasks according
to the type, independently from effective low-level implementations). Service state (attributes’ value) is
defined using an XML like structure passed as parameter (IService::setConfiguration(cfg:XML) and
IService::configure() methods in fig.1).

<plugin id="aurora">
<library name="libAurora"/>
<point id="::aurora::Reader" schema="AuroraReader.xsd">
<implements>::io::IReader</implements>
<implements>::aurora::Tube</implements>

</point>
</plugin>

Figure 2: Example of component description file content:point declares, with a uniform formalism,
that ::aurora::Reader inherites from::io::IReader and can play a reading role for objects of type
::aurora::Tube.

Figure 3: The complexity of the component distribution (top) is hidden by the XML-based graph provided
by their descriptions (middle). Applications (bottom) can be seen as new types(newType, see figure4 for full
declaration), possibly declared in separated components (e.g.myApp), consisting in particular compositions
and configurations of base objects and services. Note thatmyApp can be restricted to a description file
only (i.e. no dynamic library). All together forms a uniform object-oriented like graph integrating both
definitions and new declarations. Thanks to theimplements XML statement,Reader seems to inherite
from Tube, although it concerns role declaration only.

At initialization (IService::start() method in fig.1), a service can dynamically affect shared attributes
(optional attributes [5]) to its base object (natively restricted to hard-coded intrinsic attributes [8]).

At runtime, depending on the functionality, a service can perform computations using its own attributes,
intrinsic attributes of its base object, or even a combination of all. If the serviceexecution depends on
attributes of another service, it is preferable (inter-service independency) that this other service exports the
required attributes to its base object, as shared attributes. Therefore the union of the base object’s intrinsic
and shared attributes represent the data support for service execution (i.e.IService::update() method in
fig. 1). Service execution ordering (chaining) can be managed in a generic manner using a list of identifiers



4

(explicit chaining), as each service can be retrieved from a unique identifier (e.g. invocation looking like
::layer::get(myObject,serviceUID)->update()). Chaining can also be implicit (implicit chaining)
using the event-based collaboration mechanism previously described [5] (communication entity in fig. 1).

Thanks to the abstraction provided by thelayer (e.g.add, get methods andIService API), we can avoid
build level inter-service dependencies by embedding services in components [5]. A component is defined
by a XML description file (e.g. see figure2), (optionally) coupled with a dynamic library and ressources
(e.g. icons,...), being bundled into a single entity (e.g. a directory of a filesystem). The dynamic library
embeds the implementation of a (set of) service(s) defined in the XML description file. When requesting
an attachement (e.g.::layer::add(myObject,"::io::IReader","::aurora::Reader")), the compo-
nent management system (wrapped in thelayer package) analyzes the description files of the component
distribution, loads the appropriate dynamic library (e.g.libAurora) to instanciate the appropriate service
and finally to store the resulting association in the::layer::ObjectRegistry (singleton storing all in-
stanciated base objects and attached services). The formalism used to describe components (component
definition language) leads to a graph (see figure3) similar to an inheritance hierarchy (where each class is
declared with a XML element namedpoint). Such a graph-based representation appears more concise and
structured than previously [5], and hides the complexity and the specificity of the component distribution
(as illustrated by figure3).

<extension id="newType" implements="::aurora::Tube" >
<object uid="root" type="::aurora::Tube">
<service uid="reader" type="::io::IReader" implementation="::aurora::Reader" >
<location>...</location>

</service>
<service uid="render" type="::render::IRender" implementation="::aurora::Render" >
<window id="900"/>

</service>
<service uid="tracker" type="::tracker::ITracker" implementation="::aurora::Tracker" />
<service type="::gui::IAspect" implementation="defaultAspect" >
<windows>
<window id="900"/>

</windows>
</service>
<start type="::gui::IAspect" />
<start uid="tracker" />
<start uid="reader" />
<update uid="reader" />
<stop uid="tracker" />
<stop type="::gui::IAspect" />

</object>
</extension>

Figure 4: XML-based software declaration: Aurora-based electromagnetic tracking (tracker), including
3D rendering (render) in a specific view (corresponds to the left side of the snap shot given infig. 7). The
::aurora::Tube base object is a set of points, their position being modified by the tracker, involving 3D
rendering refresh (implicit chaining).

On top of this, new types (i.e. base objects with specific service attachements tobe performed at instanciation
time) can be defined using a dedicated XML declaration (composition language), as illustrated in figure
4. The root XML elementextension enables to integrate this declaration into the graph resulting from
component definition, leading to a uniformization of both definitions and compositions. Note that optional



5

XML elements can specify services to start (start statement) and execute (update statement) when ending
instanciation, and those to stop (stop statement) when destroying the object (taking the declaration order
into account). Compared to our previous work [5], such a declaration is used to define a complete software
(evaluated for the VR-Render freeware [2]), using a generic launcher (the root object type, e.g.newType,
being a parameter), independent from any component (dependency limited to thelayer entity) and without
glue code. Note that service existence and attachment compliance are checked through a graph analysis.
Services’ state (children ofservice-named XML elements) can be checked using XSD schemas provided
as component ressource files and specified XML descriptions (e.g.schema attribute value ofpoint XML
element in figure2).

<extension id="illustration" implements="::layer::Object" >
<object uid="root" type="::layer::Object">
<object uid="aurora" type="::aurora::Tube">
<service uid="reader1" type="::io::IReader" implementation="::aurora::Reader" >
<location>xxx</location>

</service>
<service uid="render" type="::render::IRender" implementation="::aurora::Render" >
<window id="900"/>

</service>
<service uid="tracker" type="::tracker::ITracker" implementation="::aurora::Tracker" />

</object>
<object uid="anubis" type="::anubis::Robot">
<service uid="reader2" type="::io::IReader" implementation="::anubis::Reader" />
<service uid="motionFilter" type="::layer::IControler" implementation="::anubis::Motion" >
<uid>s1</uid>
<uid>s2</uid>
<uid>s3</uid>

</service>
<service uid="s1" type="::tracker::ITracker" implementation="::anubis::Tracker"/>
<service uid="s2" type="::anubis::ICommand" implementation="::anubis::Command"/>
<service uid="s3" type="::fwRender::IRender" implementation="::anubis::Image">
<win guiContainerId="902" />

</service>
<service uid="Ctrl" type="::gui::IEditor" implementation="::anubis::HeadDriver">
<win guiContainerId="901" />

</service>
</object>
<service type="::gui::IAspect" implementation="defaultAspect" >
<windows>
<window id="900"/>
<window id="901"/>
<window id="902"/>

</windows>
</service>
<start type="::gui::IAspect" />
...
<stop type="::gui::IAspect" />
</object>
</extension>

Figure 5: XML-based declaration of the application managing the robotized flexible endoscope (anubis)
coupled with the tracking system (aurora).



6

3 Illustration

The XML declaration of the application considered in this paper is given by figure 5. Figure 6 (resp.
7) concerns the experimental setup (resp. the software). Bothanubis andaurora objects are declared
as independent elements composing the applicationroot object. This root object has only oneIAspect
service in charge of configuring the overall layout of the GUI. The core of the previousnewType declaration
(figure4) has been entirely reused without any code modification or specific glue code.

Figure 6: Experimental setup related to the system managed by the application (snapshot in fig.7).

Theaurora object focuses on the monitoring of flexible endoscope motion using an electromagnetic track-
ing system: a set of sensor coils are regularly placed on a catheter (::aurora::Tube in figure 5) which
is introduced in a channel of the flexible endoscope. Associated services perform tracking as well as 3D
rendering (bothtracker andrender services in figure5) in a predefined view area of the application (right
panel in fig. 7, corresponding to the window identifier900 in the declaration). For this functionality, the
native event-based mechanism is used to synchronize both tracking and rendering (similarly to the IGSTK
approach [4] with notions ofSpatialTransform andSpatialObject).

The anubis object is mainly dedicated to motion cancelation in flexible endoscopy, in the caseof
the robotized system described in [10]. This system is represented by a specific base object (of type
::anubis::robot), which mainly consists in data related to both motors and the image (video) being
visualized by the head of the endoscope. A tracking service performs thevisual tracking (s1 in fig. 5),
and a command service (s2 in fig. 5) controls endoscope motors. GUI aspects have been implemented
in separated services, preserving the control loop (s1 ands2) from the GUI specificity, regarding both the
video rendering and the interactive definition of the target to be tracked (s3 in fig. 5). In addition to motion
filtering, the user can control the orientation of the head of the flexible endoscope (ctrl in fig. 5). Due to
the video frame rate, a complete control loop cycle must be shorter than 40 ms.For this reason, a control
service (motionFilter in figure 5), triggered by video acquisition (reader2 in figure 5), manages both
control loop and video rendering refresh (explicit chaining). As rendering is optional, thes3 service is ex-
ecuted only if enough time remains. Despite the proposed abstraction (well known to reduce performances
due to indirections), it has been observed that runtime performances were compliant with requirements. In
our sense, this is facilitated by the role orientation, as services collaborate through a direct access to their
common base object content, preserving performances. Indirections mostlyconcern system initialization
(e.g. service attachement and configuration) and observation based collaborations (which can be, as for the
considered control loop, replaced by explicit chaining, depending on required reactivity).



7

Figure 7: Snapshot of the illustrative application. Lef panel: part dedicated to the robotized system, in-
cluding endoscopic view (with tracked target in green), endoscope head control (both sliders) and button to
start/stop themotionFilter service (see XML declaration5). Righ panel: part dedicated to 3D rendering
of the catheter deformation tracked by the Aurora system.

4 Discussion

In our sense, the strength of the role orientation in the presented framework is that component composition is
natively supported (common data support), as well as behavioral collaboration using the integrated observer
design pattern (used in the illustration for electromagnetic tracking). Component abstraction and (build
level) independencies facilitate application prototyping with a concise XML declaration without specific
glue code or initialization code. Due to direct access to the base object, it seems that such an architecture,
despite its abstraction, can be advantageously used for critical applicationssuch as the one presented here.
Besides, due to the well structured organization of base objects and services, including communications
and, at service level, the state pattern, any application can be easily monitored at runtime. Such monitoring
capability appears essential for debugging and could be avantageouslyused for managing safety, this being
critical in softwares dedicated to computer assisted interventions.

References

[1] http://www.ndigital.com/medical/aurora.php, 2009.1

[2] VR-Render, http://www.ircad.fr/softwares/vr-render/software.php, 2009.4



References 8

[3] K. Cleary, S. Aylward, P. Kazanzides, K. Vosburgh, R. Ellis, J.Duncan, K. Farahani, H. Lemke, T. Pe-
ters, WB. Lorensen, D. Gobbi, J. Haller, LL. Clarke, S. Pizer, R. Taylor, R. Jr Galloway, G. Fichtinger,
N. Hata, K. Lawson, C. Tempany, R. Kikinis, F. Jolesz, S. Dimaio, and Kapur T. Challenges in image-
guided therapy system design.Neuroimage, pages 144–151, 2007.1

[4] A. Enquobahrie, D. Gobbi, M. Turek, P. Cheng, Z. Yaniv, F. Lindseth, and K. Cleary. Designing
tracking software for image-guided surgery applications: IGSTK experience.International Journal of
Computer Assisted Radiology and Surgery, 3(5):395–403, 2008.1, 3

[5] J.-B. Fasquel, J. Waechter, L. Goffin, S. Nicolau, V. Agnus, L. Soler, and J. Marescaux. A XML based
component oriented architecture for image guided surgery: illustration forthe video based tracking
of a surgical tool. InInsight Journal, Workshop on Systems and Architectures for ComputerAssisted
Interventions, 11th International Conference on Medical Image Computing and Computer Assisted
Intervention, 2008.1, 2, 4

[6] N. Hata, S. Piper, F. Jolesz, C. Tempany, P. Black, S. Morikawa, H. Iseki, M. Hashizume, and R. Kiki-
nis. Application of open source image guided therapy software in MR-guided therapies. InInterna-
tional Conference on Medical Image Computing and Computer Assisted Intervention, 2007.1

[7] A Kapoor, A. Deguet, and P. Kazanzides. Software components and frameworks for medical robot
control. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation,
pages 3813–3818, 2006.1

[8] B.B. Kristensen and K. Osterbye. Roles: conceptual abstraction theory and practical language issues.
Theory and Practice of Object Systems, 2:143–160, 1996.1, 2

[9] K.-K. Lau and Z. Wang. Software component models.IEEE Transactions on software engineering,
33(10):709–724, 2007.1

[10] l. Ott, F. Nageotte, P. Zanne, and M. de Mathelin. Simultaneous physiological motion cancellation and
depth adaptation in flexible endoscopy.IEEE Transactions on Biomedical Engineering, pages 1–4,
2009.3


	Introduction
	Architecture
	Illustration
	Discussion

