
Short Manual for Mate Tools

Wolfgang Seeker

September 9, 2013

Contents

1 Preliminaries 1

2 Running Mate Tools from Command Line 2

3 Training Your Own Models 3

Warning

This manual may change if the tools are updated.

1 Preliminaries

Mate tools is implemented in Java and runs on any machine that has a Java
Runtime Environment. In order to use mate tools, download the jar-file from
code.google.com/p/mate-tools.

At the writing of this manual, the most recent version is anna-3.3.jar.
Mate tools provides four different processing tools: a lemmatizer, a part-of-

speech tagger, a morphology tagger, and a dependency parser. All tools
are purely data-driven and do not need any additional resources to run. In the full
chain, they are applied in the given order, each reading the output of the previous
tools.

Note that there is no tokenizer included, which means that you need to
provide already tokenized input for the tools.1

All tools use the CoNLL 2009 Shared Task format, which consists of at least
12 tab-separated columns for each token. Each token of a sentence is represented

1For the best results, the tokenization needs to be the same as the tokenization in the treebank
that your models were trained on.

1

by one line, sentences are separated by an empty line. The columns specify the
following information in that order: word id, word form, gold lemma, predicted
lemma, gold POS, predicted POS, gold features, predicted features, gold head,
predicted head, gold label, predicted label. You can add additional columns to the
end, which will simply be copied by the tools. In each column except the first, you
can give an underscore to mark empty fields. The feature columns can be lists of
arbitrary features separated by the pipe character (e.g. nom|sg|masc).

The tools will always write to the predicted column of their associated infor-
mation (i.e. the lemmatizer writes to predicted lemmas, the POS tagger writes
to predicted POS). Tools later in the chain will read the predicted columns from
earlier tools (i.e. the parser will use information from predicted lemmas, predicted
POS, and predicted features).

2 Running Mate Tools from Command Line

For running the tools, you first need a trained model. Models for several languages
are provided on the mate tools website code.google.com/p/mate.

Run the tools with the following commands:

• Lemmatizer:
$>java -cp anna-3.3.jar is2.lemmatizer.Lemmatizer -model <modelfile>

-test <inputfile> -out <outputfile>

• POS tagger:
$>java -cp anna-3.3.jar is2.tag.Tagger -model <modelfile> -test <inputfile>

-out <outputfile>

• Morphology tagger:
$>java -cp anna-3.3.jar is2.mtag.Tagger -model <modelfile> -test <inputfile>

-out <outputfile>

• Dependency parser:
$>java -cp anna-3.3.jar is2.parser.Parser -model <modelfile> -test <inputfile>

-out <outputfile>

For example, if you want to run the part-of-speech tagger on a file named
dev.conll09.lemmatized using a model file called postagger.model and write
the output to a file named dev.conll09.lemmatized.postagged, you would use
the following call:
$>java -cp anna-3.3.jar is2.tag.Tagger -model postagger.model
-test dev.conll09.lemmatized -out dev.conll09.lemmatized.postagged

2

There is an additional switch for the lemmatizer (-uc) that switches on upper-
case handling. This was added to handle the capitalization of nouns in German
and makes sure that the lemmata of these words will also start with an upper-
case character. If capitalization is important to your lemmatization task, add this
switch to the call above.

3 Training Your Own Models

For training your own models, you first need a treebank in CoNLL 2009 Shared
Task format. The tools will use their corresponding gold columns as labels for their
training examples. For features provided by previous tools in the chain, they will
use the predicted columns. For best results, perform jackknifing on your training
data to provide realistic features for the tools later in the chain.

Train your own models with the following commands:

• Lemmatizer:
$>java -cp anna-3.3.jar is2.lemmatizer.Lemmatizer -train <trainingdata>

-model <modelfile>

• POS tagger:
$>java -cp anna-3.3.jar is2.tag.Tagger -train <trainingdata> -model <modelfile>

• Morphology tagger:
$>java -cp anna-3.3.jar is2.mtag.Tagger -train <trainingdata> -model <modelfile>

• Dependency parser:
$>java -cp anna-3.3.jar is2.parser.Parser -train <trainingdata> -model <modelfile>

3

