
The GlobalMIT Toolkit
for

Learning Optimal
Dynamic Bayesian Network

User Guide
Rev. 1.1

Maintained by Vinh Nguyen

c© 2010-2011 Vinh Xuan Nguyen
All rights reserved

Monash University, Victoria, Australia.

Project members:

• Vinh Nguyen, Gippsland School of Information Technology, Monash University, Victoria, Australia.

• Madhu Chetty, Gippsland School of Information Technology, Monash University, Victoria, Australia.

• Ross Coppel, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia.

• Pramod Wangikar, Chemical Engineering Department, Indian Institute of Technology Bombay, India.

First edition: 10 Feb 2011

2nd edition : 8 Jun 2011

Contact: {vinh.nguyen,madhu.chetty}@monash.edu

Short contents

Short contents · iii

Contents · iv

1 User Manual · 1

2 Supplementary Material · 9

Bibliography · 17

iii

Contents

Short contents iii

Contents iv

1 User Manual 1
1.1 Introduction . 1
1.2 Installation . 1
1.3 Usage and Examples . 2

1.3.1 Single time series data 2, 1.3.2 Multiple time series data 4, 1.3.3 Large
data set 7, 1.3.4 Using GlobalMIT without Matlab 7

2 Supplementary Material 9
2.1 The GlobalMIT Algorithm for Learning the Globally Optimal Dynamic

Bayesian Network Structure . 9
2.2 Optimal Dynamic Bayesian Network Structure Learning in Polynomial

Time with MIT . 10
2.2.1 Complexity bound 13, 2.2.2 Efficient Implementation for globalMIT 15

Bibliography 17

iv

One

User Manual

1.1 INTRODUCTION

GlobalMIT is a Matlab/C++ toolkit for learning dynamic Bayesian network (DBN) struc-
ture. It implements our polynomial time algorithm for learning the globally optimal DBN
structure using the Mutual Information Test (MIT) criterion, as presented in [VCCWon].
The DBN model assumed by GlobalMIT is the first-order Markov stationary DBN, in
which both the structure of the network and the parameters characterizing it are assumed
to remain unchanged over time, such as the one exemplified in Figure 1.1a. In this model,
the value of a random variable at time t+ 1 is assumed to depend only on the value of its
parents at time t.

 t t+1

A

B

C

A

B

C

(a)

 t t+1

A

B

C

A

B

C

A B

C

(b)

Figure 1.1: Dynamic Bayesian Network: (a) a 1st order Markov stationary DBN; (b) its
equivalent folded network

1.2 INSTALLATION

The GlobalMIT Matlab toolbox is ready for use upon adding its container directory to the
Matlab path environment variable (File→ Set path). The main files of the toolbox are listed
in Tables 1.1 and 1.2. The Matlab toolbox contains all the functionalities. However, for
improved performance, the C++ search engine can also be used. We provide pre-compiled
version of this search engine in Windows. In other environments, the users may recompile
the search engine. For example, in Linux, one may use:

g++ -g globalMIT.cpp -o globalMIT.exe

GlobalMIT can handle data that is a single time series, or a concatenation of multiple
time series. Note that in the latter case, the time series need to be preprocessed for proper
data alignment (see Fig. 1.6).

1

2 CHAPTER 1. USER MANUAL

Table 1.1: GlobalMIT Matlab toolbox main functions

File Description
compare_net.m Compare a network with a true network
conditional_MI_DBN.m Calculate the conditional mutual information

I(Xi, Xj |Pai)
conditional_MI_DBN_ab.m Calculate the conditional mutual information

I(Xi, Xj |Pai) (multiple time series data)
createDotGraphic.m Create dot graphic (require Graphviz)
findLexicalIndex.m Find lexical order of a parent set
globalMIT.m The Matlab GlobalMIT DBN search engine
globalMIT_ab.m The Matlab GlobalMIT DBN search engine (multiple

time series data)
globalMIT_exe.m Matlab interface for the GlobalMIT C++ search engine
globalMIT_exe_ab.m Matlab interface for the GlobalMIT C++ search engine

(multiple time series data)
multi_time_series_cat.m Concatenate multiple time series
myDataMapping.m Map discrete data to a continuous value range
myIntervalDiscretize.m Discretize data using equal bins
score_MIT.m Get the MIT score for a DBN
single_node_score_MIT.m Get the MIT score for a single node in a DBN
writeGlobalMITfile.m C++ interface file
writeGlobalMITfile_ab.m C++ interface file (multiple time series data)
demo.m A walk-through demonstration

Table 1.2: GlobalMIT C++ search engine

File Description
globalMIT.cpp global DBN search engine using the MIT criterion
globalMIT_ab.cpp global DBN search engine using the MIT criterion (multiple time

series data)

1.3 USAGE AND EXAMPLES

In this section, we demonstrate the use of GlobalMIT for DBN structure learning via a set
of walk-through examples. The code for these examples can be found in the demo.m file.

1.3.1 Single time series data

We first load the yeast data set [Hus03]:

load husmeier_yeast_100;

The data file contains a true network, and synthetic data generated from this network
as described in [Hus03]. The synthetic data set is a single time series of 100 discrete obser-
vations.

1.3. USAGE AND EXAMPLES 3

We first get the MIT score of this true network, and then visualize it using Graphviz,
an open source graph visualization software from AT&T Research1. The correct path to
Graphviz execution file needs to be supplied in createDotGraphic.m. The resulting
graph is displayed in Fig. 1.2.

s_true=score_MIT(data,true_net);
fprintf(’Score of the true network: %f \n’,s_true);
createDotGraphic(true_net,nodeName,’True DBN’);

��������

�	
�

	�	�

�
�	��� ���� ����

	���

���� 	���
��� �����

����

Figure 1.2: True yeast network.

This data set is binary, so we do not need to discretize the data. We use the Matlab
GlobalMIT search engine to find the optimal DBN:

alpha=0.999;
allowSelfLoop=1;
[best_net]=globalMIT(data,alpha,allowSelfLoop);
createDotGraphic(best_net,nodeName,’GlobalMIT DBN’);

This function takes three parameters:
• data: a single time series data, with each column being a variable, and each row

being an observation.
• alpha: the significance level for the mutual information test of independence.
• allowSelfLoop: allow the self regulated link (a link from a node to it-self) or not

It can be seen in Figure 1.3 that GlobalMIT finds the correct DBN as in Fig. 1.2.
On our Core 2 Duo PC with 4Gb of main memorry, this operation takes:

Elapsed time is 15.189810 seconds.
1Graphviz should be downloaded and installed from www.graphviz.org

4 CHAPTER 1. USER MANUAL

����������	
�

�
��

	
�

����
�
� ���� ����

���

����
��� ���� ��	��

����

Figure 1.3: DBN found by globalMIT.

We now test the C++ version of globalMIT:

[best_net_exe,score,time]=globalMIT_exe(data,alpha,0);
createDotGraphic(best_net_exe,nodeName,’GlobalMIT C++ DBN’);

It can be verified that globalMIT C++ finds the network identical to globaMIT Matlab.
On the same computer, globalMIT C++ takes only a fraction of a second to complete the
task:

Elapsed time is 0.591361 seconds.

1.3.2 Multiple time series data

This section illustrates the use of GlobalMIT on data composed of multiple time series. We
first load the following data set:

clear clc;
load Yu_net_5;
n_state=3;

which is generated from Yu’s net No. 1 [YSW+04], as demonstrated in Fig. 1.4. This
network consists of 20 nodes, and operates according to the following linear dynamical
system:

Xt+1 −Xt = A(Xt − T) + ε (1.1)

with X denotes the expression profiles, A describes the strength of gene-gene regulations,
T is the constitutive expression values, and ε simulates a uniform biological noise. The
detailed parameters can be found in [YSW+04].

The data set here contains 3 time series, a1, a2, a3, each of length 33, generated by
(1.1). We discretize each series into 3 states:

1.3. USAGE AND EXAMPLES 5

����������	
����
������

�

�

� ��

��

�

�

��

�

�

Figure 1.4: Yu’s net 1.

a1= myIntervalDiscretize(a1,n_state);
a2= myIntervalDiscretize(a2,n_state);
a3= myIntervalDiscretize(a3,n_state);

We first take a single time series for analysis:

alpha=0.95;
tic;[best_net]=globalMIT(a1,alpha,1);toc
createDotGraphic(best_net,[],’GlobalMIT DBN’);
compare_net(best_net,true_net,1)

Note that since the data is short, we lower alpha to 0.95. The network recovered is
presented in Fig. 1.5. Note that there are lots of self regulated links in the discovered
network. This is to be expected, since biological time series data are often smooth and have
a high degree of auto-correlation and auto-mutual information at short lag. While these
links might or might not be present in the ground-truth network, they are generally not
very informative, as for most natural biological processes, the current state often dictates
the state in the near future (unless the process evolves in a random-walk manner).

The quality metrics of the reconstructed network are (without taking the self-links into
account):

Recall: 0.111111 ; Imprecision= 0.888889

which is low, since the data is too short. In reality, if multiple time-series are available,
they can be concatenated to make a single time series. The data need to be preprocessed
for proper alignment as illustrated in Fig 1.6.

[b,c]=multi_time_series_cat(a1,a2,a3);
alpha=0.95;
[best_net_ab]=globalMIT_ab(b,c,alpha,1);

6 CHAPTER 1. USER MANUAL

����������	
�

�

 �

��

�� � ��

� � �

�� ��

� �

�� ��

��

�� ��

Figure 1.5: GlobalMIT on Yu’s net 1, short data

 N2-1 N2 2 1 N1-1 N1 2 1

...

...

Xj

Xi

...

...

N3-1 N3 2 1

...

...

Figure 1.6: Multiple time series data alignment

createDotGraphic(best_net_ab,[],’GlobalMIT DBN’)
compare_net(best_net_ab,true_net,1)

The newly discovered network is presented in Fig. 1.7.

����������	
�

�

 ��

� ��

��

�

�� ��

� ��

�

�

�

�

�

�

�� �� ��

Figure 1.7: GlobalMIT on Yu’s net 1, long data

1.3. USAGE AND EXAMPLES 7

With more data available, the network quality improves, with sensitivity (recall) in-
creases and imprecision decreases:

Recall: 0.555556 ; Imprecision= 0.615385

1.3.3 Large data set

The worst case complexity of GlobalMIT is dependant upon the number of variables and
the number of observations. Let us take a large data set, generated from Yu’s network in
the example above, with 20 variables and 2000 observations.

alpha=0.9999;
data= myIntervalDiscretize(data,n_state);
[best_net_exe,score,time]=globalMIT_exe(data,alpha,1);
createDotGraphic(best_net_exe,[],’GlobalMIT C++ DBN’);
compare_net(best_net_exe,true_net,1)

Since the number of observations is large, we raise the significance level alpha to
0.9999. The Matlab version of globalMIT would take more than a day to analyze this data
set. The C++ implementation takes only more than an hour.

The newly discovered network is presented in Fig. 1.8. The quality metrics are:

����������	

���

�

�

� ��

��

�

� �

�

��

� � � �� �� �� �� �� �� ��

Figure 1.8: GlobalMIT on Yu’s net 1, large data

Recall: 0.888889 ; Imprecision= 0.000000

1.3.4 Using GlobalMIT without Matlab

It is noted that GlobalMIT does not require Matlab, a commercial software, to carry out its
core functionality, i.e., searching for the globally optimal DBN under MIT, thanks to the
GlobalMIT C++ implementation. Note however that GlobalMIT C++ requires access to
the inverse Chi square function. This function is available in the GNU scientific library.
However, to keep maximal portability, the current version of GlobalMIT C++ requires
this information to be pre-provided in a file (myChiValue.txt, currently created by the

8 CHAPTER 1. USER MANUAL

writeGlobalMITfile.m interface module). However, the user can use Octave, a freely
available, Matlab-like software, which also provides the inverse Chi square function, to
generate this file.

Two

Supplementary Material

In this section, we review the MIT score for learning BN, then adapts it to the DBN case.
For a more complete treatment of the subject, readers are referred to [VCCWon].

2.1 THE GLOBALMIT ALGORITHM FOR LEARNING THE GLOBALLY OPTIMAL
DYNAMIC BAYESIAN NETWORK STRUCTURE

Briefly speaking, under MIT the goodness-of-fit of a network is measured by the to-
tal mutual information shared between each node and its parents, penalized by a term
which quantifies the degree of statistical significance of this shared information. Let
X = {X1, . . . , Xn} denote the set of n variables with corresponding {r1, . . . , rn} discrete
states, D denote our data set of N observations, G be a DAG, and Pai = {Xi1, . . . , Xisi} be
the set of parents of Xi in G with corresponding {ri1, . . . , risi} discrete states, si = |Pai|,
then the MIT score is defined as:

SSMIT(G : D) =
n∑
i=1

Pai 6=∅

{2N.I(Xi,Pai)−
si∑
j=1

χα,liσi(j)}

where I(Xi,Pai) is the mutual information between Xi and its parents as estimated from
D. χα,lij is the value such that p(χ2(lij) ≤ χα,lij) = α (the Chi-square distribution at
significance level 1− α), and the term liσi(j) is defined as:

liσi(j) =
{

(ri − 1)(riσi(j) − 1)
∏j−1
k=1 riσi(k), j = 2 . . . , si

(ri − 1)(riσi(j) − 1), j = 1

where σi = {σi(1), . . . , σi(si)} is any permutation of the index set {1 . . . si} of Pai, with the
first variable having the greatest number of states, the second variable having the second
largest number of states, and so on.

To make sense of this criterion, let us first point out that maximizing the first term
in the score,

∑n
i=1

Pai 6=∅
2N.I(Xi,Pai), can be shown to be equivalent to maximizing the log-

likelihood criterion. Learning BN by using the maximum likelihood principle suffers from
overfitting however, as the fully-connected network will always have the maximum like-
lihood. Likewise, for the MIT criterion, since the mutual information can always be in-
creased by including additional variables to the parent set, i.e., I(Xi,Pai∪Xj) ≥ I(Xi,Pai),
the complete network will have the maximum total mutual information.

Thus, there is a need to penalize the complexity of the learned network. Penalizing the
log-likelihood criterion with − 1

2C(G) log(N) gives us the BIC/MDL criteria, while −C(G)

9

10 CHAPTER 2. SUPPLEMENTARY MATERIAL

gives us the AIC criterion (where C(G) =
∑n
i=1(ri − 1)

∏si
j=1 rij measures the network

complexity). As for the MIT criterion, while the mutual information always increases
when including additional variables to the parent set, the degree of statistical significance
of this increment might become negligible as more and more variables are added. This
significance degree can be quantified based on a classical result in information theory by
[Kul68], which, in this context, can be stated as follows: under the hypothesis that Xi and
Xj are conditionally independent given Pai is true, the statistics 2N.I(Xi, Xj |Pai) approx-
imates to a χ2(l) distribution, with l = (ri − 1)(rj − 1)qi degree of freedom, and qi = 1 if
Pai = ∅, otherwise qi is total the number of state of Pai, i.e., qi =

∏si
k=1 rik. Now we can

see that the second term in the MIT score penalizes the addition of more variables to the
parent set. Roughly speaking, only variables that have the conditional mutual information
shared with Xi given all the other variables in Pai that is higher than 100α percent of the
MI values under the null hypothesis of independence can increase the score. For detailed
motivations and derivation of this scoring metric as well as an extensive comparison with
BIC/MDL and BD, we refer readers to [dC06].

Adapting MIT for DBN learning is rather straightforward. One just has to pay attention
to the fact that the mutual information is now calculated between a parent set and its child,
which should be 1-unit shifted in time, as required by the first-order Markov assumption,
denoted by X

−→1
i = {Xi2, Xi3, . . . , XiN}. As such, the number of “effective" observations,

denoted by Ne, for DBN is now only N − 1. This is demonstrated in Figure 2.1. The MIT
score for DBN should be calculated as:

S′MIT(G : D) =
n∑
i=1

Pai 6=∅

{2Ne.I(X
−→1
i ,Pai)−

si∑
j=1

χα,liσi(j)}

Similarly, when the data is composed ofNt separate time-series, the number of effective
observations is only Ne = N −Nt.

 N-1 N 2 1

...

...

Xj

Xi

Figure 2.1: Data alignment for dynamic Bayesian network with an edge Xj → Xi. The
“effective" number of observations is now only N − 1.

2.2 OPTIMAL DYNAMIC BAYESIAN NETWORK STRUCTURE LEARNING IN POLYNOMIAL
TIME WITH MIT

In this section, we show that learning the globally optimal DBN with MIT can be achieved
in polynomial time. Our development is based on a recent result by [Doj06], which states
that under several mild assumptions, there exists a polynomial worst-case time complexity
algorithm for learning the optimal DBN with the MDL and BDe scoring metrics. Specifi-
cally, the 4 assumptions that Dojer considered are:

Assumption 1. (acyclicity) There is no need to examine the acyclicity of the graph.

2.2. OPTIMAL DYNAMIC BAYESIAN NETWORK STRUCTURE LEARNING IN
POLYNOMIAL TIME WITH MIT 11

Assumption 2. (additivity) S(G : D) =
∑n
i=1 s(Xi,Pai : D|Xi∪Pai) where D|Xi∪Pai denotes

the restriction of D to the values of the members of Xi ∪ Pai.

To simplify notation, we write s(Pai) for s(Xi,Pai : D|Xi∪Pai).

Assumption 3. (splitting) s(Pai) = g(Pai) + d(Pai) for some non-negative functions g,d satis-
fying Pai ⊆ Pa′i ⇒ g(Pai) ≤ g(Pa′i)

Assumption 4. (uniformity) |Pai| = |Pa′i| ⇒ g(Pai) = g(Pa′i)

Assumption 1 is valid for DBN in general. For the first-order Markov DBN that we
are considering in this paper, since the graph is bipartite, with edges directing only for-
ward in time (Fig. 1.1a), acyclicity is automatically satisfied. Assumption 2 simply states
that the scoring function decomposes over the variables, which is satisfied by most scoring
metrics such as BIC/MDL, BD and also clearly by MIT. Together with assumption 1, this
assumption allows us to compute the parents set of each variable independently. Assump-
tion 3 requires the scoring function to decompose into two components: d evaluating the
accuracy of representing the distribution underlying the data by the network, and g mea-
suring its complexity. Furthermore, g is required to be a monotonically non-decreasing
function in the cardinality of Pai (assumption 4), i.e., the network gets more complex as
more variables are added to the parent sets.

We note that unlike MIT in its original form that we have considered above, where bet-
ter networks have higher scores, for the score considered by Dojer, lower scored networks
are better. And thus the corresponding optimization must be cast as a score minimization
problem. We now consider a variant of MIT as follows:

SMIT(G : D) =
n∑
i=1

2Ne.I(X
−→1
i ,X)− S′MIT(G : D) (2.1)

which admits the following decomposition over each variable (with the convention of
I(Xi, ∅) = 0):

sMIT(Pai) = dMIT(Pai) + gMIT(Pai)

dMIT(Pai) = 2Ne.I(X
−→1
i ,X)− 2Ne.I(X

−→1
i ,Pai)

gMIT(Pai) =
si∑
j=1

χα,liσi(j)

Roughly speaking, dMIT measures the “error” of representing the joint distribution un-
derlying D by G, while gMIT measures the complexity of this representation. We state the
following results:

Proposition 1. The problem of S′MIT maximization is equivalent to the problem of SMIT mini-
mization.

Proof. Obvious, since
∑n
i=1 2Ne.I(X

−→1
i ,X) = const.

Proposition 2. dMIT , gMIT satisfy assumption 3

12 CHAPTER 2. SUPPLEMENTARY MATERIAL

Proof. Trivial. dMIT ≥ 0 since of all parent sets Pai, X has the maximum mutual informa-
tion with X

−→1
i . And since the support of the Chi-square distribution is R+, i.e., χα,· ≥ 0,

therefore Pai ⊆ Pa′i ⇒ 0 ≤ gMIT(Pai) ≤ gMIT(Pa′i).

Unfortunately, gMIT does not satisfy assumption 4. However, for many applications, if
all the variables have the same number of states then it can be shown that gMIT satisfies
assumption 4.

Assumption 5. (variable uniformity) All variables in X have the same number of discrete states
k.

Proposition 3. Under the assumption of variable uniformity, gMIT satisfies assumption 4.

Proof. It can be seen that if |Pai| = |Pa′i| = si, then gMIT(Pai) = gMIT(Pa′i) =∑si
j=1 χα,(k−1)2kj−1 .

Since gMIT(Pai) is the same for all parent sets of the same cardinality, we can write
gMIT(|Pai|) in place of gMIT(Pai). With assumptions 1-5 satisfied, we can employ the fol-
lowing Algorithm 1, named globalMIT, to find the globally optimal DBN with MIT, i.e.,
the one with the minimal SMIT score.

Algorithm 1 globalMIT : Optimal DBN with MIT
Pai := ∅
for p = 1 to n do

If gMIT(p) ≥ sMIT(Pai) then return Pai; Stop.
P = arg min{Y⊆X:|Y|=p} sMIT(Y)
If sMIT(P) < sMIT(Pai) then Pai := P.

end for

Theorem 1. Under assumptions 1-5, globalMIT applied to each variable in X finds a globally
optimal DBN under the MIT scoring metric.

Proof. The key insight here is that once a parent set grows to a certain extent, its complexity
alone surpasses the total score of a previously found sub-optimal parent set. In fact, all the
remaining potential parent sets P omitted by the algorithm have a total score higher than
the current best score, i.e., sMIT(P) ≥ gMIT(|P|) ≥ sMIT(Pai), where Pai is the last sub-
optimal parent set found.

We note that the terms 2Ne.I(X
−→1
i ,X) in the SMIT score in (2.1) do not play any essen-

tial role, since they are all constant and would not affect the outcome of our optimization
problem. Knowing their exact value is however, necessary for the stopping criterion in
Algorithm 1, and also for constructing its complexity bound, as we shall do shortly. Un-
fortunately, calculating I(X

−→1
i ,X) is by itself a hard problem, requiring O(kn+1) space and

time in general. However, for our purpose, since the only requirement for dMIT is that it
must be non-negative, it is sufficient to use an upper bound of I(X

−→1
i ,X). A fundamental

2.2. OPTIMAL DYNAMIC BAYESIAN NETWORK STRUCTURE LEARNING IN
POLYNOMIAL TIME WITH MIT 13

property of the mutual information states that I(X,Y) ≤ min{H(X), H(Y)}, i.e., mutual
information is bounded by the corresponding entropies. We therefore have:

2Ne.I(X
−→1
i ,X) ≤ 2Ne.H(X

−→1
i),

where H(X
−→1
i) can be estimated straightforwardly from the data. Or else, we can use an a

priory fixed upper bound for all H(X
−→1
i), that is log k, then:

2Ne.I(X
−→1
i ,X) ≤ 2Ne. log k.

Using these bounds, we obtain the following more practical versions of dMIT :

d′MIT(Pai) = 2Ne.H(X
−→1
i)− 2Ne.I(X

−→1
i ,Pai)

d′′MIT(Pai) = 2Ne. log k − 2Ne.I(X
−→1
i ,Pai)

It is straightforward to show that Algorithm 1 and Theorem 1 are still valid when d′MIT or
d′′MIT are used in place of dMIT .

2.2.1 Complexity bound

Theorem 2. globalMIT admits a polynomial worst-case time complexity in the number of vari-
ables.

Proof. Our aim is to find a number p∗ satisfying gMIT(p∗) ≥ sMIT(∅). Clearly, there is no
need to examine any parent set of cardinality p∗ and over. In the worse case, our algorithm
will have to examine all the possible parent sets of cardinality from 1 to p∗ − 1. We have:

gMIT(p∗) ≥ sMIT(∅)

⇔
p∗∑
j=1

χα,liσi(j) ≥ dMIT(∅) = 2Ne.I(X
−→1
i ,X).

As discussed above, since calculating dMIT is not convenient, we use d′MIT and d′′MIT
instead. With d′MIT p∗ can be found as:

p∗ = arg min∑p

j=1
χα,liσi(j)≥2Ne.H(X

−→1
i

)
p, (2.2)

while with d′′MIT :
p∗ = arg min∑p

j=1
χα,liσi(j)≥2Ne. log k

p. (2.3)

Since there are O(np∗) subsets with at most p∗ parents, and each set of parents can
be scored in polynomial time, globalMIT admits an overall polynomial worst-case time
complexity.

We now give some examples to demonstrate the practicability of Theorem 2.
Example 1: Consider a gene regulatory network reconstruction problem, where each

gene has been discretized to k = 3 states, corresponding to up, down and regular gene

14 CHAPTER 2. SUPPLEMENTARY MATERIAL

expression. With the level of significance α set to 0.999 as recommended in [dC06], we
have:

gMIT(1) = χ0.999,4 = 18.47
gMIT(2) = gMIT(1) + χ0.999,12 = 51.37
gMIT(3) = gMIT(2) + χ0.999,36 = 119.35
gMIT(4) = gMIT(3) + χ0.999,108 = 278.51
gMIT(5) = gMIT(4) + χ0.999,324 = 686.92
gMIT(6) = gMIT(5) + χ0.999,972 = 1800.9
gMIT(7) = gMIT(6) + χ0.999,2916 = 4958.6
gMIT(8) = gMIT(7) + χ0.999,8748 = 14121
gMIT(9) = gMIT(8) + χ0.999,26244 = 41079
gMIT(10) = gMIT(9) + χ0.999,78732 = 121042

. . .

Consider a data set of N = 12 observations, which is the popular length of microarray
time-series experiments (in fact N often ranges within 4 − 15), then d′′MIT(∅) = 2(N −
1) log k = 24.16. Observing that gMIT(2) > d′′MIT(∅), then p∗ = 2 and we do not have to
consider any parent sets of 2 variables or more.

Let us compare this bound with those of the algorithms for learning the globally op-
timal DBN under the BIC/MDL and BDe scoring metrics. For BIC/MDL, p∗MDL is given
by dlogkNe, while for BDe, p∗BDe = dN logγ−1 ke, where the distribution P (G) ∝ γ

∑
|Pai|,

with a penalty parameter 0 < γ < 1, is used as a prior over the network structures [Doj06].
In this case, p∗MDL = 3. If we choose log γ−1 = 1 then p∗BDe = dN log ke = 14. In general,
p∗BDe scales linearly with the number of data items N , making its value less of practical
interest, even for small data sets.

Example 2: Since the number of observations in a single microarray time-series ex-
periment is often limited, it is a popular practice to concatenate several time-series to
obtain a larger data set for analysis. Let us merge Nt = 10 data sets, each with 12
observations, then Ne = N − Nt = 120 − 10 = 110. For this combined data set,
gMIT(4) > d′′MIT(∅) = 2Ne log k = 241.69 ⇒ p∗ = 4, thus there is no need to consider any
parent set of more than 3 variables. For comparison, we have p∗MDL = 5, and p∗BDe = 132
with log γ−1 = 1.

Of course, this analysis only gives us the worst-case time complexity. In practice,
the execution of Algorithm 1 can often be much shorter, since sMIT(Pai) is often much
greater than sMIT(∅). This observation also applies for the global algorithms based on the
BIC/MDL and BDe scoring metrics.

Even though Algorithm 1 admits a polynomial time complexity, exhaustive search for
the optimal parent sets over all the subsets of X with at most p∗ − 1 elements may still
be extremely time consuming, especially when the number of variable n is large. In such
cases, even if heuristic search algorithms were employed, our analysis gives a theoretical
guidance and justification for setting the so-called “max-fan-in” parameter, which dictates
the maximum number of parents allowed for each node, as found popular in many soft-

2.2. OPTIMAL DYNAMIC BAYESIAN NETWORK STRUCTURE LEARNING IN
POLYNOMIAL TIME WITH MIT 15

wares for DBN learning. There seems to be no systematic rules for setting this parameter
in the BN literature in our observation.

Example 3: Let’s consider some large scale data sets, with k = 3, α = 0.999 and a set of
N = 10000 observations, then p∗ = 9. The max-fan-in parameter can then be set to 8. For
comparison, we have p∗MDL = 9 and p∗BDE = 10987 with log γ−1 = 1.

2.2.2 Efficient Implementation for globalMIT

The search procedure involves examining all potential parent sets of increasing cardinality.
The following decomposition property of the mutual information is handy when it comes
to design an efficient implementation for globalMIT:

I(Xi,Pai ∪Xj) = I(Xi,Pai) + I(Xi, Xj |Pai)

This implies that the mutual information can be computed incrementally, and suggests
that, for efficiency, the computed mutual information values should be cached to avoid
redundant computations, subject to memory availability.

Bibliography

[dC06] Luis M. de Campos. A scoring function for learning bayesian networks based
on mutual information and conditional independence tests. J. Mach. Learn.
Res., 7:2149–2187, December 2006.

[Doj06] Norbert Dojer. Learning Bayesian Networks Does Not Have to Be NP-Hard. In
Proceedings of International Symposium on Mathematical Foundations of Computer
Science, pages 305–314, 2006.

[Hus03] Dirk Husmeier. Sensitivity and specificity of inferring genetic regulatory inter-
actions from microarray experiments with dynamic Bayesian networks. Bioin-
formatics, 19(17):2271–2282, 2003.

[Kul68] Solomon Kullback. Information Theory and Statistics. Dover publications, 1968.

[VCCWon] Nguyen Xuan Vinh, Madhu Chetty, Ross Coppel, and Pramod P. Wangikar.
A polynomial time algorithm for learning globally optimal dynamic bayesian
network. 2011-submitted for publication.

[YSW+04] Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, and Erich D.
Jarvis. Advances to Bayesian network inference for generating causal net-
works from observational biological data. Bioinformatics, 20(18):3594–3603,
2004.

17

	Short contents
	Contents
	1 User Manual
	1.1 Introduction
	1.2 Installation
	1.3 Usage and Examples
	1.3.1 Single time series data
	1.3.2 Multiple time series data
	1.3.3 Large data set
	1.3.4 Using GlobalMIT without Matlab

	2 Supplementary Material
	2.1 The GlobalMIT Algorithm for Learning the Globally Optimal Dynamic Bayesian Network Structure
	2.2 Optimal Dynamic Bayesian Network Structure Learning in Polynomial Time with MIT
	2.2.1 Complexity bound
	2.2.2 Efficient Implementation for globalMIT

	Bibliography

