Cocos2 and pyglet Quick Reference (v1.1; © Richard Jones, richard@mechanicalcat.net 2010)

from cocos.director import director
director.init (arguments)
director.run(scene)
director.replace(scene)
director.push(scene)
director.pop()
director.get window size()

director.get virtual coordinates(x,

director.scene
director.return value
director.window

args include all pyglet.window.Window args and do_not_scale*
run the Scene

replace the currently-running Scene with the supplied one

run the supplied Scene with the ability to return to the current one
return to the previous scene after a push ()

return the (width, height) of the window

y) map window coordinates to logical scene coordinates**
the currently-active Scene

the value from the last Scene end ()
the pyglet.window.Window

* turns auto-scaling off
** if auto-scaling is on

A cocosnode is a layer, sprite, text, canvas, scene, ...

cocosnode.add(cocosnode)
cocosnode.remove (cocosnode)

from cocos.scene import Scene
scene.end(return_value)

from cocos.layer import ...
Layer ()
MultiplexLayer(layer, layer,
PythonInterpreterLayer()
ScrollablelLayer (parallax=1)
ColorLayer(r, g, b, a)
class Mylayer (cocos.layer.Layer):
def init(self):
is _event handler = False

o)

from cocos.sprite import Sprite
sprite.position

rotation

scale

opacity

color

image anchor

from cocos.text import ...

Label (text, position, ...)
HTMLLabel (text, position, ...)
RichLabel (text, position, ...)

import cocos.tiles

level = cocos.tiles.load(‘my-level.xml’)

map = level[‘map-1']
scene = cocos.scene.Scene(map)
map.set view(x, y, width, height)

keboard status handler and key constants

from pyglet.window import key
keys = key.KeyStateHandler ()

director.window.push handlers (keys)

from cocos.menu import Menu, Menultem

... scene.add(layer), layer.add(sprite), sprite.add(text), layer.add(layer)
... layer.remove(sprite) or sprite.kill()

end the Scene and set director.return value

Standard layer containing sprites, text, layers, ...
Composite layer that displays one layer of many at a time
Runs an interactive Python interpreter in a Layer
Requires the parent to be cocos.layers.ScrollingManager
Solid color layer

Overridable method allowing initialisation at Layer creation time
True to register standard pyglet event handlers on this layer
with the addition of on_cocos_resize(width, height)

sprite = Sprite(‘data/ship.png’)

position of the sprite in (x,y) coordinates

rotation degrees of the sprite

scale of the sprite where 1.0 the default value

opacity of the sprite where 0 is transparent and 255 is solid

color in R,G,B format where 0,0,0 is black and 255,255,255 is white
pixel in the image that position is relative to; used to transform about

Plain-text label
HTML 4.01 subset text label (see pyglet.text.formats.html for details)
Rich text label with markup as per pyglet.text.DocumentLabel

scrolling...

manager = cocos.layers.ScrollingManager/()
manager .add (map)

scene = coOcCOS.scene.Scene(manager)
manager.set focus(x, y) or...
manager.force focus(x, y)

key.RIGHT key.SPACE
key.LEFT key.A -> key.Z
key.UP key. 0 -> key. 9
key . DOWN key .ENTER

also EntryMenultem, ToggleMenultem, ImageMenultem, ...

menu = cocos.menu.Menu(‘My Game Title'’)

menu.create _menu(([
MenulItem('Play',

lambda: director.push(TheGameScene())),

MenuItem('Quit', pyglet.app.exit)])

menu.on quit = pyglet.app.exit

director.run(cocos.scene.Scene(menu))

Cocos2 and pyglet Quick Reference (v1.1; © Richard Jones, richard@mechanicalcat.net 2010)

Translation

Visibility Transform

Special Combine Modifiers

Move

from cocos.actions import ... cocosnode.do(action) (sprite.do, layer.do, ...)

MoveBy(delta, duration=5)
MoveTo

Moves the sprite delta=(x, y) pixels
Moves the sprite to position=(x,y)

JumpBy(delta, height=100, jumps=1, duration=5) Jump the sprite delta=(x, y), height pixels using jumps hops
JumpTo(position, height=100, jumps=1, duration=5) Jump the sprite to position=(x,y), height pixels using jumps hops

Bezier(bezier, duration=5)
Place(position)

ScaleBy(scale, duration=>5)
ScaleTo(scale, duration=>5)
RotateBy(angle, duration=5)
RotateTo(angle, duration=>5)
Show()

Hide()

Blink(blinks, duration)
ToggleVisibility()
Fadeln(duration)
FadeOut(duration)
FadeTo(opacity, duration)
Accelerate(action, rate=2)
AccelDeccel(action)
Speed(action, rate)
Reverse(action)
Sequence(action, action) (+ operator)
Spawn(action, action) (I operator)
Repeat(action)

Loop(action, times) (* operator)
Delay(time)

RandomDelay(low, high)
CallFunc(callable)
CallFuncS(callable)

Move the sprite through the bezier curve (cocos.path.Bezier instance)
Instantly place the sprite at the position=(x, y)

Scale the sprite by scale times

Scale the sprite to scale

Rotate the target by angle degrees

Rotate the sprite to the given angle

Show the sprite

Hide the sprite from view

Blink the sprite the number of blinks over the duration seconds
Show if hidden and hide if shown

Fade the sprite into view over duration seconds

Fade the sprite out of view over duration seconds

Fade the sprite to a specific opacity over duration seconds
Accelerate the action at its end by the given rate (1 is linear)
Accelerate the action in its middle

Speed up or slow down the action by the given rate (1 is normal)
Perform the action in reverse

Execute actions in sequence

Execute actions at the same time

Repeat an action (or composite set of actions) forever

Loop the action ntimes

Delay for time seconds

Delay for some seconds below low and high

Invoke the callable (with no arguments)

Invoke the callable with the sprite as the first argument

OrbitCamera(spherical coordinate arguments) Orbits the camera around the center of the screen

Move()
BoundedMove(width, height)
WrappedMove(width, height)

Move the sprite based on sprite parameters
As above but limit movement to 0 < x < width and 0 <y < height

As above but wrap movement outside 0 < x < width and 0 <y < height

class MyAction(cocos.actions.Action):

class

def init(self):

def step(self, dt):
def done(self):

def start(self):
def stop(self):

def update(self, t):
(also init, start and stop)

Gets called at initialization time, before a target is defined

Called every frame

Return False while the step method must be called

Start executing an action; self.target is assigned and this method is called
After we finish executing an action this method is called

MyIntervalAction(cocos.actions.IntervalAction):

Called every frame with ¢ ranging from 0..1

Cocos2 and pyglet Quick Reference (v1.1; © Richard Jones, richard@mechanicalcat.net 2010)

import pyglet
window = pyglet.window.Window(...) create awindow with optional arguments

@window.event attach the following function to the window as an event handler
def on draw(): see below for all possible window event names
window.clear () clear the window to the pyglet.gl.glClearColor color

put your other drawing code here

pyglet.app.run() run pyglet’s main loop to handle events

Window arguments (there are other arguments, these are just the most common)
fullscreen make the window fullscreen

width=640, height=480 create the window with these dimensions (ignored if fullscreen)
resizable=False allow the user to resize the window

vsync=True synchronise to the monitor to avoid flicker
caption=sys.argv[0] set the window title text

config=None a display config as per pyglet.gl.Config

screen=None the screen to use if fullscreen

Image handling

pyglet.image.load(filename, file=None) load the image from the named file or supplied file object
SolidColorImagePattern create an image filled with a single color
CheckerImagePattern create an image with a tileable checker image of two colors
image.width, image.height image dimensions in pixels
image.anchor x, image.anchor_ y coordinate of anchor, relative to bottom-left corner of image
image.blit(x, y, z=0) render the image to the active framebuffer
image.save(filename, file=None) save the image as a PNG file
image.texture a pyglet.image.Texture view of this image
texture.target, texture.id OpenGL texture target and id
texture.tex coords 12-tuple of float texture coordinates (may not be simply 0 and 1)
get buffer manager().get color buffer() getan Image representing the color part of active framebuffer
Clock handling note: pyglet.app.run() automatically calls pyglet.clock.tick()
pyglet.clock.schedule(callback) callback when the clock is ticked, passing the seconds since last call
...unschedule(callback) remove callback from the schedule
...schedule interval(callback, n) callback every n seconds
...schedule once(callback, n) callback once in n seconds
fps = pyglet.clock.ClockDisplay() a simple FPS counter .. use fps.draw() to display
Sprites (all attributes are re-assignable)
pyglet.sprite.Sprite(image, ...) create a sprite from the image
sprite.position position of the sprite in (x, y) (also as sprite.x, sprite.y)
sprite.image image rendered for the sprite (image anchor is honored)
sprite.rotation sprite rotation in degrees
sprite.scale amount to scale the sprite image by - 1.0 is unscaled
sprite.opacity control transparency - 0 is fully transparent, 255 is fully opaque
sprite.color coloring of sprite image, normal (white) is R, G, B (255, 255, 255)
sprite.visible boolean controlling sprite visibility
sprite.draw() render the sprite to the active framebuffer
Text rendering (see the docs for the complete, extensive set of options you may pass)
pyglet.text.Label (text, ...) lay out some plain text
pyglet.text.HTMLLabel (text, ...) lay out some HTML (4.01, limited) text
text.draw() render the laid-out text
Resources abstract storage of application resources in directories or ZIP files
pyglet.resource.image(filename) load the indicated image file
pyglet.resource.media(filename) load the indicated media file
pyglet.resource.add font(filename) make a font available to pyglet’s text rendering
pyglet.resource.file(filename) open the indicated resource file, returning a file object
pyglet.resource.location(filename) return the location of the resource file (only useful for on-disk files)
pyglet.resource.path list containing the places to look for resources

pyglet.resource.reindex() should be called if the path is modified

Cocos2 and pyglet Quick Reference (v1.1; © Richard Jones, richard@mechanicalcat.net 2010)

Graphics abstraction

pyglet.graphics.Batch() batch up graphics drawing operations
pyglet.sprite.Sprite(image, batch=batch) create a sprite belonging to the batch

batch.draw() much faster than individual sprite.draw() calls
pyglet.graphics.Group group common OpenGL state objects in a batch
pyglet.graphics.OrderedGroup arbitrarily order objects in a batch (typically for display sorting)
pyglet.graphics.TextureGroup enable and bind a texture for a group of objects in a batch
batch.add(count, mode, group, *data) create an OpenGL vertex list in the batch using data’s items
batch.add(count, mode, group, indices, *data) create an OpenGL indexed vertex list

draw a white line from (0, 1) to (1, 0)
vertex list = batch.add(2, GL_ LINES, None, ('v2f', (0.0, 1.0, 1.0, 0.0)),
('c4B', (255, 255, 255, 255) * 2))

Media playback

pyglet.media.load(filename, file=None) load the media file (audio, video or both) as a “source”
source.audio format an instance of pyglet.media.AudioFormat or None
source.video format an instance of pyglet.media.VideoFormat or None
source.info a pyglet.media.Sourcelnfo giving title, author, etc. if known
source.play() convenience method to immediately play the source

player = Player() create a player to manage playback; see possible events below
player.queue (source) queue the source to be played

player.play(), .pause(), .stop() control playback

player.time, player.seek(time) report current position and seek to a different time

player.get texture() get the current video frame as a pyglet.image.Texture
player.eos action the action of the player when it reaches the end of the current source

pyglet window event handlers
on_key press(symbol, modifiers) symbol and modifiers as in pyglet.window.key keys and MOD_
on _key release(symbol, modifiers) as above

on_text (text)
on_ text motion(motion)
on_text motion select(motion)

on _mouse press(x, y, button, modifiers)

text is a unicode string of the text input
motion as in pyglet.window.key.MOTION_*
as above but during a text selection event (MOD_SHIFT held)

buttons and modifiers pressed at position (X,)

on _mouse release(x, y, button, modifiers) as above but buttons released

on _mouse motion(x, y, dx, dy)

on mouse drag(x, y, dx, dy, buttons, modifiers)

on_mouse_scroll(x, y, dx, dy)
on_mouse_enter(x, y)
on_mouse leave(x, y)

on resize(width, height)

on_draw()

on_show()

on_hide()

on_close()

on_expose()

on_move(x, Yy)
on_activate()
on_deactivate()
on_context lost()
on_context state lost()

pyglet media player event handlers
on_player eos()
on_source_dgroup eos()
on_eos()

mouse absolute (x, y) and movement (dx, dy) since last event
as above but with buttons and modifiers held
mouse scroll wheel scrolled by (dx, dy) at position (x, y)
mouse entered window

mouse exited window

the window has been created or resized

application should draw (not relevant to cocos2d)
window has been made visible (or created)

window has been hidden

window close button pressed

redraw is needed

window has been moved to position (x, y)

window has been activated (focused)

window has been deactivated (lost focus)

window’s OpenGL context was lost (no drawing possible)
window’s OpenGL context state was destroyed by pyglet

the player has run out of sources
the current source group has run out of data
the current source has run out of data

