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1 Introduction

MAGIC is a software package designed to perform systematic structure-based
coarse graining of molecular models and to compute effective potentials for a
coarse-grained model which reproduce structural information (radial distribu-
tion functions, distributions of intramolecular degrees of freedom) obtained in
high resolution (fine grained) simulations of the system of interest [I]. The
package implements the inverse Monte-Carlo method [2] or Tterative Boltzmann
inversion [3] method to compute the effective potentials. Such potentials can
be further used for a large scale simulation. In general the systematic coarse
graining can be considered as a multi-stage process which leads from a high res-
olution system description to a low resolution. A general scheme of this process,
implemented in MagiC, is shown in figure [1). Each step of the coarse-graining
(shown in purple) uses results of the preceding stage output as an input (in-
put/output is shown in blue) and additional input provided by user (rightmost
blue blocks).

As a first step the system of interest is modelled at high resolution, e.g. using
Molecular Dynamics simulation with all-atomistic force field. Such a simulation
results in an all-atom (AA) trajectory which is supposed to be long enough to
provide representative sampling of the system of interest. This simulation can
be performed with in principle any suitable MD or MC software on user’s choice
which can produce atomistic trajectories in one of the supported formats. At
the second stage the atomistic trajectory is converted to a coarse-grained tra-
jectory. A mapping scheme defining CG sites from the atomistic representation
should be provided at this stage. The conversion is performed by module
of MAGIC. This stage results in a coarse-grained trajectory and assignment of
mass/charge properties to CG-beads. At the next stage the structural reference
distribution functions are calculated by [RDF] module of MagiC. At this stage
the user assigns interaction types to all CG sites and defines intramolecular
bonds and eventually angles in each molecule type of the CG model. After
that the main procedure begins: solution of the inverse problem using Iterative
Boltzmann Inversion and/or Inverse Monte Carlo methods. This is done by
a kernel of the package which is also called It results in a set of ef-
fective potentials, which reproduce the reference distribution functions, and an
extended log-file which reports details of each IMC/IBI iteration. The log-file
can be analyzed by a set of post-processing tools which allows to
plot convergence rate, effective potentials, potential corrections, intermediate
RDFs, etc. Once the effective potentials are obtained, they can be exported
by MagicTools to an external MD software and used for further study of the
large scale system. At the moment the post-processing tools provide export to
GROMACS format of tabulated potentials, but for those familiar with python
it can be straightforwardly to extend it to any other MD software which accepts
tabulated potentials.

Since MAGIC is implemented as a set of separate modules, the user can
perform preparatory tasks (creating coarse-grained trajectory, computation of
RDFs ), inversion procedure and analysis on different computer systems: com-
putational clusters or local desctops. The package is written in a mixture of
Python and Fortran 95/2003, with Fortran-based computationally intensive
parts (magic,cgtraj and partially rdf), and Python-based interface class (Mag-
icTools and partially rdf).
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Figure 1: Systematic Coarse-Graining with MagiC: General outline. Blue rect-
angles denote input/output data; purple rectangles denote data processing pro-

cedures. Optional input data and use of external software are indicated by

dashed frame.

2 Compilation

2.1 Prerequirements

To get the source code download and unpack the latest stable version of the
software from our website (currently http://code.google.com/p/magic) or
retrieve a (developers) copy from the repository:

hg clone https://code.google.com/p/magic/
This will result in a folder magic-<current-version>, containing the whole

software. Below we will refer to MAGIC as a full path to the folder at your

(@21


http://code.google.com/p/magic

computer.

For the python-based part of MagiC the following python software is re-
quired: mumpy, matplotlib and [ipython. If you are using Ubuntu, add these
packages:
sudo apt-get install ipython python-numpy python-matplotlib. For Fe-
dora, use the corresponding ”yum” command.

To compile the Fortran-based part of MagiC you need a Fortran compiler
implementing Fortran-95 standard. The following compilers were tested to pro-
vide successful compilations: Intel Fortran (v.> 11), Oracle Solaris Studio, gfor-
tran (v.> 4.5). Also, LAPACK or equivalent linear algebra library is required.
Lapack is included in Intel MKL which comes with Intel Fortran and it is also
included in Oracle Solaris Performance Library, which comes with Oracle Solaris
Studio. If you are using GNU Fortran (gfortran), you need a Linux repository
build of Lapack (liblapack).

To compile the main module of MagiC in parallel, parallel MPI environment
is required, for example OpenMP]I| or Mpich.

2.2 Fast Installation
e Open file install.sh for editing.
e Define the path to desired location of MagiC in variable MAGIC.

o Go to “INSTALL CGTRAJ“ section and uncomment the line which refers
to your Fortran compiler.

e Go to "INSTALL MAGIC” section and specify make option according to
your Fortran compiler and MPI-library.

e Run the script. It will result in compilation of subparts of the package,
linking executable in folder $MAGIC/bin and exporting PATH, LD_LIBRARY_PATH
and PYTHONPATH environment variables.

If the fast installation script has run without errors, you can update envi-
ronmental variables in your startup profile, see sec. [Environment variables|

If you face errors during the execution of install.sh, you can try to compile
MagiC step by step as described below.

2.3 CGTray

Enter the CGtraj folder and run make with one of the options specifying com-
piler: make intel for Intel Fortran, make oracle for Oracle Solaris studio, or
make gfortran for GNU Fortran (default option). For other compilers, try to
edit one of Makefiles to match programming environment of your computer. If
compilation has finished successfully you will get a binary file called cgtraj.

24 RDF

The rdf module is written in python and does not need compilation. You need
only to specify environmental variables according to:

e add directory $MAGIC/bin to your $PATH environment variable.
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e add $MAGIC/RDF/rdf-2.0-1ib to your $PYTHONPATH environment vari-
able.

e add $MAGIC"/RDF/xdrfile-1.1.1 to your LD_LIBRARY_PATH environment
variable.

For reading trajectories produced by Gromacs (xtc and trr) RDF relies on
xdrfile library provided by GROMACS . If you are planning to use this trajec-
tory format, you need to compile xdrfile. Enter MAGIC/RDF/xdrfile folder
and run
./configure --enable-shared.

You can also specify location for the compiled library files by adding
--prefix=/path/to/library/folder

to configure arguments. Build the library by make install. If you have spec-
ified non-default location for the library, add it to $LD_LIBRARY_PATH. Finally
you need to add python wrapper for the library in $PYTHONPATH:

export PYTHONPATH=MAGIC/RDF/xdrfile-1.1.1/src/python:$PYTHONPATH

2.5 Magic

To compile the main part of the package, a Fortran compiler and lapack linear
algebra library are required. Lapack is included in Intel MKL which comes with
Intel Fortran and it is also included in Oracle Solaris Performance Library, which
comes with Oracle Solaris Studio. Other option is GNU Fortran (gfortran) and
a repository build of Lapack (liblapack). If you have any of them, use appropri-
ate Makefile for compilation or use make with an argument, for example make
intel. Run make without arguments to see all options available. The magic
module is the most computationally intensive part of the package, and most
probably you will want to compile it in parallel which can be done acccording
to one of Makefiles with mpi-extension. For ohter compilation options edit one
of the available Makefiles. The result of successful compilation is a binary file
magic-<extension> which you need to copy/link to your working directory or
default bin folder.

2.6 MagicTools

MagicTools is a Python-based library, which only needs to be added to PYTHON-
PATH environment variable:

export PYTHONPATH=MAGIC/MagicTools:$PYTHONPATH

You can also add this line to your .bashrc file to perform the export operation
automatically. To check if it is added successfully, open terminal, run ipython
and load the library:

import MagicTools

If no error message appeared, the module is ready for use.

2.7 Environment variables

In order to keep exported values of environment variables defined above you
may wish to add these lines to startup files of your shell:

Bash: Edit $HOME/ .bashrc in case of interactive session or .profile in case
of remote login session Add the following lines:


http://www.gromacs.org

# Define location of MAGIC below.

MAGIC= <PATH_TO_LOCATION_OF_MAGIC>

export PATH=$PATH:$MAGIC/bin

export PYTHONPATH=$MAGIC/RDF/rdf-2.0-1ib:$PYTHONPATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MAGIC/RDF/xdrfile-1.1.1
export PYTHONPATH=$MAGIC/RDF/xdrfile-1.1.1/src/python:$PYTHONPATH
export PYTHONPATH=$MAGIC/MagicTools:$PYTHONPATH

Csh/Tesh:

# Define location of MAGIC below.

set MAGIC= <PATH_TO_LOCATION_OF_MAGIC>

setenv PATH "$PATH":"$MAGIC"/bin

setenv PYTHONPATH "$MAGIC"/RDF/rdf-2.0-\1ib:$PYTHONPATH

setenv PYTHONPATH "$MAGIC"/RDF/xdrfile-1.1.1/src/python:$PYTHONPATH
setenv PYTHONPATH "$MAGIC"/MagicTools:$PYTHONPATH

setenv LD_LIBRARY_PATH "$LD_LIBRARY_PATH":"$MAGIC"/RDF/xdrfile-1.1.1

3 Using MagiC

3.1 CGTRAJ: Coarse graining of high resolution trajec-
tory

Input: CGtraj module requires the following input:

e Trajectory file in on of the following formats

MDYN - MDynaMix trajectory binary format.
XMOL - Text-based XYZ trajectory format, see details in section

PDB - Text-based trajectory format http://www.rcsb.org/pdb with
headers as generated by trjconv utility of Gromacs

DCD - NAMD binary trajectory file format.

A number of consequential trajectory files should have extensions as *.001,*.002,*.003,...
The order of atoms in each configuration of the trajectory should be:
< molecules of type 1> < molecules of type 2 > ...
and within each molecular type
<atoms of molecule 1> <atoms of molecule 2> ...

within each molecule, the order of atoms is the same as in the molecular
topology file .mmol.

*

e Molecular type descriptions for each type involved: *.mmol files. See

details in section [4.2]

e Parameter file defining the input trajectory, output and the mapping
scheme (refered here as cgtraj.inp).

Output:

e Coarse grained trajectory file in XMOL format.


(http://www.fos.su.se/mdynamix)
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e Coarse grained molecular types descriptions in mmol format, but without
any bond and force field information: *.CG.mmol

Usage:

cgtraj cgtraj.inp

3.1.1 cgtraj.inp: input parameter file

The main input file for cgtraj consists of two independent parts. The first part
describes the input atomistic trajectory, and the second part describes CG-bead
mapping scheme. This part of the input file is written in fortran “NAMELIST”
format which looks like:

$TRAJ
parameter=value(s),

$END
“TRAJ” is the name of this NAMELIST section. The following parameters must
be defined:
e NFORM = <format> where <format> is one of:

— MDYN - MDynaMix binary trajectory

— XMOL - XMOL trajectory. It is implied, that the commentary (sec-
ond) line of each configuration is written in the format:
(char) <time> (char-s) BOX: <box_x> <box_y> <box_z>
where (char) is any character word, <time> is time in fs, <box_x> <box_y> <box_z>
(following after keyword BOX) are the periodic box sizes.

PDBT - PDB trajectory as generated by trjconv utility of Gromacs.
— DCDT - DCD trajectories as generated by e.g. NAMD

FNAME = <file_name> set the base name of the trajectory files. The tra-
jectory must be written as a sequence of files <file_name>.001 , <file_name>.002
and so on, the largest possible number being <file_name>.999 .

PATHDB = <value> (Optional) Directory with molecular description files
(.mmol). Default is the current directory (.) .

e NTYPES = <value> Number of molecule types in the trajectory

NAMOL = <namel> [,<name2>,...] NTYPES names of molecules. It is sup-
posed that files <name1>.mmol, <name2>.mmol,... describing the molecu-
lar structure (MDynaMix format, see http://www.fos.su.se/mdynamix
are present in the directory defined by PATHDB. For analyzing trajectories
generated by other programs, .mmol files are not compulsory, but it is still
desirable to have the first section of .mmol files containing names of atoms
and information about atom masses and charges. If this information not
present, the program implies that all atom masses are equal to 1 (affect
center of mass calculation for definition of CG sites) and charges are set
to zero (can be reconstructed later manually).
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e NSPEC = <ni1>[,<n2>,...] Number of molecules of each type ( NTYPES
numbers). This parameter is not necessary in MDynaMix binary trajec-
tories.

e NSITS = <ni1>[,<n2>,...] Number of atoms in each molecule of the
given type ( NTYPES numbers). This parameter is not necessary if .mmol
files are provided.

e NFBEG = <value> Number of the first trajectory file (integer between 0
and 999)

e NFEND = <value> Number of the last trajectory file (integer between 0
and 999)

e IPRINT = <value> Defines how much you see in the intermediate output.
The final output with analysis of results does not depend on it. Default
value is 5.

° BOXL = <x-box-size>
BOYL = <y-box-size>
BOZL = <z-box-size>

define the box size in A if it is not present in the trajectory (implies
constant-volume simulation)

e ISTEP = <value> Specifies that only each ISTEP-th configuration from
the trajectory is taken for the analysis.

The second part, which describes CG bead mapping scheme, has a hypertext-
like format. The keywords/tags are not case sensitive, and spaces will be au-
tomatically removed from the text. The whole section starts with keyword:
BeadMapping and ends with EndBeadMapping. Every coarse grained molecular
type has to be described in a separate section, which starts with tag
CGMolecularType: <CGMolecularTypeName>
and ends with EndCGMolecularType. Inside each section, parental molecular
type name and CG beads definition should be given. The parental name is
defined by tag ParentType: <ParentMolecularTypeName>. CG beads are de-
fined in a line-per-bead way, where every line has the following structure:
<Bead name>:<Number of atoms in the bead>:<list of atoms>, where list
of atoms is a comma separated list of atom numbers atom1, atom2, ... accord-
ing to the mmol-file describing the parental molecular type. The names of the
CG beads should be unique for a given system.

An output <CGMolecularTypeName>.mmol}-file will be created for every de-
fined CG-molecular type. This file will contain the following information of each
CG molecular type: the numer of CG sites; names of the CG sites; possible co-
ordinates of CG sites (e.g. to be used at startup of CG simulations), masses and
charges of CG sites. These files will be used on the next stage in calculation of
the reference distribution functions.

3.1.2 Example: cgtraj.inp

This is an example of input file for cgtraj module, which reads a trajectory writ-
ten in binary MDynaMix format consisting of 10 files: dmpc16.001, dmpc16.002,...,dmpc16.010.
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The system presented in the trajectory, consists of 16 DMPC-lipid molecules dis-
solved in 1600 water molecules, as described in [I]. The bead mapping scheme
is shown on figure

&TRAJ
NFORM="MDYN’ ,
FNAME=’ . /MDynamix/dmpc16’ ,
PATHDB="./’,
NTYPES=2,
NAMOL=’dmpc’ , *H20° ,
NSPEC=16, 1600,
NFBEG=1,

NFEND=10,
ISTEP=1,
IPRINT=6,
&END

BeadMapping

CGTrajectoryOutputFile:cgtraj.001

CGMolecularType:dmpc_NM.CG
ParentType: dmpc_NM
N:16:43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58
pP:11:59,60,61,62,63,64,65,66,67,68,69
€1:9:1,2,3,4,5,73,74,75,76
c2:12:6,7,8,9,10,11,12,13,14,15,16,17
C3:12:18,19,20,21,22,23,24,25,26,27,28,29
C4:13:30,31,32,33,34,35,36,37,38,39,40,41,42
¢5:8:70,71,72,77,78,79,80,81
c6:12:82,83,84,85,86,87,88,89,90,91,92,93
C7:12:94,95,96,97,98,99,100,101,102,103,104,105
C8:13:106,107,108,109,110,111,112,113,114,115,116,117,118

EndCGMolecularType

CGMolecularType:H20.CG
parenttype:H20
H20:3:1, 2, 3

endcgmoleculartype

EndBeadMapping

Note, that even if molecules of a certain type are present in the atomistic
trajectory but are completely excluded in the coarse-graining (for example, sol-
vent), the CGMolecularType section for this molecule type should still be present
in the input file, but without definitions of CG sites.

3.2 rdf: Reference Distribution functions calculation

Input:

e Molecular type description file for each CG type present in the system:

These files are automatically created at the previous stage
(cgtraj)

e Coarse Grained trajectory file: [F.zmol]

11
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Figure 2: Simple illustration of mapping of DMPC phospholipid, which consists
of 118 atoms, into 10-beads CG model.
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e Parameter file defining the input trajectory, CG-atom types, assigning
atoms pairs to different RDF's, defining bonds and angles in the coarse-

grained model:
Output:

e File containing reference distribution functions: *.rdf See format details

in section [RDE]

e Coarse grained topology files for each molecular type which are used in
the main MC engine of MagiC *.mcm. See details in section

Usage:

rdf-2.0.py -i rdf.inp

3.2.1 rdf.inp: main input file

RDF input file consists of three parts: Trajectory description, RDF-calculation
parameters definition and interactions definition.

Trajectory: The section defines input trajectory file, in the same way as in but
allowed file formats are and GROMACS’s *.¢rr,*.atc. The later
two are defined by keyword NFORM="TRR’ or NFORM=’XTC’. It is supposed
that input trajectory for rdf module is already coarse-grained.

RDF-parameters: The format of this section was inherited from rdf utility of MDynaMix.
Thus it looks like a NAMELIST section, but it accepts comment lines,
and less strict to the syntax.

$RDFIN
parameter=value(s),

$END
and contains the following parameters:

— FOUTRDF = <filename> The name of the output file

— NATOMTYPE = <int.value> Total number of different bead types in
the system. Each pair of bead types has its own non-bonded inter-
action potential.

— NRDF = <int.value> Number of non-bonded RDFs to compute (a
typical value NATOMTY PE « (NATOMTY PE + 1)/2 implying
all-to-all interactions)

— NRDFI = <int.value> Number of intramolecular bond length distri-
butions

— NADF = <int.value> Number of intramolecular bending angle dis-
tributions

— RDFCUT = <value> Cut-off distance for non-bonded RDF

— RMI = <value>, RMAX = <value> Maximum boundaries for intramolec-
ular bond distributions

13



— DELTAR = <value> Resolution of the histogram for non-bonded RDF
calculation (A)

— DELTARI = <value> Resolution of the histogram for intramolecular
bond distributions (A)

— DELTAPHI = <value> Resolution of the histogram for intramolecular
angular distributions (degrees)

Interactions: The section consists of a number of lines defining sites for reference distri-
bution functions (DF). Since each DF will result in a separate interaction
potential, the definition of groups of beads, which belong to a certain DF,
is equivalent to definition of specific interactions in the system. First we
introduce bead types (which can be called ”coarse grained atom types”)
and specify CG beads belonging to each type. This is done by a list of
lines written in format:
<Name of CG-type>:<NameBeadl NameBead2 NameBead3>,
with one line per each CG type. In total NATOMTYPES lines should be
stated. Important: The CG interaction types (or CG force field types)
introduced here will define interactions types for CG effective potentials
and which will be further used in large-scale CG simulations. The order
of appearance of CG interaction types in the list we will further refer as
the index ( or the number) of CG interaction type.

The DF definitions follow after the list defining CG interaction types.
Each specific DF is specified by names of the molecular types involved in
the DF, separated by ’>--’, and for intramolecular DF the molecular type
number has to be specified as well. Then a single or several pairs (triplets
in case of angle distribution) of sites which belongs to the DF are stated. If
DF is specified by a single pair/triplet of sites, two/three number defining
these sites are written in the input. The sites are specified by the ”global
CG site number” which is an index of the sequence:

<CG sites of a molecule of type 1 > <CG sites of a molecule of type 2> ...

where the order of atoms in a molecule is determined by CG molecular
topology files (.CG.mmol) obtained from the previous stage CGtraj (and
which in turn is determined by the order of appearence of CG sites in the
mapping scheme in cgtraj.inp file).

If a DF includes several pair of sites (in order to average them), it is
written in the following way:

<Name of CG-typel>--<Name of CG-type2>
&<num of pairs>
<nl-1> <n2-1>
<n1-2> <n2-2>

(<NRDF> times for nonbonded RDF)

<Name of CG-typel>--<Name of CG-type2> <Num of molecular type>
&<num of pairs>

<nl-1> <n2-1>

<nl-2> <n2-2>

(<NRDFI> times for bond distributions)

14



<Name of CG-typel>--<Name of CG-type2> <Num of molecular type>
&<num of pairs>

<nl-1> <n2-1> <n3-1>

<n1-2> <n2-2> <n3-2>

(<NADF> times for angular distributions)

DF's within a group (introduced by &<num of pairs> statement) are aver-
aged and counted as a single DF, and the corresponding sites will interact by
the same potential. In case of triplets for angular distributions, the first two
numbers <nl-1> <n2-1> defines the ends and the third number <n3-1> the
middle of the angle.

CG sites of the same molecule included into list of bond or angle interactions
are excluded from non-bonded RDF calculations, and they are not supposed to
interact by a non-bonded potentials in the coarse-grained model.

3.2.2 Example: rdf.inp

This is an example of rdf.inp file which defines reference distribution function
calculation for a 10-site CG DMPC lipid model shown on figure [3| which origi-
nates from the atomistic model displayed in figure

cat rdf.inp
# Trajectory description

&TRAJ

NFORM="XMOL’ ,

FNAME=’cgtraj.mdyn’,

PATHDB=".’

NTYPES=1

NAMOL=’dmpc_NM.CG’,

NSPEC=16,

NFBEG=1,

NFEND=1,

ISTEP=1,

IPRINT=5
# End of trajectory description section

&END

# RDF calculation Description

&RDFIN

# Number of intermolecular RDFs

NRDF=10,

# Number of intramolecular bond length distributions
NRDFI=5,

# Number of intramolecular bending angle distributions
NADF=5,

# Output file name
FOUTRDF=’"dmpc16-100aa-rdf-mdyn’,

# Cutoff distance for intermolecular RDF: 204
RDFCUT=20.,
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# Boundaries for intramolecular bond length distributions
RMI=0.0,
RMAX=10.,
# Resolution of the histogram for intermolecular RDF calculation A
DELTAR=0.1,
# Resolution of the histogram for intramolecular RDF calculation A
DELTARI=0.02,
# Resolution of the histogram for intramolecular ADF calculation degrees
DELTAPHI=1.0,
# Number of different bead types. Each pair of bead types has their
#own intermolecular interaction potential
NATOMTYPES=4,
# End of RDF calculation description section
&END
# Third section - define interactions
# First we define coarse grained molecular types as a list
# CG-type name: Names of beads which belong to the CG-type
# CG mol type named "N" consists of one bead called "N"
N:N
P:P
# CG mol type named "CH" consists of six beads called
CH:C2 C3 C4 C6 C7 C8
C0:C1 C5
# List of Intermolecular RDFs : There are 10 different RDFs, as stated above in NRDF
#
# Pair of CG-type names separated by "--"
N--N
# Pair of atom numbers that belongs to N--N interaction
11

N--P
1 2
# N--CH intermolecular interaction
N--CH
# six pairs of atoms belong to N--CH interaction
& 6
# list of atom pairs
14

N e e
©O© 00 o O

P--CH
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# List of Intramolecular pairwise bond length distribution function
# Bond N--P, which belongs to the molecular type 1
N--P 1
# Two atom pairs belongs to this bond
12
P--CO 1
& 2
23
27
# Bond CH--CH, which belongs to the molecular type 1
CH--CH 1
# Four atom pairs belongs to this bond
&

O o »

4
4
5
8
9 10
CH--CO 1
& 2
34
78
C0--C0 1
37
# List of Intramolecular ADFs
# Angle bending bond N--P--CO, which belongs to the molecular type 1
# Names are given for the end atoms of the angle
N--CO 1
# Two atom triplets belongs to this bond
& 2
# Triplets. The central atom in the angle is given third in the triplet
132
172
P--CH 1
& 2
243
287
CH--CO 1
& 2
354
798
CH--CH 1
& 2
465
8 10 9
CH--CO 1
& 2
473
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Figure 3: Example: 10-beads CG model of DMPC-lipid. Beads and bonds of
same color have same type; solid lines denote covalent bonds; dashed arrows
denote angle bending bonds.

3.3

magic: Inverse Solver IMC/IB

This is the main part of the package. It performs iterative Metropolis Monte-
Carlo sampling of the system described by a trial set of potentials, then compares
sampled distribution functions with the reference ones, and computes correction
to the set of potential. Then the new iteration starts, with the updated set of
potentials. The process is repeated by a given number of iterations.

Input:

Parameters of the Monte-Carlo sampling and inverse solver: magic.inp
Coarse grained topology files, one file for each CG-molecular type:
Reference distribution functions: m

Initial structure for MC-process (optional). In a parallel run a separate
structure file should be provided for each parallel process:
name-of-the-system.p<process-number>.i<iteration-number>.start.xmol

Starting interaction potential (optional) *.pot. If not stated, the potential
of mean force or zero non-bonded potentials will be used at start. See
format details in section

Output:
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Log file for each parallel process: name-of-the-system.p<process-number>

General log file collecting summary information from all parallel processes
(as a standard output)

Updated effective potentials after each iteration: name-of-the-system.i<iteration-
number>.pot

Computed correction to effective potential obtained after a certain num-
ber of MC steps: *.potcorrcheck (optional). This can be used to control
convergence of the MC sampling at each iteration.

Mounte-Carlo trajectory of each parallel process (optional):
name-of-the-system.p<process-number>.xmol

The latest snapshot of the system of each parallel process and iteration:
name-of-the-system.i<iteration-number>.p<process-number>.start.xmol. This
file can be used as a starting configuration for a continuation of MC run.

In case of a parallel MC run, a set of files for each processor is generated.

Usage:

serial execution:
magic magic.inp

parallel execution:
mpirun -np number_of _processes magic magic-mpi.inp >magic.out

3.3.1 magic.inp: main input file

The input file should be written in strict format for ”Namelist” type of input
in Fortran program. The following parameters need to be defined:

System parameters:

NTYP Number of different molecule types (species) present in the system.

PATHDB Directory with molecule description files .mcm

NAMOL Names of molecules present in the system. Every molecule type

should have a description file, with the corresponding name and extension
.mcm, located in PATHDB directory. E.g. NAMOL = ’DMPC’,’CHOL’
defines 2 names: DMPC-for the first molecule type, and CHOL for the second
one. The description files should be named DMPC.mcm and CHOL.mcm.

NSPEC Number of molecules of each type, written as a comma-separated

list,(1,2,...,NTYP). For example, NSPEC=392,3, defines a system consist-
ing of 392 molecules of the first type and 3 molecules of the second type.

LMOVE Which molecules are allowed to move. List of comma-separated

logical values. Default LMOVE = .true., .true.,,i.e. all molecules are
moving. Frozen molecules coordinates has to be specified in a *.zmol file
given by FCRD parameter.
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NA Number of grid points for non-bonded interactions (RDFs and effective
potentials). This value should be the same as the one stated in reference
distribution function file, and in the input potential file if it is used in the
input.

EPS Dielectric permittivity constant defining electrostatic interactions in the
system.

TEMP Temperature of the system, K

BOXL,BOYL,BOZL ! Periodic cell dimensions, A. The software uses rect-
angular periodic boundary conditions and NVT ensemble.

Monte Carlo sampling parameters:

NMKS The total number of Monte Carlo steps to be performed at each iter-
ation per processor (including equilibration).

NMKSO The number of Monte Carlo steps for equilibration (not included into
averaging of the distribution functions).

LRDF Whether to read reference distribution functions file. If .true., the in-
verse mode is ON, the program will update the starting potential to match
the given RDF. Otherwise it will perform a standard MC simulation with
given potential. Default LRDF=.true.,

FILRDF Name of the input file with reference distribution functions

LPOT Whether to read trial potentials from a file (if LPOT=. true.), or to gen-
erate them from RDF as pontential of mean force U(r) = —kgT In(g(r)) (if
LPOT=.false.). If LPOT=.false., LRDF should be set to true: LRDF=.true.
and .rdf file must be present.

FILPOT Name of the file with a set of starting potentials (not required if
LRDF=.t. and LPOT=.1.)

LZEROPOT This option has an effect only in case (if LPOT=.false.). In case
of LZEROPOT=. true., the non-bonded trial potential is set to zero in the
whole range where the non-bonded RDFs are not zero. The bonded po-
tentials are still initiated as potentials of mean force. This option provides
often a smoother initial iterative process than starting from the potential
of mean force for non-bonded interactions.

LCRD If .true., starts the MC process from coordinates given in FSTART file.
Otherwise, start MC from random configuration by using local coordinates
from .mcm files and assigning random molecular center of mass positions
and orientations. Default: LCRD = .false.

LCRDPass If .true., provides passing of final configuration of the MC sampling
at each iteraction to the next iteration. Otherwise at the beginning of each
iteration, a starting configuration will be generated randomly, or read from
FSTART file (as given by LCRD parameter). Default: LCRDPass = .true.,
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IAV How often to compute DFs and the cross-correlation term of the IMC
algorithm. Computation of the cross-correlation term is rather expensive,
that is why it is not advisable to use it too often. A good value for this
parameter can be about the total number of CG sites in the system.

IOUT How often to recalculate the total energy, pressure and write the en-
ergies to the log-file. Within the program, the energy of the system is
permanently updated after each MC step (since the energy difference is
computed at each MC step). When the full recomputation of energy takes
place, the new value is compared with the value hold by the program. If
the difference is larger than 0.01 KT a warning message is given.

RECUT Cutoff for the electrostatic energy in the real-space Ewald sum. It
should not be less than the RDF cutoff.

AF, FQ Ewald summation parameters. Within the Ewald summation method,
the total electrostatic energy is expressed as

- felory) 1 5y % N
qiq; €T JC QT4 7 2 « 2
U = = KLk AP AL - = ip(k S -
l 2 Z Tij +2V Z k2 |p( )l QXp( 4012) ﬁzqz
iF£j k#0 i=1
Tij<Tcut

(1)
where, o = T"‘%, and k2, = 4a? FQ. With these notations, the precision
or the first sum is defined by er fc¢(AF'), while accuracy of the second sum

is defined by exp(—FQ). Default: AF= 3.0, FQ=9.0

DR Maximal displacement in a single atom displacement MC step, A. Default
DR = 1.0,

MCTRANSSTEP Maximal displacement in MC translation of the whole
molecule, A. Default MCTRANSSTEP = 0.2,

ITRANS How often (after which number of single-atom steps) to perform
random translation of a random molecule. Default ITRANS=0, i.e. never.
Single-atom molecules are not included into translation step (they are
moved only by single-atom displacements)

MCROTSTEP Maximal angle of rotation of the whole molecule (degree).
Default MCRotStep=0.1

IROT How often (after which number of single-atom steps) to perform random
rotation of a random molecule (excluding single-atom). Default IROT=0,
i.e. never

NRS Initial random seed for the random number generator.
Input-Output parameters:

BASEOUTFILENAME Base name (filename template) to use for writing
output files. All names of output files will begin with —BASEOUTFILE-
NAME—.

IPRINT Verbosity level of the log-file. 1-minimum level, 10 - maximum level.
Default: 5.
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LPOUT If true, perform an input test: read all input data, initialize all data
structures then finish. Default LPOUT = .false.,

IXMOL Whether to write trajectory files: 1 - yes, 0 - no. Default IXMOL = 0,.
Trajectory file is written in XMOL format.

ITR How often to write current system’s geometry to the trajectory file. De-
fault ITR=100,

FSTART Name of input file (set of files) with starting coordinates, excluding
'p001.start.xmol’ part.

FCRD Input file file with starting coordinates of frozen molecules (if they are
present).

LXMOL If true, program dumps the last configuration of MC process in
"start.xmol” file. It is done after every inverse iteration on every par-
allel process. Output filename is
BASEOUTFILENAME. i<iteration>.p<process>.start.xmol

Inverse solver parameters

LIMC Inverse solver selection. If LIMC = .true., Inverse Monte Carlo method
is used, otherwise iterative Boltzmann inversion is used. Default LIMC = .true.,

IREPT Number of inverse iterations to perform. Default IREPT=1,

DPOTM Cutoff for the change of potential value at every point during the
correction procedure. k7T units. Default DPOTM = 5.,. Recommended
(safer) value: DPOTM = 2..

REGP Regularization parameter for potential correction. This parameter
scales down the difference between calculated and reference RDFs which
is used in the inversion procedure, and has value between 0 and 1. In
case of disconvergence, expressed in alternating signs of corrections to the
potential at each next iteration, value of REGP need to be decreased. Also,
if corrections to the potential systematically exceed a few kT units (or
potential cutoff value set by POTM parameter) the valus of REGP should
be decreased. Too small values of REGP will however lead to very slow
convergence, and values below 0.01 are not recommended. Default (but
seldom optimal) is REGP=1..

IPotCorrCheck How often (after which number of MC steps) to perform po-
tential correction check. The program gathers accumulated statistics from
all the processes, and then calculates sampled distribution functions and
corrections to the potential. However, these corrections are not applied,
but just printed to the log file, while the run is continued with starting
values of the interaction potential. This allows user to analyze how well
the distribution functions and potential corrections are converged on every
inverse iteration. The checks are performed after equilibration. Default
IPotCorrCheck=0, i.e., no check.

POTCUT Relatively high value of the non-bonded potentials (in kJ/mol) rep-
resenting a nearly hard wall in areas where RDF=0. Default POTCUT=1000.
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3.4 MagicTools: Analysis of IMC results

This part of the package is completely python-based, and it should be run in
a python interpreter. We recommend to use ipython as an interpreter, but
standard python should also work. Once you have started ipython, you need to
import MagicTools module. To do this type: import MagicTools, if no error
message appeared, import completed correctly.

Analysis usually include few phases: Import of data from output files; Plot-
ting the data; Numerical analysis/evaluation of the data; Export of the data;
Below we will discuss how these actions can be taken by MagicTools.

3.4.1 Importing data

MagicTools can be used to load (for further analysis and visualization) reference
distribution functions (both from .rdf file |GetDFsFromFile_rdf| and magic out-
put file| GetDFsFromFile magic|), computed DF's (from magic output|GetDFsFromFile magic)),
effective potentials (both from .pot file |GetPotsFromFile pot|and magic out-
put file GetDFsFromFile_magic), corrections of the potentials in the iterative
process (magic output GetDFsFromFile_magic). You can also load previously
saved list of distribution functions using The import procedures are
named by origin of the target file, and they return a list of requested distribution
functions, which are instances of class [CDF]

Typical import of data from *.rdf-file looks like:
rdf=MagicTools.GetDFsFromFile\_rdf (’dmpcl16.rdf’)
Here all radial distribution functions and bond distribution functions will be
read from file dmpci6.7df and a resulting list of functions will be assigned to a
variable rdf.

3.4.2 Plotting data

Once the data are loaded, they can be visualized via plotting. MagicTools have
two plotting functions:

It takes a nested list of distribution functions (RDF, potentials)
and plot these functions in relevant groups. This is the easiest way to plot and
compare several sets of DF's, for example from different iterations of IMC.
This function simultaneously plots all functions which are given in
list ’DF's’ on the single plot.

3.4.3 Numerical analysis

MagicTools has a few procedures performing simple analysis of previously im-
ported data or output files generated by magic. Deviation|reads and plots total
deviation between reference and computed DF obtained on different iterations of
the inverse procedure. AnalyzeIMCOuput plots the reference and computed DFs
obtained in inverse procedure. They both require magic’s output file as input.
creates a set of total non-bonded potentials by adding the electro-
static term to short-range intermolecular potentials. calculates
the optimal value of dielectric permittivity which provides the fastest decay of
the short-range intermolecular potentials [4]. [PotsEpsCorrection|creates a new
set of short-range potentials with the corrected value of dielectric permittivity.
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creates a list of new short-range potentials by adding a decay-
ing linear term, which can be used to obtain ”pressure-corrected” potentials
providing correct total pressure in the CG system [5].

3.4.4 Exporting data

At present three operations are available: dumps a list of DFs to a
binary dump file, which can be read by [LoadDFs} [SaveDFsAsText|saves a distri-
bution function from a given list to a separate text-file; [PotsExport2Gromacs|
exports a list of potentials to a GROMACS’s .xvg format.

3.5 MagicTools procedures reference:
3.5.1 GetDFsFromFile rdf(filename,basename="prefix’)

Import a set of radial distribution functions and bond length/angle distributions
from rdf-file filename produced by rdf-2.0.py tool. You can also specify an
optional prefix basename=’some string’ to be given to all DF's read from the
file. If basename is omitted, input filename will be used.

Example: RDFs=MagicTools.GetDFsFromFile_rdf (’dmpc16.rdf’)

3.5.2 GetDFsFromFile magic(filename,iters=(),DF=",mtype=" ,basename="")

Analyse output file filename produced by MagiC and return a list of DFs for
every required iteration. Every single distribution function can be accessed as
DFs[iteration number] [pair number]

filename - name of the file to import (mandatory argument).

iters - set of iterations which should be extracted from the file (optional argu-
ment). By default all iterations will be extracted. Example: iters=(1,2,3)
or iters=(1,) Mind the comma in case of a single iteration number

basename - prefix given to all the DF's read from the file (optional argument).
By default a name of the input file will be used.

DF - which kind of function to import (optional argument): DF="RDF’ results
in import of radial distribution functions and bond distribution functions
obtained in iterative inverse Monte Carlo calculation; DF="RDFref’ - im-
port reference RDFs (ADFs); DF="Pot’ - import potentials used in MC
simulation on every iteration; DF=’PotNew’ - import effective potentials
generated on every iteration. Default DF=’RDF’.

mtype - Define the list of CG sites (optional argument). It defines the list
of pairs/triplets of atomic names to search in output file for parsing
RDF,potentials, etc. By default the program will automatically build
the list, but if you have more than one interactions for the same type of a
CG-atom, it is recommended to manually edit the subroutine in file Mag-
icTools.py and add a list of beads specific to your system. The list consists
of three sublists: first of them refer to non-bonded pair interactions, the
second refers to bonded pair interactions, and the third refers to bending
angle (1-3) bond interactions.
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Examples:

RDFs=MagicTools.GetDFsFromFile_magic(’02.magic.out’,DF="rdf’,iters=(1,2))
This line will import two subsets of computed RDFs and bond length/angle
distributions, obtained after 1-st and 2-nd iteration of the inverse proce-
dure.

potentials=MagicTools.GetDFsFromFile_magic(’02.magic.out’,DF="pot’)
This line will import the whole set of potentials used on each iteration re-
ported in the file ’02.magic.out’.

potentials=MagicTools.GetDFsFromFile_magic(’02.magic.out’,DF="newpot’ ,mtype=’dmpc’)
This line will import the whole set of potentials obtained after each iter-
ation reported in the file ’02.magic.out’. A predefined list of bead names
will be used for parsing of file ’02.magic.out’.

3.5.3 GetPotsFromFile pot(filename, basename=", mcmfile=", Ucut=10000.0)

Import a set of potentials from *.pot file filename produced by MagiC. Return
a list of potentials.

filename - name of the file to import (mandatory argument).

basename - prefix given to all the potentials read from the file (optional argu-
ment). By default a name of the input file will be used as a mark.

mcmfile - *.mem molecular structure file to read bead names (optional argu-
ment). If not set, a warning will be given, and bead numbers will be stated
instead of types.

Ucut - Criteria to recognize artificial core part of the potential (optional argu-
ment).

Example:
pots=MagicTools.GetPotsFromFile_pot(’01.dmpc16.pot’ ,mcmfile=’dmpc_NM.CG.mcm’)

3.5.4 LoadDFs(filename)

Loads a set of DF's from a file previously dumped with DumpDFs.

filename - name of the file to load (mandatory argument)

Example: rdfs=MagicTools.LoadDFs(’rdf.dmp’)

3.5.5 PlotAllDFs(listDFs, hardcopy=False, title=", linetype=",
nolegendintra=False, figsize=(20,14), dpi=80)

It takes a nested list of distribution functions (RDF, potentials) and plot these
functions in relevant groups.

listDF's - nested list of distribution functions, e.g. it is a list which keeps a few
sublists with distribution functions inside (mandatory argument).

A @), 80 @), B0V D ) 52 @), 52 0)), s LA (), 57 (), 157 ()
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hardcopy - Defines that the plots should be saved as *.eps files (optional ar-
gument). Default value - False, no eps copies are made.

title - Prefix used in a title of each plot (optional argument).

linetype - String defining a type and color of lines according to matplotlib
syntax (optional argument). See more about syntax here: |matplotlib
tutorial

nolegendintra - If set, a legend on the intramolecular plots will be omitted
(optional argument). Default: False (show the legend everywhere). This
option might be useful, when the legend overlaps with curves on the plot,
usually it can happen when plotting intramolecular DF /potentials.

figsize - Size of the plot in inches (x,y) (optional argument). Default size is
(20,14).

dpi - Resolution of the plot in dpi (optional argument). Default value: 80 dpi.

Example:
imc=MagicTools.GetDFsFromFile_magic(’magic.out’) - import RDFs ob-
tained on every iteration of IMC to a list imc
MagicTools.PlotAl11DFs(imc) - Plot RDFs from the list at the same plot
grouped by origin (pair of beads involved in function).
MagicTools.PlotAl1DFs([rdfref]+[imc[4]],hardcopy=True,

title=’RDF convergence in IMC’,linetype=’.’) Plot RDFs calculated in
IMC at the same plot together with reference RDFs, and save copies to eps-files.
Plots will be drawn with dots instead of lines, and a title will be added to each
plot.

3.5.6 PlotDFs(DFs,hardcopy=False, title=", linetype=", nolegend-
intra=False, figsize=(20,14), dpi=80):

Plots all distribution functions stated in a list DFs on a single plot.

listDF's - list of distribution functions (mandatory argument).
RGN RONRIG)

hardcopy - Defines that the plots should be saved as *.eps files (optional ar-
gument). Default value - False, no eps copies are made.

title - Prefix used in a title of each plot (optional argument).

linetype - String defining a type and color of lines according to matplotlib
syntax (optional argument). See more about syntax here: matplotlib
tutorial

nolegendintra - If set, a legend on intramolecular plots will be omitted (op-
tional argument). Default:False - show the legend everywhere. This option
might be useful, when legend overlaps with curves on plot, usually it can
happen when plotting intramolecular DF /potentials.

figsize - Size of the plot in inches (x,y) (optional argument). Default size is
(20,14).
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dpi - Resolution of the plot in dpi (optional argument). Default value: 80 dpi.

Example:
MagicTools.PlotDFs(rdfref [0:5]) Draw first 5 functions from list rdfref

3.5.7 Deviation(filename,hardcopy=False)

Procedure analyses output file (or set of files) produced by MagiC and plots
deviation between the set of reference distribution functions and computed dis-
tribution function obtained on every iteration of the inverse procedure. Two
deviations are calculated:

ri=Tmax
AS ~ 322 20™ (Siter(r5) — Sres(r;))?]%°

Ti=Tmazx .

ARDF ~ [erzo (giter(rj) — Gref (7,.],))2]0 >
If an intermediate convergence test has been performed during the inverse pro-
cedure, results of the test are also plotted.

filename - name of the MagiC output file or list of such names (mandatory
argument).

hardcopy - defines that the plot should be saved to a .eps file (optional argu-
ment). Default - no.

Examples:
MagicTools.Deviation(’01l.magic.out’)
MagicTools.Deviation([’01.magic.out’,’02.magic.out’] ,hardcopy=True)

3.5.8 AnalyzeIMCOuput(filename,mtype=",iters=(),hardcopy=True)

Analyze output file produced by MagiC and plot resulting DFs of interest and
reference DFs.

filename - name of the output file to analyse (mandatory argument)

iters - tuple of iterations which should be extracted from the file (optional argu-
ment). By default all iterations will be extracted. Example: iters=(1,2,3)
or iters=(1,) Mind the comma in case of a single iteration number

mtype - type of the molecules in system (optional argument). It defines list
of pairs/triplets of atomic names to search in output file for parsing
RDF,potentials, etc. By default the program will automatically build the
list, but if you have more than one interactions for same type of CG-atom,
it is recommended to manually edit the subroutine in file MagicTools.py
and add list of beads specific to your system. The list consists of three
sublists: first of them refer to non-bonded pair interactions, the second
refers to bonded pair interactions, and the third refers to bending angle
(1-3) bond interactions.

hardcopy - if plots should be saved to a .eps files (optional argument). Default
- True

Example:
MagicTools.AnalyzeIMCOuput(’01l.magic.out’)
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3.5.9 TotalPots(pots,eps)

Creates a set of total potentials by adding electrostatic interactions to short-
range potentials.

q:q;
Uiot = U, — 2
tot T + 47’(6607’1']' ( )
Electrostatic part is only applied to non-bonded potentials, while bond poten-
tials (both pairwise and angular) will be kept the same.

pots - list of potentials (mandatory argument)

eps - dielectric permittivity e of implicit solvent used in inverse Monte-Carlo
simulation (mandatory argument).

Example:
pots=MagicTools.GetPotsFromFile_pot(’01.dmpc16-100a.i010.pot’,
mcmfile=’dmpc_NM.CG.mcm’) - importing potentials.
TotalPots=MagicTools.TotalPots(pots,70) - Creating total potentials

3.5.10 GetOptEpsilon(pots,eps_old,rl,eps_min=0,eps_max=0,npoints=100)

This procedure implement methodology to compute optimal value of the di-
electric permittivity in an ion-like system providing fastest decay of short-range
intermolecular potentialas as described in ref. [4]. A brief description of the pro-
cedure is given here. First, we introduce a numerical criteria of a short range
potential deviation from zero at longer distances:

WU (r / Ir2 (U3 (r)) | dr 3)

where r1 and ro are the lower and upper boundaries of the range of distances
defining the tail (by default the ro value is taken as the cut-off of RDFs and
tabulated effective potentials). From eq. one can write for the short-range
part of the potential:

WU / (U, () — ~2%)|ay (1)

471'6067“

Assume we define the long—range Coulombic potential using another value of
permittivity e*. This, according to [2] introduces a new short-range potential
as: L1

U = U0 + (= ) (5)
Now we shell find the optimal £*, which produces the fastest decay of all short
range potentials between charged species according to criteria defined by eq.
We minimize the sum:

W (system) = ZW (U9 (r Z[U”( )+%(1—i)] (6)

degr € €*
i,j

by varying £*. The optimal value of €* can be considered as effective dielectric
permittivity corresponding to the given thermodynamic conditions (tempera-
ture, concentration).
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pots - set of potentials to analyse (mandatory argument) NB! The dielectric
permittivity value calculation only takes the non-bonded potentials into
account skipping bonding potentials.

eps_old - dielectric permittivity used in inverse MC calculation (mandatory
argument)

rl - distance where tail range begins, A(mandatory argument)

eps_min, eps_max - range of values for the search of ¢,,; (optional argument).
By default eps_min=0, eps_max=2%eps_old

npoints - number of points in a mesh to be used for the search, e.g. accuracy

of the search is equal to Smaez—Ctmin
npoints

Example:

pots=MagicTools.GetPotsFromFile_pot(’01.dmpc.pot’ ,mcmfile=’dmpc.mcm’)

importing potentials.

eps_opt=MagicTools.GetOptEpsilon(pots, 70.0, 15, eps_min=50, eps_max=100, npoints=1000)
getting optimal epsilon

3.5.11 PotsEpsCorrection(pots,eps_old,eps_new)

This procedure creates a new set of potentials, with short-range intermolecu-
lar potentials corresponding to a changed value of the dielectric permittivity
according to eq[f]

pots - set of potentials to analyze (mandatory argument) NB! The correction
only affects intermolecular potentials.

eps_old - dielectric permittivity used in inverse MC calculation (mandatory
argument)

eps_new - new value of dielectric permittivity.

Example: newpots=MagicTools.PotsEpsCorrection(pots,70,100)

3.5.12 PotsPressCorr(pots,U_corr0)

This procedure creates a new set of short-range potentials by adding a decaying
linear term to each non-bonded potential in a given set. Such a correction can
be used to fit a correct pressure in the CG simulation as described in ref. [5].
The intramolecular potentials are kept untouched. Correction term is linear and
has value of Uprrp at point r=0, and value of 0 at © = 744, €8 Ueorr (1) =
UcorrO : (1 - )

Tmax

pots - set of potentials to analyze (mandatory argument) NB! The correction
only affects intermolecular potentials.

U_corr0 - Magnitude of the correction, kJ/mol (mandatory argument)

Example: newpots=MagicTools.PotsPressCorr(pots,0.5)
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3.5.13 GromacsTopology(mcmfile,topfile)

Creates a Gromacs topology file *.top from a given list of mcm-files. Number
of molecules in the resulting system should be stated manually once the top-file
is created.

mcmfile - Name of the mcm-file or a list of such files (mandatory argument).
topfile - Name of the output GROMACS topology file (mandatory argument)

Examples:

MagicTools.GromacsTopology (’dmpc.mcm’, >dmpc.top’) - system of single molec-
ular type

MagicTools.GromacsTopology ((’dmpc.mcm’, >dopc.mcm’) , >dmpc_dopc.top’)

- system having two different molecular types

3.5.14 DumpDFs(DFs,filename)

Dumps a given set of DFs into a file. The file can be read using LoadDFs.
DFs - set of distribution functions to dump (mandatory argument)
filename - name of the dump-file (mandatory argument)

Example: MagicTools.DumpDFs(pots, ’pots.dmp’)

3.5.15 SaveDFsAsText(DFs)

Save every function from a given list DF's into a separate text-file. Each function
is saved in a tabulated format: First column - distances in A, second column -
values. The text file has the same name as according distribution function.

DFs - set of distribution functions to save (mandatory argument)

Example: MagicTools.SaveDFsAsText (pots)

3.5.16 PotsExport2Gromacs(pots, ofilename=", zeroforce=False, npoints=2500,
Umax=6000, Rmaxtable=2.5, sigma=0.5, interpol=True, no-
plot=False, hardcopy=True, figsize=(14,8), dpi=120)

This procedure exports a set of potentials into GROMACS .xvg format. Such
an export is a few steps process, detailed description of which follows below.
In general the question is following: we start with a tabulated potential which
is defined on a r-grid [rmin : Tmaz) With a given density; and as a result we
need to obtain a tabulated potential, which is defined on a wider r-grid [0 :
Twdw + Ttable—extension) With a larger density as required by GROMACS for
tabulated potentials. In order to do that, we need to introduce first left-side
and right-side extensions of the potential which should be smoothly connected
to the original potential. The left side extension should represent a strongly
repulsive core, which is approximated by

Uleft(r) =ar? + br + Unmaz (7)

and coefficients a and b are chosen to provide continuity of d%U (r) at r =
Tmin- For the right side extension we should take into account an origin of
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the potential. Short-range non-bonded potentials should decay to zero when
7 > T'mae Which is achieved by:

Um’ght (’I“) — U(Tmaw) . eXp[—lO (T - Tmaz) ] (8)

shortrange
g Tvdw-+table—extension — T'mazx

Here 10 is a pre-defined coefficient, ryqw+table—ecatension 18 & range of the table
required by GROMACS.

Angle bending bond potentials should also decay to zero at ¢ = 180°. The
following smoothing expression is applied:

(d) - (bmaa:)
180° — ¢ma'r] (9)

In contrast, pairwise bond potentials should have attractive wall at the right
side, which is approximated by harmonic wall in the same way as the repulsive
wall:

Um’ght ((b) _ U(qj)maw) . exp[—loo

angle

[yright (r) = ar? +br + Upas (10)

pair bond

with coefficients a and b are chosen to provide continuity of d%U (r) at r = rpae-
Once the extension has been made, we interpolate all the points to a denser
grid. Number of nodes in the grid is defined by npoints. If interpol=False
a grid of the original density is used. The interpolation is made by Gaussian
smoothing, e.g. every point of the resulting potential is obtained as:

J ; —(r—m)?
orig(.. \ .
Z(T) . Z U (TZ) eXp 20_2

i=Tmin

Unew (r) —

Tmazx

Ti=Tmin

where o defines how broad is the averaging. By default o = 0.5Ar;

After the interpolation is done, each resulting potential and force based on
it are written to xvg-file. The xvg-file is named by name and type of the corre-
sponding original potential. Forces can be suppressed by setting noforce=True,
then zeros will be written to the file. In such case GROMACS should automat-
ically calculate forces from a given potential.

In order to control the results, each original potential, the extrapolated part
and interpolated potential are plotted together. The plotting is controlled by
parameters noplot, hardcopy, figsize, dpi, which are explained below.

pots - set of potentials to export into GROMACS .xvg format (mandatory
argument)

ofilename - Prefix used for naming of the output .xvg files (optional argument).

zeroforce - do not write forces into .xvg-file, but write zeros instead (optional
argument). In such case GROMACS should automatically calculate forces
from the potentials. Default: False - forces are to be written. NB: Even
if zeroforce=True force values are plotted.
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npoints - number of points in the resulting table in .xvg file (optional argu-
ment). Default value - 2500 points.

Umax - height of the potential wall at r=0 in case of non-bonding potential and
at ¥ = Tmin, T = Tmas i case of bonding potential (optional argument).
Default value 6000 kJ/mol

Rmaxtable - cutoff range of the resulting potentials (both intermolecular and
pair bonds) in nanometers (optional argument). Default value is 2.5 nm.
Note that GROMACS requires tabulated potentials to be defined up to
r=rvdw-+table-extension (in terms of GROMACS parameters).

sigma - Gaussian smoothing parameter measured in resolution of the original
potential (optional parameter). Default value 0.5

interpol - if the potentials should be interpolated, otherwise original resolution
of the table will be kept and npoints value will be ignored (optional
argument). Default - True, potentials are interpolated.

noplot - if interpolated potentials potential /forces should be plotted (optional
argument). Default: False - the graphs are plotted.

hardcopy - defines that the plots should be saved as *.eps files (optional argu-
ment). Default value - True.

figsize - size of the plot in inches (x,y) (optional argument). Default size is
(14,8).

dpi - resolution of the plot in dpi (optional argument). Default value: 120 dpi.

Examples:

MagicTools.PotsExport2Gromacs (pots) - simplest call with default parame-

ters.

MagicTools.PotsExport2Gromacs (pots [0:10], sigma=0.1, zeroforce=True, interpol=False )
- export only first 10 potentials from the set; do not use denser net for inter-

polation; use averaging with sigma=0.1 (very narrow gaussian); do not export

forces, write zeros instead.

3.5.17 C_DF - Object Class representing Distribution Function

C_DF is a object-oriented class, which suppose to reproduce basic features of any
distribution function (e.g. RDF, bond length distribution, angle distribution,
intermolecular potential, angle-bending potential, correction to potential).

The class has a few properties and methods, which are common for every
DF:

Properties:
Name - Name of the distribution function

type - Type of the distribution function: It is either ’inter’ for intermolecular
DF and ’intra’ for intramolecular.

Npoints - Number of points in a table defining the function.
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rmin,rmax - Range of distances/angles where the function is defined
resol - Resolution of the tabulated function

g[:, 0:2 | - Table (numpy array) defining the function. g[:,0]-keeps argument
(r,angle), g[:,1]-keeps function’s value

Methods:

Normalize() - Calculate values of g[:,0:2] by normalizing accumulated his-
togram. Only available with rdf-2.0

Smooth() - Smooth values of g[:,1] using Savitzky Golay 5 points smoothing
procedure

Trim(tolerance) - Cut function’s (g[:,1]) left and right tails which have values
smaller then jtolerance;

Plot() - Plot the function, using matplotlib library

Save() - Write the function in a tabulated format to a text file.

3.6 Additional small tools

3.6.1 gro2xmol.py

Converts *.gro file to a *.xmol file. Usage: gro2xmol.py -i input.gro -o out-
put.xmol

3.6.2 xmol2gro.py

Converts *.xmol file to a *.gro file. Usage: xmol2gro.py -i input.xmol -o out-
put.gro -molnames ”CDMPC’,"WAT”)” -nmols ”(98,2700)” -natimol ”(118,3)”
Since the later one has more information about system’s structure, this script
requires additional input:

-molnames - tuple of molecular types that are present in the system

-nmols - tuple stating how many molecules of each type are present in the
system

-natimol tuple stating how many atoms each molecular type has

3.6.3 gdevi

Simple tool to check a convergence of iterative inverse process. It is nothing else,
but a shortcut to a grep, which allows to parse deviation in inverse process.
alias gdevi=’grep -i --text ’\’’devi’\’’’

Usage: gdevi magic.out
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4 File formats

4.1 .xmol

This is plain text trajectory file format, which can be produced by many com-
putational chemistry software packages (sometimes is references as xyz). It con-
sists of a number of consequent frames, with each frame having the following
structure:

line 1: Number of atoms in the frame (N)

line 2: Some commentary text. In MD trajectories used in the input to MagiC
this line is supposed to have a form: after time stamp some text BOX:
boz-z box-y box-z

line 3: Name(atoml) X(atoml) Y(atoml) Z(atoml)
line 4: Name(atom2) X(atom2) Y(atom2) Z(atom2)
lines 5,6...,N+2: Names and coordinates of atoms 3 - N.

The length unit is A, and time unit is femtoseconds. MagiC can understand
.xmol trajectory with commentary lines without time step and box sizes, but in
the latter case the box sizes should be specified in the input file (cgtraj and rdf
modules) and the simulations imply NVT-ensemble.

4.2 .mmol

.mmol is a molecular topology file format, which is used in MDynaMix MD soft-
ware. It consists of two parts: first part describes atomic composition, geometry,
charges, masses and non-bonded interactions; the second part defines bonded
interactions in the molecule. MMOL-topology files are required by cgtraj
for converting high-resolution trajectory to a coarse grained one and
for calculation of reference distribution functions rdf (subsection 3.2). In both
cases only information about the atomic structure is used, so the bonding part
may be omitted.

The first part of the file has the following structure: The lines started with
'#’ are commentaries The first non-commentary line of a .mmol file is the num-
ber of atoms in the molecule. After it the corresponding number of lines follows,
one line per atom. Each line contains 8 compulsory parameters. They are: 1)
atom name in the program; 2),3) and 4) are the initial X,Y,Z coordinates of
the atom in the molecular coordinate system, 5) mass in atom units, 6) charge,
7) Lennard-Jones parameter (effective atom diameter) in A, 8) Lennard-Jones
parameter in kJ/M. Two optional columns may present, the 9-th column with
the chemical types of atoms according to the chosen force field and the 10th,
with the atom numbers.

=~

.2.1 .mmol File Example (original): H20.mmol (SPC-water)

=+

MDynaMix molecular Data Base
Configuration and interaction potential
SPC H20 model

H H H
HHH H
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Number of sites

3
# X Y Z M Q sigma epsilon
# @) (kJ/M)
0 0. 0. -0.064609 15.9994 -0.82 3.1656 0.6502
H1 0. -0.81649 0.51275 1.008 0.41 0. 0.
H2 0. 0.81649 0.51275 1.008 0.41 0. 0.

# Num. of strings for the reference
4

SPC water model

Parameters from:

K TOUKAN AND A.RAHMAN,

PHYS. REV. B Vol. 31(2) 2643 (1985)
# Num. of bonds

3
#ID(typ) N1 N2 Reqv Force D RHO (Axx*-1)
1 1 2 1. 2811. 420. 2.566
1 1 3 1. 2811. 420. 2.566
0 2 3 1.633 687. 0. 0.
# Num. of angles
0
#  Num of dihedrals
0

4.2.2 ”fake” .mmol File Example:

For the purposes of MagiC, the only information which is needed is the number
and type of atoms, their charges and masses. In case of trajectories prepared by
other packages, a fake .mmol file can be created containing only the first part,
with any numbers (e.g., zeroth) for the atom coordinates and LJ parameters. For
example, the shown above true file for SPC water can be used in the following
form:

3

0 0. 0. 0. 15.9994 -0.82 0. 0.
H1 0. 0. 0. 1.008 0.41 0. 0.
H2 0. 0. 0. 1.008 0.41 0. 0.

4.3 .mcm

Coarse grained topology file, which is similar to CG.mmol, but includes infor-
mation about non-bonded potential types and intramolecular bonds and angles.
These files are created by rdf module of MagiC, but can be also prepared and
used independently. In general a .mcm file consists of three parts: atom com-
position and geometry section, covalent-like bond section and angle-bending
bond section. A separate .mcm file should be provided for each molecular type
present in the system

Format of .mcm file:

Lines beginning with '#’ or ’!

b

are commentaries.
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The first non-commentary line of a .mcm file is the number of atoms in the
molecule. After it the corresponding number of lines follows, one line per atom.
Each line contains 8 parameters. They are: 1) atom name in the program; 2),3)
and 4) are the initial X)Y,Z coordinates of the atom in the molecular coordinate
system, 5) mass in atom units, 6) charge, 7) Index of the interaction type this
atom belongs to, 8) Name of the atom species/type this atom belongs to (CG
force field atom type). Atoms of the same atom type interact by the same
non-bonded potential.

Important: The index of the interaction type is a global number for the
whole system. CG sites having similar fine-grained structure can be described by
the same interaction type, then they have the same interaction index. Different
types of molecules may have CG sites with the same interaction type.

Next line, coming after atoms section, defines the number of covalent-like
bond types in the molecule. For each type of a covalent bond we need to specify:
Number of atom pairs which belong to a bond of this type; List of triplets, where
1-st and 2-nd numbers define which atoms are connected by this bond and the
3-rd number is always 1 for a covalent bonds (this field is reserved for future
use). In difference from the non-bonded section, the CG sites in the list of bond
are given as CG atom numbers defined by the order of their appearence in the
first part of the .mcm file, irrespectively of their non-bonded interaction type.

The angle bending section is similar to covalent-like bond section. It also
starts with a line defining a total number of angle bending bond types. For each
type of angle bending bond we need to specify: Number of atom triplets which
belong to a bond of this type; List of triplets (CG atom number) defining which
atoms are connected by this bond. The triplet has unusual order: central atom
stands last in the triple, e.g. triplet 1 3 2, defines angle between 1-2 and 2-3.
Thses numbers are given as global CG site numbers.

4.3.1 .mcm Example: DMPC.CG.mcm

The mcm-file listed below defines 10-beads model of DMPC-lipid, as shown on
figure [3

#Number of atoms

10

# Name X Y Z Mass Q NumofType NameofType
N -6.1804 -17.2679 17.2781 73.139 0.76 1 N

P -9.6995 -17.2121 14.915 123.0256 -0.89 2 P

C2 -18.1023 -13.2828 10.2371 56.108 -0.0 3 CH
C3 -21.9375 -11.5562 7.3382 56.108 -0.0 3 CH
C4 -24.5552 -9.7683 3.2938 57.116 -0.0 3 CH

Cé -15.3122 -17.1232 8.1441 56.108 -0.0 3 CH
Cr -18.7644 -15.0198 5.1392 56.108 -0.0 3 CH

C8 -21.6201 -13.2988 1.0155 57.116 -0.0 3 CH

C1 -14.7182 -15.6667 12.7078 72.0638 -0.09 4 CO
C5 -13.3132 -18.7418 11.2877 71.0558 0.22 4 CO

ere we define covalent like bonds

H
Total number of covalent bond types: 5
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Covalent bond N-P
One atom pair belongs to covalent bond type 1

Define pair of atoms by their numbers in the list above: 1 (N) 2 (P),
the third number should always be 1 for covalent bond.
2 1
Covalent bond P-CO
Two atom pairs belong to covalent bond type 2

Define 2 pairs of atoms by their numbers in the list above: 2 (P) and 9,10 (C1,C5)
9 1
10 1

Covalent bond CH-CH

Four atom pairs belong to covalent bond type 3

Define 4 pairs of atoms by their numbers in the list above: 3-4, 4-5, 6-7, 7-8
4 1

5 1
7 1
8 1

Covalent bond type 4

O N H NP WHPPHAFANONNHFENDNHFH- HH~ HH

3 1
10 6 1
Covalent bond type 5

10 1

Here we define angle bending bonds
Total number of angle bending bonds:5

#
1
9
#
#
#
5
# Two atom triplets belong to angle bond type 1:

# 0BS! Triplet has unusual order: central atom stands last in the triplet, e.g.
# triplet 1 9 2 means angle 1-2-9, with 1,9 on sides, and 2 on corner.
2
1
1
#
2
2
2
#
2
9

9 2
10 2
Two atom triplets belong to angle bond type 2:

3 9
6 10
angle bond type 3:

4 3
10 7 6
# angle bond type 4:

2

3 5 4

6 8 7

# angle bond type 3:
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2

3 10 9
6 9 10
4.4 .xdf

This file keeps reference distribution functions of three types: radial distribution
functions for each non-bonded potential; intramolecular covalent bond distance
distribution for each covalent-bond like potential; intramolecular bending angle
distribution for each angle-bending potential. RDF file is necessary for the
inverse solver mode of magic, otherwise it will only perform MC sampling with
a look-up table potentials. RDF files are generated by program rdf-2.0.py and
can be read and visualized by MagicTools.
Lines beginning with #’ or ’!" are comments.

First line: 4 numbers:
1. number of different atom types over all molecules in the simulation

(integer). Different molecules may have atom types of the same kind.

2. number of "bins” for intermolecular RDFs (integer). Must be the
same as NA parameter in the main input file

3. Rmin : minimum distance for RDF; usually 0.
4. Rmax = Rcutoff for short-range interactions and RDFs (real)
Atom types: Then the number of lines, equal to the number of atom types

follow, with one character parameter per line: name of the corresponding
atom type.

Then the RDFs are read according to the following scheme:

1. Intermolecular (non-bonded) part: Each section contains RDF written
in 4 columns, with the following meanings:

1. distance, A
2. corresponding RDF value
3. columns 3-4: atom types involved in this RDF

The range of short distances where RDF has zero values may be omitted,
these points will be automatically filled by zeros. The distance column is
for human-reading only; the actual distances are computed from Rmin,
Rmax values and the number of bins, implying equal size of all the bins.
If an RDF between some pair of atomic types is missing, these types will
not have a short-range interaction, but only Coulomb one. Atom types
in columns 3,4 are those which are defined in the 7-th column of the first
part of the .mcm files.

Covalent-like bond distributions: The section begins with keyword intra,

which is followed by intramolecular bond length distributions.

e Each distribution starts by a line with 4 numbers:
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1. the number of different bonds of this type (NST)
2. number of ”bins” for bond DF between this atom pair (NPOTS)
3. 3 and 4: - Rmin and Rmax for this bonded DF

e Then follows NST lines, (each per bond of this type), with two num-
bers showing which atoms are connected by this bond: NB: in this
and next section, global CG site numbers are used, not the interac-
tion types as in the nonbonded section!

e Then follows NPOTS lines with 2 real numbers: distance and RDF

Bending angle bond distributions: The section begins with keyword angle,
which is followed by intramolecular bond angle distributions.

e Each distribution starts by a line with 4 numbers:

1. the number of different angles of this type (NST)

2. number of "bins” for intramolecular ADF for angle of this type
(NPOTS)

3. 3 and 4. - Min and Max angle values for this intramolecular ADF

e Then follows NST lines, (each per bond of this type), with three
numbers showing which atoms are involved in this angle. NB! The
triplet has unusual order: central atom stands last in the triple, e.g.
triplet 1 3 2, defines angle between 1-2 and 2-3.

o Then follows NPOTS lines with 2 real numbers: angle (degrees) and
ADF

The .rdf file must end with the keyword ”end”
En example of .rdf file can be found in the tutorial files.

4.5 .pot

File describes the whole set of interaction potentials for the given system in a
tabulated format. It is created and used by magic, but can be imported from
outside, plotted and exported to Gromacs by MagicTools.

A .pot file consists of three parts: short-range non-bonded potential, in-
tramolecular bond potential and intramolecular angle bending potential. All
potentials are given in kJ/mol, distances are given in A, and angles are given in
degrees.

Electrostatic interactions are calculated independently from the charges,
specified in .mcm files, and scaled by the value of dielectric constant, which
is specified in the magic main input file

Format of .pot file: No comment lines allowed.

First line : Consists of 7 numbers:

1. number of different atom types over all molecules in the simulation
(integer)

2. number of bins for potential (integer). Must be the same as NA
parameter in magic’s main input file and in the .rdf file
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3. number of non-bonded potentials (integer; must be equal to the num-
ber of different interacting non-bonded pairs over all molecules)

4. number of intramolecular pairwise bond potentials (integer; must be
equal to the number of different ”bonds” over all molecules)

5. number of intramolecular angle bending potentials (integer; must be
equal to the number of different ”angles” over all molecules)

6. Rmin (usually 0.)

7. Rmax = Rcutoff for short-range interactions (real)

Intermolecular part: For each pairs of atom type, ”NA” lines should be spec-
ified, and every line consists of 4 numbers :

1. distance, A. Only for guidance, since the actual distance is always
calculated by division of the interval [Rmin,Rmax] by NA parts

2. value of the potential (only short-range part) in kJ/mol

3. columns 3-4: two integer numbers specifying the CG atom types
involved into this interaction.

Note that potential values should be given for all distances starting from
Rmin, even in the core region. When a .pot file is created by magic, the
values of the non-bonded potential in the core region are filled by very
large numbers.

Intramolecular part, pair bonds: Consist of subsections, one per each type
of bond potentials (their number is specified by the fourth parameter in
the first line). For each intramolecular pair bond potential the first line
consists of 6 numbers:

1. The number of different bonds of this type (NST)
2. 3. Contain the same numbers as the next line, see below
4. Number of ”bins” for this bond potential
5. 6. - Rmin and Rmax for this bond potential
Then follows NST lines (each per bond of this type), with two numbers

stating which atoms are connected by this bond, in terms of global CG site
number, and NPOTS lines with 2 real numbers: distance and potential.

Intramolecular part, angle bending: Consist of subsections, one per each
type of angle potentials (their number is specified by the fifth parameter
in the first line of .pot file). For each intramolecular angle potential the
first line consists of 6 numbers:

1. The number of different bonds of this type (NST)
2. 3. Put the same as the next line, see below
4. Number of "bins” for the potential (NPOTS)
5. 6. - Minimal and maximal angle for the potential
Then follows NST lines, (each per bond of this type), with three numbers
stating which atoms are connected by this bond, and NPOTS lines with

2 real numbers: angle and potential. The central atom stands last in the
triple, e.g. triplet 1 3 2, defines angle between 1-2 and 2-3.
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All parameters of the .pot file must be consistent with the corresponding

parameters in the .rdf file and the order of all distribution functions / corre-
sponding interaction potentials should be the same. The program does only
limited control about their consistency.
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